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Abstract The Ets family of transcription factors in mouse or humans is comprised of
around 27 unique family members that contain an evolutionarily conserved DNA-bind-
ing domain called the Ets domain. The Ets family includes both transcriptional activators
and repressors. The normal cellular Ets transcription factors have been implicated as me-
diators of a wide range of cellular processes, including oncogenic transformation. This
chapter provides an overview of the Ets family, and describes each of the multiple lines
of evidence that Ets transcription factors are mediators of cellular transformation. This
evidence includes: (a) cancers resulting from Ets factor overexpression or chromosomal
translocations that generate fusion proteins containing Ets factor domains; (b) signaling
from oncogenes to Ets factors; (c) expression correlation of Ets factors with tumor for-
mation; (d) reversal of cellular transformation by dominant inhibitory Ets constructs; (e)
delayed tumor development after genetic disruption of an Ets factor; and (f) the potential
role of many Ets target genes in transformation. A better understanding of the role of Ets
factors and their target genes in cancer should provide the basis for more specific novel
therapeutic approaches for the treatment of cancers.
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1
Introduction to the Ets Family of Transcription Factors

The first Ets family member v-ets, was identified as part of a fusion onco-
gene in the E26 avian transforming retrovirus. The name �ets� came simulta-
neously from E26 transformation-specific (Nunn et al. 1983) or E-twenty-six
(Leprince et al. 1983). Since the initial identification of a v-ets cellular ho-
molog in chickens (Leprince et al. 1983), and the recognition that other pro-
teins have a related domain (Karim et al. 1990), Ets transcription factor fam-
ilies have been identified in a variety of organisms. The Ets family size
ranges from 10 putative Ets factors in Caenorhabditis elegans (Hart et al.
2000) to 27 characterized Ets family members in humans (Oettgen et al.
2000). The Ets transcription factor family is defined by the presence of an
evolutionarily conserved domain of about 85 amino acids—the Ets domain.
The Ets domain mediates binding of Ets family members to DNA sequences
containing a GGAA/T core sequence. While there is some specificity con-
ferred by the nucleotides flanking the core sequence, there is considerable
overlap of Ets factor DNA binding specificity. The functional specificity of
Ets factors is thought to derive from a combination of their tissue-specific
expression patterns, post-transcriptional modifications, and interactions
with a variety of partner proteins (reviewed in Ghysdael and Boureux 1997;
Graves and Petersen 1998; Sharrocks 2001; Verger and Duterque-Coquillaud
2002; Oikawa and Yamada 2003).

1.1
The Ets Gene Families of Mice and Humans

Mammalian Ets factors have been organized into subfamilies by several cri-
teria, the most common based on the similarity of their Ets domains. Table 1
lists the 26 currently characterized human/mouse Ets family orthologs, and
one human Ets factor (TEL2) where a mouse ortholog has not yet been re-
ported. This subfamily grouping is based on the Ets domain molecular phy-
logeny analysis of (Laudet et al. 1999), with the addition of several more re-
cently characterized Ets factors, as tabulated in (Oettgen et al. 2000). A
bioinformatic study of the mouse genome sequence suggests that few addi-
tional Ets domain-containing genes remain to be discovered (Xuan et al.
2002). A second conserved domain found in 11 of the Ets family members is
the pointed domain, named for the Drosophila pointed gene where this do-
main was first identified (Klambt 1993). The presence or absence of a point-
ed domain is indicated for each of the Ets factors in Table 1. Pointed do-
mains are associated with highly divergent Ets domains (e.g., the Ets1/2 and
TEL subfamilies), and thus arranging the Ets family by pointed domain ho-
mology would lead to an organization quite different from that shown in Ta-
ble 1. The Ets1/2, Erg, and Elf/Ese subfamilies (based on Ets domain homol-
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ogy) are examples of Ets subfamilies of which only some subfamily mem-
bers contain a pointed domain. Four of the seven Elf/Ese subfamily mem-
bers contain a pointed domain, and this observation along with their epithe-
lial pattern of expression, has led to the grouping of the Ese/Pse family as a
distinct subfamily (Feldman et al. 2003b). The roles of Ets factor pointed do-
mains in oncogenesis are discussed below.

1.2
Ets Family Nomenclature

One of the confounding problems of understanding the extensive literature
on Ets transcription factors (currently more than 2000 publications) is the
multiple names in use for each Ets factor. Table 1 includes alternative names
used for the human and/or mouse Ets family members including their Uni-
Gene symbols, representative transcript accession numbers, and cluster
number. Additionally, both in common usage and even in UniGene symbols,
there are sometimes different names for mouse and human orthologs. Final-
ly, several UniGene symbols, particularly those based on involvement of sev-
en sometimes unrelated Ets factors identified in chromosomal transloca-
tions (ETV 1–7), are not used by most researchers in the field. An example
of the challenges in nomenclature is PEA3/E1AF/ETV4. PEA3 started out as
a generic term for factors that bound to what later would be called an Ets-
binding site in the polyoma enhancer (Gutman and Wasylyk 1990; Leprince
et al. 1992). Subsequently, the name PEA3 was given to a specific Ets family
member (Xin et al. 1992). Later, the human ortholog of PEA3 (with 94% to-
tal sequence identity) was discovered, but was named E1AF (Higashino et al.
1993). Finally, PEA3/E1AF was found to be the fourth Ets factor involved in
chromosomal fusions with EWS (Kaneko et al. 1996), and was designated
ETV4 in UniGene. A literature search revealed that for PEA3, E1AF, and
ETV4, there were 136, 26, and 3 citations respectively, and this ratio has not
substantially changed in the last 2 years.

1.3
Ets Family Functions

Ets transcription factors have been implicated in the regulation of virtually
all cellular functions, including growth, development, differentiation, sur-
vival, and oncogenic transformation (reviewed in Dittmer and Nordheim
1998; Maroulakou and Bowe 2000; Oikawa and Yamada 2003). Gene products
associated with all of these cellular functions are among the hundreds of pu-
tative Ets factor target genes already identified by a variety of criteria (re-
viewed in Sementchenko and Watson 2000). The involvement of some of
these target genes in cellular transformation is discussed below. Despite the
potential functional redundancy of Ets factors, gene disruption of most Ets
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factors studied thus far results in embryonic or perinatal lethality (Bartel et
al. 2000; Oikawa and Yamada 2003). Such early lethality in knockout mice
reveals essential early roles for Ets factors, but complicates the study of the
role of individual Ets factors in oncogenesis.

The majority of Ets factors are transcriptional activators, which serve as
downstream effectors for a variety of signal transduction pathways, as dis-
cussed below. However, at least five mammalian Ets factors have been re-
ported to have repressor activity, including Erf, PE1/METS, Elk3/Net, TEL,
and TEL2. (Mavrothalassitis and Ghysdael 2000; Gu et al. 2001; Klappacher
et al. 2002). In addition, depending on the signaling inputs, several addition-
al Ets factors possess both transcriptional activation and repression activi-
ties (reviewed in Sharrocks 2001). The mixed transcriptional role of Ets fac-
tors has been evolutionarily conserved from Drosophila, where several of the
Ets factors are transcriptional activators (Hsu and Schulz 2000), but Yan is a
negative regulator (O�Neill et al. 1994) which opposes the action activators
such as pointed (Brunner et al. 1994; Gabay et al. 1996). The C. elegans Lin-1
Ets factor may also possess negative regulatory activity (Tan et al. 1998).
Overall, in normal mammalian cells, there is a balance between positive and
negative regulation of Ets-dependent gene expression, and there are multiple
lines of evidence that changes in this balance can have a significant impact
on oncogenic transformation.

1.4
Many Different Ets Factors Can Be Present in a Specific Tissue or Cell Type

Because of the similar DNA binding specificity of Ets factors, to understand
how Ets target genes are regulated in a particular cell type, it is important to
know which Ets factors are present. The normal course of gene discovery is
that a new Ets factor is found, and its expression is analyzed in several tis-
sues. Subsequently, other investigators may examine the expression of this
Ets factor in tissues of their interest. The resulting expression data for each
Ets factor is therefore rather anecdotal. When our studies led to the question
of which Ets factors act as crucial mediators of cancer, we were surprised to
find that the expression status of less than half of the Ets family members
was known in any single cell type or tissue (Maroulakou and Bowe 2000;
Barrett et al. 2002). Thus, we undertook a comprehensive study to determine
which of the Ets factor mRNAs are expressed in normal mammary, mamma-
ry tumors, and mammary related cell lines. The unexpected result of this
analysis was that 24 of the 25 mouse Ets factors analyzed were expressed in
normal mammary tissue, and even in clonal cell lines, between 14 and 20 of
the Ets factors were significantly expressed (Galang et al. 2004). These data
show that identifying which Ets factors are regulating specific target genes is
more complex than previously appreciated.

The Role of Ets Transcription Factors in Mediating Cellular Transformation 263



1.5
Ets Target Genes

There is substantial interest in Ets transcription factor target genes, in part,
because of the potential role of these genes in the transformed phenotype.
Over 200 genes with Ets factor-binding sites in their promoters have been
established as Ets target genes by various criteria. The products of these
target genes are associated with every aspect of cellular regulation, includ-
ing growth, adhesion, motility, invasion, angiogenesis, and apoptosis
(Sementchenko and Watson 2000). In addition, correlative evidence con-
nects expression of various Ets factors to these cellular functions, and Ets
factor-binding sites are found in the promoter of nearly every matrix metal-
loproteinase, molecules important in invasive behavior (Sato 2001; Singh et
al. 2002; Oikawa and Yamada 2003). Clearly, gene products involved in con-
trolling these diverse cellular functions are likely to be important down-
stream targets of oncogenic signaling. Because most of the Ets target genes
have been characterized by reporter gene analysis upon overexpression of a
few Ets factors, the physiological role of individual Ets factors in regulating
these target genes remains unclear, as does the contribution of this observed
regulation to the transformed phenotype.

2
Evidence Implicating Ets Factors in Cellular Transformation and Cancer

A variety of lines of evidence support the role of Ets factors as mediators of
cellular transformation and tumor progression. These include: (a) ery-
throleukemias from viral-induced overexpression of mouse Ets factors; (b)
chromosomal translocations involving at least six different Ets genes gener-
ate fusion proteins associated with a variety of tumors; (c) mutations in
some Ets factors are associated with tumor development; (d) many Ets fac-
tors are downstream signaling targets for oncogenes; (e) correlation of Ets
factor expression with tumor progression; (f) reversal of cellular transfor-
mation by dominant negative and positive Ets constructs or other reagents
that interfere with Ets factor function; (g) impaired tumor development in
mice with genetically altered function of a specific Ets factor. These seven
lines of evidence are described below.

2.1
Ets Factor Overexpression Resulting from Proviral Insertion

There are two examples in where overexpression of mouse Ets factors due to
nearby viral integration contributes to erythroleukemias. The Spi-1/PU.1 Ets
factor was first identified in erythroleukemias as an oncogene frequently ac-
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tivated by Friend spleen focus forming virus insertion (Moreau-Gachelin et
al. 1988). Similarly, elevated Fli1 expression resulting from Friend murine
leukemia virus insertion was also found in erythroleukemias (Ben-David et
al. 1991). The viral insertions did not alter the coding sequence of PU.1 or
Fli1, but proximity of the strong viral enhancer elevated the transcription of
these Ets factors. Transgenic mouse models were subsequently used to show
that overexpression of PU.1, but not Fli1, was sufficient to induce erythro-
leukemia (Zhang et al. 1995; Moreau-Gachelin et al. 1996). In addition to
these naturally occurring examples, experimental overexpression of several
Ets factors has been reported to transform rodent cells (reviewed in Dittmer
and Nordheim 1998).

2.2
Chromosomal Translocations of Ets Genes Associated with Human Cancers

Fusions of the N-terminal portion of EWS with the Ets domain (DNA-bind-
ing domain) of at least five different Ets factors (Fli, Erg, ER81, PEA3, FEV)
are associated with Ewing�s family tumors (reviewed in Arvand and Denny
2001). The ability of so many different Ets DNA-binding domains (Ets
DBDs) to participate in these fusions with similar outcomes, suggests that
the EtsDBD have similar DNA-binding specificities, and that critical Ets tar-
get gene expression is being altered by fusion to EWS. This is likely due in
part to the enhanced transactivation activity of the Ets fusion proteins
(Ohno et al. 1993; Bailly et al. 1994). Indeed, experimentally interfering with
Ets-dependent gene expression by expression of the Fli1 EtsDBD fused to a
repressor domain reverses the transformed phenotype of Ewing Sarcoma
cells (Athanasiou et al. 2000). However, there is emerging evidence that oth-
er activities of EWS also mediate transformation, as the Ews–Fli1 fusion pro-
teins can also negatively regulate Ets-dependent gene expression (Im et al.
2001) and EWS–Ets fusions exhibit both DNA-binding-dependent and -inde-
pendent transformation mechanisms (Jaishankar et al. 1999; Knoop and
Baker 2001; Welford et al. 2001).

The TEL gene is involved in several kinds of cancer associated gene fu-
sions, which reveal distinct contributions of three different domains of this
Ets family member. One type of TEL fusion associated with leukemias is the
Ets domain of TEL fused to a transactivation domain of transcription factor
MN1 (Buijs et al. 2000). This fusion protein presumably leads to inappropri-
ate activation of Ets-dependent gene expression. A unique feature of TEL
(and the recently discovered TEL2) among the Ets family members is its
ability to homodimerize through its pointed domain. Fusions of the TEL
dimerization domain to the kinase domain of variety of tyrosine kinase
genes leads to dimerized and constitutively activated tyrosine kinases asso-
ciated with leukemias (Golub et al. 1996). In addition to leukemias, such fu-
sions can also lead to lymphomas (Yagasaki et al. 2001) and fibrosarcomas
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(Knezevich et al. 1998). Finally, TEL also contains a repressor domain
(Chakrabarti and Nucifora 1999), and gene fusion of this domain with
AML1 generates a protein that may repress critical AML1 target genes lead-
ing to leukemias (Hiebert et al. 2001). Overall, the Ets fusion genes associat-
ed with cancers highlight the function of several Ets factor domains. These
data, along with induction of erythroleukemias from elevated expression of
PU.1 or Fli1, strongly suggest that altered regulation of Ets target genes con-
tributes to a variety of malignancies.

2.3
Mutations in Ets Genes Associated with Human Cancers

There is not strong evidence that mutation of Ets family members is a wide-
spread event in human cancers. Nonetheless, there are a few suggestive ex-
amples. In addition to participation of TEL in gene fusions, TEL also maps
to a chromosomal region (12p12-p13) found deleted in about 5% of children
with acute lymphoblastic leukemia (ALL), suggesting a possible role as a tu-
mor suppressor (Stegmaier et al. 1995). Further analysis of TEL loss of het-
erozygosity (LOH) in ALL patients has generated mixed results, but loss of
the unfused TEL allele in TEL-AML1-induced ALL is quite common, sug-
gesting there is selective pressure for this LOH (Raynaud et al. 1996). Het-
erozygous mutations in PU.1 were recently identified in 9 of 126 acute my-
eloid leukemia (AML) patients, with most of these mutations disrupting
PU.1 DNA-binding function. It was postulated that such mutations could in-
hibit PU.1 function and block early myeloid differentiation (analogous to
the differentiation block observed in PU.1–/– mice), contributing to develop-
ment of AML (Mueller et al. 2002). The Ese2/Elf5 and Ese3/EHF genes are
closely linked and map to human chromosome 11p13–15. This chromosom-
al region has been found to exhibit LOH in breast and prostate carcinomas,
suggestive of a possible negative role for these Ets factors in tumors (Zhou
et al. 1998; Tugores et al. 2001).

2.4
Signaling to Ets Factors from Oncogenes

Ets transcription factors are downstream targets of multiple signaling path-
ways, and their activity can be modulated by a variety of post-transcription-
al modifications. The Ras signaling pathway alters the activity of many Ets
factors, and other oncogenic signaling also converges on Ets transcription
factors (for review see Dittmer and Nordheim 1998; Wasylyk et al. 1998;
Yordy and Muise-Helmericks 2000; Oikawa and Yamada 2003). As an exam-
ple, Ets2 is transcriptionally activated by oncogenic Ras or Neu/ErbB-2 sig-
naling, and this activation requires mitogen activated protein kinase-mediat-
ed phosphorylation of an evolutionarily conserved Ets2 threonine residue
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(Galang et al. 1996; Yang et al. 1996; McCarthy et al. 1997). Another evolu-
tionarily conserved function of oncogenic signaling is relief of negative reg-
ulation by Ets family repressors. This is seen from Ras signaling in flies
(Gabay et al. 1996) to oncogenic signaling in mammals (Le Gallic et al. 1999;
Lopez et al. 2003). In addition to phosphorylation, other reported regulatory
modification of Ets family members include acetylation of Ets1 (Czuwara-
Ladykowska et al. 2002), glycosylation of Elf1 (Tsokos et al. 2003), and
SUMO modification of TEL (Wood et al. 2003). Overall, modifications of Ets
factors resulting from oncogenic signaling may strongly influence their ac-
tivity, through mechanisms including altered DNA binding, interactions
with partner proteins, protein stability, or subcellular localization.

2.5
Expression Correlation of Ets Factors with Tumors

There have been many correlative studies demonstrating differences in the
expression of many of the Ets factors in normal and tumor tissue. A recent
comprehensive review on Ets1 cited 35 correlative studies of the expression
of just this one Ets factor in tumors (Dittmer 2003). Our recent analysis of
expression of the entire Ets family in mouse mammary tumor development
found that expression of the mRNAs of nine different Ets factors was signifi-
cantly elevated in mammary tumors as compared with normal mammary
tissue (Galang et al. 2004). Some of this altered Ets factor expression was
found to reflect changes the in cellular composition from normal mammary
tissue to tumors (e.g., an increased epithelial cell content), whereas other
differences were found to represent actual tumor-specific events. Another
complicating factor in interpreting expression Ets correlation studies is that
one cannot distinguish whether changes in Ets factor expression contribute
to the tumor phenotype, or simply result from altered signaling in the tu-
mors. Nonetheless, there is a wealth of suggestive evidence that alterations
in expression of specific Ets factors correlates with the development or pro-
gression of specific types of tumors (Oikawa and Yamada 2003).

2.6
Reversal of Cellular Transformation by Altered Ets Factor Function

One of the most compelling lines of evidence that Ets factors play a causal
role in specifically mediating cellular transformation comes from experi-
mental alteration of Ets family function in transformed cells. In mouse cells,
broadly inhibiting Ets factor activity by expression of a dominant negative
Ets construct consisting of just the DNA-binding domain (DBD) of Ets1,
Ets2, or PU.1 inhibits or reverses the Ras or Neu/ErbB-2 transformation of
murine fibroblasts (Langer et al. 1992; Giovane et al. 1994; Galang et al.
1996; Foos et al. 1998). Transgenic expression of a PEA3 DBD also inhibits
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tumor formation in a mouse model (Shepherd et al. 2001), and cationic lipid
delivery of a PEA3 DBD expression construct to tumors resulted in pro-
longed survival of the treated animals (Wang and Hung 2000). Additional
evidence of the importance of Ets signaling in transformation came from re-
versal of Ras transformation by overexpression of an inhibitory mutant
form of ERF (Le Gallic et al. 1999) or overexpression of TEL, a transcription-
al repressor in the Ets family (Athanasiou et al. 2000).

Similar to rodent cells, reversal of aspects of the transformed phenotype
was observed in human tumor cells upon interfering with Ets function in
prostate, thyroid, breast, and Ewing sarcoma tumor cells (Kovar et al. 1996;
Delannoy-Courdent et al. 1998; Sapi et al. 1998; Sementchenko et al. 1998;
Athanasiou et al. 2000; Foos and Hauser 2000; de Nigris et al. 2001; G. Foos
and C.A. Hauser, unpublished results). Interestingly, in either rodent or hu-
man tumor cells, while Ets DBD inhibition of cellular Ets function has strong
effects on the transformed phenotype (e.g., loss of anchorage-independent
growth) it does not usually impair normal cell growth. This indicates that
cellular Ets factors mediate transformation-specific signaling not required
for normal cell growth. Thus, intervening with this signaling could have the
specificity desired for cancer therapy.

One must interpret the Ets factor DBD studies carefully with respect to
which specific Ets factors are important. It has long been suspected that Ets
DBD constructs (which bind to similar promoter sites) could broadly inhibit
Ets family activity. We recently demonstrated such broad activity, showing
that Ets2DBD expression strongly inhibits Ets-dependent gene expression
even in an Ets2 knockout cell line (Hever et al. 2003). This study further
showed that despite the ability the Ets2DBD to reverse Ras transformation
in a variety of cells, that Ets2 knockout cells exhibited no defects in Ras
transformation. Thus, due to the promiscuity of Ets domain DNA binding,
Ets dominant negative experiments clearly do not identify which specific Ets
factors mediate transformation, but they do reveal the critical role of the Ets
family in mediating transformation-specific signaling.

Surprisingly, experimental overexpression of a variety of Ets family tran-
scriptional activators can also reverse aspects of the transformed phenotype
in mouse and human cells. Overexpression of Ets1, Ets2, PEA3, Ese1, or
PDEF reverses aspects of the transformed phenotype in both Ras trans-
formed NIH3T3 cells (Foos et al. 1998) and in human colon, prostate and
breast tumor cell lines (Suzuki et al. 1995; Chang et al. 2000; Foos and Hauser
2000; Xing et al. 2000; Feldman et al. 2003a; G. Foos and C.A. Hauser, unpub-
lished results). Such studies must also be carefully interpreted, as high-level
expression of an Ets factor likely impacts on the physiological targets of other
Ets family members. In summary, a balance of Ets function (mediated by one
or more unidentified Ets factors) appears to be needed to provide signaling
specifically required to maintain cellular transformation.

268 G. Foos · C.A. Hauser



2.7
Genetic Loss-of-Function Studies of Ets Factors in Cancer

One of the most compelling ways that a gene product can be implicated in
tumor formation or progression, is by genetic loss-of-function analysis. This
approach has been difficult with Ets factors, because their homozygous
disruption often leads to embryonic or perinatal lethality (Bartel et al.
2000; Oikawa and Yamada 2003). In light of the extensive literature connect-
ing Ets transcription factors and cancer, it is surprising that only one Ets
factor, Ets2, has been demonstrated to be specifically involved in tumor de-
velopment in vivo. This analysis of Ets2 function was also complicated by
embryonic lethality, but it was shown that heterozygote ets2 (+/�) mice ex-
hibited delayed tumor onset in a transgenic mouse mammary tumor model
(Neznanov et al. 1999). It was subsequently shown that mice homozygous
for a hypomorphic ets2 allele (which could not be activated by Ras pathway
signaling) also exhibited delayed mammary tumor formation (Man et al.
2003). Definitive genetic analysis of the requirement of Ets2 or the other 25
Ets family members may require the use of conditional gene disruption.

3
Future Perspectives for Understanding the Role
of Ets Factors in Transformation

While there is fairly overwhelming evidence that Ets transcription factors
are important mediators of cellular transformation, important questions still
need to be addressed. One of these questions is which specific Ets family
members mediate transformation? Given the size of the Ets family, identifi-
cation of individual Ets factors mediating transformation in specific cellular
contexts will likely require loss-of-function analysis. While several loss-of-
function approaches are possible, the use of emerging RNA interference
technologies holds great promise. If individual Ets members whose function
is critical in transformation can be identified, then therapeutic approaches
based on specifically interfering with their expression or interactions can be
developed, or alternatively, approaches developed based on interfering with
the signaling which modulates the Ets factor activity.

A second major question is what are the important target genes for the
Ets-mediated transformation-specific signaling. One current problem is try-
ing to determine which of the hundreds of identified putative Ets target
genes are actually effectors of transformation. In addition, there may also be
novel transformation-specific targets of Ets factors yet to be identified. Most
of the broad functional analysis of Ets target genes by microarray analysis
thus far, has focused on the role of Ets factors in differentiation. Such differ-
entiation analysis includes targets of PU.1, TEL, and MEF in hematapoetic
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cells and Ets1 and ERG in HUVEC (McLaughlin et al. 2001; Teruyama et al.
2001; Yamada et al. 2001; Sakurai et al. 2003; Hedvat et al. 2004). As a start
to the identification of Ets targets important in cancer, we have applied mi-
croarray analysis to the human breast tumor cell line system, comparing
gene expression in tumor cells to subclones reverted by dominant-acting Ets
constructs. This approach has identified at least one functionally important
Ets target gene (interleukin-8) in these tumor cells, with several other in-
triguing candidates (G. Foos and C.A. Hauser, unpublished results). Overall,
it is anticipated that important insights into the molecular events in onco-
genic transformation and tumor progression will be made from future stud-
ies of the role of Ets transcription factors in cancers.
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