3 Erzeugungsmuster

Entwurfsmuster, die der Erzeugung von Objekten dienen, verstecken den Erzeu-
gungsprozefd. Sie helfen, ein System unabhédngig davon zu machen, wie seine Ob-
jekte erzeugt, zusammengesetzt und reprasentiert werden. Ein klassenbasiertes Er-
zeugungsmuster verwendet Vererbung, um die Klasse des zu erzeugenden Objekts
zu variieren, wahrend ein objektbasiertes Erzeugungsmuster die Erzeugung an ein
anderes Objekt delegiert.

Erzeugungsmuster sind vor allem dann von Bedeutung, wenn Systeme beginnen,
mehr von Objektkomposition als von Vererbung abzuhdngen. Dabei bewegt sich
die Konzentration von der Programmierung festgelegten Verhaltens weg. Sie be-
wegt sich hin zur Definition einer kleineren Menge grundlegender Verhaltensein-
heiten, die zu beliebig komplexem Verhalten zusammengesetzt werden kénnen.
Deswegen verlangt das Erzeugen von Objekten mit bestimmtem Verhalten mehr
als nur das Erzeugen eines Objekts einer einzelnen Klasse.

Es gibt zwei immer wiederkehrende Leitmotive in diesen Mustern. Zum einem
kapseln sie alle das Wissen um die konkreten vom System verwendeten Klassen.
Zum anderen verstecken sie, wie Exemplare dieser Klassen erzeugt und zusam-
mengefiigt werden. Alles, was die Anwendung insgesamt iiber die Objekte weif3,
wird durch die von den abstrakten Klassen definierten Schnittstellen bestimmt.
Somit ermdglichen die Erzeugungsmuster zu bestimmen, was erzeugt wird, wer es
erzeugt, wie es erzeugt und wann es erzeugt wird. Sie ermdglichen es [hnen, ein Sy-
stem mit Hilfe von »Produktobjekten« zu konfigurieren, die stark in Struktur und
Funktionalitat variieren konnen. Die Konfiguration kann statisch (das heif3t, zur
Ubersetzungszeit festgelegt) oder dynamisch sein (das heif3t, zur Laufzeit festge-
legt).

Mitunter stehen Erzeugungsmuster in Konkurrenz zueinander. Zum Beispiel gibt
es Situationen, in denen sowohl ein Prototyp (144) als auch eine abstrakte Fabrik
(107) nutzbringend eingesetzt werden konnen. Manchmal sind die Muster kom-
plementir: Ein Erbauer (119) kann jeweils eines der anderen Muster zum Zusam-
menbau von Komponenten verwenden. Prototyp (144) kann ein Singleton (157)
zu seiner Implementierung verwenden.

Da die Erzeugungsmuster eng zusammenhédngen, werden wir alle fiinf Muster zu-
sammen betrachten, um ihre Ahnlichkeiten und ihre Unterschiede herauszustel-
len. Wir werden zudem ein bekanntes Beispiel — den Bau eines Labyrinths fiir ein
Computerspiel — verwenden, um ihre Implementierungen zu illustrieren. Das La-
byrinth und das Spiel werden von Muster zu Muster leicht variieren. Manchmal

102 3 Erzeugungsmuster

besteht das Spiel lediglich darin, aus dem Labyrinth herauszufinden. In diesem
Fall hat der Spieler vermutlich nur einen lokalen Blick auf das Labyrinth. Manch-
mal werden die Labyrinthe Probleme und Gefahren enthalten, welche es zu 16sen
und zu tUberwinden gilt. Diese Spiele werden moglicherweise eine Karte des be-
reits untersuchten Teils des Labyrinths anbieten.

Wir werden viele Details ignorieren, welche in einem Labyrinth vorhanden sein
konnen, und ob das Labyrinthspiel einen oder mehrere Spieler kennt. Statt dessen
konzentrieren wir uns auf die Erzeugung von Labyrinthen. Wir definieren ein La-
byrinth als eine Menge von Riumen. Ein Raum kennt seine Nachbarobjekte, ent-
weder einen weiteren Raum, eine Wand oder eine Tiir zu einem anderen Raum.

Die Klassen Raum, Tuer und Wand definieren die Komponenten des in allen unseren
Beispielen verwendeten Labyrinths. Wir definieren nur solche Teile dieser Klas-
sen, welche wichtig zum Erzeugen eines Labyrinths sind. Wir werden die Spieler,
die Operationen zum Anzeigen und Herumspazieren im Labyrinth, und alle wei-
tere wichtige aber zum Bauen des Labyrinths irrelevante Funktionalitédt ignorie-
ren.

Die Abbildung 3.1 zeigt die Beziehungen zwischen diesen Klassen.

=0| KartenEintrag

Abbildung 3.1

Betrete()
seiten Raum Wand Tuer
Betrete() Betrete() Betrete()
Labyrinth SetzeSeite()
raeume GibSeite() istOffen
FuegeRaumEin()
RaumNr() raumNr.

Jeder Raum besitzt vier Seiten. Wir verwenden den Aufzdhlungstyp Richtung fiir
die C++-Implementierungen, um die nordliche, stidliche, 6stliche und westliche
Seite eines Raums anzugeben:

enum Richtung { Norden, Sueden, Osten, Westen };

3 Erzeugungsmuster 103

Die Smalltalk-Implementierungen verwenden entsprechende Symbole, um diese
Richtungen zu reprdsentieren.

Die Klasse KartenEintrag ist die gemeinsame abstrakte Oberklasse fiir alle Kompo-
nenten eines Labyrinths. Um das Beispiel zu vereinfachen, definiert KartenEintrag
nur eine Operation, Betrete. Ihre Bedeutung hiangt davon ab, was man betritt.
Wenn Sie einen Raum betreten, dndert sich Ihre Position. Wenn Sie versuchen,
eine Tir zu betreten, kdnnen zwei Dinge passieren: Wenn die Tiir offen ist, gehen
Sie in den ndchsten Raum. Wenn die Tir geschlossen ist, stofien Sie sich Ihre
Nase.

class KartenEintrag |
public:

virtual void Betrete() = 0;
b

Betrete bietet einen einfachen Ausgangspunkt fiir kompliziertere Spieloperatio-
nen. Wenn Sie zum Beispiel in einem Raum sind und »Gehe nach Osten« sagen,
kann das Spiel einfach bestimmen, welcher KartenEintrag direkt im Osten liegt
und dann Betrete von ihm aufrufen. Die unterklassenspezifische Betrete-Opera-
tion bestimmt dann, ob sich Ihre Position gedndert hat oder Ihre Nase verletzt
wurde. In einem richtigen Spiel konnte Betrete das zu bewegende Spielerobjekt
als Argument erhalten.

Raum ist die konkrete Unterklasse von KartenEintrag, welche die zentralen Bezie-
hungen zwischen Komponenten in einem Labyrinth definiert. Sie verwaltet Refe-
renzen zu anderen KartenEintrag-Objekten und speichert eine Raumnummer. Die
Nummer dient zur Identifizierung von Rdumen im Labyrinth.

class Raum : public KartenEintrag f
pubTic:
Raum(int raumNr);

KartentEintrag* GibSeite(Richtung) const;
void SetzeSeite(Richtung, KartenEintrag*);

virtual void Betrete();

private:
KartenEintrag* _seitenl[4];
int _raumNr;

Vs

104 3 Erzeugungsmuster

Die folgenden Klassen reprdasentieren die Wiande oder Tiren, welche auf jeder
Seite eines Raumes auftreten.

class Wand : public KartenEintrag |
public:
Wand();

virtual void Betrete();

class Tuer : public KartenEintrag f{
public:
Tuer(Raum* = 0, Raum* = 0);

virtual void Betrete();
Raum* AndereSeite(Raum*);

private:
Raum* _rauml;
Raum* _raumZ;
bool _istOffen;
Vs

Wir miissen allerdings mehr als nur die Teile eines Labyrinths bestimmen. Wir de-
finieren weiterhin eine Klasse Labyrinth, um eine Sammlung von Rdumen zu re-
prasentieren. Labyrinth kann einen bestimmten Raum anhand einer Raumnum-
mer unter Verwendung der RaumNr-Operation finden.

class Labyrinth {
public:
Labyrinth();

void FuegeRaumHinzu(Raum*);
Raum* RaumNr(int) const;

private:
/...
Vs

RaumNr konnte den Raum mittels linearer Suche, einer Hash-Tabelle oder auch
nur eines einfachen Arrays ermitteln. Wir werden uns um diese Details aber hier
nicht kiimmern. Statt dessen werden wir uns auf die Spezifikation der Komponen-
ten im Labyrinth konzentrieren.

3 Erzeugungsmuster 105

Als weitere Klasse definieren wir LabyrinthSpiel, welche das Labyrinth erzeugt.
Man kann ein Labyrinth einfach durch eine Abfolge von Operationen erzeugen,
welche dem Labyrinth Komponenten hinzufiigen und sie dann miteinander ver-
binden. Die folgende Member-Funktion erzeugt zum Beispiel ein Labyrinth, das
aus zwei Rdumen mit einer Tiir dazwischen besteht:

Labyrinth* LabyrinthSpiel::ErzeugelLabyrinth() {
Labyrinth* einlLabyrinth = new Labyrinth;
Raum* rauml = new Raum(1);

Raum* raum? = new Raum(2);
Tuer* dieTuer = new Tuer(rauml, raum?);

einLabyrinth->FuegeRaumHinzu(rauml);
einLabyrinth->FuegeRaumHinzu(raum2);

rauml->SetzeSeite(Norden, new Wand);
rauml->SetzeSeite(Osten, dieTuer);

rauml->SetzeSeite(Sueden, new Wand);
rauml->SetzeSeite(Westen, new Wand);

raum2->SetzeSeite(Norden, new Wand);
raumZ->SetzeSeite(Osten, new Wand);
raum?->SetzeSeite(Sueden, new Wand);
raumZ->SetzeSeite(Westen, dieTuer);

return einlLabyrinth;
}

Diese Operation ist ziemlich kompliziert, bedenkt man, daf sie lediglich ein Laby-
rinth mit zwei Rdiumen erzeugt. Offenkundig geht es auch einfacher. Zum Beispiel
konnte der Raum-Konstruktor im voraus die Seiten mit Wanden initialisieren. Aber
dies wiirde den Code nur an eine andere Stelle bewegen. Das eigentliche Problem
mit dieser Member-Funktion ist nicht ihre Gréfie, sondern ihre Unflexibilitit. Sie
schreibt das Labyrinth-layout fest. Eine Verdnderung des Layouts bedeutet das
Verdandern der Member-Funktion, entweder durch Uberschreiben oder durch An-
dern von Teilen der Implementierung. Die erste Alternative fithrt zur Reimple-
mentierung der Operation wéahrend die zweite Alternative fehleranféllig ist und
auch keine Wiederverwendung fordert.

Die Erzeugungsmuster zeigen, wie man den Entwurf flexibler, aber nicht notwen-
dig kleiner macht. Insbesondere erleichtern sie es, die Klassen, welche die Kompo-
nenten des Labyrinth bestimmen, zu verdndern.

106 3 Erzeugungsmuster

Stellen Sie sich vor, Sie wollen ein existierendes Labyrinthlayout fiir ein neues
Spiel wiederverwenden, welches unter anderem verzauberte Labyrinthe enthalt.
Das verzauberte Labyrinthspiel besitzt neue Arten von Komponenten, etwa Tuer-
MitZauberspruch, eine Tir, die nur mit einem Zauberspruch verschlossen und ge-
offnet werden kann; oder VerzauberterRaum, ein Raum der merkwiirdige Gegen-
stinde wie magische Schliissel oder Zauberspriiche enthalten kann. Wie nun
kann man Erzeugelabyrinth auf einfache Weise so verdndern, daf} es Labyrinthe
mit diesen neuen Klassen von Objekten erzeugt?

Die grofdte Hiirde fiir Verdnderungen liegt hier in der unflexiblen Programmie-
rung der Klassen, von denen Objekte erzeugt werden sollen. Die Erzeugungsmu-
ster bieten verschiedene Moglichkeiten, explizite Referenzen auf konkrete Klassen
aus dem Code, der von ihnen Objekte erzeugen muf}, zu entfernen:

e Wenn Erzeugelabyrinth virtuelle Funktionen anstelle von Konstruktoren zum
Erzeugen der benotigten Raume, Winde und Tiiren aufruft, konnen Sie die
Klassen der zu erzeugenden Objekte verdndern, indem sie eine Unterklasse von
LabyrinthSpiel erzeugen und die entsprechenden virtuellen Funktionen tiiber-
schreiben. Dieser Ansatz ist ein Beispiel fiir das Fabrikmethodemuster (131).

e Wenn Erzeugelabyrinth ein Objekt als Parameter erhdlt, das zum Erzeugen von
Raumen, Wianden und Tiiren verwendet wird, dann konnen Sie die Klassen
von Riumen, Wianden und Tiiren durch das Hereinreichen verschiedener Pa-
rameter verandern. Dies ist ein Beispiel fiir das Abstrakte-Fabrik-Muster (107).

e Wenn Erzeugelabyrinth ein Objekt erhélt, das ein neues Labyrinth vollstindig
unter Verwendung von Operationen zum Hinzuftigen von Rdumen, Tiiren
und Winden zum Labyrinth selbst erzeugen kann, dann kénnen Sie Verer-
bung benutzen, um Teile des Labyrinths oder die Art, wie es gebaut wird, zu
verdndern. Dies ist ein Beispiel fiir das Erbauermuster (119).

e Wenn Erzeugelabyrinth mit verschiedenen prototypischen Raum-, Tiir- und
Wandobjekten parametrisiert wird, welche es kopieren und dem Labyrinth
hinzuftigen kann, dann konnen Sie den Aufbau des Labyrinths durch Ersetzen
dieser prototypischen Objekte verdndern. Dies ist ein Beispiel fiir das Prototyp-
muster (144).

Das verbleibende Erzeugungsmuster, Singleton (157), ermdglicht es Ihnen, sicher-
zustellen, daf es nur ein Labyrinthobjekt pro Spiel gibt und daf} alle Spielobjekte
direkten Zugriff auf diese Objekte besitzen, ohne auf globale Variablen oder Funk-
tionen zuriickgreifen zu miissen. Singleton macht es weiterhin einfach, das Laby-
rinth zu erweitern oder zu ersetzen, ohne existierenden Code verandern zu miis-
sen.

Abstrakte Fabrik 107

Abstrakte Fabrik

(Abstract Factory)

Ein objektbasiertes Erzeugungsmuster

Zweck

Biete eine Schnittstelle zum Erzeugen von Familien verwandter oder voneinander
abhingiger Objekte, ohne ihre konkreten Klassen zu benennen.

Auch bekannt als
Kit

Motivation

Stellen Sie sich eine Klassenbibliothek fiir Benutzungsschnittstellen vor, die meh-
rere Look-and-Feel-Standards wie Motif oder den Presentation-Manager unter-
stiitzt. Unterschiedliche Look-and-Feel-Standards definieren unterschiedliches
Aussehen und Verhalten von Widgets, den Interaktionselementen einer Benut-
zungsschnittstelle, wie Scrollbars, Fenstern und Knopfen. Um zwischen verschie-
denen Look-and-Feel-Standards portierbar zu sein, sollte sich eine Anwendung
nicht auf die Widgets eines spezifischen Standards festlegen. Die Erzeugung von
Look-and-Feel spezifischen Widgetklassen iiber die ganze Anwendung zu vertei-
len macht es schwer, das Look-and-Feel spdter zu dndern.

Man kann das Problem durch Einfithrung einer abstrakten WidgetFabrik 16sen,
die eine Schnittstelle zum Erzeugen jeder grundlegenden Art von Widget dekla-
riert (siehe Abbildung 3.2). Weiterhin gibt es eine abstrakte Klasse fiir jede Wid-
getart sowie konkrete Unterklassen, welche die Widgets fiir den jeweiligen Look-
and-Feel-Standard implementieren. Die Schnittstelle der WidgetFabrik besitzt fiir
jede abstrakte Widgetklasse eine Operation, die ein neues Widget zuriick gibt.
Klienten rufen diese Operationen auf, um Exemplare von Widgets zu erzeugen,
ohne dabei die konkreten Klassen zu kennen, die sie benutzen. Somit bleiben sie
unabhingig vom aktuellen Look-and-Feel.

Fiir jeden Look-and-Feel-Standard gibt es eine konkrete Unterklasse von Widget-
Fabrik. Jede Unterklasse implementiert die Operationen zum Erzeugen des pas-
senden Widgets fiir ein Look-and-Feel. Die ErzeugeScrollbar-Operation der Motif-
WidgetFabrik zum Beispiel erzeugt einen Scrollbar fiir Motif und gibt ihn zurtick,

108 3 Erzeugungsmuster

wiahrend die entsprechende Operation der PMWidgetFabrik einen Scrollbar fiir
den Presentation-Manager zuriickliefert. Klienten erzeugen die Widgets aus-
schlieflich iiber die Schnittstelle der WidgetFabrik und kennen die Klassen nicht,
welche das Widget fiir ein bestimmtes Look-and-Feel implementieren. Mit ande-
ren Worten, Klienten stiitzen sich immer nur auf eine durch eine abstrakte Klasse
definierte Schnittstelle, nicht aber auf eine bestimmte konkrete Klasse.

WidgetFabrik Klient
ErzeugeScrollbar()
ErzeugeFenster()

AN

--bl PMFenster | | MotifFenster |<--

MotifWidgetFabrik |- PMWidgetFabrik | -------__ '

'

: i

ErzeugeScrollbar() 1 ErzeugeScrollbar() 1 1
ErzeugeFenster() 1 ErzeugeFenster() i '
' ' '

: i i

' ‘- -—I PMScrollbar | | MotifScrollbar I- --!

N 1

Abbildung 3.2

Eine Widgetfabrik sichert zudem Abhdngigkeiten zwischen konkreten Widget-
klassen ab. Ein Motif-Scrollbar sollte nur mit einem Motif-Knopf und einem Mo-
tif-Texteditor zusammen verwendet werden. Diese Konsistenzbedingung wird au-
tomatisch als Konsequenz des Einsatzes einer MotifWidgetFabrik sichergestellt.

Abstrakte Fabrik 109

Struktur
Abbildung 3.3 zeigt die Struktur des Abstrakte-Fabrik-Musters.

AbstrakteFabrik Klient

ErzeugeProduktA()
ErzeugeProduktB() AbstraktesProduktA
- >| ProduktA2 | | ProduktAl |< --
'
KonkreteFabrikl - KonkreteFabrik2 — | ------___ ,
ErzeugeProduktA() ErzeugeProduktA()
ErzeugeProduktB() ErzeugeProduktB() AbstraktesProduktB

-->| ProduktB2 | | ProduktB1 |<--

Abbildung 3.3

Anwendbarkeit

Verwenden Sie das Abstrakte-Fabrik-Muster, wenn

e ein System unabhingig davon sein soll, wie seine Produkte! erzeugt, zusam-
mengesetzt und reprasentiert werden.

e ein System mit einer von mehreren Produktfamilien konfiguriert werden soll.

e cine Familie von verwandten Produktobjekten entworfen wurde, zusammen
verwendet zu werden, und Sie diese Konsistenzbedingung sicherstellen miis-
sen.

¢ Sie eine Klassenbibliothek von Produkten anbieten mochten, von denen Sie
nur die Schnittstellen, nicht aber ihre Implementierungen offenlegen moch-
ten.

Teilnehmer

¢ AbstrakteFabrik (WidgetFabrik)

— deklariert eine abstrakte Schnittstelle fiir Operationen, die konkrete Pro-
duktobjekte erzeugen.

1. Unter »Produkten«sind hier die vom System erzeugten Objekte zu verstehen. Anm. D.R.

110 3 Erzeugungsmuster

e KonkreteFabrik (MotifWidgetFabrik, PMWidgetFabrik)
- implementiert die Operation zur Erzeugung konkreter Produktobjekte.
e AbstraktesProdukt (Fenster, Scrollbar)

— deklariert eine Schnittstelle fiir einen bestimmten Typ von Produktobjek-
ten.

¢ KonkretesProdukt (MotifFenster, MotifScrollbar)

— definiert ein von der entsprechenden konkreten Fabrik zu erzeugendes Pro-
duktobjekt.

- implementiert die AbstraktesProdukt-Schnittstelle.
e Klient

- verwendet nur die Schnittstellen, welche von den AbstrakteFabrik- und Ab-
straktes-Produkt-Klassen deklariert werden.

Interaktionen

e Normalerweise wird ein einzelnes Exemplar der KonkreteFabrik-Klasse zur
Laufzeit erzeugt. Diese konkrete Fabrik erzeugt Produktobjekte, welche spezifi-
sche Implementierungen haben. Um verschiedene Produktobjekte zu erzeu-
gen, sollten Klienten unterschiedliche konkrete Fabriken haben.

e Fine AbstrakteFabrik verlagert die Erzeugung von Produktobjekten auf ihre
KonkreteFabrik-Unterklassen.

Konsequenzen
Das Abstrakte-Fabrik-Muster hat die folgenden Vorteile und Verbindlichkeiten:

1. Isolation konkreter Klassen. Das Abstrakte-Fabrik-Muster ermdglicht es IThnen,
die Klassen von Objekten zu steuern, welche ihre Anwendung erzeugt. Da eine
Fabrik fiir den Prozefl des Erzeugens von Produktobjekten zustindig ist und
ihn kapselt, isoliert es Klienten von den Implementierungsklassen. Klienten
manipulieren Objekte nur durch ihre abstrakten Schnittstellen. Die Namen
von Produktklassen sind in der Implementierung der konkreten Fabrik isoliert;
sie erscheinen nicht im Klientencode.

2. Einfacher Austausch von Produktfamilien. Die Klasse einer konkreten Fabrik er-
scheint nur einmal in der Anwendung - genau dort, wo von ihr ein Exemplar
erzeugt wird. Dies macht es einfach, die von einer Anwendung benutzte kon-

Abstrakte Fabrik 111

3.

krete Fabrik auszutauschen. Sie kann verschiedene Produktkonfigurationen
einfach durch den Austausch der konkreten Fabrik verwenden. Da eine ab-
strakte Fabrik eine komplette Familie von Produkten erzeugt, wird die gesamte
Produktfamilie auf einmal getauscht. In unserem Benutzungsschnittstellenbei-
spiel kbnnen wir von Motif-Widgets zu Presentation-Manager-Widgets einfach
dadurch wechseln, dafl wir die entsprechenden Fabrikobjekte austauschen und
die Benutzungsschnittstelle erneut erzeugen.

Konsistenzsicherung unter Produkten. Wenn Produktobjekte einer Familie ent-
worfen werden, um zusammenzuarbeiten, ist es wichtig, dafy eine Anwendung
nur Objekte einer Familie zur Zeit verwendet. Eine abstrakte Fabrik macht es
einfach, dies sicherzustellen.

Schwierige Unterstiitzung neuer Produkte. Die Erweiterung abstrakter Fabriken,
um neue Arten von Produkte zu produzieren, ist nicht einfach. Dies liegt dar-
an, daf} die Schnittstelle einer abstrakten Fabrik die Menge von Produkten, die
erzeugt werden konnen, festlegt. Die Unterstiitzung neuer Arten von Produk-
ten erfordert es, die Schnittstelle der Fabrik zu erweitern, was dazu fiihrt, die
AbstrakteFabrik-Klasse und all ihre Unterklassen zu verdndern. Wir diskutieren
eine Losung fiir dieses Problem im folgenden Abschnitt.

Implementierung

Es gibt verschiedene niitzliche Techniken, eine abstrakte Fabrik zu implementie-
ren.

1.

Fabriken als Singletons. Eine Anwendung braucht tiblicherweise genau ein Ex-
emplar einer konkreten Fabrik pro Produktfamilie. Deswegen implementiert
man sie am besten als Singleton (157).

Erzeugen von Produkten. AbstrakteFabrik deklariert lediglich eine Schnittstelle
zum Erzeugen von Produkten. Es bleibt den KonkreteFabrik-Unterklassen
iiberlassen, sie tatsichlich zu erzeugen. Ublicherweise definiert man Fabrikme-
thoden (131) fiir jedes Produkt. Eine konkrete Fabrik bringt ihre Produkte ins
Spiel, indem sie fiir jedes die entsprechende Fabrikmethode tiberschreibt. Diese
Implementierung ist zwar einfach, erfordert aber eine neue KonkreteFabrik-
Unterklasse fiir jede Produktfamilie, selbst wenn die Produktfamilien sich nur
wenig unterscheiden.

Wenn es viele Produktfamilien geben kann, bietet es sich an, die konkrete Fa-
brik mit Hilfe des Prototypmusters (144) zu implementieren. Die konkrete Fa-
brik wird mit einem prototypischen Exemplar eines jeden Produkts aus der
Familie initialisiert, und sie erzeugt neue Produkte durch das Klonen ihres Pro-

112 3 Erzeugungsmuster

totypen. Der prototypenbasierte Ansatz vermeidet es, fiir jede neue Produktfa-
milie eine neue konkrete Fabrik einfithren zu miissen.

Es folgt ein Beispiel zur Implementierung einer prototypenbasierten Fabrik in
Smalltalk. Die konkrete Fabrik speichert die zu klonenden Prototypen in einem
Dictionary namens teilKatalog. Die Methode erzeuge: sucht den Prototypen
heraus und klont ihn:

erzeuge: teilName
* (teilKatalog at: teilName) copy

Die konkrete Fabrik verfiigt tiber eine Methode, Prototypen in das Dictionary
einzufiigen:

fuegeTeilHinzu: teilPrototyp mitNamen: teilName
teilKatalog at: teilName put: teilPrototyp

Prototypen werden der Fabrik hinzugefiigt, indem man sie mittels eines Sym-
bols identifiziert:

eineFabrik fuegeTeilHinzu: einPrototyp mitNamen: #ACMEWidget

Sprachen wie Smalltalk oder Objective-C, in denen Klassen Objekte erster Ord-
nung sind, bieten eine Variante des prototypenbasierten Ansatzes. In diesen
Sprachen konnen Sie eine Klasse als degenerierte Fabrik auffassen, welche ge-
nau eine Art von Produkt erzeugt. Sie konnen Klassen, welche die verschiede-
nen Produkte erzeugen, genau wie Prototypen in den Variablen einer
konkreten Fabrik speichern. Auf die Veranlassung der Fabrik hin erzeugen die-
se Klassen neue Exemplare. Sie definieren eine neue Fabrik durch die Initiali-
sierung eines Exemplars einer konkreten Fabrik mit Klassen von Produkten,
anstatt weitere Unterklassen zu bilden. Dieser Ansatz basiert auf spezifischen
Spracheigenschaften, wahrend der reine Prototypenansatz sprachunabhéngig
ist.

Die klassenbasierte Version wird ebenso wie die eben diskutierte prototypen-
basierte Fabrik in Smalltalk zu einer einzelnen Variable teilKatalog fiihren,
welche ein Dictionary ist, dessen Schliissel der Name der Klasse ist. Statt die zu
klonenden Prototypen zu speichern, speichert teilKatalog die Klassen der Pro-
dukte. Die Methode erzeuge: sieht nun folgendermaflen aus:

erzeuge: teilName
~ (teilKatalog at: teilName) new

Abstrakte Fabrik 113

3. Definieren von erweiterbaren Fabriken. AbstrakteFabrik definiert tiblicherweise
verschiedene Operationen fiir jede Art von Produkten, die es erzeugen kann.
Die Produkttypen sind in den Operationssignaturen festgelegt. Will man eine
neue Art von Produkt hinzufiigen, so mufd man die Schnittstelle von Abstrak-
teFabrik und die aller Klassen, die davon abhidngen, verdndern.

Ein flexiblerer, wenngleich weniger sicherer Entwurf ist es, die objekterzeugen-
den Operationen um einen Parameter zu erweitern. Dieser Parameter spezifi-
ziert den Typ des Objekts, welches zu erzeugen ist. Dies mag eine Klasseniden-
tifizierung, ein Integer, ein String oder irgendein anderer Wert sein, der den
Produkttyp identifiziert. Bei diesem Ansatz benotigt AbstrakteFabrik lediglich
eine einzige Erzeuge-Operation mit einem Parameter, welcher den Typ des zu
erzeugenden Objekts identifiziert. Dies ist die Technik, welche in den zuvor
diskutierten prototypen- und klassenbasierten abstrakten Fabriken verwendet
wurde.

Diese Variante 1af3t sich in dynamisch typisierten Sprachen wie Smalltalk
leichter verwenden als in statisch typisierten Sprachen wie C++. Sie kdnnen sie
in C++ nur dann benutzen, wenn alle Objekte dieselbe abstrakte Basisklasse ha-
ben oder wenn der Klient die verlangten Produktobjekte sicher in den richti-
gen Typ konvertieren kann. Die Implementierung von Fabrikmethoden (131)
zeigt, wie man derart parametriertbare Operationen in C++ implementieren
kann.

Aber selbst, wenn man keine Typkonvertierung bendétigt, bleibt ein grundle-
gendes Problem: Alle an den Klienten zuriickgegebenen Produkte haben diesel-
be abstrakte durch den Riickgabetyp festgelegte Schnittstelle. Der Klient kann
die Objekte weder unterscheiden noch sichere Annahmen tber die Klassen der
Objekte machen. Klienten kénnen keine unterklassenspezifischen Operatio-
nen iiber die abstrakte Schnittstelle verwenden. Es bleibt dem Klient freige-
stellt, einen Downcast ausfithren, zum Beispiel mittels dynamic_cast in C++.
Dies ist aber nicht immer sinnvoll und sicher, da der Downcast fehlschlagen
kann. Dies ist der klassische Nachteil, den man fiir hochflexible und erweiter-
bare Schnittstellen in Kauf nehmen muf.

Beispielcode

Wir werden nun das Abstrakte-Fabrik-Muster verwenden, um die zu Beginn des
Kapitels diskutierten Labyrinthe zu erzeugen.

Die Klasse LabyrinthFabrik ist in der Lage, Komponenten eines Labyrinths zu er-
zeugen. Sie erstellt Riume, Winde und Tiren zwischen den Ridumen. Sie kann

114 3 Erzeugungsmuster

von einem Programm verwendet werden, das Pldne fiir Labyrinthe aus einer Datei
liest und das entsprechende Labyrinth erstellt. Oder sie kann von einem Pro-
gramm verwendet werden, das Labyrinthe zufallsbasiert zusammenbaut. Pro-
gramme, die Labyrinthe erstellen, erhalten eine LabyrinthFabrik als Argument, so
dafl der Programmierer die Klassen der zu erzeugenden Riume, Winde und Tiiren
festlegen kann.

class LabyrinthFabrik f{
public:
LabyrinthFabrik();

virtual Labyrinth* Erzeugelabyrinth() const
{ return new Labyrinth; !}

virtual Wand* ErzeugeWand() const
{ return new Wand; !

virtual Raum* ErzeugeRaum(int n) const
{ return new Raum(n); |}

virtual Tuer* ErzeugeTuer(Raum* rauml, Raum* raum?2) const
{ return new Tuer(rauml, raum2); |}

Vs

Wie bereits angefiihrt erzeugt die Member-Funktion Erzeugelabyrinth (Seite 105)
ein kleines Labyrinth, das aus zwei Rdumen mit einer Tiir dazwischen besteht.

Erzeugelabyrinth schreibt die Klassennamen im Code fest, so daf3 es schwierig
wird, Labyrinthe mit anderen Komponenten zu erzeugen.

Es folgt eine Version von Erzeugelabyrinth, die einen Parameter LabyrinthFabrik
entgegen nimmt und so die Probleme behebt:

Labyrinth* LabyrinthSpiel::Erzeugelabyrinth(
LabyrinthFabrik& fabrik)

{
Labyrinth* einlLabyrinth = fabrik.Erzeugelabyrinth();
Raum* rauml = fabrik.ErzeugeRaum(1);
Raum* raum2 = fabrik.ErzeugeRaum(2);
Tuer* eineTuer = fabrik.ErzeugeTuer(rauml, raum?);

einLabyrinth->FuegeRaumHinzu(rauml) ;
einLabyrinth->FuegeRaumHinzu(raum2) ;

rauml->SetzeSeite(Norden, fabrik.ErzeugeWand());
rauml->SetzeSeite(Osten, eineTuer);

rauml->SetzeSeite(Sueden, fabrik.ErzeugeWand());
rauml->SetzeSeite(Westen, fabrik.ErzeugeWand());

Abstrakte Fabrik 115

raum2->SetzeSeite(Norden, fabrik.ErzeugeWand());
raum?->SetzeSeite(Osten, fabrik.ErzeugeWand());
raum2->SetzeSeite(Sueden, fabrik.ErzeugeWand());
raum2->SetzeSeite(Westen, eineTuer);

}

Wir kénnen die Klasse VerzaubertesLabyrinthFabrik erzeugen, eine Fabrik fiir ver-
zauberte Labyrinthe, indem wir eine Unterklasse von LabyrinthFabrik bilden. Ver-
zaubertesLabyrinthFabrik tiberschreibt die verschiedenen Member-Funktionen
und gibt Objekte verschiedener Unterklassen wie zum Beispiel Raum und Wand zu-
riick.

class VerzaubertesLabyrinthFabrik : public LabyrinthFabrik f{
public:
VerzauberteslLabyrinthFabrik();

virtual Raum* ErzeugeRaum(int n) const
{ return new VerzauberterRaum(n,
BenoetigterZauberspruch()); !
virtual Tuer* ErzeugeTuer(Raum* rauml, Raum* raum2) const
{ return new TuerMitZauberspruch(rauml, raum2); }

protected:
Zauberspruch* BenoetigterZauberspruch() const;
b

Nun stellen Sie sich vor, dafl wir ein Labyrinthspiel erstellen wollen, bei dem in
jedem Raum eine Bombe plaziert werden kann. Wenn die Bombe in die Luft
fliegt, beschadigt sie die Wande. Wir erstellen eine Unterklasse von Raum, welche
vermerkt, ob ein Raum eine Bombe besitzt und ob sie in die Luft gegangen ist. Wir
brauchen weiterhin eine Unterklasse von Wand, um den den Winden zugefiigten
Schaden zu notieren. Wir nennen diese Klassen RaumMitBombe und Bombardierbare-
Wand.

Als letzte Klasse definieren wir LabyrinthMitBombenFabrik, eine Unterklasse von La-
byrinthFabrik, die sicherstellt, daf die Wande Exemplare der Klasse Bombardierba-
reWland und die Raume Exemplare der Klasse RaumMitBombe sind.

LabyrinthMitBombenFabrik braucht dazu nur zwei Funktionen zu tiberschreiben:

Wand* LabyrinthMitBombenFabrik::ErzeugeWand() const {
return new BombardierbareWand;
}

116 3 Erzeugungsmuster

Raum* LabyrinthMitBombenFabrik::ErzeugeRaum(int n) const {
return new RaumMitBombe(n);
}

Wollen wir ein einfaches Labyrinth erstellen, das Bomben enthalten kann, so ru-
fen wir einfach Erzeugelabyrinth mit dem Parameter LabyrinthMitBombenFabrik auf.

LabyrinthSpiel spiel;
LabyrinthMitBombenFabrik fabrik;

spiel.Erzeugelabyrinth(fabrik);

ErzeugeLabyrinth ist gleichermaflen gut in der Lage, mit einem Exemplar von
VerzaubertesLabyrinthFabrik verzauberte Labyrinthe zu erzeugen.

Es ist bemerkenswert, daf3 LabyrinthFabrik lediglich aus einer Sammlung von Fa-
brikmethoden besteht. Dies ist die naheliegendste Art und Weise, das Abstrakte-
Fabrik-Muster zu implementieren. Es ist weiterhin interessant, dafy LabyrinthFa-
brik keine abstrakte Klasse ist; sie fungiert somit gleichermafen als die abstrakte
und konkrete Fabrik. Dies ist eine weitere naheliegende Implementierung, um das
Abstrakte-Fabrik-Muster einfach anzuwenden. Da die LabyrinthFabrik eine kon-
krete Klasse ist, die vollstindig aus Fabrikmethoden besteht, kann man eine neue
LabyrinthFabrik einfach durch Erstellen einer Unterklasse und Uberschreiben der
zu dandernden Operation erzeugen.

Erzeugelabyrinth verwendet die SetzeSeite-Operation von Riumen, um ihre Sei-
ten zu sperzifizieren. Wenn es Rdume mit einer LabyrinthMitBombenFabrik erzeugt,
wird das Labyrinth aus RaumMitBombe-Objekten mit BombardierbareWand-Seiten be-
stehen. Wenn RaumMitBombe auf eine unterklassenspezifische Operation von Bom-
bardierbareWand zugreifen muf}, so muf} sie die Referenzen auf ihre Wiande von
Wand* nach BombardierbarelWand* konvertieren. Dies ist so lange sicher, wie das Ar-
gument tatsdchlich auch eine BombardierbareWand ist, was genau dann garantiert
ist, wenn alle Wiande mit einer LabyrinthMitBombenFabrik erzeugt werden.

Dynamisch typisierte Sprachen wie Smalltalk bendtigen natiirlich keinen Down-
cast, aber sie konnen Laufzeitfehler produzieren, wenn sie auf eine Wand stof3en, ei-
gentlich aber eine Unterklasse von Wand erwarten. Die Verwendung von Abstrakte-
Fabrik zum Erzeugen von Wianden hilft diese Laufzeitfehler zu verhindern, indem
sichergestellt wird, dafy nur bestimmte Winde erzeugt werden konnen.

Betrachten wir eine Smalltalk-Version einer LabyrinthFabrik, die eine einzige Er-
zeuge-Operation besitzt, welche die Art des zu erzeugenden Objekts als Parameter
erhiélt. Weiterhin speichert die konkrete Fabrik die Klassen der Produkte, die sie
erzeugt.

Abstrakte Fabrik 117

Zuerst schreiben wir eine dquivalente Version von Erzeugelabyrinth in Smalltalk:

erzeugelabyrinth: eineFabrik
| rauml raum2 eineTuer

rauml := (eineFabrik erzeuge: #raum) nummer: 1.
raum2 := (eineFabrik erzeuge: #raum) nummer: 2.
eineTuer := (eineFabrik erzeuge: fftuer)

von: rauml nach: raum2.
rauml aufSeite: #norden setze: (eineFabrik erzeuge: ffwand).
rauml aufSeite: ffosten setze: eineTuer.
rauml aufSeite: #sueden setze: (eineFabrik erzeuge: ffwand).
rauml aufSeite: ffwesten setze: (eineFabrik erzeuge: fwand).
raum2 aufSeite: Jnorden setze: (eineFabrik erzeuge: ffwand).
raum?2 aufSeite: ffosten setze: (eineFabrik erzeuge: fwand).
raum? aufSeite: #sueden setze: (eineFabrik erzeuge: fwand).
raum2 aufSeite: ffosten setze: eineTuer.
* Labyrinth new

fuegeRaumHinzu: rauml;

fuegeRaumHinzu: raumZ;

yourself

Wie wir bereits im Implementierungsabschnitt diskutiert haben, bendotigt Laby-
rinth-Fabrik lediglich eine einzige Exemplarvariable namens teilKatalog, um ein
Dictionary bereitzustellen, dessen Schliissel der Klassenname der jeweiligen
Klasse ist. Weiterhin sei ins Geddchtnis gerufen, wie wir die erzeuge:-Methode im-
plementiert haben:

erzeuge: teilName
* (teilKatalog at: teilName) new

Wir kdnnen nun eine LabyrinthFabrik erstellen und sie zur Implementierung von
erzeugelabyrinth verwenden. Wir erzeugen die Fabrik mittels einer Methode er-
zeugelLabyrinthFabrik der Klasse LabyrinthSpiel.

erzeugelLabyrinthFabrik
* (LabyrinthFabrik new
fuegeTeilHinzu: Wand namens: wand;
fuegeTeilHinzu: Raum namens: #raum;
fuegeTeilHinzu: Tuer namens #tuer;
yourself)

Man erzeugt eine LabyrinthMitBombenFabrik oder eine VerzauberteslLabyrinth-Fa-
brik, indem man verschiedene Klassen mit den jeweiligen Schliisseln assoziiert.
Eine VerzaubertesLabyrinthFabrik kann zum Beispiel folgendermaflen erzeugt wer-
den:

118 3 Erzeugungsmuster

erzeugelabyrinthFabrik
* (LabyrinthFabrik new
fuegeTeilHinzu: Wand namens ffwall;
fuegeTeilHinzu: VerzauberterRaum namens: ffraum;
fuegeTeilHinzu: TuerMitZauberspruch namens: ftuer;
yourself)

Bekannte Verwendungen

InterViews verwendet die »Kit«-Nachsilbe [Lin92], um AbstrakteFabrik-Klassen zu
kennzeichnen. Es definiert die abstrakten Fabriken WidgetKit und DialogKit, um
Look-and-Feel-spezifische Benutzungsschnittstellenobjekte zu erzeugen. Inter-
Views bietet ebenfalls ein LayoutKit, das je nach gewiinschtem Layout verschie-
dene Kompositionsobjekte generiert. Zum Beispiel bendtigt ein konzeptuell hori-
zontales Layout je nach Orientierung des Dokuments (Portrait oder Landschaft)
moglicherweise unterschiedliche Kompositionsobjekte.

ET++ [WGMS8S8] verwendet das Abstrakte-Fabrik-Muster, um {iiber verschiedene
Fenstersysteme wie X-Windows und SunView hinweg portabel zu sein. Die ab-
strakte Basisklasse WindowSystem definiert die Schnittstelle zum Erzeugen von
Objekten, welche die Ressourcen eines Fenstersystems reprasentieren. Beispiele
fiir diese Operationen sind MakeWindow, MakeFont und MakeColor. Konkrete
Unterklassen implementieren die Schnittstellen fiir ein spezifisches Fenstersy-
stem. Zur Laufzeit erzeugt ET++ ein Exemplar einer konkreten WindowSystem-
Unterklasse, welches ihrerseits die konkreten Objekte fiir Systemressourcen er-
zeugt.

Verwandte Muster

Die AbstrakteFabrik-Klassen werden oft durch Fabrikmethoden (131) implemen-
tiert. Sie konnen auch mit Hilfe des Prototypmusters (144) implementiert werden.

Eine konkrete Fabrik ist oftmals ein Singleton (157).

Erbauer 119

Erbauer

(Builder)

Ein objektbasiertes Erzeugungsmuster

Zweck

Trenne die Konstruktion eines komplexen Objekts von seiner Reprédsentation, so
daf} derselbe Konstruktionsprozefl unterschiedliche Repridsentationen erzeugen
kann.

Motivation

Ein Einleser fiir das RTF (Rich Text Format)-Dokumentaustauschformat ist ein Ob-
jekt, das Dokumente dieses Formats einlesen und in eine interne Reprasentation
umsetzen kann. Es sollte in der Lage sein, RTF in viele verschiedene Textformate
konvertieren zu kdnnen, so zum Beispiel in reinen ASCII-Text oder in ein interak-
tiv editierbares Textwidget. Das Problem ist allerdings, dafd die Anzahl mdoglicher
Konvertierungen unbeschrankt ist. Deswegen sollte es einfach mdoglich sein, eine
neue Konvertierung einzufithren, ohne den Einleser modifizieren zu miissen.

Eine Losung besteht darin, die RTFLeser-Klasse mit einem TextKonvertierer-Ob-
jekt zu konfigurieren, welches das RTF-Dokument in eine andere Reprisentation
konvertiert (sieche Abbildung 3.4). Wahrend der RTFLeser das RTF-Dokument ein-
liest und parst, verwendet es den TextKonvertierer, um die Konvertierung auszu-
fiihren. Immer wenn der RTFLeser ein RTF-Token erkennt (entweder einfachen
Text oder ein RTF-Steuerwort), stellt es eine Anfrage an den TextKonvertierer, das
Token zu konvertieren. Die TextKonvertierer-Objekte sind sowohl fiir die Ausfiih-
rung der Datenkonvertierung als auch fiir die Reprdsentation des Tokens in einem
bestimmten Format zustandig.

Unterklassen von TextKonvertierer sind Spezialisierungen fiir unterschiedliche
Konvertierungen und Formate. Beispielsweise ignoriert ein ASCIIKonvertierer alle
Konvertierungsanfragen bis auf solche, die sich auf reinen Text beziehen. Ein
TeXKonvertierer hingegen implementiert alle Anfrageoperationen, um eine TeX-
Reprédsentation zu erzeugen, die alle stilistischen Informationen des Texts enthélt.
Ein Text-WidgetKonvertierer wiederum produziert ein komplexes Benutzungs-
schnittstellenobjekt, das dem Benutzer den Text anzeigt und editieren 1af3t.

120 3 Erzeugungsmuster

RTFLeser TextKonvertierer
erbauer
ParseRTF) ? KonvertiereZeichen(char)
' KonvertiereZeichensatz(Zeichensatz)
' KonvertiereAbsatz()
.
N)\
while (t = hole das nachste token) {
switch t.Typ { [[1
CHAR:
erbauer>KonvertiereZeichen(t.Zeichen) ASClIKonvertierer TeXKonvertierer TextWidgetKonvertierer
ZEICHENSATZ:))
ABeSrga%uZ?DKonvemereZemhensalz(&-Zelcheﬂsalz) KonvertiereZeichen(char) KonvertiereZeichen(char) KonvertiereZeichen(char)
erbauer>KonvertiereAbsatz() GibASCIIText() KonvertiereZeichensatz(Zeichensatz) KonvertiereZeichensatz(Zeichensatz)
T KonvertiereAbsatz() KonvertiereAbsatz()
} ! GibTeXText() GibTextWidget()
. l l
| . .
' ' .
- % ASClIText ‘ - % TeXText ‘ - TextWidget
Abbildung 3.4

Jede Art von Konvertierer-Klasse versteckt den Mechanismus zum Erzeugen und
Zusammenbauen eines komplexen Objekts hinter einer abstrakten Schnittstelle.
Der Konvertierer ist von dem fiir das Einlesen eines RTF-Dokuments zustindigen
Leser abgetrennt.

Das Erbauermuster erfadt all diese Beziehungen. Jede Konvertierer-Klasse im Mu-
ster wird Erbauer genannt und jeder Leser Direktor. Wendet man das Muster auf
das Beispiel an, so trennt das Erbauermuster den Algorithmus zur Interpretierung
eines Textformats, also den Parser fiir RTF-Dokumente, von der Erzeugung und
Reprédsentation des konvertierten Formats. Dies ermdglicht es uns, den Parsealgo-
rithmus des RTFLesers zum Erzeugen unterschiedlicher Textreprasentationen von
RTF-Dokumenten wiederzuverwenden — man konfiguriert lediglich den RTFLeser
mit unterschiedlichen Unterklassen von TextKonvertierer.

Anwendbarkeit
Verwenden Sie das Erbauermuster in folgenden Situationen:

e Der Algorithmus zum Erzeugen eines komplexen Objekts soll unabhingig von
den Teilen sein, aus denen das Objekt besteht und wie sie zusammengesetzt
werden.

* Der Konstruktionsprozefs mufi verschiedene Reprasentationen des zu konstru-
ierenden Objekts erlauben.

Struktur

Abbildung 3.5 zeigt die Struktur des Erbauermusters.

Erbauer 121

Direktor erbauer Erbauer

Konstruiere() ° BaueTeil()
1
1

fur alle Objekte in der Struktur {
erbauer—>BaueTeil() KonkreterErbauer f-------- > Produkt
BaueTeil()
GibErgebnis()

Abbildung 3.5

Teilnehmer

Erbauer (TextKonvertierer)

— spezifiziert eine abstrakte Schnittstelle zum Erzeugen von Teilen eines Pro-
duktobjekts.

KonkreterErbauer (ASCIIKonvertierer, TeXKonvertierer, TextWidgetKonver-
tierer)

— konstruiert und fiigt Teile des Produkts zusammen, indem es die Erbau-
erschnittstelle implementiert.

— definiert und verwaltet die von ihm erzeugte Reprédsentation.

— bietet eine Schnittstelle zum Zuriickgeben des Produkts (zum Beispiel GibA-
SCII-Text, GibTextWidget).

Direktor (RTFLeser)
— Kkonstruiert ein Objekt unter Verwendung der Erbauerschnittstelle.
Produkt (ASClIText, TeXText, TextWidget)

— reprdsentiert das gerade konstruierte komplexe Objekt. Ein KonkreterEr-
bauer erstellt die interne Reprdsentation des Produkts und definiert den
Prozef}, durch den es zusammengesetzt wird.

— schliefdt Klassen ein, welche die konstituierenden Teile definieren. Dies um-
fafit die Schnittstellen, mit denen die Teile zum endgiiltigen Resultat zu-
sammengefiigt werden.

122

3 Erzeugungsmuster

Interaktionen

Der Klient erzeugt das Direktorobjekt und konfiguriert es mit dem erwiinsch-
ten Erbauerobjekt.

Der Direktor informiert den Erbauer, wenn ein Teil des Produkts gebaut wer-
den soll.

Der Erbauer bearbeitet die Anfragen des Direktors und fiigt Teile zum Produkt
hinzu.

Der Klient erhilt das Produkt vom Erbauer.

Das Interaktionsdiagramm in Abbildung 3.6 illustriert, wie Erbauer und Direktor
mit einem Klienten zusammenarbeiten:

einKlient einDirektor einKonkreterErbauer
1 : :
new KonkreterErbauer | !
__________________________ oo
new Direktor(einErbaver) -
Konstruiere() I BaueTeilA()
BaueTeilB()
BaueTeilC()
GibErgebnis() T
T

Abbildung 3.6

Konsequenzen

Es folgen zentrale Konsequenzen des Erbauermusters:

1. Variation der internen Reprdisentation eines Produkts. Das Erbauerobjekt bietet

dem Direktor eine abstrakte Schnittstelle zur Konstruktion des Produkts an.
Die Schnittstelle ermoglicht es dem Erbauer, die Reprasentation des Produkts,
seine interne Struktur und den Konstruktionsprozef3 dieser Struktur zu verstek-
ken. Da das Produkt tiber eine abstrakte Schnittstelle zusammengebaut wird,
miissen Sie lediglich eine neue Art von Erbauer definieren, um die interne Re-
prdsentation eines Produkts zu dndern.

Erbauer 123

2. Isolierung des Codes zur Konstruktion und Reprisentation. Das Erbauermuster ver-
bessert die Modularitét eines Systems durch Kapselung des Konstruktionspro-
zesses und der Reprédsentation eines komplexen Objekts. Klienten brauchen
nichts tiber die Klassen zu wissen, welche die interne Struktur des Produkts de-
finieren. Diese Klassen erscheinen nicht in der Schnittstelle eines Erbauers.

Jeder konkrete Erbauer enthdlt allen Code zur Erzeugung und zur Konstruktion
einer bestimmten Produktart. Der Code wird einmal geschrieben. Anschlie-
Rend kénnen unterschiedliche Direktorobjekte ihn wiederverwenden, um Pro-
duktvarianten aus derselben Menge von Komponenten zu bauen. Im anfangs
angefiihrten RTF Beispiel konnen wir einen Leser fiir ein anderes Format als
RTF definieren, so zum Beispiel einen SGML-Leser. Wir konnen dabei diesel-
ben TextKonvertierer verwenden, um ASClIText-, TeXText- und TextWidget-
Darstellungen von SGML-Dokumenten zu erzeugen.

3. Genauere Steuerung des Konstruktionsprozesses. Im Gegensatz zu den Erzeugungs-
mustern, die das Produkt in einem Durchgang erzeugen, erzeugt das Erbau-
ermuster das Produkt Schritt fiir Schritt unter der Steuerung des Direktors. Der
Klient holt sich das Produkt vom Erbauer erst nach seiner Fertigstellung. Somit
gibt die Erbauerschnittstelle den Konstruktionsproze3 des Produkts mehr als
die anderen Erzeugungsmuster wieder. Dies ermoglicht Thnen eine feinere
Steuerung des Konstruktionsprozesses und somit der internen Struktur des re-
sultierenden Produkts.

Implementierung

Ublicherweise gibt es eine abstrakte Erbauerklasse, die eine Operation fiir jede
Komponente definiert, die der Direktor zu erzeugen verlangen konnte. Die Opera-
tionen sind per Voreinstellung leer implementiert. Eine KonkreterErbauer-Klasse
iiberschreibt die Operationen fiir Komponenten, die es erzeugen kénnen mochte.

Es folgen weitere zu bedenkende Implementierungsaspekte:

1. Konstruktionsschnittstelle. Erbauer konstruieren ihre Produkte schrittweise. Des-
wegen mufd die Erbauerklassenschnittstelle allgemein genug sein, um die Kon-
struktion von Produkten aller moglichen konkreten Erbauer zu erlauben.

Ein zentraler Entwurfsaspekt betrifft das Modell fiir den Prozefd des Zusammen-
sammelns und Konstruierens. Meistens reicht ein Modell aus, bei dem die Er-
gebnisse von Konstruktionsanfragen einfach an das Produkt angehdngt
werden. Im Fall des RTF-Beispiels konvertiert der Erbauer das nédchste Token
und hingt es an den bis zu diesem Zeitpunkt konvertierten Text an.

124 3 Erzeugungsmuster

Mitunter miissen Sie aber moglicherweise auf Teile des Produkts zugreifen, die
Sie bereits zu einem fritheren Zeitpunkt konstruiert haben. Im Beispielcodeab-
schnitt prasentieren wir fiir das Labyrinthbeispiel die Klasse LabyrinthErbauer,
deren Schnittstelle es Ihnen ermoglicht, eine Tiir zwischen zwei existierenden
Ridumen einzufiigen. Ein anderes Beispiel sind Baumstrukturen wie zum Bei-
spiel Parsebdume, die von unten her (bottom-up) aufgebaut werden. In einem
solchen Fall iibergibt der Erbauer dem Direktor die Kindobjektknoten, also die
Waurzelknoten eines Teilbaums. Der Direktor gibt sie dem Erbauer zur Kon-
struktion der Elternobjektknoten zurtick.

2. Keine abstrakte Produktklasse. Im allgemeinen Fall unterscheiden sich die von
konkreten Erbauern erzeugten Produkte so sehr, day man durch die Einfiih-
rung einer gemeinsamen Oberklasse fiir die unterschiedlichen Produkte kaum
etwas gewinnen kann. Im RTF-Beispiel ist es eher unwahrscheinlich, daf§ die
ASClIIText- und TextWidget-Objekte eine gemeinsame Schnittstelle besitzen.
Sie benotigen sie auch gar nicht. Da der Klient tiblicherweise den Direktor mit
den ihn interessierenden konkreten Erbauern konfiguriert, weify er auch, wel-
che konkrete Unterklasse von Erbauer gerade benutzt wird und kann seine Pro-
dukte somit entsprechend handhaben.

3. Leere Methoden als Defaultimplementierung in der Erbaueroberklasse. Die Baue-
Operationen sind in C++ absichtlich nicht als rein virtuelle (pure virtual)
Member-Funktionen deklariert. Sie sind statt dessen als leere Operationen de-
finiert, so daf} Klienten nur jene Operationen zu tiberschreiben brauchen, an
denen sie interessiert sind.

Beispielcode

Wir werden eine Variante der Erzeugelabyrinth Member-Funktion (Seite 105) defi-
nieren, die einen Erbauer der Klasse LabyrinthErbauer als Argument entgegen-
nimmt.

Die Klasse LabyrinthErbauer definiert die folgende Schnittstelle zum Bau von Laby-
rinthen:

class LabyrinthErbauer {
public:
virtual void BauelLabyrinth() {!}
virtual void BaueRaum(int raumNr) {}
virtual void BaueTuer(int vonRaumNr, int nachRaumNr) {}

virtual Labyrinth* GibLabyrinth() { return 0; }

Erbauer 125

protected:
LabyrinthErbauer();
bs

Uber diese Schnittstelle konnen drei Dinge erzeugt werden: (1) das Labyrinth, (2)
Raume mit einer bestimmten Raumnummer und (3) Tiiren zwischen numerierten
Rdumen. Die Operation GibLabyrinth gibt das Labyrinth an den Klienten zuriick.
Unterklassen von LabyrinthErbauer tiberschreiben diese Operation, um das von ih-
nen gebaute Labyrinth zurtickzugeben.

Alle das Labyrinth erzeugenden Operationen von LabyrinthErbauer sind default-
mafig leer implementiert. Sie sind nicht als rein virtuell deklariert, um es abgelei-
teten Klassen zu ermoglichen, nur die sie interessierenden Operationen {iber-
schreiben zu miissen.

Da wir nun iiber die LabyrinthErbauer-Schnittstelle verfiigen, konnen wir die Er-
zeugelLabyrinth-Member-Funktion dndern, so daf sie diesen Erbauer als Parameter
annimmt.

Labyrinth* LabyrinthSpiel::Erzeugelabyrinth(
LabyrinthErbauer& erbauer)

{
erbauer.BaueLabyrinth();

erbauer.BaueRaum(1);
erbauer.BaueRaum(2);
erbauer.BaueTuer(1l, 2);

return erbauer.GibLabyrinth();
}

Vergleichen Sie diese Version von Erzeugelabyrinth mit dem Original. Beachten
Sie dabei, wie der Erbauer die interne Reprdsentation des Labyrinths versteckt —
das heif3t, die Klassen, welche die Riume, Tiiren und Wande definieren — und wie
diese Teile zusammengefiigt werden, um das endgiiltige Labyrinth zu erstellen.
Von aufien kann man erkennen, dafl es Klassen zur Reprasentation von Riumen
und Tiren gibt. Von Winden aber fehlt jede Spur. Dies erleichtert es, die Repra-
sentation des Labyrinths zu dndern, da kein Klient von LabyrinthErbauer gedndert
werden muf.

Wie die anderen Erzeugungsmuster auch, kapselt das Erbauermuster die Erzeu-
gung von Objekten. Das geschieht in diesem Fall mittels der von LabyrinthErbauer
definierten Schnittstelle. Dies bedeutet, dafd wir LabyrinthErbauer wiederverwen-

126 3 Erzeugungsmuster

den konnen, um unterschiedliche Labyrintharten zu bauen. Die Operation Erzeu-
geKomplexesLabyrinth ist ein Beispiel dafiir:

Labyrinth* LabyrinthSpiel::ErzeugeKomplexesLabyrinth(
LabyrinthErbauer& erbauer)
{
erbauer.BaueRaum(1);
/] ...
erbauer.BaueRaum(1001);

return erbauer.GibLabyrinth();
}

Beachten Sie, daf3 LabyrinthErbauer das Labyrinth nicht selbst erzeugt. Seine
Hauptaufgabe besteht lediglich darin, eine Schnittstelle zum Erzeugen von Laby-
rinthen zu definieren. Es definiert die leeren Implementierungen von Operatio-
nen hauptsdchlich aus Bequemlichkeitsgriinden. Unterklassen von LabyrinthEr-
bauer vollbringen die eigentliche Arbeit.

Die Unterklasse StandardLabyrinthErbauer stellt eine Implementierung dar, die ein-
fache Labyrinthe zusammenbaut. Es merkt sich das im Bau befindliche Labyrinth
in der Variablen _aktuellesLabyrinth.

class StandardLabyrinthErbauer : public LabyrinthErbauer {
public:
StandardlLabyrinthErbauer();

virtual void BauelLabyrinth();
virtual void BaueRaum(int raumNr);
virtual void BaueTuer(int vonRaumNr, int nachRaumNr);

virtual Labyrinth* GibLabyrinth();

private:
Richtung GemeinsameWand(Raum*, Raum*);
Labyrinth* _aktuelleslabyrinth;

b

GemeinsameWand ist eine Hilfsoperation, die die Richtung der gemeinsamen
Wand zwischen zwei Riumen bestimmdt.

Der Konstruktor von StandardLabyrinthErbauer initialisiert einfach _aktuelles-La-
byrinth.

Erbauer 127

StandardLabyrinthErbauer::StandardLabyrinthErbauer() {
_aktuellesLabyrinth = 0;
}

BaueLabyrinth erzeugt ein Labyrinth, das mittels weiterer Operationen zusam-
mengefiigt und am Ende iber GibLabyrinth an den Klienten zuriickgeben wird.

void StandardLabyrinthErbauer::BauelLabyrinth() {
_aktuellesLabyrinth = new Labyrinth;
}

Labyrinth* StandardLabyrinthErbauer::GibLabyrinth() {
Labyrinth* Tabyrinth = _aktuelleslLabyrinth;
return labyrinth;

}

Die Operation BaueRaum erzeugt einen Raum und baut die Wande um ihn herum:

void StandardLabyrinthErbauer::BaueRaum(int raumNr) f{
if (!_aktuellesLabyrinth->RaumNr(raumNr)) f
Raum* raum = new Raum(raumNr);
_aktuellesLabyrinth->FuegeRaumHinzu(raum);

raum->SetzeSeite(Norden, new Wand);
raum->SetzeSeite(Sueden, new Wand);
raum->SetzeSeite(0sten, new Wand);

raum->SetzeSeite(Westen, new Wand);

J

Um eine Tir zwischen zwei Rdumen zu bauen, sucht StandardLabyrinthErbauer
beide Rdume im Labyrinth sowie ihre gemeinsame Wand heraus:

void StandardLabyrinthErbauer::BaueTuer(int raumNrl,
int raumNr2)

{
Raum* rauml = _aktuellesLabyrinth->RaumNr(raumNrl);
Raum* raum? = _aktuelleslLabyrinth->RaumNr(raumNr2);
Tuer* tuer = new Tuer(rauml, raum2);

rauml->SetzeSeite(GemeinsameWand(rauml, raum2), tuer);
raum?2->SetzeSeite(GemeinsameWand(raum?2, rauml), tuer);

128 3 Erzeugungsmuster

Klienten kénnen nun zur Erzeugung eines Labyrinths Erzeugelabyrinth zusam-
men mit StandardLabyrinthErbauer verwenden:

Labyrinth* Tabyrinth;
LabyrinthSpiel spiel;
StandardLabyrinthErbauer erbauer;

spiel.Erzeugelabyrinth(erbauer);
labyrinth = erbauer.GibLabyrinth();

Wir hétten alle Operationen von StandardLabyrinthErbauer in die Schnittstelle von
Labyrinth aufnehmen und das Labyrinth sich selbst bauen lassen kdonnen. Da-
durch, da wir die Schnittstelle von Labyrinth kleiner machen, ist die Klasse aber
leichter zu verstehen und zu verandern. Zudem ist StandardLabyrinthErbauer ohne-
hin leicht von Labyrinth zu trennen. Am wichtigsten aber ist, daf die Trennung
der zwei Klassen uns die Einfithrung beliebiger LabyrinthErbauer-Klassen ermog-
licht, die jeweils unterschiedliche Klassen fiir die Rdume, Wande und Tiren ver-
wenden kénnen.

Eine eher exotische Variante von LabyrinthErbauer ist ZaehlenderLabyrinthErbauer.
Dieser Erbauer erzeugt iiberhaupt kein Labyrinth. Er ermittelt lediglich die Anzahl
der unterschiedlichen Komponenten, die im Fall eines normalen Labyrinth-Erbau-
ers erzeugt worden wéren.

class ZaehlenderlLabyrinthErbauer : public LabyrinthErbauer {
public:
ZaehlenderlLabyrinthErbauer();

virtual void BauelLabyrinth();

virtual void BaueRaum(int);

virtual void BaueTuer(int, int);

virtual void FuegeWandHinzu(int, Richtung);

void GibAnzahl(int&, int&) const;

private:
int _tueren;
int _raeume;

b

Der Konstruktor initialisiert die Zahler, und die iiberschriebenen LabyrinthEr-
bauer-Operationen erhohen sie entsprechend.

Erbauer 129

ZaehlenderlLabyrinthErbauer::ZaehlenderLabyrinthErbauer() {
_raeume = _tueren = 0;
}

void ZaehlenderLabyrinthErbauer::BaueRaum(int) f{
_raeume++;

J

void ZaehlenderLabyrinthErbauer::BaueTuer(int, int) f{
_tueren++;

J

void ZaehlenderLabyrinthErbauer::GibAnzahl(int& raeume,
int& tueren) const

{
raeume = _raeume;
tueren = _tueren;

J

Ein Klient konnte ein Exemplar von ZaehlenderlLabyrinthErbauer folgendermafen
benutzen:

int raeume, tueren;
LabyrinthSpiel spiel;
ZaehlenderlLabyrinthErbauer erbauer;

spiel.Erzeugelabyrinth(erbauer);
erbauer.GibAnzahl (raeume, tueren);

cout << "Das Labyrinth verfigt tber "
<< raeume << " Rgume und "
<< tueren << "Tilren." << endl;

Bekannte Verwendungen

Die RTF-Konvertierer-Anwendung stammt aus ET++ [WGMS88]. Sein Direktor zur
Textkonstruktion verwendet einen Erbauer, um einen im RTF-Format gespeicher-
ten Text zu bearbeiten.

Erbauer ist ein bekanntes Muster in Smalltalk-80 [Par90]:

¢ Die Klasse Parser im Ubersetzersubsystem ist ein Direktor, der einen Pro-
gramNodeBuilder als Argument entgegennimmt. Ein Parser-Objekt informiert
sein ProgramNodeBuilder-Objekt jedesmal, wenn es ein syntaktisches Kon-

130 3 Erzeugungsmuster

strukt erkannt hat. Wenn der Parser fertig ist, fragt er den Erbauer nach dem
aufgebauten Parsebaum und gibt ihn an den Klienten zurtick.

e C(ClassBuilder ist ein Erbauer, den Klassen verwenden, um Unterklassen von sich
selbst zu erzeugen. In diesem Fall ist Class sowohl der Direktor als auch das Pro-
dukt.

¢ ByteCodeStream ist ein Erbauer, der eine iibersetzte Methode als Bytearray er-
zeugt. ByteCodeStream ist eine uniibliche Anwendung des Erbauermusters,
weil das komplexe von ihm erzeugte Objekt als Bytearray und nicht als norma-
les Smalltalk-Objekt kodiert ist. Die Schnittstelle von ByteCodeStream ist aller-
dings typisch fiir einen Erbauer. Es wére somit einfach, ByteCodeStream durch
eine andere Klasse zu ersetzen, die Programme zum Beispiel als zusammenge-
setzte Objekte reprdsentieren.

Das Service-Configurator-Framework des Adaptive-Communications-Environ-
ment verwendet einen Erbauer, um Komponenten des Netzwerkservices zu kon-
struieren. Die Komponenten werden zur Laufzeit in einen Server eingebunden
[SS94]. Die Komponenten werden mittels einer Konfigurationssprache beschrie-
ben, die von einem LALR(1) Parser eingelesen wird. Die semantischen Aktionen
des Parser fithren Operationen auf dem Erbauer aus, welche der Servicekompo-
nente Informationen hinzufiigen. In diesem Fall stellt der Parser den Direktor dar.

Verwandte Muster

Das Abstrakte-Fabrik-Muster ist dem Erbauermuster in der Hinsicht dhnlich, daf
es ebenfalls komplexe Objekte konstruieren kann. Der Hauptunterschied ist, daf}
das Erbauermuster sich auf den schrittweisen Konstruktionsprozef eines komple-
xen Objekts konzentriert. Die Betonung des Abstrakte-Fabrik-Musters liegt auf Fa-
milien von Produktobjekten (ob nun einfach oder komplex). Erbauer gibt das Pro-
dukt als letzten Schritt zurtick, wahrend das Abstrakte-Fabrik-Muster das Produkt
unmittelbar zurtickgibt.

Erbauer bauen oftmals Komposita (239).

Fabrikmethode 131

Fabrikmethode

(Factory Method)

Ein klassenbasiertes Erzeugungsmuster

Zweck

Definiere eine Klassenschnittstelle mit Operationen zum Erzeugen eines Objekts,
aber lasse Unterklassen entscheiden, von welcher Klasse das zu erzeugende Objekt
ist. Fabrikmethoden ermoglichen es einer Klasse, die Erzeugung von Objekten an
Unterklassen zu delegieren.

Auch bekannt als

Virtueller Konstruktor

Motivation

Frameworks verwenden abstrakte Klassen, um die Beziehungen zwischen Objek-
ten zu definieren und zu verwalten. Ein Framework ist oft auch fiir die Erzeugung
dieser Objekte zustandig.

Stellen Sie sich ein Framework fiir Anwendungen vor, die dem Benutzer mehrere
Dokumente auf einmal prasentieren konnen. Zwei zentrale Abstraktionen dieses
Frameworks sind die Klassen Anwendung und Dokument. Beide Klassen sind ab-
strakt, und Klienten miissen Unterklassen von ihnen bilden, um ihre anwen-
dungsspezifischen Implementierungen einzubringen. Um beispielsweise eine Zei-
chenanwendung zu erstellen, definieren wir die Klassen ZeichenAnwendung und
ZeichenDokument. Die Klasse Anwendung ist fiir die Verwaltung von Dokumen-
ten zustdndig und erzeugt sie auf Verlangen — beispielsweise wenn der Benutzer
Offnen oder Neu in einem Menii auswihlt.

Da die jeweilige Dokumentunterklasse, von der Objekte zu erzeugen sind, anwen-
dungsspezifisch ist, kann Anwendung diese Unterklasse nicht vorhersagen - sie
weifd lediglich, wann ein neues Dokument erzeugt werden soll, nicht aber welche
Art von Dokument zu erzeugen ist. Dies fiihrt zu einem Dilemma: Das Framework
muf} Objekte erzeugen, kennt aber nur ihre abstrakten Oberklassen, von denen es
keine Objekte erzeugen kann.

132 3 Erzeugungsmuster

Das Fabrikmethodemuster bietet eine Losung. Es kapselt das Wissen um die zu er-
zeugende Dokument-Unterklasse und lagert es aus dem Framework aus (siehe Ab-
bildung 3.7).

Dokument dokumente Anwendung
Oeffr7e() ErzeugeDokument() Dokument* dok = ErzeugeDokument(),&
Schliesse() NeuesDokument() o-f - - - - - - - - - dokumente.FuegeHinzu(dok);
Speichere() OeffneDokument() dok—>Oeffne();
SetzeZurueck(
MeinDokument [« - - - - - - - - - MeineAnwendung
ErzeugeDokument()Oq-------- -1 return new MeinDokument

Abbildung 3.7

Anwendungs-Unterklassen iiberschreiben eine abstrakte ErzeugeDokument-Ope-
ration von Anwendung, so daf} sie ein Exemplar der passenden Dokument-Unter-
klasse zuriickgibt. Sobald einmal ein Objekt einer Unterklasse von Anwendung er-
zeugt ist, kann sie anwendungsspezifische Dokumente erzeugen, ohne deren
exakte Klasse zu kennen. Wir nennen ErzeugeDokument eine Fabrikmethode, weil
sie fur die »Herstellung« eines Objekts zustandig ist.

Anwendbarkeit
Verwenden Sie das Fabrikmethodemuster, wenn

e cine Klasse die Klassen von Objekten, die sie erzeugen muf3, nicht im voraus
kennen kann.

¢ eine Klasse mochte, dafl ihre Unterklassen die von ihr zu erzeugenden Objekte
festlegen.

¢ Klassen Zustdndigkeiten an eine von mehreren Hilfsunterklassen delegieren
sollen und Sie das Wissen lokalisieren wollen, an welche Hilfsunterklasse die
Zustandigkeiten delegiert werden.

Struktur

Abbildung 3.8 zeigt die Musterstruktur.

Fabrikmethode 133
Erzeuger
Produkt ; ™
Fabrikmethode() _ .
EineOperation() O-F------1 ?.rodukt = Fabrikmethode()
KonkretesProdukt [+~~~ ~~"""71 KonkreterErzeuger
Fabrikmethode() O-f------1 return new KonkretesProdukt
Abbildung 3.8
Teilnehmer

e Produkt (Dokument)

— definiert die Klasse des von der Fabrikmethode erzeugten Objekts.

¢ KonkretesProdukt (MeinDokument)

— implementiert die Produktschnittstelle.

e Erzeuger (Anwendung)

— deklariert die Fabrikmethode, die ein Objekt des Typs Produkt zuriickgibt.
Der Erzeuger kann moglicherweise eine Defaultimplementierung der Fa-
brikmethode definieren, die ein vordefiniertes KonkretesProduktObjekt er-

zeugt.

- kann die Fabrikmethode aufrufen, um ein Produktobjekt zu erzeugen.

¢ KonkreterErzeuger (MeineAnwendung)

— uberschreibt die Fabrikmethode, so daf sie ein Exemplar von KonkretesPro-
dukt zuriickgibt.

Interaktionen

e Der Erzeuger verldfit sich darauf, dal Unterklassen die Fabrikmethode definie-
ren, so dafd sie ein Exemplar der passenden konkreten Produktklasse zuriickge-

ben.

134 3 Erzeugungsmuster

Konsequenzen

Fabrikmethoden verhindern es, daf Sie anwendungsspezifische Klassen in Frame-
workcode einbinden miissen. Der Code befaf3t sich nur mit der Produktschnitt-
stelle; er kann somit mit jeder benutzerdefinierten KonkretesProdukt-Klasse arbei-
ten.

Ein moglicher Nachteil von Fabrikmethoden ist, dal Klienten potentiell die Er-
zeugerklasse ableiten miissen, nur um ein bestimmtes KonkretesObjekt-Exemplar
erzeugen zu konnen. Die Bildung von Unterklassen ist unproblematisch, wenn
der Klient die Erzeugerklasse sowieso ableiten muf2. Ist dies nicht der Fall, so muf3
er ausschliefdlich der Fabrikmethode wegen mit einem weiteren Evolutionsast sei-
ner Software zurechtkommen.

Es folgen zwei weitere Konsequenzen des Fabrikmethodemusters:

1. Spezialisierungmaglichkeiten fiir Unterklassen. Die Erzeugung von Objekten in-
nerhalb einer Klasse mittels einer Fabrikmethode ist immer flexibler als das di-
rekte Erzeugen eines Objekts. Die Fabrikmethode bietet Unterklassen die
Moglichkeit, eine erweiterte Version eines Objekts einzuftihren.

Im Dokumentbeispiel konnte die Dokument-Klasse eine Fabrikmethode na-
mens ErzeugeDateiDialog definieren, die einen vordefinierten Dateidialog
zum Offnen eines existierenden Dokuments erzeugt. Fine Dokument-Unter-
klasse kann einen anwendungsspezifischen Dateidialog durch Uberschreiben
dieser Fabrikmethode definieren. In diesem Fall ist die Fabrikmethode nicht
abstrakt, sondern bietet eine sinnvolle Defaultimplementierung.

2. Verbindung paralleler Klassenhierarchien. In den bisher betrachteten Beispielen
wird die Fabrikmethode nur von Erzeugern aufgerufen. Dies muf} aber nicht
immer so sein. Klienten konnen Fabrikmethoden ebenfalls als sinnvoll erach-
ten, insbesondere im Fall von parallelen Klassenhierarchien.

Parallele Klassenhierarchien ergeben sich, wenn eine Klasse Teile seiner Zu-
stindigkeiten an eine abgetrennte Klasse delegiert. Stellen Sie sich grafische
Obijekte vor, die interaktiv manipuliert werden konnen; das heif3t, sie kbnnen
mittels Maus gestreckt, bewegt oder rotiert werden. Die Implementierung die-
ser Interaktionen ist nicht immer einfach. Man mufl oftmals Informationen
speichern und aktualisieren, die den Zustand der Manipulation zu einem be-
stimmten Zeitpunkt festhalten. Dieser Zustand wird lediglich wihrend der Ma-
nipulation gebraucht; somit braucht er nicht im grafischen Objekt aufbewahrt
zu werden. Weiterhin verhalten sich verschiedene grafische Objekte unter-
schiedlich, wenn der Benutzer sie manipuliert. Beispielsweise hat das Strecken

Fabrikmethode 135

einer Linie den Effekt des Bewegens eines Endpunkts, wihrend das Strecken ei-
nes Textobjekts moglicherweise zur Anderung seines Zeilenabstands fiihrt.

Unter diesen Bedingungen ist es sinnvoller, ein abgetrenntes Manipulator-Ob-
jekt zu verwenden, das die Interaktion implementiert und jeglichen bendotig-
ten manipulationsspezifischen Zustand verwaltet. Unterschiedliche grafische
Objekte verwenden unterschiedliche Manipulator-Unterklassen, um bestimm-
te Interaktionsmoglichkeiten zu bieten. Die resultierende Manipulator-Klas-
senhierarchie verlduft zumindest teilweise parallel zur Klassenhierarchie der
grafischen Objekte (siehe Abbildung 3.9).

Die GrafischesObjekt-Klasse bietet eine ErzeugeManipulator-Fabrikmethode,
die es Klienten ermdglicht, ein zum grafischen Objekt passendes Manipulator-
Objekt zu erzeugen.

Abbildung Manipulator
ErzeugeManipulator() KnopfNachUnten()
Ziehe()

)\ KnopfNachOben()

Linie

Text

ErzeugeManipulator()

ErzeugeManipulator()

LinienManipulator

TextManipulator

KnopfNachUnten()
Ziehe()
KnopfNachOben()

KnopfNachUnten()
Ziehe()
KnopfNachOben()

Abbildung 3.9

Die GrafischesObjekt-Unterklassen tiberschreiben diese Methode, so dafd sie
ein Exemplar der fiir sie richtigen Manipulator-Unterklasse zuriickgeben. Alter-
nativ kann die GrafischesObjekt-Klasse ErzeugeManipulator so implementie-
ren, dafs sie ein Objekt einer vordefinierten Manipulator-Klasse zuriickgibt. Die
Unterklassen konnen einfach diese Voreinstellung erben. Jene GrafischesOb-
jekt-Klassen, die dies tun, bendtigen keine angepaf3te Manipulator-Unterklasse
- somit sind die Klassenhierarchien nur teilweise parallel strukturiert.

Beachten Sie, wie die Fabrikmethode die Verbindung zwischen den zwei Klas-
senhierarchien definiert. Sie lokalisiert das Wissen, welche Klassen zueinander
gehoren.

136 3 Erzeugungsmuster

Implementierung

Ziehen Sie die folgenden Aspekte bei der Anwendung des Fabrikmethodemusters
in Betracht:

1. Zwei grofiere Variationen. Die zwei wichtigsten Variationen des Fabrikmethode-
musters sind (1) der Fall, wenn die Erzeugerklasse abstrakt ist und keine Imple-
mentierung der von ihr deklarierten Fabrikmethode bietet, und (2) der Fall,
wenn die Erzeugerklasse konkret ist und eine Defaultimplementierung fir die
Fabrikmethode bietet. Es ist auch moglich, wenngleich eher selten, tiber eine
abstrakte Klasse zu verfiigen, die eine Defaultimplementierung bietet.

Der erste Fall verlangt, dafl Unterklassen eine Implementierung definieren, weil
es keine sinnvolle Voreinstellung gibt. Es umgeht das Dilemma, Objekte nicht
vorhersehbare Klassen erzeugen zu miissen. Im zweiten Fall benutzt der kon-
krete Erzeuger die Fabrikmethode hauptsidchlich aus Flexibilitatsgriinden. Er
folgt einer Regel, die besagt, dafl man Objekte in einer separaten Operation er-
zeugen soll, so dal Unterklassen den Erzeugungscode iiberschreiben kénnen.
Diese Regel stellt sicher, daf§ Entwickler von Unterklassen, falls notwendig, die
Klassen der von ihren Oberklassen erzeugten Objekte dndern kénnen.

2. Parametrierbare Fabrikmethoden. Eine weitere Variation des Musters ermoglicht
es der Fabrikmethode, mehrere Arten von Produkten zu erzeugen. Die Fabrik-
methode erhdlt einen Parameter, der die Art des zu erzeugenden Objekts
bestimmt. Alle von der Fabrikmethode erzeugten Objekte teilen die Produkt-
schnittstelle. Im Dokumentbeispiel unterstiitzt die Anwendung moglicherwei-
se unterschiedliche Arten von Dokumenten. Sie iibergeben dann Erzeuge-
Dokument einen zusdtzlichen Parameter, um die Art des zu erzeugenden
Dokuments festzulegen.

Das Unidraw-Framework fiir grafische Editoren [VL90] verwendet diesen An-
satz zur Rekonstruktion von auf der Festplatte gespeicherten Objekten. Uni-
draw definiert eine Klasse Creator mit einer Fabrikmethode Create, die einen
Klassenidentifizierer als Argument annimmt. Der Klassenidentifizierer spezifi-
ziert die Klasse, von der Objekte zu erzeugen sind. Wenn Unidraw ein Objekt
auf der Festplatte abspeichert, schreibt es zuerst den Klassenidentifizierer, ge-
folgt von den Exemplarvariablen. Wenn es das Objekt von der Festplatte re-
konstruiert, liest es zuerst den Identifizierer.

Ist der Klassenidentifizierer einmal gelesen, ruft das Framework Create auf und
ubergibt dabei den Identifizierer als Parameter. Create sucht den Konstruktor
der entsprechenden Klasse heraus und benutzt ihn, um das Objekt zu erzeu-
gen. Zum Schlufd ruft Erzeuge die Read-Operation des Objekts auf, welche die

Fabrikmethode 137

auf der Festplatte verbliebenen Daten einliest und die Exemplarvariablen des
Objekts mit ihnen initialisiert.

Eine parametrierbare Fabrikmethode besitzt die folgende allgemeine Form, wo-
bei MeinProdukt und DeinProdukt Unterklassen von Produkt sind:

class Erzeuger f
public:

virtual Produkt* Erzeuge(ProduktId);
b

Produkt* Erzeuger::Erzeuge(ProduktId id) |
if (id == MEINS) return new MeinProdukt;
if (id == DEINS) return new DeinProdukt;
// Wiederholung fiir verbleibende Produkte...

return 0;
}

Das Uberschreiben einer parametrierbaren Fabrikmethode ermdglicht es Th-
nen, die von einem Erzeuger produzierten Produkte einfach und gezielt zu er-
weitern oder zu dndern. Sie kdnnen neue Identifizierer fiir neue Arten von
Produkten einfiihren, oder Sie kdnnen existierende Identifizierer an andere
Produkte binden.

Beispielsweise konnte eine Unterklasse von MeinErzeuger die Unterklassen Mein-
Produkt und DeinProdukt austauschen und eine neue Unterklasse IhrProdukt un-
terstiitzen:

Produkt* MeinErzeuger::Erzeuge(ProduktId id) f
if (id == DEINS) return new MeinProdukt;
if (id == MEINS) return new DeinProdukt;
// Die Produkte wurden vertauscht

if (id == IHRS) return new IhrProdukt;

return Erzeuger::Erzeuge(id);
// wird aufgerufen, wenn alles andere fehlschldgt
}

Beachten Sie, daf der letzte Arbeitsschritt dieser Operation im Aufruf von Er-
zeuge der Oberklasse besteht. Dies liegt daran, dafy MeinErzeuger::Erzeuge nur
MEINS, DEINS und IHRS anders als die Oberklasse behandelt. Andere Klassen in-
teressieren es nicht. Somit erweitert MeinErzeuger die Arten erzeugbarer Produk-

138 3 Erzeugungsmuster

te. Es gibt die Zustdndigkeit zum Erzeugen aller Produktarten bis auf einige
wenige an ihre Oberklasse weiter.

3. Sprachspezifische Varianten und Aspekte. Unterschiedliche Sprachen fithren von
allein zu weiteren interessanten Variationen und Fragestellungen.

Smalltalk-Programme verwenden oft eine Methode, die die Klasse des zu erzeu-
genden Objekts zuriickgibt. Eine Fabrikmethode des Erzeugers kann diesen
Riickgabewert dazu verwenden, ein Produkt zu erzeugen, und ein KonkreterEr-
zeuger kann diese Klasse speichern oder sogar berechnen. Das Ergebnis ist eine
noch einmal spdtere Ermittlung des Typs von KonkretesProdukt, von dem ein
Objekt erzeugt werden soll.

Eine Smalltalk-Version des Dokumentbeispiels definiert moglicherweise eine
Methode dokumentKlasse der Klasse Anwendung. Die Methode dokumentKlasse gibt
die korrekte Dokument-Klasse zum Erzeugen von Dokumenten zuriick. Die
Implementierung von dokumentKlasse in MeineAnwendung gibt die Klasse MeinDo-
kument zurlick. Somit ergibt sich fiir die Klasse Anwendung:

kTientenMethode
dokument := self dokumentKlasse new

dokumentKlasse
self subclassResponsibility

In der Klasse MeineAnwendung definieren wir:

dokumentKlasse
* MeinDokument

Diese Methode gibt die Klasse MeinDokument zurtick, von der Anwendung Exempla-
re erzeugt.

Ein noch flexiblerer Ansatz, vergleichbar parametrierbaren Fabrikmethoden,
besteht darin, die zu Klasse zu erzeugender Objekte als eine Klassenvariable
von Anwendung zu speichern. Man muf} dann keine Unterklasse von Anwendung
bilden, um das Produkt zu variieren.

In C++ sind Fabrikmethoden immer virtuelle Funktionen, die meistens sogar
als rein virtuell deklariert werden. Sie miissen hierbei allerdings aufpassen, die
Fabrikmethoden nicht aus dem Konstruktor des Erzeugers heraus aufzurufen -
die Fabrikmethoden der Unterklasse KonkreterErzeuger sind zu diesem Zeit-
punkt noch nicht verfiigbar.

Sie konnen dies vermeiden, indem Sie vorsichtigerweise auf Produkte aus-
schlieflich durch Zugriffsoperationen zugreifen, die das Objekt auf Verlangen

Fabrikmethode 139

erzeugen. Statt das konkrete Produkt im Konstruktor zu erzeugen, initialisiert
der Konstruktor es lediglich zu 0. Die Zugriffsoperation gibt das Objekt zuriick,
testet allerdings vorher, ob das Produkt existiert. Falls dies nicht der Fall ist, er-
zeugt es das Produkt erst einmal. Diese Technik wird mitunter als verzogerte
Initialisierung (lazy initialization) bezeichnet. Der folgende Code zeigt eine
typische Implementierung:

class Erzeuger {

public:
Produkt* GibProdukt();
protected:
virtual Produkt* ErzeugeProdukt();
private:

Produkt* _produkt;
b

Produkt* Erzeuger::GibProdukt() {
if (_produkt == 0) {
_produkt = ErzeugeProdukt();
}
return _produkt;
}

4. Verwendung von Templates zur Vermeidung von Unterklassen. Ein weiteres poten-
tielles Problem von Fabrikmethoden besteht darin, dafy Sie gezwungen sein
konnten, eine Unterklasse lediglich zur Erzeugung der passenden Produktob-
jekte zu erstellen. In C++ bietet sich eine weitere Moglichkeit, dieses Problem
zu umgehen. Dabei fiihrt man eine templatebasierte Unterklasse von Erzeuger
ein, die mit der Produktklasse parametrierbar wird:

class Erzeuger f
public:

virtual Produkt* ErzeugeProdukt() = 0;
b

template<class DasProdukt>
class StandardErzeuger : public Erzeuger {
pubTic:
virtual Produkt* ErzeugeProdukt();
b

template<class DasProdukt>
Produkt* StandardErzeuger<DasProdukt>::ErzeugeProdukt() {

140 3 Erzeugungsmuster

return new DasProdukt;
}

Unter Verwendung dieses Templates gibt der Klient nur noch die Produktklas-
se an — es muf} keine Unterklasse von Erzeuger erstellt werden.

class MeinProdukt : public Produkt f{
public:

MeinProdukt();

/...

StandardErzeuger<MeinProdukt> meinProdukt;

5. Namenskonventionen. Es hat sich bewdhrt, Namenskonventionen zu verwen-
den, die klarstellen, daf} Sie Fabrikmethoden verwenden. Beispielsweise dekla-
riert das Mac-App-Application-Framework fiir den Apple Macintosh [App89]
die eine Fabrikmethode definierende abstrakte Operation immer als Klasse*
DoMakeKlasse(), wobei Klasse die Produktklasse darstellt.

Beispielcode

Die Funktion Erzeugelabyrinth (Seite 90) erzeugt ein Labyrinth und gibt es zuriick.
Ein Nachteil dieser Funktion ist, daf$ sie die Klassen des Labyrinths, der Rdume,
Tiren und Wande fest codiert. Wir fithren Fabrikmethoden ein, um Unterklassen
die Komponenten auswdhlen zu lassen.

Zuerst definieren wir Fabrikmethoden in LabyrinthSpiel, um Labyrinth-, Raum-,
Wand- und Tiirobjekte zu erzeugen:

class LabyrinthSpiel {
public:
Labyrinth* Erzeugelabyrinth();

// Die Fabrikmethoden:
virtual Labyrinth* Erzeugelabyrinth() const
{ return new Labyrinth; }
virtual Raum* ErzeugeRaum(int raumNr) const
{ return new Raum(raumNr); |}
virtual Wand* ErzeugeWand() const
{ return new Wand; }
virtual Tuer* ErzeugeTuer(Raum* rauml, Raum* raum2) const
{ return new Tuer(rauml, raum2); }

Fabrikmethode 141

Jede Fabrikmethode gibt eine Labyrinthkomponente eines gegebenen Typs zu-
riick. LabyrinthSpiel bietet Defaultimplementierungen, welche die einfachsten Ar-
ten von Labyrinthen, Riumen, Wanden und Tiiren zuriickgeben.

Wir konnen nun ErzeugelLabyrinth so umschreiben, dafl es diese Fabrikmethoden
verwendet:

Labyrinth* LabyrinthSpiel::ErzeugelLabyrinth() f{
Labyrinth* einLabyrinth = Erzeugelabyrinth();

Raum* rauml = ErzeugeRaum(1l);
Raum* raum? = ErzeugeRaum(2);
Tuer* dieTuer = ErzeugeTuer(rauml, raum2);

einlLabyrinth->FuegeRaumHinzu(rauml) ;
einLabyrinth->FuegeRaumHinzu(raum2);

rauml->SetzeSeite(Norden, ErzeugeWand());
rauml->SetzeSeite(Osten, dieTuer);

rauml->SetzeSeite(Sueden, ErzeugeWand());
rauml->SetzeSeite(Westen, ErzeugeWand());

raum2->SetzeSeite(Norden, ErzeugeWand());
raum?2->SetzeSeite(Osten, ErzeugeWand());
raum2->SetzeSeite(Sueden, ErzeugeWand());
raum2->SetzeSeite(Westen, dieTuer);

return einlLabyrinth;
}

Unterschiedliche Spiele konnen Unterklassen von LabyrinthSpiel bilden, um Teile
des Labyrinths zu spezialisieren. Diese Unterklassen konnen einige oder alle Fa-
brikmethoden neu definieren, um die Produkte zu variieren. Beispielsweise kann
ein LabyrinthMitBombenSpiel die Raum- und Wandprodukte neu definieren, um so
die bombardierbaren Versionen zuriickzugeben:

class LabyrinthMitBombenSpiel : public LabyrinthSpiel f{
pubTic:
LabyrinthMitBombenSpiel();

virtual Wand* ErzeugeWand() const
{ return new BombardierbareWand; }

virtual Raum* ErzeugeRaum(int raumNr) const
{ return new RaumMitBombe(raumNr); }

142 3 Erzeugungsmuster

Ein Variante VerzauberteslLabyrinthSpiel kann so definiert werden:

class VerzauberteslLabyrinthSpiel : public LabyrinthSpiel f{
public:
VerzaubertesLabyrinthSpiel();

virtual Raum* ErzeugeRaum(int raumNr) const
{ return new VerzauberterRaum(raumNr,
BenoetigterZauberspruch()); |
virtual Tuer* ErzeugeTuer(Raum* rauml, Raum* raum2) const
{ return new TuerMitZauberspruch(rauml, raum2); }

protected:
Zauberspruch* BenoetigterZauberspruch() const;
bs

Bekannte Verwendungen

Fabrikmethoden werden in Klassenbibliotheken und Frameworks durchgéngig
eingesetzt. Das einfithrende Dokumentbeispiel ist ein typischer Anwendungsfall
in MacApp und ET++ [WGMS88]. Das Manipulator-Beispiel stammt aus Unidraw.

Die Klasse View im Smalltalk-80 MVC-Framework besitzt eine Methode default-
Controller, die ein Controller-Objekt erzeugt, so dafy diese Methode wie eine Fa-
brikmethode aussieht [Par90]. Unterklassen von View spezifizieren allerdings die
Klasse ihres Default-Controllers durch die Definition der Methode defaultCon-
trollerClass, welche die Klasse zurtickgibt, von der defaultController Exemplare
erzeugt. Somit ist defaultControllerClass die eigentliche Fabrikmethode, das heif3t
jene Methode, die Unterklassen tiberschreiben sollten.

Ein eher abgehobenes Beispiel in Smalltalk-80 ist die Fabrikmethode parserClass,
die von Behavior definiert wird (Behavior ist die Oberklasse aller Objekte, die
Klassen reprasentieren). Dies ermdglicht es einer Klasse, einen maf3geschneider-
ten Parser fiir ihren Quelltext zu verwenden. Beispielsweise kann ein Klient eine
Klasse SQLParser definieren, um den Quelltext einer Klasse mit eingebetteten
SQL-Befehlen zu analysieren. Die Klasse Behavior implementiert parserClass so,
daf es die standardmafiige Smalltalk-Parserklasse zurtickgibt. Eine Klasse, die SQL-
Befehle einbetten kann, iiberschreibt diese Methode (als eine Klassenmethode)
und gibt die SQLParser-Klasse zurtick.

Das Orbix ORB-System von IONA Technologies [ION94] benutzt Fabrikmetho-
den, um ein Proxyobjekt (siehe Proxy (254)) des passenden Typs zu generieren,
wann immer ein Objekt eine Referenz auf ein Objekt in einem anderen Prozef3

Fabrikmethode 143

verlangt. Fabrikmethode macht es einfach, das Defaultproxy durch ein anderes
Proxy zu ersetzen, das zum Beispiel Caching auf der Klientenseite verwendet.

Verwandte Muster

Das Abstrakte-Fabrik-Muster wird oft mittels Fabrikmethoden implementiert. Das
Beispiel aus dem Motivationsabschnitt des Abstrakte-Fabrik-Muster beschreibt
ebenfalls das Fabrikmethodemuster.

Fabrikmethoden werden iiblicherweise innerhalb von Schablonenmethoden
(366) aufgerufen. Im obigen Dokumentbeispiel stellt NeuesDokument eine Scha-
blonenmethode dar.

Prototypen (144) bendtigen keine Unterklasse von Erzeuger. Sie verlangen aller-
dings oftmals eine Initialisiere-Operation der Produktklasse. Erzeuger verwendet
Initialisiere zur Initialisierung des Objekts. Fabrikmethoden bendtigen keine sol-
che Operation.

144 3 Erzeugungsmuster

Prototyp

(Prototype)

Ein objektbasiertes Erzeugungsmuster

Zweck

Bestimme die Arten zu erzeugender Objekte durch die Verwendung eines prototy-
pischen Exemplars und erzeuge neue Objekte durch Kopieren dieses Prototypen.

Motivation

Sie konnen einen Editor fiir Musikpartituren erstellen, indem Sie ein allgemeines
Framework fiir grafische Editoren anpassen und neue Objekte hinzuftigen, welche
die Noten, Pausen und Notenlinien repriasentieren. Das Editor-Framework besitzt
vielleicht eine Palette von kleinen Werkzeugen, um Musikobjekte der Partitur
hinzuzufiigen. Die Palette diirfte weiterhin Werkzeuge zum Auswihlen, Bewegen
sowie fiir weitere Manipulationsmoglichkeiten der Musikobjekte besitzen. Die Be-
nutzer klicken auf das Werkzeug fiir Viertelnoten und benutzen es, um die Vier-
telnoten der Partitur hinzuzufiigen. Oder Sie verwenden das Bewegungswerkzeug,
um eine Note auf den Notenlinien auf oder ab zu bewegen, wobei Sie seine Ton-
hohe verdndern.

Nehmen wir an, daf3 das Framework eine abstrakte Klasse GrafischesObjekt fiir
grafische Komponenten wie die Noten und Notenlinien bietet. Weiterhin bietet
es eine abstrakte Klasse Werkzeug zur Definition von Werkzeugen wie denen in
der Palette. Das Framework definiert weiterhin eine Unterklasse GrafischesWerk-
zeug fiir Werkzeuge, die grafische Objekte erzeugen und dem Dokument hinzufii-
gen konnen.

Die Klasse GrafischesWerkzeug stellt ein Problem fiir den Frameworkentwickler
dar. Die Klassen fiir Noten und Notenlinien sind anwendungsspezifisch, die
Klasse GrafischesWerkzeug gehort aber zum Framework. Die Klasse Grafisches-
Werkzeug weifd nicht, wie die Exemplare unserer Musikklassen zu erzeugen sind,
die der Partitur hinzugefiigt werden sollen. Wir konnten fiir jede Art von Musik-
objekt eine Unterklasse von GrafischesWerkzeug bilden, was aber zu vielen Unter-
klassen fiihren wiirde, die sich nur in der Art des zu erzeugenden Musikobjekts
unterscheiden. Wir wissen, dafy Objektkomposition eine flexible Alternative zur
Unterklassenbildung ist. Die Frage ist, wie das Framework Objektkomposition ver-

Prototyp 145

wenden kann, um Exemplare von GrafischesWerkzeug mit der Klasse der zu er-
zeugenden grafischen Objekte zu parametrieren.

Die Losung besteht darin, GrafischesWerkzeug ein neues grafisches Objekt mittels
Kopieren oder »Klonen« eines Exemplars einer GrafischesObjekt-Unterklasse er-
zeugen zu lassen (siehe Abbildung 3.10). Wir nennen dieses Exemplar Prototyp.
GrafischesWerkzeug wird mit dem Prototyp parametrisiert, den es klonen und
dem Dokument hinzufiigen soll. Wenn alle Unterklassen von GrafischesObjekt
eine Klone-Operation anbieten, kann GrafischesWerkzeug jede Art von Grafisches-
Objekt klonen.

Somit ist in unserem Musikeditor jedes Werkzeug zum Erzeugen eines Musikob-
jekts ein Exemplar von GrafischesWerkzeug, das mit einem anderen Prototypen
initialisiert wird. Jedes GrafischesWerkzeug-Exemplar produziert ein Musikobjekt,
indem es seinen Prototypen klont und das geklonte Objekt der Partitur hinzuftigt.

Werkzeug Grafisches Objekt

Manipuliere() Zeichne(Position)

Klone()
prototyp
k>—! l

RotationsWerkzeug|| GrafischesWerkzeug NotenLinie MusikNote

Manipuliere() Manipuliere() o Zeichne(Position)
j Klone() AN
|
'
GanzeNote HalbeNote
p = prototyp->Klone()
’ Zeichne(Position) Zeichne(Position)
while (Benutzer bewegt Maus) { KI KI
p->Zeichne(new Position) one() ? one() ?
fuge p in Zeichnung ein E E
return Kopie von sich return Kopie von sich

Abbildung 3.10

Wir konnen das Prototypmuster sogar dazu verwenden, die Anzahl der Klassen
noch weiter zu senken. Wir verfiigen tiber Klassen fiir ganze und fiir halbe Noten.
Dies ist moglicherweise unnoétig. Statt dessen konnten sie Exemplare derselben
Klasse sein, die mit unterschiedlichen Bitmaps und unterschiedlicher Tondauer
initialisiert werden. Ein Werkzeug zum Erzeugen ganzer Noten wird somit zu ei-
nem GrafischesWerkzeug-Objekt, dessen Prototyp eine MusikNote ist, die so ini-
tialisiert wurde, daf sie eine ganze Note darstellt. Diese kann zu einer drastischen
Reduzierung der Klassenanzahl im System fiihren. Das Hinzufiigen einer neuen
Art von Note zum Musikeditor wird ebenfalls einfacher.

146

3 Erzeugungsmuster

Anwendbarkeit

Verwenden Sie das Prototypmuster, wenn ein System unabhédngig davon sein soll,
wie seine Produkte erzeugt, zusammengesetzt und reprasentiert werden, und

wenn die Klassen zu erzeugender Objekte erst zur Laufzeit spezifiziert werden,
beispielsweise durch dynamisches Laden, oder

um zu vermeiden, eine Klassenhierarchie von Fabriken zu erstellen, die parallel
zur Klassenhierarchie der Produkte verlduft, oder

wenn Exemplare einer Klasse nur wenige unterschiedliche Zustandskombina-
tionen haben konnen. Es ist moglicherweise bequemer, eine entsprechende
Anzahl von Prototypen einzurichten und sie zu klonen statt die Objekte einer
Klasse jedesmal von Hand mit dem richtigen Zustand zu erzeugen.

Struktur

Abbildung 3.11 zeigt die Struktur des Prototypmusters.

Klient prototyp Prototyp
Operation() @ Klone()
1
|
p = prototyp—>Klone() | |
KonkreterPrototyp1 KonkreterPrototyp2
Klone() Q Klone() @

Teilnehmer

Prototyp (GrafischesObjekt)

— deklariert eine Schnittstelle, um sich selbst zu klonen.

KonkretesProdukt (NotenLinie, GanzeNote, HalbeNote)

return Kopie von sich

return Kopie von sich

Abbildung 3.11

- implementiert eine Operation, um sich selbst zu klonen.

Prototyp 147

¢ Klient (GrafischesWerkzeug)

- erzeugt ein neues Objekt, indem es einem Prototyp befiehlt, sich selbst zu
klonen.

Interaktionen

¢ FEin Klient befiehlt einem Prototyp, sich selbst zu klonen.

Konsequenzen

Das Prototypmuster hat viele derselben Konsequenzen, welche das Abstrakte-Fa-
brik-Muster (107) und das Erbauermuster (119) haben: Es versteckt die konkreten
Produktklassen vor dem Klienten und reduziert dadurch die Anzahl der dem
Klienten bekannten Namen. Weiterhin ermdéglichen diese Muster es einem Klien-
ten, ohne Modifikation mit anwendungsspezifischen Klassen zu arbeiten.

Zusiatzliche Moglichkeiten des Prototypmusters sind im Folgenden aufgefiihrt.

1. Hinzufiigen und Entfernen von Produkten zur Laufzeit. Prototypen erméglichen es
Ihnen, eine neue Produktklasse in ein System einfach dadurch einzubinden,
daf sie ein prototypisches Exemplar beim Klienten registrieren. Dies ist etwas
flexibler als die anderen Erzeugungsmuster, weil ein Klient Prototypen zur
Laufzeit installieren und entfernen kann.

2. Spezifikation neuer Objekte durch Variation von Werten. Hochdynamische Syste-
me ermoglichen es Ihnen, neues Verhalten durch die Objektkomposition zu
definieren — indem Sie beispielsweise Werte fiir die Variablen eines Objektes
spezifizieren — und nicht, indem Sie neue Klassen definieren. Sie definieren ef-
fektiv neue Arten von Objekten durch das Erzeugen von Objekten existieren-
der Klassen und die Registrierung der Objekte als Prototypen fiir
Klientenobjekte. Ein Klient kann neues Verhalten durch die Delegation von
Zustandigkeiten an den Prototypen ausiiben.

Diese Art von Entwurf ermoglicht es Benutzern, neue »Klassen« ohne Program-
mierung zu definieren. Tatsdchlich gleicht das Klonen eines Prototypen dem
Erzeugen eines Objekts einer Klasse. Das Prototypmuster ist in der Lage, die
von einem System bendotigte Anzahl an Klassen deutlich zu reduzieren. In un-
serem Musikeditor kann eine einzige GrafischesWerkzeug-Klasse eine unbe-
grenzte Vielfalt von Musikobjekten erzeugen.

3. Spezifikation neuer Objekte durch Variation der Struktur. Viele Anwendungen kon-
struieren Objekte aus Teilen und Subteilen. Editoren fiir den Entwurf elektri-

148 3 Erzeugungsmuster

scher Schaltkreise konstruieren beispielsweise Schaltkreise mit Hilfe von
Teilschaltkreisen.! Aus Bequemlichkeitsgriinden ermoglichen diese Anwen-
dungen es Ihnen oft, komplexe, benutzerdefinierte Strukturen zu erzeugen,
etwa um einen bestimmten Teilschaltkreis immer wieder zu verwenden.

Das Prototypmuster unterstiitzt dies ebenfalls. Wir fligen diesen Teilschaltkreis
einfach als einen Prototyp zur Palette verfiigbarer Schaltkreiselemente hinzu.
Solange das den zusammengesetzten Schaltkreis repriasentierende Objekt das
Klonen als tiefes Kopieren implementiert, konnen Schaltkreise mit unterschied-
lichen Strukturen als Prototypen verwendet werden.

4. Verringerte Unterklassenbildung. Das Fabrikmethodemuster (131) produziert oft
eine Hierarchie von Erzeugerklassen, die parallel zur Produktklassenhierarchie
verlduft. Das Prototypmuster ermoglicht es Ihnen, zur Erzeugung eines neuen
Obijekts einen Prototypen zu klonen, statt eine Fabrikmethode aufzurufen. So-
mit benotigen Sie iiberhaupt keine Erzeugerklassenhierarchie. Dieser Vorteil
kommt hauptsdchlich in Sprachen wie C++ zum Tragen, die Klassen nicht als
Obijekte erster Ordnung behandeln. Sprachen wie Smalltalk oder Objective-C,
die dies tun, ziehen hieraus einen geringeren Vorteil, da Sie immer ein Klassen-
objekt als Erzeuger verwenden konnen. Klassenobjekte spielen in diesen Spra-
chen bereits die Rolle von Prototypen.

5. Dynamisches Konfigurieren einer Anwendung mit Klassen. Manche Laufzeitumge-
bungen ermdoglichen es Ihnen, Klassen dynamisch zu einer Anwendung hin-
zuzuladen. Das Prototypmuster ist der Schliissel zum Ausbeuten solcher
Moglichkeiten in einer Sprache wie C++.

Eine Anwendung, die Exemplare einer dynamisch geladenen Klasse erzeugen
mochte, wird nicht in der Lage sein, den Konstruktur dieser Klassen statisch zu
referenzieren. Statt dessen erzeugt die Laufzeitumgebung beim Laden jeder
Klasse automatisch ein Exemplar und registriert dieses Exemplar bei einem Pro-
totypenverwalter (siehe Implementierungsabschnitt). Die Anwendung kann
dann den Prototypenverwalter nach Exemplaren der gerade neu geladenen
Klassen fragen, Klassen die urspriinglich gar nicht in das Programm eingebun-
den waren. Das ET++-Application-Framework [WGM88] verfiigt {iber ein Lauf-
zeitsystem, das diese Methode verwendet.

Die Hauptverpflichtung des Prototypmusters besteht darin, daf} jede Unterklasse
von Prototyp die Operation Klone implementieren mufl. Dies kann eine schwie-

1. Solche Anwendungen verwenden auch das Kompositionsmuster (239) und das Deko-
rierermuster (199).

Prototyp 149

rige Aufgabe sein. Beispielsweise ist das Hinzuftigen von Klone schwierig, wenn
die in Betracht gezogenen Klassen bereits existieren. Die Implementierung von
Klone kann schwierig sein, wenn ihre interne Repréasentation Objekte umfafit, die
keine Kopiermoglichkeiten bieten oder {iber zirkuldre Referenzen verfiigen.

Implementierung

Das Prototypmuster ist besonders niitzlich in statisch typisierten Programmier-
sprachen wie C++, in denen Klassen keine Objekte sind und nur wenig oder gar
keine Typinformation zur Laufzeit verfiigbar ist. In Sprachen wie Smalltalk oder
Obijective-C, die Prototypen vergleichbarer Objekte zur Erzeugung von Exempla-
ren einer Klasse bieten, ndmlich Klassenobjekte, ist es weniger wichtig. Dieses
Muster ist in prototyp-basierten Sprachen wie Self [US87], in denen alle Erzeu-
gung von Objekten durch das Klonen eines Prototyps geschieht, von Haus aus
vorhanden.

Beachten Sie die folgenden Aspekte, wenn Sie das Prototypmuster implementie-
ren.

1. Verwendung eines Prototypenverwalters. Wenn die Anzahl von Prototypen eines
Systems nicht von vorneherein festgelegt ist (das heif3t, sie kbnnen dynamisch
erzeugt und geldoscht werden), sollten Sie die verfiigbaren Prototypen in einer
Registratur vermerken. In diesem Fall verwalten Klienten die Prototypen nicht
selbst, sondern speichern sie in der Registratur ab und fordern sie wieder an.
Ein Klient holt sich einen Prototypen von der Registratur, bevor er ihn klont.
Wir nennen diese Registratur einen Prototypenverwalter.

Ein Prototypenverwalter verwendet einen assoziativen Speicher, der den zu ei-
nem Schliissel passenden Prototypen zuriickgibt. Er besitzt Operationen zum
Registrieren eines Prototypen beziiglich eines Schliissels und zum Auflosen der
Registrierung. Klienten konnen die Registratur zur Laufzeit dndern oder sie
durchsuchen. Somit kénnen die Klienten das System ohne Schreiben von
Code erweitern oder sich einen Uberblick verschaffen.

2. Implementierung der Klone-Operation. Der schwierigste Aspekt am Prototypmu-
ster ist die korrekte Implementierung der Klone-Operation. Sie ist insbesonde-
re dann sehr trickreich, wenn die Objektstrukturen zirkuldre Referenzen
enthalten.

Die meisten Sprachen unterstiitzen das Klonen von Objekten zumindest teil-
weise. Zum Beispiel verfiigt Smalltalk tiber eine Implementierung von copy, die
von allen Unterklassen von Object geerbt wird. C++ bietet einen Kopierkon-
struktor. Aber all diese Hilfsmittel 16sen das Problem »flaches versus tiefes Ko-

150 3 Erzeugungsmuster

pieren« nicht [GR83]. Kurzgefafit stellt dieses Problem die Frage, ob das Klonen
eines Objekts zum Klonen seiner Exemplarvariablen fiihrt oder ob das Origi-
nalobjekt und der Klon dieselben Variablen miteinander teilen.

Eine flache Kopie ist einfach und oftmals ausreichend. Sie wird aus diesem
Grund von Smalltalk als die Defaulteinstellung angeboten. Der standardmafi-
ge Kopierkonstruktor in C++ kopiert die Exemplarvariablen, was bedeutet, daf3
im Fall von Objektreferenzen die referenzierten Objekte von Kopie und Origi-
nal gemeinsam genutzt werden. Ublicherweise aber verlangt das Klonen von
Prototypen mit komplexen Strukturen das Ausfiihren einer tiefen Kopie, weil
der Klon und das Original unabhingig voneinander sein miissen. Sie miissen
deswegen sicherstellen, dal die Komponenten des Klons wiederum Klons der
Komponenten des Prototypen sind. Sie werden durch das Klonen gezwungen,
zu entscheiden, was, wenn tiberhaupt, gemeinsam genutzt wird.

Wenn die Objekte im System Lade- und Speicheroperationen bieten, dann
konnen Sie diese fiir eine Defaultimplementierung der Klone-Operation ver-
wenden, indem Sie einfach das Objekt speichern und sofort wieder einladen.
Die Speicheroperation legt das Objekt in einem Zwischenspeicher ab, und die
Ladeoperation erzeugt ein Duplikat bei der Rekonstruktion des Objekts aus
dem Speicher.

3. Initialisierung geklonter Objekte. Wahrend manche Klienten mit dem geklonten
Objekt vollig zufriedengestellt sind, verlangen andere Klienten die Initialisie-
rung von Teilen oder dem gesamten inneren Zustand mit Werten ihrer Wahl.
Sie kdnnen diese Werte iiblicherweise nicht der Klone-Operation direkt tiber-
geben, weil ihre Anzahl zwischen den Klassen der Prototypen variiert. Manche
Prototypen benétigen moglicherweise mehrere Initialisierungsparameter,
wihrend andere Prototypen keine benétigen. Die Ubergabe von Parametern in
der Klone-Operation schlief3t eine einheitliche Schnittstelle zum Klonen aus.

Vielleicht definieren die Klassen ihrer Prototypen ja schon Operationen zum
Zuriicksetzen wichtiger Teile des Zustands. Wenn dem so ist, konnen Klienten
diese Operationen direkt nach dem Klonen verwenden. Wenn nicht, miissen
sie vielleicht eine Initialisiere-Operation einfithren (siehe Beispielcodeab-
schnitt), die die Initialisierungsparameter als Argumente entgegennimmt und
den internen Zustand des geklonten Objekts entsprechend setzt. Besondere
Aufmerksamkeit erfordern Klone-Operationen, die tiefe Kopien anfertigen —
die Kopien miissen moglicherweise geloscht werden, entweder explizit oder in-
nerhalb von Initialisiere, bevor Sie sie erneut initialisieren konnen.

Prototyp 151

Beispielcode

Wir werden eine Unterklasse LabyrinthPrototypFabrik der Klasse LabyrinthFabrik
(Seite 129) definieren. LabyrinthPrototypFabrik wird mit den Prototypen jener Ob-
jekte initialisiert, die es erzeugen soll, so daf} wir keine Unterklassen bilden miis-
sen, nur um die Klassen der von ihr erzeugten Riume und Wénde zu dndern.

LabyrinthPrototypFabrik erweitert die Schnittstelle von LabyrinthFabrik mit einem
Konstruktor, der die Prototypen als Argument erhalt:

class LabyrinthPrototypFabrik : public LabyrinthFabrik f
public:
LabyrinthPrototypFabrik(Labyrinth*, Wand*, Raum*, Tuer*);

virtual Labyrinth* Erzeugelabyrinth() const;
virtual Raum* ErzeugeRaum(int) const;

virtual Wand* ErzeugeWand() const;

virtual Tuer* ErzeugeTuer(Raum*, Raum*) const;

private:
Labyrinth* _prototyplLabyrinth;
Raum* _prototypRaum;
Wand* _prototypWand;
Tuer* _prototypTuer;
b

Der neue Konstruktor initialisiert einfach seine Prototypen:

LabyrinthPrototypFabrik::LabyrinthPrototypFabrik(

Labyrinth* Tabyrinth, Wand* wand, Raum* raum, Tuer* tuer)
{

_prototyplLabyrinth = Tabyrinth;

_prototypWand = wand;

_prototypRaum = raum;

_prototypTuer = tuer;

J

Die Member-Funktionen zum Erzeugen von Winden, Rdumen und Tiren glei-
chen einander: Jede klont einen Prototypen und initialisiert ihn dann. Es folgen
die Definitionen von ErzeugeWand und ErzeugeTuer:

Wand* LabyrinthPrototypFabrik::ErzeugeWand() const f{
return _prototypWand->Klone();
}

152 3 Erzeugungsmuster

Tuer* LabyrinthPrototypFabrik::ErzeugeTuer(
Raum* rauml, Raum* raum2) const

{
Tuer* tuer = _prototypTuer->Klone();
tuer->Initialisiere(rauml, raum2);
return tuer;

}

Wir kénnen LabyrinthPrototypFabrik zum Erzeugen eines prototypischen Laby-
rinths oder eines Defaultlabyrinths verwenden, indem wir es einfach mit Prototy-
pen der grundlegenden Komponenten des Labyrinths initialisieren:

LabyrinthSpiel spiel;
LabyrinthPrototypFabrik einfachelabyrinthFabrik(
new Labyrinth, new Wand, new Raum, new Tuer);

Labyrinth* Tabyrinth = spiel.Erzeugelabyrinth(
einfachelabyrinthFabrik);

Um den Labyrinthtyp zu dndern, initialisieren wir LabyrinthPrototypFabrik mit ei-
ner anderen Menge an Prototypen. Der folgende Aufruf erzeugt ein Labyrinth mit
Prototypen fiir BombardierbareTuer und RaumMitBombe:

LabyrinthPrototypFabrik bombardierbarelabyrinthFabrik(
new Labyrinth, new BombardierbareWand,
new RaumMitBombe, new Tuer);

Ein Objekt, das als Prototyp genutzt werden kann, wie zum Beispiel ein Exemplar
von Wand, muf} die Klone-Operation unterstiitzen. Es muf} ebenso iiber einen Ko-
pierkonstruktor zum Klonen verfiigen. Es bené6tigt moglicherweise eine separate
Operation zur erneuten Initialisierung seines internen Zustands. Wir fiigen des-
wegen die Operation Initialisiere der Klasse Tuer hinzu, um Klienten die Initiali-
sierung geklonter Raume zu ermdoglichen.

Vergleichen Sie die folgende Definition von Tuer mit derjenigen auf Seite 104:

class Tuer : public KartenEintrag f{
public:

Tuer();

Tuer(const Tuer&);

virtual void Initialisiere(Raum*, Raum*);
virtual Tuer* Klone() const;
virtual void Betrete();

Prototyp 153

Raum* AndereSeiteVon(Raum*);

private:
Raum* _rauml;
Raum* _raume;
b

Tuer::Tuer(const Tuer& andereTuer) {
_rauml = andereTuer._rauml;
_raum2 = andereTuer._raum?Z;

void Tuer::Initialisiere(Raum* rauml, Raum* raum?) {
_rauml rauml ;
_raum2 = raum?Z;

Tuer* Tuer::Klone() const {
return new Tuer(*this);
}

Die Unterklasse BombardierbarelWand mufl die Klone-Operation iiberschreiben und
einen entsprechenden Kopierkonstruktor implementieren.

class BombardierbareWand : public Wand {
public:
BombardierbareWand();
BombardierbareWand(const BombardierbareWand&);

virtual Wand* Klone() const;
bool IstBeschaedigt();

private:
bool _istBeschaedigt;
b

BombardierbareWand: :BombardierbareWand(
const BombardierbareWand& andereWand) : Wand(andereWand)

_istBeschaedigt = andereWand._istBeschaedigt;

Wand* BombardierbareWand::Klone() const {
return new BombardierbareWand(*this);

154 3 Erzeugungsmuster

Obwohl BombardierbareWand: :Klone einen Zeiger vom Typ Wand* zurtickgibt, gibt
seine Implementierung einen Zeiger auf ein neues Exemplar einer Unterklasse,
ndmlich vom Typ Bombardierbareland* zurtick. Wir definieren Klone solcherart in
der Basisklasse, damit die Klienten nichts von den konkreten Unterklassen der
Prototypen wissen miissen, die sie klonen. Klienten sollten auf dem Riickgabewert
der Klone-Operation niemals einen Downcast zum erwiinschten Typ ausfiihren
miissen.

In Smalltalk konnen Sie die von 0bject geerbte Standardmethode copy wiederver-
wenden, um beliebige Prototypen von KartenEintrag Unterklassen zu klonen. Sie
konnen eine LabyrinthFabrik verwenden, um die von IThnen bendtigten Prototy-
pen zu produzieren. Beispielsweise kdnnen Sie einen Raum erzeugen, indem sie
den Namen #raum Gibergeben. Die LabyrinthFabrik besitzt ein Dictionary, das Na-
men auf Prototypen abbildet. Seine erzeuge: Methode sieht folgendermafien aus:

erzeuge: teilName
" (teilKatalog at: teilName) copy

Wenn angemessene Methoden zur Initialisierung der LabyrinthFabrik mit Prototy-
pen gegeben sind, kénnen Sie ein einfaches Labyrinth mit dem folgenden Code
erzeugen.

Erzeugelabyrinth fuer:
(LabyrinthFabrik new
mit: Tuer new namens: fftuer;
mit: Wand new namens: ffwand;
mit: Raum new namens: ffraum;
yourself)

Hierbei sdhe die Definition der in Erzeugelabyrinth verwendeten Klassenmethode
fuer: SO aus:

fuer: einefFabrik
| rauml raum2 |

rauml := (eineFabrik erzeuge: ffraum) koordinate: 1@1.
raum? := (eineFabrik erzeuge: {fraum) koordinate: 2@1.

tuer := (eineFabrik erzeuge #tuer) von: rauml nach: raum2.
rauml

aufSeite: #norden setze: (eineFabrik erzeuge: ffwand);
aufSeite: ffosten setze: tuer;

aufSeite: ffsueden setze: (eineFabrik erzeuge: fwand);
aufSeite: fwesten setze: (eineFabrik erzeuge: fwand);

Prototyp 155

raume
aufSeite: ffnorden setze: (eineFabrik erzeuge: fwand);
aufSeite: ffosten setze: (eineFabrik erzeuge: ffwand);
aufSeite: #sueden setze: (eineFabrik erzeuge: fwand);
aufSeite: Jwesten setze: tuer;

* Labyrinth new
fuegeRaumHinzu: rauml;
fuegeRaumHinzu: raum?;
yourself

Bekannte Verwendungen

Das vermutlich erste Beispiel des Prototypmusters ist in Ivan Sutherlands Sketch-
pad-System [Sut63] zu finden. Die erste weithin bekannte Anwendung des Mu-
sters in einer objektorientierten Sprache geschah in ThinglLab, bei dem Benutzer
ein zusammengesetztes Objekt erstellen und dann zu einem Prototypen machen
konnten, indem Sie es in einer Bibliothek wiederverwendbarer Objekte installier-
ten [Bor81]. Goldberg und Robson erwdhnen Prototypen als Muster [GR83]. Aller-
dings gibt Coplien [Cop92] eine sehr viel umfassendere Beschreibung. Er be-
schreibt dem Prototypmuster verwandte C++-Idiome und nennt viele Beispiele
und Variationen.

Etgdb ist ein auf ET++ basierendes Debugger-Frontend, das eine Point-and-Click-
Benutzungsschnittstelle fiir verschiedene zeilenorientierte Debugger bietet. Zu je-
dem Debugger gibt es eine entsprechende DebuggerAdaptor-Unterklasse. Bei-
spielsweise paf3t GdbAdaptor etgdb an die Befehlssyntax von GNUs gdb an, wéh-
rend SunDbxAdaptor dasselbe fiir Suns dbx debugger tut. Etgdb verfiigt nicht
iiber eine fest codierte Menge von DebuggerAdaptor-Klassen, sondern es liest den
Namen des zu verwendenden Adapters aus einer Umgebungsvariablen ein, sucht
in einer globalen Tabelle nach einem Prototypen mit dem angegebenen Namen
und klont den Prototypen. Neue Debugger konnen zu etgdb hinzugefiigt werden,
in dem man es mit dem DebuggerAdaptor fiir den Debugger zusammen linkt.

Die »interaction technique library« (Bibliothek fiir Interaktionstechniken) in Mo-
deComposer speichert die Prototypen von Objekten, die unterschiedliche Inter-
aktionstechniken unterstiitzen [Sha90]. Jede vom ModeComposer erzeugte Inter-
aktionstechnik kann als Prototyp genutzt werden, indem man ihn in die
Bibliothek einfiigt. Das Prototypmuster ermdglicht es ModeComposer, eine unbe-
grenzte Anzahl von Interaktionstechniken zu unterstiitzen.

Das eingangs diskutierte Musikeditorbeispiel basiert auf dem Unidraw Zeichen-
Framework [VL90].

156 3 Erzeugungsmuster

Verwandte Muster

Wie am Ende des Kapitels diskutiert wird, konkurrieren das Prototypmuster und
das Abstrakte-Fabrik-Muster (107) in verschiedener Hinsicht miteinander. Sie
konnen auch zusammen angewendet werden. Eine abstrakte Fabrik konnte eine
Menge von Prototypen speichern, die geklont und zuriickgegeben werden.

Sich stark auf das Kompositions- (239) und Dekorierermuster (199) abstiitzende
Entwiirfe konnen ebenfalls oft vom Prototypmuster profitieren.

Singleton 157

Singleton

Ein objektbasiertes Erzeugungsmuster

Zweck

Sichere ab, daf eine Klasse genau ein Exemplar besitzt, und stelle einen globalen
Zugriffspunkt darauf bereit.

Motivation

Bei manchen Klassen ist es wichtig, daf es genau ein Exemplar gibt. Obwohl es in
einem System viele Drucker geben kann, sollte es nur einen Druckerspooler ge-
ben. Es sollte nur ein Dateisystem und nur eine Fensterverwaltung geben. Ein di-
gitaler Filter besitzt einen A/D-Konvertierer. Ein Buchhaltungssystem dient wah-
rend es arbeitet genau einer Firma.

Wie stellen wir sicher, dafl eine Klasse tiber genau ein Exemplar verfiigt und daf§
einfach auf dieses Exemplar zugegriffen werden kann? Eine globale Variable er-
moglicht den Zugriff auf ein Objekt, verhindert aber nicht das Erzeugen mehrerer
Exemplare.

Es ist besser, die Klasse selbst fiir die Verwaltung ihres einzigen Exemplars zustdn-
dig zu machen. Die Klasse kann durch Abfangen von Befehlen zur Erzeugung
neuer Objekte sicherstellen, dafl kein weiteres Exemplar erzeugt wird, und sie
kann die Zugriffsmoglichkeit auf das Exemplar anbieten. Dies ist die Essenz des
Singletonmusters.

Anwendbarkeit
Verwenden Sie das Singletonmuster, wenn

e es genau ein Exemplar einer Klasse geben und es fiir Klienten an einem wohl-
definierten Punkt zugreifbar sein muf3.

e das einzige Exemplar durch Bildung von Unterklassen erweiterbar sein soll
und Klienten in der Lage sein sollen, das erweiterte Exemplar ohne Modifika-
tion ihres Codes verwenden zu kdénnen.

158 3 Erzeugungsmuster

Struktur
Abbildung 3.12 zeigt die Struktur des Singletonmusters.

Singleton

static Exemplar() ©---q---------1 return einzigesExemplar
SingletonOperation()
GibSingletonDaten()

static einzigesExemplar
singletonDaten

Abbildung 3.12

Teilnehmer
¢ Singleton

— definiert eine Exemplaroperation, die es Klienten erméglicht, auf sein ein-
ziges Exemplar zuzugreifen. Exemplar ist eine Klassenoperation, also eine
Klassenmethode in Smalltalk und eine statische Member-Funktion in C++.

— ist potentiell fiir die Erzeugung seines einzigen Exemplars zustandig.

Interaktionen

Klienten greifen auf ein Singletonexemplar ausschlieflich durch die Exemplar-
Operation der Singletonklasse zu.

Konsequenzen
Das Singletonmuster besitzt mehrere Vorteile:

1. Zugriffskontrolle auf das Exemplar. Da die Singletonklasse sein einziges Exemplar
kapselt, verfiigt es tiber eine strikte Kontrolle dariiber, wie und wann die Klien-
ten auf das Exemplar zugreifen konnen.

2. Eingeschrinkter Namensraum. Das Singletonmuster ist eine Verbesserung gegen-
iiber globalen Variablen. Es vermeidet die Uberfrachtung des Namensraums
mit globalen Variablen, welche die Singletonexemplare speichern.

3. Verfeinerung von Operationen und Reprdsentation. Die Singletonklasse kann abgelei-
tet und spezialisiert werden. Zudem ist es einfach, eine Anwendung mit einem
Exemplar dieser erweiterten Klasse zu konfigurieren. Sie kdnnen sogar die An-
wendung mit einem Exemplar der benotigten Klasse zur Laufzeit konfigurieren.

Singleton 159

4. Variable Anzahl von Exemplaren. Sollten Sie Ihre Meinung dndern und doch
mehr als ein Exemplar der Singletonklasse benétigen, so macht das Muster es
Ihnen auch hierbei leicht. Sie konnen weiterhin denselben Ansatz dazu ver-
wenden, die Anzahl der von der Anwendung benutzten Exemplare zu steuern.
Sie miissen dafiir nur jene Operation dndern, die den Zugriff auf das Singleton-
exemplar ermoglicht.

5. Flexibler als Klassenoperationen. Eine andere Moglichkeit, die Funktionalitat ei-
nes Singletons zusammenzufassen, besteht in der Verwendung von Klassen-
operationen, also statischen Member-Funktionen in C++ oder Klassenmetho-
den in Smalltalk. Beide Sprachtechniken erschweren die Anderung eines
Entwurfs, mochte man doch tiber mehr als ein Exemplar einer Klasse verftigen.
In C++ sind statische Member-Funktionen zudem niemals virtuell, so dafy Un-
terklassen sie nicht polymorph iiberschreiben kénnen.

Implementierung

Es folgen einige Implementierungsaspekte, die man bei der Anwendung des Sin-
gletonmusters bedenken sollte:

1. Garantie eines einzigen Exemplars. Das Singletonmuster macht das einzige Ex-
emplar zu einem normalen Exemplar seiner Klasse. Die Klasse ist so geschrie-
ben, daf nur ein einziges Exemplar jemals erzeugt werden kann. Ublicherweise
versteckt man die das Exemplar erzeugende Operation hinter einer Klassen-
operation, die garantiert, dafl nur ein Exemplar erzeugt wird. Diese Operation
kann auf die Variable, die das einzige Exemplar enthilt, zugreifen, und sie
stellt sicher, dafl die Variable mit dem einzigen Exemplar initialisiert ist, bevor
sie ihren Wert zuriickgibt. Dieser Ansatz stellt sicher, daf ein Singleton vor sei-
ner ersten Benutzung erzeugt und initialisiert wird.

Sie konnen die Klassenoperation in C++ mit einer statischen Member-Funkti-
on Exemplar der Klasse Singleton definieren. Singleton definiert weiterhin eine
statische Member-Variable _exemplar, die einen Zeiger auf sein einziges Exem-
plar enthilt.

Die Klasse Singleton ist folgendermafien deklariert:

class Singleton {
pubTic:
static Singleton* Exemplar();

protected:
Singleton();

160 3 Erzeugungsmuster

private:
static Singleton* _exemplar;
bs

Die entsprechende Implementierung sieht so aus:
Singleton* Singleton::_exemplar = 0;

Singleton* Singleton::Exemplar() {
if (_exemplar == 0) {
_exemplar = new Singleton;
}
return _exemplar;
}

Klienten greifen auf das Singleton ausschliefdlich durch die Exemplar Member-
Funktion zu. Die Variable _exemplar wird mit O initialisiert, und die statische
Member-Funktion Exemplar gibt seinen Wert zuriick, wobei sie ihn mit dem
einzigen Exemplar initialisiert, wenn er auf O steht. Exemplar verwendet verzo-
gerte Initialisierung (lazy initialization); der zurtickgegebene Wert wird nicht
erzeugt und gespeichert, bis das erste Mal darauf zugegriffen wird.

Beachten Sie, daf} der Konstruktor geschiitzt ist, das heif3t als protected dekla-
riert ist. Versucht ein Klient, ein Singleton direkt zu erzeugen, so ergibt sich zur
Ubersetzungszeit ein Fehler. Dies stellt sicher, daf nur ein Exemplar erzeugt
wird.

Da _exemplar ein Zeiger auf ein Singletonobjekt ist, kann die Exemplar Member-
Funktion ihm weiterhin einen Zeiger auf ein Exemplar einer Unterklasse von
Singleton zuweisen. Wir werden im Beispielcodeabschnitt ein Beispiel vorfiih-
ren.

Ein letzte Bemerkung zur C++-Implementierung: Es ist nicht ausreichend, das
Singleton als globales oder statisches Objekt zu definieren und sich dann auf
die automatische Initialisierung zu verlassen. Dafiir gibt es drei Griinde:

a. Wir konnen nicht garantieren, dafl insgesamt nur ein Exemplar eines stati-
schen Objekts erzeugt werden wird.

b. Wir verfiigen moglicherweise nicht iiber gentigend Informationen, jedes
Singleton zur statischen Initialisierungszeit zu erzeugen. Ein Singleton be-
notigt moglicherweise Werte, die erst spater wahrend des Programmablaufs
berechnet werden.

Singleton 161

c. C++ definiert tiber Ubersetzungseinheiten hinweg keine Reihenfolge, in der
die Konstruktoren globaler Objekte aufgerufen werden [ES90]. Dies fiihrt
dazu, dafd keine Abhédngigkeiten zwischen den Singletons existieren diirfen.
Giébe es sie, so wiren Fehler unvermeidlich.

Ein zusitzlicher, wenngleich weniger wichtiger Nebeneffekt des globalen/sta-
tischen Objektansatzes besteht darin, daf} alle Singletons erzeugt werden, ob
sie nun benutzt werden oder nicht. Die Verwendung einer statischen Member-
Funktion vermeidet all diese Probleme.

In Smalltalk wird die Funktion, die das einzige Exemplar zuriickgibt, als eine
Klassenmethode der Singletonklasse implementiert. Um sicherzustellen, daf}
nur ein Exemplar erzeugt wird, iberschreibt man die new-Operation. Somit be-
sitzt die resultierende Singletonklasse beispielsweise die folgenden zwei Klas-
senmethoden. Hierbei ist EinzigesExemplar eine Klassenvariable, die nirgendwo
anders verwendet wird:

new
self error: 'kann kein Objekt erzeugen'

default
EinzigesExemplar isNil ifTrue:[EinzigesExemplar := super new].
* EinzigesExemplar

2. Ableiten der Singletonklasse. Das Hauptproblem besteht nicht so sehr in der De-
finition der Unterklasse, sondern in der Installation seines einzigen Exemplars,
so daf’ Klienten es verwenden konnen. Im wesentlichen muf3 die Variable, die
das Singletonexemplar referenziert, mit einem Exemplar der Unterklasse in-
itialisiert werden. Die einfachste Technik besteht in der Bestimmung des zu
verwendenden Singletons in der Operation Exemplar der Singletonklasse. Ein
Beispiel im Beispielcodeabschnitt zeigt, wie man diese Technik mittels Umge-
bungsvariablen implementiert.

Eine weitere Moglichkeit, die Singletonunterklasse auszuwéhlen, besteht dar-
in, die Implementierung von Exemplar aus seiner Oberklasse (zum Beispiel
LabyrinthFabrik) zu entfernen und in die Unterklasse einzufiigen. Dies ermog-
licht es einem C++-Programmierer, die Klasse des Singletons erst wahrend des
Bindens zu wahlen (zum Beispiel durch das Binden einer Objektcodedatei mit
einer anderen Implementierung). Die Klasse bleibt aber weiterhin vor den
Klienten des Singletons versteckt.

Dieser Ansatz legt die Wahl der Singletonklasse zur Bindezeit fest. Somit ist es
schwer, die Singletonklasse zur Laufzeit zu wahlen. Die Verwendung von be-

162 3 Erzeugungsmuster

dingten Anweisungen zur Bestimmung der Unterklasse ist flexibler, legt aber
die Menge moglicher Singletonklassen im Code fest. Keiner der Ansatze ist fiir
alle Fille flexibel genug.

Ein flexiblerer Ansatz verwendet eine Registratur fiir Singletons. Statt die Exem-
plaroperation die Anzahl moglicher Singletonklassen definieren zu lassen,
melden sich die Singletonexemplare tiber ihren Namen bei einer wohlbekann-
ten Registratur an.

Die Registratur bildet von stringbasierten Namen auf Singletons ab. Wenn
Exemplar ein Singleton benotigt, konsultiert es die Registratur und fragt mittels
des Namens nach dem Singleton. Die Registratur sucht das entsprechende Sin-
gleton heraus (sofern es existiert) und gibt es zuriick. Dieser Ansatz befreit
Exemplar vom Wissen um alle moglichen Singletonklassen oder Exemplare. Es
verlangt einzig eine gemeinsame Schnittstelle aller Singletonklassen. Diese
enthélt auch die Operationen fiir die Registratur:

class Singleton {

pubTlic:
static void Registriere(char* name, Singleton*);
static Singleton* Exemplar();

protected:
static Singleton* Suche(const char* name);

private:

static Singleton* _exemplar;

static Liste<NameSingletonPaar>* _registratur;
Vs

Registriere registriert das Singletonexemplar unter dem gegebenen Namen.
Um die Registratur einfach zu halten, speichern wir die Exemplare in einer
Liste von NameSingletonPaar-Objekten. Jedes NameSingletonPaar bildet einen
Namen auf ein Singleton ab. Die Operation Suche sucht auf Basis eines {iberge-
benen Namen das Singleton heraus. Wir machen dabei die Annahme, daf eine
Umgebungsvariable den Namen der gewiinschten Singletons spezifiziert.

Singleton* Singleton::Exemplar() {
if (_exemplar == 0) {
const char* exemplarName = getenv("SINGLETON");
// Benutzer oder Umgebung setzen die Variable
// beim Hochfahren

Singleton 163

_exemplar = Suche(exemplarName);
// Suche gibt 0 zurlick, wenn es noch kein Singleton gibt
}
return _exemplar;
}

Zu welchem Zeitpunkt registrieren sich Singletonklassen selbst? Eine Mdoglich-
keit ist ihr Konstruktor. Beispielsweise konnte eine Unterklasse MeinSingleton
das folgende machen:

MeinSingleton::MeinSingleton() f

/...

Singleton::Registriere("MeinSingleton", this);
}

Natiirlich wird der Konstruktor nicht aufgerufen werden, bis jemand ein Ob-
jekt der Klasse erzeugt, was seinerseits genau jenes Problem darstellt, das das
Singletonmuster zu 16sen versucht! In C++ kdnnen wir das Problem umgehen,
indem wir ein statisches Exemplar von MeinSingleton definieren. Wir konnen
zum Beispiel in der Datei, in der MeinSingleton implementiert wird, folgendes
schreiben:

static MeinSingleton dasSingleton;

Die Singletonklasse ist somit nicht ldnger fiir das Erzeugen des Singletons zu-
standig. Seine primédre Aufgabe besteht darin, die gewtinschten Singletonob-
jekte im System verfiigbar zu machen. Der Ansatz, statische Objekte zu
verwenden, hat immer noch einen potentiellen Nachteil — es miissen namlich
Exemplare von allen moglichen Singletonunterklassen erzeugt werden, da sie
andernfalls nicht registriert werden.

Beispielcode

Stellen Sie sich vor, daf wir eine wie auf Seite 129 beschriebene LabyrinthFabrik
zum Aufbau von Labyrinthen definieren wollen. LabyrinthFabrik definiert eine
Schnittstelle zum Aufbau von unterschiedlichen Teilen des Labyrinths. Unter-
klassen konnen die Operationen neu definieren, so daf3 sie Exemplare spezialisier-
ter Produktklassen zuriickgeben (zum Beispiel BombardierbareWand-Objekte statt
einfachen Wand-Objekten).

Hierbei ist wichtig zu bemerken, daf} die Labyrinthanwendung nur ein Exemplar
der Labyrinthfabrik benotigt. Dieses Exemplar sollte fiir jeglichen Code verfiigbar
sein, der Teile des Labyrinths konstruiert. Hier kommt das Singletonmuster ins

164 3 Erzeugungsmuster

Spiel. Indem wir die LabyrinthFabrik zur Singletonklasse machen, kénnen wir
auch das Labyrinthobjekt allgemein zugreifbar machen, ohne uns auf globale Va-
riablen abstiitzen zu miissen.

Um das Beispiel zu vereinfachen, nehmen wir an, dafl wir LabyrinthFabrik niemals
ableiten werden (die Alternative werden wir in Kiirze betrachten). In C++ machen
wir es zu einer Singletonklasse, indem wir eine statische Exemplar-Operation und
eine statische _exemplar Member-Variable hinzufiigen, um das einzige Exemplar
zu halten. Wir miissen weiterhin den Konstruktor schiitzen, um eine zuféallige Er-
zeugung von Objekten, die zu mehr als einem Exemplar fithren kdnnte, zu ver-
hindern.

class LabyrinthFabrik f{
public:
static LabyrinthFabrik* Exemplar();

// existierende Schnittstelle folgt hier
/...

protected:
LabyrinthFabrik();

private:
static LabyrinthFabrik* _exemplar;
Vs

Die entsprechende Implementierung sieht so aus:

LabyrinthFabrik* LabyrinthFabrik::_exemplar = 0;

LabyrinthFabrik* LabyrinthFabrik::Exemplar() f
if (_exemplar == 0) {
_exemplar = new LabyrinthFabrik;
}
return _exemplar;
}

Lassen Sie uns nun betrachten, was passiert, wenn es Unterklassen der LabyrintFa-
brik gibt und die Anwendung entscheiden muf}, welche zu verwenden ist. Wir
wihlen die Art des Labyrinths durch eine Umgebungsvariable aus und fiigen
Code hinzu, der ein Objekt der passenden LabyrinthFabrik-Unterklasse auf Basis
des Werts dieser Umgebungsvariablen erzeugt. Die Exemplar-Operation stellt einen
guten Ort fiir diesen Code dar, weil sie die LabyrinthFabrik bereits erzeugt:

Singleton 165

LabyrinthFabrik* LabyrinthFabrik::Exemplar() f
if (_exemplar == 0) {
const char* TabyrinthStil = getenv("LABYRINTHSTIL");

if (strcmp(labyrinthStil, "mitbomben") == 0) {
_exemplar = new LabyrinthMitBombenFabrik;

}

else if (strcmp(labyrinthStil, "verzaubert") == 0) {
_exemplar = new VerzauberteslLabyrinthFabrik;

}

// ... weitere mdgliche Unterklassen

else {
_exemplar = new LabyrinthFabrik;

}
return _exemplar;
}

Beachten Sie, daf’ Exemplar jedesmal modifiziert werden muf}, wenn Sie ein neue
Unterklasse der LabyrinthFabrik definieren. Dies stellt vermutlich kein Problem
fir diese Anwendung dar, sihe aber im Fall einer in einem Framework definierten
abstrakten Fabrik schon anders aus.

Eine mogliche Losung besteht in der Verwendung des im Implementierungsab-
schnitts beschriebenen Registraturansatzes. Dynamisches Binden kann sich hier-
bei ebenfalls als niitzlich herausstellen - es wiirde die Anwendung davon abhal-
ten, alle nicht bendétigten Unterklassen laden zu miissen.

Bekannte Verwendungen

Ein Beispiel des Singletonmusters in Smalltalk-80 [Par90] ist die Menge von Ande-
rungen des Codes, was als ChangeSet current verfiigbar ist. Ein subtileres Beispiel ist
die Beziehung zwischen Klassen und ihren Metaklassen. Eine Metaklasse ist die
Klasse einer Klasse, und jede Metaklasse besitzt genau ein Exemplar. Metaklassen
haben keine Namen (aufer iiber einen indirekten Weg: durch den Namen ihrer
einzigen Exemplare), aber sie verwalten ihre Exemplare und erzeugen iiblicher-
weise keine weiteren Exemplare.

InterViews, eine Klassenbibliothek zur Erstellung von Benutzungsschnittstellen
[LCI+92], verwendet das Singletonmuster unter anderem zum Zugriff auf die ein-
zigen Exemplare seiner Klassen Session und WidgetKit. Session definiert die
Hauptschleife der Anwendung zum Dispatch von Ereignissen, speichert und ladt
die Datenbank an stilistischen Voreinstellungen des Benutzers und verwaltet die

166 3 Erzeugungsmuster

Verbindungen zu einem oder mehreren physikalischen Bildschirmen. WidgetKit
ist eine abstrakte Fabrik (107) zur Definition des Look-and-Feels von Benutzungs-
schnittstellenwidgets. Die WidgetKit::instance()-Operation bestimmt die jewei-
lige Unterklasse von WidgetKit, die unter Verwendung der von Session definier-
ten Umgebungsvariable erzeugt wird. Eine dhnliche Operation von Session legt
fest, ob monochrome oder Farbbildschirme unterstiitzt werden, und sie konfigu-
riert das einzige Session-Exemplar dementsprechend.

Verwandte Muster

Viele Muster konnen unter Verwendung des Singletonmusters implementiert
werden, so zum Beispiel das Abstrakte-Fabrik-Muster (107), das Erbauermuster
(119) und das Prototypmuster (144).

3.1 Diskussion der Erzeugungsmuster 167

3.1 Diskussion der Erzeugungsmuster

Es gibt zwei bekannte Moglichkeiten, ein System mit den Klassen von ihm erzeug-
ter Objekte zu parametrieren. Eine Moglichkeit besteht darin, eine Unterklasse
der Klasse zu erstellen, welche die Objekte erzeugt; dies entspricht der Verwen-
dung des Fabrikmethodemusters. Der Nachteil dieses Ansatzes besteht darin, daf§
man moglicherweise eine neue Unterklasse erzeugen muf}, nur um die Klasse des
Produkts zu dndern. Solche Anderungen kénnen sich kaskadenformig fortpflan-
zen. Wenn beispielsweise der Erzeuger eines Produkts selbst von einer Fabrikme-
thode erzeugt wird, so miissen Sie wiederum seinen Erzeuger spezialisieren.

Die andere Moglichkeit, ein System zu parametrieren, besteht in der Anwendung
von Objektkomposition: Definieren Sie ein Objekt, das fiir das Wissen um die
Klasse von Produktobjekten zustindig ist, und machen Sie es zu einem Parameter
des Systems. Dies ist ein zentraler Aspekt des Abstrakte-Fabrik-Musters (107), des
Erbauermusters (119) und des Prototypmusters (144). Alle drei fithren zur Erzeu-
gung eines neuen »Fabrikobjekts«, dessen Zustindigkeit im Erzeugen von Produkt-
objekten liegt. Das Abstrakte-Fabrik-Muster verwendet ein Fabrikobjekt, das Ob-
jekte mehrerer verschiedener Klassen erzeugen kann. Erbauer verwendet ein
Fabrikobjekt, das ein komplexes Produkt unter Verwendung eines ebenso komple-
xen Protokolls inkrementell konstruiert. Prototyp verwendet ein Fabrikobjekt, das
ein Produkt durch Kopieren eines Prototypobjekts erzeugt. In diesem Fall sind Fa-
brikobjekt und Prototyp dasselbe Objekt, da der Prototyp fiir die Riickgabe des Pro-
dukts zustindig ist.

Stellen Sie sich das zum Prototypmuster beschriebene Framework fiir Zeichenedi-
toren vor. Es gibt verschiedene Wege, ein GrafischesWerkzeug-Objekt mit der
Klasse seines Produkts zu parametrieren:

¢ Die Anwendung des Fabrikmethodemusters fiihrt zur Erzeugung einer Unter-
klasse von GrafischesWerkzeug fiir jede GrafischesObjekt-Klasse in der Palette.
GrafischesWerkzeug verfiigt dann iiber eine NeuesGrafischesObjekt-Operati-
on, die jede GrafischesWerkzeug-Unterklasse tiberschreibt.

e Die Anwendung des Abstrakte-Fabrik-Musters fiihrt zur einer Klassenhierar-
chie von GrafischeFabrik-Objekten, eines fiir jede GrafischesObjekt-Unterklas-
se. Jede Fabrik erzeugt in diesem Fall genau ein Produkt: KreisFabrik erzeugt
Kreise, LinienFabrik erzeugt Linien usw. Ein GrafischesWerkzeug wird mit ei-
ner Fabrik zum Erzeugen der passenden GrafischesObjekt-Klasse parametri-
siert.

168 3 Erzeugungsmuster

¢ Die Anwendung des Prototypmusters fiihrt zur Implementierung der Klone-
Operation fiir jede Unterklasse von GrafischesObjekt. Jedes GrafischesWerk-
zeug-Obijekt ist mit einem Prototypen der von ihm erzeugten grafischen Ob-
jekte parametrisiert.

Es hdngt von vielen Faktoren ab, welches Muster am besten geeignet ist. Im Fall
unseres Zeicheneditor-Frameworks ist das Fabrikmethodemuster das anfangs am
einfachsten zu verwendende Muster. Es ist einfach, eine neue Unterklasse von
GrafischesWerkzeug zu definieren. Die Exemplare von GrafischesWerkzeug wer-
den nur dann erzeugt, wenn die Palette definiert wird. Der wesentliche Nachteil
ist, daf} die GrapischesWerkzeug-Klassen sich fortpflanzen, aber keine von Thnen
sonderlich viel tut.

Das Abstrakte-Fabrik-Muster bietet keine grof3e Verbesserung der Situation, da es
eine genauso grofde GrafischeFabrik-Klassenhierarchie benétigt. Eine abstrakte Fa-
brik ware der Fabrikmethode nur dann vorzuziehen, wenn es bereits eine Gra-
fischeFabrik-Klassenhierarchie gibe — entweder, weil der Ubersetzer es automa-
tisch anbietet (wie in Smalltalk oder Objective-C) oder weil es in anderen Teilen
des Systems gebraucht wird.

Insgesamt betrachtet ist das Prototypmuster wohl die beste Losung fiir das Zeichen-
editor-Framework, weil es nur die Implementierung einer Klone-Operation fiir jede
GrafischesObjekt-Klasse verlangt. Dies reduziert die Anzahl von Klassen. Zudem
kann Klone fiir andere Zwecke als die reine Erzeugung von Objekten verwendet
werden (zum Beispiel fiir die Implementierung eines Dupliziere-Mentieintrags).

Eine Fabrikmethode macht einen Entwurf leichter anpafibar und nur wenig kom-
plizierter. Andere Entwurfsmuster benotigen neue Klassen, wahrend eine Fabrik-
methode nur eine neue Operation verlangt. Entwickler verwenden Fabrikmetho-
den oft als Standardldsung zum Erzeugen von Objekten. Fabrikmethoden werden
nicht benoétigt, wenn die zu Klasse zu erzeugender Objekte sich nie dndert oder
wenn die Erzeugung der Objekte an einem Ort stattfindet, den Unterklassen
leicht tiberschreiben kdnnen, so zum Beispiel in einer Initialisierungsoperation.

Entwiirfe, die das Abstrakte-Fabrik-Muster, das Prototypmuster oder das Erbau-
ermuster verwenden, sind sogar noch flexibler als Entwiirfe, die das Fabrikmetho-
demuster benutzen. Sie sind aber auch komplexer. Oft beginnen Entwiirfe mit der
Verwendung von Fabrikmethoden und entwickeln sich dann zur Anwendung der
anderen Erzeugungsmuster hin, wenn die Entwickler feststellen, daf3 Sie mehr Fle-
xibilitdt benotigen. Die Kenntnis mehrerer Entwurfsmuster gibt Ihnen eine gro-
Rere Auswahl an Moglichkeiten beim wechselseitigen Abwédgen von Entwurfskri-
terien.

	Entwurfsmuster -Elemente wiederverwendbarer objektorientierter Software-
	(Probe-)Kapitel 3 Erzeugungsmuster
	Abstrakte Fabrik (Abstract Factory)
	Erbauer (Builder)
	Fabrikmethode (Factory Method)
	Prototyp (Prototype)
	Singleton

	Ins Internet: Weitere Infos zum Buch, Downloads, etc.

