
3 Erzeugungsmuster

Entwurfsmuster, die der Erzeugung von Objekten dienen, verstecken den Erzeu-
gungsprozeß. Sie helfen, ein System unabhängig davon zu machen, wie seine Ob-
jekte erzeugt, zusammengesetzt und repräsentiert werden. Ein klassenbasiertes Er-
zeugungsmuster verwendet Vererbung, um die Klasse des zu erzeugenden Objekts
zu variieren, während ein objektbasiertes Erzeugungsmuster die Erzeugung an ein
anderes Objekt delegiert.

Erzeugungsmuster sind vor allem dann von Bedeutung, wenn Systeme beginnen,
mehr von Objektkomposition als von Vererbung abzuhängen. Dabei bewegt sich
die Konzentration von der Programmierung festgelegten Verhaltens weg. Sie be-
wegt sich hin zur Definition einer kleineren Menge grundlegender Verhaltensein-
heiten, die zu beliebig komplexem Verhalten zusammengesetzt werden können.
Deswegen verlangt das Erzeugen von Objekten mit bestimmtem Verhalten mehr
als nur das Erzeugen eines Objekts einer einzelnen Klasse.

Es gibt zwei immer wiederkehrende Leitmotive in diesen Mustern. Zum einem
kapseln sie alle das Wissen um die konkreten vom System verwendeten Klassen.
Zum anderen verstecken sie, wie Exemplare dieser Klassen erzeugt und zusam-
mengefügt werden. Alles, was die Anwendung insgesamt über die Objekte weiß,
wird durch die von den abstrakten Klassen definierten Schnittstellen bestimmt.
Somit ermöglichen die Erzeugungsmuster zu bestimmen, was erzeugt wird, wer es
erzeugt, wie es erzeugt und wann es erzeugt wird. Sie ermöglichen es Ihnen, ein Sy-
stem mit Hilfe von »Produktobjekten« zu konfigurieren, die stark in Struktur und
Funktionalität variieren können. Die Konfiguration kann statisch (das heißt, zur
Übersetzungszeit festgelegt) oder dynamisch sein (das heißt, zur Laufzeit festge-
legt).

Mitunter stehen Erzeugungsmuster in Konkurrenz zueinander. Zum Beispiel gibt
es Situationen, in denen sowohl ein Prototyp (144) als auch eine abstrakte Fabrik
(107) nutzbringend eingesetzt werden können. Manchmal sind die Muster kom-
plementär: Ein Erbauer (119) kann jeweils eines der anderen Muster zum Zusam-
menbau von Komponenten verwenden. Prototyp (144) kann ein Singleton (157)
zu seiner Implementierung verwenden.

Da die Erzeugungsmuster eng zusammenhängen, werden wir alle fünf Muster zu-
sammen betrachten, um ihre Ähnlichkeiten und ihre Unterschiede herauszustel-
len. Wir werden zudem ein bekanntes Beispiel – den Bau eines Labyrinths für ein
Computerspiel – verwenden, um ihre Implementierungen zu illustrieren. Das La-
byrinth und das Spiel werden von Muster zu Muster leicht variieren. Manchmal

102 3 Erzeugungsmuster

besteht das Spiel lediglich darin, aus dem Labyrinth herauszufinden. In diesem
Fall hat der Spieler vermutlich nur einen lokalen Blick auf das Labyrinth. Manch-
mal werden die Labyrinthe Probleme und Gefahren enthalten, welche es zu lösen
und zu überwinden gilt. Diese Spiele werden möglicherweise eine Karte des be-
reits untersuchten Teils des Labyrinths anbieten.

Wir werden viele Details ignorieren, welche in einem Labyrinth vorhanden sein
können, und ob das Labyrinthspiel einen oder mehrere Spieler kennt. Statt dessen
konzentrieren wir uns auf die Erzeugung von Labyrinthen. Wir definieren ein La-
byrinth als eine Menge von Räumen. Ein Raum kennt seine Nachbarobjekte, ent-
weder einen weiteren Raum, eine Wand oder eine Tür zu einem anderen Raum.

Die Klassen Raum, Tuer und Wand definieren die Komponenten des in allen unseren
Beispielen verwendeten Labyrinths. Wir definieren nur solche Teile dieser Klas-
sen, welche wichtig zum Erzeugen eines Labyrinths sind. Wir werden die Spieler,
die Operationen zum Anzeigen und Herumspazieren im Labyrinth, und alle wei-
tere wichtige aber zum Bauen des Labyrinths irrelevante Funktionalität ignorie-
ren.

Die Abbildung 3.1 zeigt die Beziehungen zwischen diesen Klassen.

Jeder Raum besitzt vier Seiten. Wir verwenden den Aufzählungstyp Richtung für
die C++-Implementierungen, um die nördliche, südliche, östliche und westliche
Seite eines Raums anzugeben:

enum Richtung { Norden, Sueden, Osten, Westen };

Abbildung 3.1

Wand

Betrete()Betrete()
SetzeSeite()
GibSeite()

Raum

Betrete()

Tuer

istOffen

Betrete()

seiten

KartenEintrag

raeume
Labyrinth

FuegeRaumEin()
RaumNr() raumNr.

3 Erzeugungsmuster 103

Die Smalltalk-Implementierungen verwenden entsprechende Symbole, um diese
Richtungen zu repräsentieren.

Die Klasse KartenEintrag ist die gemeinsame abstrakte Oberklasse für alle Kompo-
nenten eines Labyrinths. Um das Beispiel zu vereinfachen, definiert KartenEintrag
nur eine Operation, Betrete. Ihre Bedeutung hängt davon ab, was man betritt.
Wenn Sie einen Raum betreten, ändert sich Ihre Position. Wenn Sie versuchen,
eine Tür zu betreten, können zwei Dinge passieren: Wenn die Tür offen ist, gehen
Sie in den nächsten Raum. Wenn die Tür geschlossen ist, stoßen Sie sich Ihre
Nase.

class KartenEintrag {
public:

virtual void Betrete() = 0;
};

Betrete bietet einen einfachen Ausgangspunkt für kompliziertere Spieloperatio-
nen. Wenn Sie zum Beispiel in einem Raum sind und »Gehe nach Osten« sagen,
kann das Spiel einfach bestimmen, welcher KartenEintrag direkt im Osten liegt
und dann Betrete von ihm aufrufen. Die unterklassenspezifische Betrete-Opera-
tion bestimmt dann, ob sich Ihre Position geändert hat oder Ihre Nase verletzt
wurde. In einem richtigen Spiel könnte Betrete das zu bewegende Spielerobjekt
als Argument erhalten.

Raum ist die konkrete Unterklasse von KartenEintrag, welche die zentralen Bezie-
hungen zwischen Komponenten in einem Labyrinth definiert. Sie verwaltet Refe-
renzen zu anderen KartenEintrag-Objekten und speichert eine Raumnummer. Die
Nummer dient zur Identifizierung von Räumen im Labyrinth.

class Raum : public KartenEintrag {
public:

Raum(int raumNr);

KartenEintrag* GibSeite(Richtung) const;
void SetzeSeite(Richtung, KartenEintrag*);

virtual void Betrete();

private:
KartenEintrag* _seiten[4];
int _raumNr;

};

104 3 Erzeugungsmuster

Die folgenden Klassen repräsentieren die Wände oder Türen, welche auf jeder
Seite eines Raumes auftreten.

class Wand : public KartenEintrag {
public:

Wand();

virtual void Betrete();
};

class Tuer : public KartenEintrag {
public:

Tuer(Raum* = 0, Raum* = 0);

virtual void Betrete();
Raum* AndereSeite(Raum*);

private:
Raum* _raum1;
Raum* _raum2;
bool _istOffen;

};

Wir müssen allerdings mehr als nur die Teile eines Labyrinths bestimmen. Wir de-
finieren weiterhin eine Klasse Labyrinth, um eine Sammlung von Räumen zu re-
präsentieren. Labyrinth kann einen bestimmten Raum anhand einer Raumnum-
mer unter Verwendung der RaumNr-Operation finden.

class Labyrinth {
public:

Labyrinth();

void FuegeRaumHinzu(Raum*);
Raum* RaumNr(int) const;

private:
// ...

};

RaumNr könnte den Raum mittels linearer Suche, einer Hash-Tabelle oder auch
nur eines einfachen Arrays ermitteln. Wir werden uns um diese Details aber hier
nicht kümmern. Statt dessen werden wir uns auf die Spezifikation der Komponen-
ten im Labyrinth konzentrieren.

3 Erzeugungsmuster 105

Als weitere Klasse definieren wir LabyrinthSpiel, welche das Labyrinth erzeugt.
Man kann ein Labyrinth einfach durch eine Abfolge von Operationen erzeugen,
welche dem Labyrinth Komponenten hinzufügen und sie dann miteinander ver-
binden. Die folgende Member-Funktion erzeugt zum Beispiel ein Labyrinth, das
aus zwei Räumen mit einer Tür dazwischen besteht:

Labyrinth* LabyrinthSpiel::ErzeugeLabyrinth() {
Labyrinth* einLabyrinth = new Labyrinth;
Raum* raum1 = new Raum(1);
Raum* raum2 = new Raum(2);
Tuer* dieTuer = new Tuer(raum1, raum2);

einLabyrinth->FuegeRaumHinzu(raum1);
einLabyrinth->FuegeRaumHinzu(raum2);

raum1->SetzeSeite(Norden, new Wand);
raum1->SetzeSeite(Osten, dieTuer);
raum1->SetzeSeite(Sueden, new Wand);
raum1->SetzeSeite(Westen, new Wand);

raum2->SetzeSeite(Norden, new Wand);
raum2->SetzeSeite(Osten, new Wand);
raum2->SetzeSeite(Sueden, new Wand);
raum2->SetzeSeite(Westen, dieTuer);

return einLabyrinth;
}

Diese Operation ist ziemlich kompliziert, bedenkt man, daß sie lediglich ein Laby-
rinth mit zwei Räumen erzeugt. Offenkundig geht es auch einfacher. Zum Beispiel
könnte der Raum-Konstruktor im voraus die Seiten mit Wänden initialisieren. Aber
dies würde den Code nur an eine andere Stelle bewegen. Das eigentliche Problem
mit dieser Member-Funktion ist nicht ihre Größe, sondern ihre Unflexibilität. Sie
schreibt das Labyrinth-layout fest. Eine Veränderung des Layouts bedeutet das
Verändern der Member-Funktion, entweder durch Überschreiben oder durch Än-
dern von Teilen der Implementierung. Die erste Alternative führt zur Reimple-
mentierung der Operation während die zweite Alternative fehleranfällig ist und
auch keine Wiederverwendung fördert.

Die Erzeugungsmuster zeigen, wie man den Entwurf flexibler, aber nicht notwen-
dig kleiner macht. Insbesondere erleichtern sie es, die Klassen, welche die Kompo-
nenten des Labyrinth bestimmen, zu verändern.

106 3 Erzeugungsmuster

Stellen Sie sich vor, Sie wollen ein existierendes Labyrinthlayout für ein neues
Spiel wiederverwenden, welches unter anderem verzauberte Labyrinthe enthält.
Das verzauberte Labyrinthspiel besitzt neue Arten von Komponenten, etwa Tuer-
MitZauberspruch, eine Tür, die nur mit einem Zauberspruch verschlossen und ge-
öffnet werden kann; oder VerzauberterRaum, ein Raum der merkwürdige Gegen-
stände wie magische Schlüssel oder Zaubersprüche enthalten kann. Wie nun
kann man ErzeugeLabyrinth auf einfache Weise so verändern, daß es Labyrinthe
mit diesen neuen Klassen von Objekten erzeugt?

Die größte Hürde für Veränderungen liegt hier in der unflexiblen Programmie-
rung der Klassen, von denen Objekte erzeugt werden sollen. Die Erzeugungsmu-
ster bieten verschiedene Möglichkeiten, explizite Referenzen auf konkrete Klassen
aus dem Code, der von ihnen Objekte erzeugen muß, zu entfernen:

• Wenn ErzeugeLabyrinth virtuelle Funktionen anstelle von Konstruktoren zum
Erzeugen der benötigten Räume, Wände und Türen aufruft, können Sie die
Klassen der zu erzeugenden Objekte verändern, indem sie eine Unterklasse von
LabyrinthSpiel erzeugen und die entsprechenden virtuellen Funktionen über-
schreiben. Dieser Ansatz ist ein Beispiel für das Fabrikmethodemuster (131).

• Wenn ErzeugeLabyrinth ein Objekt als Parameter erhält, das zum Erzeugen von
Räumen, Wänden und Türen verwendet wird, dann können Sie die Klassen
von Räumen, Wänden und Türen durch das Hereinreichen verschiedener Pa-
rameter verändern. Dies ist ein Beispiel für das Abstrakte-Fabrik-Muster (107).

• Wenn ErzeugeLabyrinth ein Objekt erhält, das ein neues Labyrinth vollständig
unter Verwendung von Operationen zum Hinzufügen von Räumen, Türen
und Wänden zum Labyrinth selbst erzeugen kann, dann können Sie Verer-
bung benutzen, um Teile des Labyrinths oder die Art, wie es gebaut wird, zu
verändern. Dies ist ein Beispiel für das Erbauermuster (119).

• Wenn ErzeugeLabyrinth mit verschiedenen prototypischen Raum-, Tür- und
Wandobjekten parametrisiert wird, welche es kopieren und dem Labyrinth
hinzufügen kann, dann können Sie den Aufbau des Labyrinths durch Ersetzen
dieser prototypischen Objekte verändern. Dies ist ein Beispiel für das Prototyp-
muster (144).

Das verbleibende Erzeugungsmuster, Singleton (157), ermöglicht es Ihnen, sicher-
zustellen, daß es nur ein Labyrinthobjekt pro Spiel gibt und daß alle Spielobjekte
direkten Zugriff auf diese Objekte besitzen, ohne auf globale Variablen oder Funk-
tionen zurückgreifen zu müssen. Singleton macht es weiterhin einfach, das Laby-
rinth zu erweitern oder zu ersetzen, ohne existierenden Code verändern zu müs-
sen.

 Abstrakte Fabrik 107

Abstrakte Fabrik

(Abstract Factory)

Ein objektbasiertes Erzeugungsmuster

Zweck

Biete eine Schnittstelle zum Erzeugen von Familien verwandter oder voneinander
abhängiger Objekte, ohne ihre konkreten Klassen zu benennen.

Auch bekannt als

Kit

Motivation

Stellen Sie sich eine Klassenbibliothek für Benutzungsschnittstellen vor, die meh-
rere Look-and-Feel-Standards wie Motif oder den Presentation-Manager unter-
stützt. Unterschiedliche Look-and-Feel-Standards definieren unterschiedliches
Aussehen und Verhalten von Widgets, den Interaktionselementen einer Benut-
zungsschnittstelle, wie Scrollbars, Fenstern und Knöpfen. Um zwischen verschie-
denen Look-and-Feel-Standards portierbar zu sein, sollte sich eine Anwendung
nicht auf die Widgets eines spezifischen Standards festlegen. Die Erzeugung von
Look-and-Feel spezifischen Widgetklassen über die ganze Anwendung zu vertei-
len macht es schwer, das Look-and-Feel später zu ändern.

Man kann das Problem durch Einführung einer abstrakten WidgetFabrik lösen,
die eine Schnittstelle zum Erzeugen jeder grundlegenden Art von Widget dekla-
riert (siehe Abbildung 3.2). Weiterhin gibt es eine abstrakte Klasse für jede Wid-
getart sowie konkrete Unterklassen, welche die Widgets für den jeweiligen Look-
and-Feel-Standard implementieren. Die Schnittstelle der WidgetFabrik besitzt für
jede abstrakte Widgetklasse eine Operation, die ein neues Widget zurück gibt.
Klienten rufen diese Operationen auf, um Exemplare von Widgets zu erzeugen,
ohne dabei die konkreten Klassen zu kennen, die sie benutzen. Somit bleiben sie
unabhängig vom aktuellen Look-and-Feel.

Für jeden Look-and-Feel-Standard gibt es eine konkrete Unterklasse von Widget-
Fabrik. Jede Unterklasse implementiert die Operationen zum Erzeugen des pas-
senden Widgets für ein Look-and-Feel. Die ErzeugeScrollbar-Operation der Motif-
WidgetFabrik zum Beispiel erzeugt einen Scrollbar für Motif und gibt ihn zurück,

108 3 Erzeugungsmuster

während die entsprechende Operation der PMWidgetFabrik einen Scrollbar für
den Presentation-Manager zurückliefert. Klienten erzeugen die Widgets aus-
schließlich über die Schnittstelle der WidgetFabrik und kennen die Klassen nicht,
welche das Widget für ein bestimmtes Look-and-Feel implementieren. Mit ande-
ren Worten, Klienten stützen sich immer nur auf eine durch eine abstrakte Klasse
definierte Schnittstelle, nicht aber auf eine bestimmte konkrete Klasse.

Eine Widgetfabrik sichert zudem Abhängigkeiten zwischen konkreten Widget-
klassen ab. Ein Motif-Scrollbar sollte nur mit einem Motif-Knopf und einem Mo-
tif-Texteditor zusammen verwendet werden. Diese Konsistenzbedingung wird au-
tomatisch als Konsequenz des Einsatzes einer MotifWidgetFabrik sichergestellt.

Abbildung 3.2

Klient

Fenster

Scrollbar

ErzeugeScrollbar()

ErzeugeScrollbar()
ErzeugeFenster()

PMFenster

ErzeugeScrollbar()
ErzeugeFenster()

MotifFenster

MotifScrollbarPMScrollbar

WidgetFabrik

MotifWidgetFabrik PMWidgetFabrik

ErzeugeFenster()

 Abstrakte Fabrik 109

Struktur

Abbildung 3.3 zeigt die Struktur des Abstrakte-Fabrik-Musters.

Anwendbarkeit

Verwenden Sie das Abstrakte-Fabrik-Muster, wenn

• ein System unabhängig davon sein soll, wie seine Produkte1 erzeugt, zusam-
mengesetzt und repräsentiert werden.

• ein System mit einer von mehreren Produktfamilien konfiguriert werden soll.

• eine Familie von verwandten Produktobjekten entworfen wurde, zusammen
verwendet zu werden, und Sie diese Konsistenzbedingung sicherstellen müs-
sen.

• Sie eine Klassenbibliothek von Produkten anbieten möchten, von denen Sie
nur die Schnittstellen, nicht aber ihre Implementierungen offenlegen möch-
ten.

Teilnehmer

• AbstrakteFabrik (WidgetFabrik)

– deklariert eine abstrakte Schnittstelle für Operationen, die konkrete Pro-
duktobjekte erzeugen.

Abbildung 3.3

1. Unter »Produkten« sind hier die vom System erzeugten Objekte zu verstehen. Anm. D.R.

AbstrakteFabrik

ErzeugeProduktA()
ErzeugeProduktB()

ErzeugeProduktA()
ErzeugeProduktB()

ErzeugeProduktA()
ErzeugeProduktB()

KonkreteFabrik1 KonkreteFabrik2

AbstraktesProduktA

AbstraktesProduktB

Klient

ProduktA2 ProduktA1

ProduktB2 ProduktB1

110 3 Erzeugungsmuster

• KonkreteFabrik (MotifWidgetFabrik, PMWidgetFabrik)

– implementiert die Operation zur Erzeugung konkreter Produktobjekte.

• AbstraktesProdukt (Fenster, Scrollbar)

– deklariert eine Schnittstelle für einen bestimmten Typ von Produktobjek-
ten.

• KonkretesProdukt (MotifFenster, MotifScrollbar)

– definiert ein von der entsprechenden konkreten Fabrik zu erzeugendes Pro-
duktobjekt.

– implementiert die AbstraktesProdukt-Schnittstelle.

• Klient

– verwendet nur die Schnittstellen, welche von den AbstrakteFabrik- und Ab-
straktes-Produkt-Klassen deklariert werden.

Interaktionen

• Normalerweise wird ein einzelnes Exemplar der KonkreteFabrik-Klasse zur
Laufzeit erzeugt. Diese konkrete Fabrik erzeugt Produktobjekte, welche spezifi-
sche Implementierungen haben. Um verschiedene Produktobjekte zu erzeu-
gen, sollten Klienten unterschiedliche konkrete Fabriken haben.

• Eine AbstrakteFabrik verlagert die Erzeugung von Produktobjekten auf ihre
KonkreteFabrik-Unterklassen.

Konsequenzen

Das Abstrakte-Fabrik-Muster hat die folgenden Vorteile und Verbindlichkeiten:

1. Isolation konkreter Klassen. Das Abstrakte-Fabrik-Muster ermöglicht es Ihnen,
die Klassen von Objekten zu steuern, welche ihre Anwendung erzeugt. Da eine
Fabrik für den Prozeß des Erzeugens von Produktobjekten zuständig ist und
ihn kapselt, isoliert es Klienten von den Implementierungsklassen. Klienten
manipulieren Objekte nur durch ihre abstrakten Schnittstellen. Die Namen
von Produktklassen sind in der Implementierung der konkreten Fabrik isoliert;
sie erscheinen nicht im Klientencode.

2. Einfacher Austausch von Produktfamilien. Die Klasse einer konkreten Fabrik er-
scheint nur einmal in der Anwendung – genau dort, wo von ihr ein Exemplar
erzeugt wird. Dies macht es einfach, die von einer Anwendung benutzte kon-

 Abstrakte Fabrik 111

krete Fabrik auszutauschen. Sie kann verschiedene Produktkonfigurationen
einfach durch den Austausch der konkreten Fabrik verwenden. Da eine ab-
strakte Fabrik eine komplette Familie von Produkten erzeugt, wird die gesamte
Produktfamilie auf einmal getauscht. In unserem Benutzungsschnittstellenbei-
spiel können wir von Motif-Widgets zu Presentation-Manager-Widgets einfach
dadurch wechseln, daß wir die entsprechenden Fabrikobjekte austauschen und
die Benutzungsschnittstelle erneut erzeugen.

3. Konsistenzsicherung unter Produkten. Wenn Produktobjekte einer Familie ent-
worfen werden, um zusammenzuarbeiten, ist es wichtig, daß eine Anwendung
nur Objekte einer Familie zur Zeit verwendet. Eine abstrakte Fabrik macht es
einfach, dies sicherzustellen.

4. Schwierige Unterstützung neuer Produkte. Die Erweiterung abstrakter Fabriken,
um neue Arten von Produkte zu produzieren, ist nicht einfach. Dies liegt dar-
an, daß die Schnittstelle einer abstrakten Fabrik die Menge von Produkten, die
erzeugt werden können, festlegt. Die Unterstützung neuer Arten von Produk-
ten erfordert es, die Schnittstelle der Fabrik zu erweitern, was dazu führt, die
AbstrakteFabrik-Klasse und all ihre Unterklassen zu verändern. Wir diskutieren
eine Lösung für dieses Problem im folgenden Abschnitt.

Implementierung

Es gibt verschiedene nützliche Techniken, eine abstrakte Fabrik zu implementie-
ren.

1. Fabriken als Singletons. Eine Anwendung braucht üblicherweise genau ein Ex-
emplar einer konkreten Fabrik pro Produktfamilie. Deswegen implementiert
man sie am besten als Singleton (157).

2. Erzeugen von Produkten. AbstrakteFabrik deklariert lediglich eine Schnittstelle
zum Erzeugen von Produkten. Es bleibt den KonkreteFabrik-Unterklassen
überlassen, sie tatsächlich zu erzeugen. Üblicherweise definiert man Fabrikme-
thoden (131) für jedes Produkt. Eine konkrete Fabrik bringt ihre Produkte ins
Spiel, indem sie für jedes die entsprechende Fabrikmethode überschreibt. Diese
Implementierung ist zwar einfach, erfordert aber eine neue KonkreteFabrik-
Unterklasse für jede Produktfamilie, selbst wenn die Produktfamilien sich nur
wenig unterscheiden.

Wenn es viele Produktfamilien geben kann, bietet es sich an, die konkrete Fa-
brik mit Hilfe des Prototypmusters (144) zu implementieren. Die konkrete Fa-
brik wird mit einem prototypischen Exemplar eines jeden Produkts aus der
Familie initialisiert, und sie erzeugt neue Produkte durch das Klonen ihres Pro-

112 3 Erzeugungsmuster

totypen. Der prototypenbasierte Ansatz vermeidet es, für jede neue Produktfa-
milie eine neue konkrete Fabrik einführen zu müssen.

Es folgt ein Beispiel zur Implementierung einer prototypenbasierten Fabrik in
Smalltalk. Die konkrete Fabrik speichert die zu klonenden Prototypen in einem
Dictionary namens teilKatalog. Die Methode erzeuge: sucht den Prototypen
heraus und klont ihn:

erzeuge: teilName
^ (teilKatalog at: teilName) copy

Die konkrete Fabrik verfügt über eine Methode, Prototypen in das Dictionary
einzufügen:

fuegeTeilHinzu: teilPrototyp mitNamen: teilName
teilKatalog at: teilName put: teilPrototyp

Prototypen werden der Fabrik hinzugefügt, indem man sie mittels eines Sym-
bols identifiziert:

eineFabrik fuegeTeilHinzu: einPrototyp mitNamen: #ACMEWidget

Sprachen wie Smalltalk oder Objective-C, in denen Klassen Objekte erster Ord-
nung sind, bieten eine Variante des prototypenbasierten Ansatzes. In diesen
Sprachen können Sie eine Klasse als degenerierte Fabrik auffassen, welche ge-
nau eine Art von Produkt erzeugt. Sie können Klassen, welche die verschiede-
nen Produkte erzeugen, genau wie Prototypen in den Variablen einer
konkreten Fabrik speichern. Auf die Veranlassung der Fabrik hin erzeugen die-
se Klassen neue Exemplare. Sie definieren eine neue Fabrik durch die Initiali-
sierung eines Exemplars einer konkreten Fabrik mit Klassen von Produkten,
anstatt weitere Unterklassen zu bilden. Dieser Ansatz basiert auf spezifischen
Spracheigenschaften, während der reine Prototypenansatz sprachunabhängig
ist.

Die klassenbasierte Version wird ebenso wie die eben diskutierte prototypen-
basierte Fabrik in Smalltalk zu einer einzelnen Variable teilKatalog führen,
welche ein Dictionary ist, dessen Schlüssel der Name der Klasse ist. Statt die zu
klonenden Prototypen zu speichern, speichert teilKatalog die Klassen der Pro-
dukte. Die Methode erzeuge: sieht nun folgendermaßen aus:

erzeuge: teilName
^ (teilKatalog at: teilName) new

 Abstrakte Fabrik 113

3. Definieren von erweiterbaren Fabriken. AbstrakteFabrik definiert üblicherweise
verschiedene Operationen für jede Art von Produkten, die es erzeugen kann.
Die Produkttypen sind in den Operationssignaturen festgelegt. Will man eine
neue Art von Produkt hinzufügen, so muß man die Schnittstelle von Abstrak-
teFabrik und die aller Klassen, die davon abhängen, verändern.

Ein flexiblerer, wenngleich weniger sicherer Entwurf ist es, die objekterzeugen-
den Operationen um einen Parameter zu erweitern. Dieser Parameter spezifi-
ziert den Typ des Objekts, welches zu erzeugen ist. Dies mag eine Klasseniden-
tifizierung, ein Integer, ein String oder irgendein anderer Wert sein, der den
Produkttyp identifiziert. Bei diesem Ansatz benötigt AbstrakteFabrik lediglich
eine einzige Erzeuge-Operation mit einem Parameter, welcher den Typ des zu
erzeugenden Objekts identifiziert. Dies ist die Technik, welche in den zuvor
diskutierten prototypen- und klassenbasierten abstrakten Fabriken verwendet
wurde.

Diese Variante läßt sich in dynamisch typisierten Sprachen wie Smalltalk
leichter verwenden als in statisch typisierten Sprachen wie C++. Sie können sie
in C++ nur dann benutzen, wenn alle Objekte dieselbe abstrakte Basisklasse ha-
ben oder wenn der Klient die verlangten Produktobjekte sicher in den richti-
gen Typ konvertieren kann. Die Implementierung von Fabrikmethoden (131)
zeigt, wie man derart parametrierbare Operationen in C++ implementieren
kann.

Aber selbst, wenn man keine Typkonvertierung benötigt, bleibt ein grundle-
gendes Problem: Alle an den Klienten zurückgegebenen Produkte haben diesel-
be abstrakte durch den Rückgabetyp festgelegte Schnittstelle. Der Klient kann
die Objekte weder unterscheiden noch sichere Annahmen über die Klassen der
Objekte machen. Klienten können keine unterklassenspezifischen Operatio-
nen über die abstrakte Schnittstelle verwenden. Es bleibt dem Klient freige-
stellt, einen Downcast ausführen, zum Beispiel mittels dynamic_cast in C++.
Dies ist aber nicht immer sinnvoll und sicher, da der Downcast fehlschlagen
kann. Dies ist der klassische Nachteil, den man für hochflexible und erweiter-
bare Schnittstellen in Kauf nehmen muß.

Beispielcode

Wir werden nun das Abstrakte-Fabrik-Muster verwenden, um die zu Beginn des
Kapitels diskutierten Labyrinthe zu erzeugen.

Die Klasse LabyrinthFabrik ist in der Lage, Komponenten eines Labyrinths zu er-
zeugen. Sie erstellt Räume, Wände und Türen zwischen den Räumen. Sie kann

114 3 Erzeugungsmuster

von einem Programm verwendet werden, das Pläne für Labyrinthe aus einer Datei
liest und das entsprechende Labyrinth erstellt. Oder sie kann von einem Pro-
gramm verwendet werden, das Labyrinthe zufallsbasiert zusammenbaut. Pro-
gramme, die Labyrinthe erstellen, erhalten eine LabyrinthFabrik als Argument, so
daß der Programmierer die Klassen der zu erzeugenden Räume, Wände und Türen
festlegen kann.

class LabyrinthFabrik {
public:

LabyrinthFabrik();

virtual Labyrinth* ErzeugeLabyrinth() const
{ return new Labyrinth; }

virtual Wand* ErzeugeWand() const
{ return new Wand; }

virtual Raum* ErzeugeRaum(int n) const
{ return new Raum(n); }

virtual Tuer* ErzeugeTuer(Raum* raum1, Raum* raum2) const
{ return new Tuer(raum1, raum2); }

};

Wie bereits angeführt erzeugt die Member-Funktion ErzeugeLabyrinth (Seite 105)
ein kleines Labyrinth, das aus zwei Räumen mit einer Tür dazwischen besteht.

ErzeugeLabyrinth schreibt die Klassennamen im Code fest, so daß es schwierig
wird, Labyrinthe mit anderen Komponenten zu erzeugen.

Es folgt eine Version von ErzeugeLabyrinth, die einen Parameter LabyrinthFabrik
entgegen nimmt und so die Probleme behebt:

Labyrinth* LabyrinthSpiel::ErzeugeLabyrinth(
LabyrinthFabrik& fabrik)

{
Labyrinth* einLabyrinth = fabrik.ErzeugeLabyrinth();
Raum* raum1 = fabrik.ErzeugeRaum(1);
Raum* raum2 = fabrik.ErzeugeRaum(2);
Tuer* eineTuer = fabrik.ErzeugeTuer(raum1, raum2);

einLabyrinth->FuegeRaumHinzu(raum1);
einLabyrinth->FuegeRaumHinzu(raum2);

raum1->SetzeSeite(Norden, fabrik.ErzeugeWand());
raum1->SetzeSeite(Osten, eineTuer);
raum1->SetzeSeite(Sueden, fabrik.ErzeugeWand());
raum1->SetzeSeite(Westen, fabrik.ErzeugeWand());

 Abstrakte Fabrik 115

raum2->SetzeSeite(Norden, fabrik.ErzeugeWand());
raum2->SetzeSeite(Osten, fabrik.ErzeugeWand());
raum2->SetzeSeite(Sueden, fabrik.ErzeugeWand());
raum2->SetzeSeite(Westen, eineTuer);

}

Wir können die Klasse VerzaubertesLabyrinthFabrik erzeugen, eine Fabrik für ver-
zauberte Labyrinthe, indem wir eine Unterklasse von LabyrinthFabrik bilden. Ver-
zaubertesLabyrinthFabrik überschreibt die verschiedenen Member-Funktionen
und gibt Objekte verschiedener Unterklassen wie zum Beispiel Raum und Wand zu-
rück.

class VerzaubertesLabyrinthFabrik : public LabyrinthFabrik {
public:

VerzaubertesLabyrinthFabrik();

virtual Raum* ErzeugeRaum(int n) const
{ return new VerzauberterRaum(n,

BenoetigterZauberspruch()); }
virtual Tuer* ErzeugeTuer(Raum* raum1, Raum* raum2) const

{ return new TuerMitZauberspruch(raum1, raum2); }

protected:
Zauberspruch* BenoetigterZauberspruch() const;

};

Nun stellen Sie sich vor, daß wir ein Labyrinthspiel erstellen wollen, bei dem in
jedem Raum eine Bombe plaziert werden kann. Wenn die Bombe in die Luft
fliegt, beschädigt sie die Wände. Wir erstellen eine Unterklasse von Raum, welche
vermerkt, ob ein Raum eine Bombe besitzt und ob sie in die Luft gegangen ist. Wir
brauchen weiterhin eine Unterklasse von Wand, um den den Wänden zugefügten
Schaden zu notieren. Wir nennen diese Klassen RaumMitBombe und Bombardierbare-
Wand.

Als letzte Klasse definieren wir LabyrinthMitBombenFabrik, eine Unterklasse von La-
byrinthFabrik, die sicherstellt, daß die Wände Exemplare der Klasse Bombardierba-
reWand und die Räume Exemplare der Klasse RaumMitBombe sind.

LabyrinthMitBombenFabrik braucht dazu nur zwei Funktionen zu überschreiben:

Wand* LabyrinthMitBombenFabrik::ErzeugeWand() const {
return new BombardierbareWand;

}

116 3 Erzeugungsmuster

Raum* LabyrinthMitBombenFabrik::ErzeugeRaum(int n) const {
return new RaumMitBombe(n);

}

Wollen wir ein einfaches Labyrinth erstellen, das Bomben enthalten kann, so ru-
fen wir einfach ErzeugeLabyrinth mit dem Parameter LabyrinthMitBombenFabrik auf.

LabyrinthSpiel spiel;
LabyrinthMitBombenFabrik fabrik;

spiel.ErzeugeLabyrinth(fabrik);

ErzeugeLabyrinth ist gleichermaßen gut in der Lage, mit einem Exemplar von
VerzaubertesLabyrinthFabrik verzauberte Labyrinthe zu erzeugen.

Es ist bemerkenswert, daß LabyrinthFabrik lediglich aus einer Sammlung von Fa-
brikmethoden besteht. Dies ist die naheliegendste Art und Weise, das Abstrakte-
Fabrik-Muster zu implementieren. Es ist weiterhin interessant, daß LabyrinthFa-
brik keine abstrakte Klasse ist; sie fungiert somit gleichermaßen als die abstrakte
und konkrete Fabrik. Dies ist eine weitere naheliegende Implementierung, um das
Abstrakte-Fabrik-Muster einfach anzuwenden. Da die LabyrinthFabrik eine kon-
krete Klasse ist, die vollständig aus Fabrikmethoden besteht, kann man eine neue
LabyrinthFabrik einfach durch Erstellen einer Unterklasse und Überschreiben der
zu ändernden Operation erzeugen.

ErzeugeLabyrinth verwendet die SetzeSeite-Operation von Räumen, um ihre Sei-
ten zu spezifizieren. Wenn es Räume mit einer LabyrinthMitBombenFabrik erzeugt,
wird das Labyrinth aus RaumMitBombe-Objekten mit BombardierbareWand-Seiten be-
stehen. Wenn RaumMitBombe auf eine unterklassenspezifische Operation von Bom-
bardierbareWand zugreifen muß, so muß sie die Referenzen auf ihre Wände von
Wand* nach BombardierbareWand* konvertieren. Dies ist so lange sicher, wie das Ar-
gument tatsächlich auch eine BombardierbareWand ist, was genau dann garantiert
ist, wenn alle Wände mit einer LabyrinthMitBombenFabrik erzeugt werden.

Dynamisch typisierte Sprachen wie Smalltalk benötigen natürlich keinen Down-
cast, aber sie können Laufzeitfehler produzieren, wenn sie auf eine Wand stoßen, ei-
gentlich aber eine Unterklasse von Wand erwarten. Die Verwendung von Abstrakte-
Fabrik zum Erzeugen von Wänden hilft diese Laufzeitfehler zu verhindern, indem
sichergestellt wird, daß nur bestimmte Wände erzeugt werden können.

Betrachten wir eine Smalltalk-Version einer LabyrinthFabrik, die eine einzige Er-
zeuge-Operation besitzt, welche die Art des zu erzeugenden Objekts als Parameter
erhält. Weiterhin speichert die konkrete Fabrik die Klassen der Produkte, die sie
erzeugt.

 Abstrakte Fabrik 117

Zuerst schreiben wir eine äquivalente Version von ErzeugeLabyrinth in Smalltalk:

erzeugeLabyrinth: eineFabrik
| raum1 raum2 eineTuer |
raum1 := (eineFabrik erzeuge: #raum) nummer: 1.
raum2 := (eineFabrik erzeuge: #raum) nummer: 2.
eineTuer := (eineFabrik erzeuge: #tuer)
von: raum1 nach: raum2.
raum1 aufSeite: #norden setze: (eineFabrik erzeuge: #wand).
raum1 aufSeite: #osten setze: eineTuer.
raum1 aufSeite: #sueden setze: (eineFabrik erzeuge: #wand).
raum1 aufSeite: #westen setze: (eineFabrik erzeuge: #wand).
raum2 aufSeite: #norden setze: (eineFabrik erzeuge: #wand).
raum2 aufSeite: #osten setze: (eineFabrik erzeuge: #wand).
raum2 aufSeite: #sueden setze: (eineFabrik erzeuge: #wand).
raum2 aufSeite: #osten setze: eineTuer.
^ Labyrinth new
 fuegeRaumHinzu: raum1;
 fuegeRaumHinzu: raum2;
 yourself

Wie wir bereits im Implementierungsabschnitt diskutiert haben, benötigt Laby-
rinth-Fabrik lediglich eine einzige Exemplarvariable namens teilKatalog, um ein
Dictionary bereitzustellen, dessen Schlüssel der Klassenname der jeweiligen
Klasse ist. Weiterhin sei ins Gedächtnis gerufen, wie wir die erzeuge:-Methode im-
plementiert haben:

erzeuge: teilName
^ (teilKatalog at: teilName) new

Wir können nun eine LabyrinthFabrik erstellen und sie zur Implementierung von
erzeugeLabyrinth verwenden. Wir erzeugen die Fabrik mittels einer Methode er-
zeugeLabyrinthFabrik der Klasse LabyrinthSpiel.

erzeugeLabyrinthFabrik
^ (LabyrinthFabrik new

fuegeTeilHinzu: Wand namens: #wand;
fuegeTeilHinzu: Raum namens: #raum;
fuegeTeilHinzu: Tuer namens #tuer;
yourself)

Man erzeugt eine LabyrinthMitBombenFabrik oder eine VerzaubertesLabyrinth-Fa-
brik, indem man verschiedene Klassen mit den jeweiligen Schlüsseln assoziiert.
Eine VerzaubertesLabyrinthFabrik kann zum Beispiel folgendermaßen erzeugt wer-
den:

118 3 Erzeugungsmuster

erzeugeLabyrinthFabrik
^ (LabyrinthFabrik new

fuegeTeilHinzu: Wand namens #wall;
fuegeTeilHinzu: VerzauberterRaum namens: #raum;
fuegeTeilHinzu: TuerMitZauberspruch namens: #tuer;
yourself)

Bekannte Verwendungen

InterViews verwendet die »Kit«-Nachsilbe [Lin92], um AbstrakteFabrik-Klassen zu
kennzeichnen. Es definiert die abstrakten Fabriken WidgetKit und DialogKit, um
Look-and-Feel-spezifische Benutzungsschnittstellenobjekte zu erzeugen. Inter-
Views bietet ebenfalls ein LayoutKit, das je nach gewünschtem Layout verschie-
dene Kompositionsobjekte generiert. Zum Beispiel benötigt ein konzeptuell hori-
zontales Layout je nach Orientierung des Dokuments (Portrait oder Landschaft)
möglicherweise unterschiedliche Kompositionsobjekte.

ET++ [WGM88] verwendet das Abstrakte-Fabrik-Muster, um über verschiedene
Fenstersysteme wie X-Windows und SunView hinweg portabel zu sein. Die ab-
strakte Basisklasse WindowSystem definiert die Schnittstelle zum Erzeugen von
Objekten, welche die Ressourcen eines Fenstersystems repräsentieren. Beispiele
für diese Operationen sind MakeWindow, MakeFont und MakeColor. Konkrete
Unterklassen implementieren die Schnittstellen für ein spezifisches Fenstersy-
stem. Zur Laufzeit erzeugt ET++ ein Exemplar einer konkreten WindowSystem-
Unterklasse, welches ihrerseits die konkreten Objekte für Systemressourcen er-
zeugt.

Verwandte Muster

Die AbstrakteFabrik-Klassen werden oft durch Fabrikmethoden (131) implemen-
tiert. Sie können auch mit Hilfe des Prototypmusters (144) implementiert werden.

Eine konkrete Fabrik ist oftmals ein Singleton (157).

 Erbauer 119

Erbauer

(Builder)

Ein objektbasiertes Erzeugungsmuster

Zweck

Trenne die Konstruktion eines komplexen Objekts von seiner Repräsentation, so
daß derselbe Konstruktionsprozeß unterschiedliche Repräsentationen erzeugen
kann.

Motivation

Ein Einleser für das RTF (Rich Text Format)-Dokumentaustauschformat ist ein Ob-
jekt, das Dokumente dieses Formats einlesen und in eine interne Repräsentation
umsetzen kann. Es sollte in der Lage sein, RTF in viele verschiedene Textformate
konvertieren zu können, so zum Beispiel in reinen ASCII-Text oder in ein interak-
tiv editierbares Textwidget. Das Problem ist allerdings, daß die Anzahl möglicher
Konvertierungen unbeschränkt ist. Deswegen sollte es einfach möglich sein, eine
neue Konvertierung einzuführen, ohne den Einleser modifizieren zu müssen.

Eine Lösung besteht darin, die RTFLeser-Klasse mit einem TextKonvertierer-Ob-
jekt zu konfigurieren, welches das RTF-Dokument in eine andere Repräsentation
konvertiert (siehe Abbildung 3.4). Während der RTFLeser das RTF-Dokument ein-
liest und parst, verwendet es den TextKonvertierer, um die Konvertierung auszu-
führen. Immer wenn der RTFLeser ein RTF-Token erkennt (entweder einfachen
Text oder ein RTF-Steuerwort), stellt es eine Anfrage an den TextKonvertierer, das
Token zu konvertieren. Die TextKonvertierer-Objekte sind sowohl für die Ausfüh-
rung der Datenkonvertierung als auch für die Repräsentation des Tokens in einem
bestimmten Format zuständig.

Unterklassen von TextKonvertierer sind Spezialisierungen für unterschiedliche
Konvertierungen und Formate. Beispielsweise ignoriert ein ASCIIKonvertierer alle
Konvertierungsanfragen bis auf solche, die sich auf reinen Text beziehen. Ein
TeXKonvertierer hingegen implementiert alle Anfrageoperationen, um eine TeX-
Repräsentation zu erzeugen, die alle stilistischen Informationen des Texts enthält.
Ein Text-WidgetKonvertierer wiederum produziert ein komplexes Benutzungs-
schnittstellenobjekt, das dem Benutzer den Text anzeigt und editieren läßt.

120 3 Erzeugungsmuster

Jede Art von Konvertierer-Klasse versteckt den Mechanismus zum Erzeugen und
Zusammenbauen eines komplexen Objekts hinter einer abstrakten Schnittstelle.
Der Konvertierer ist von dem für das Einlesen eines RTF-Dokuments zuständigen
Leser abgetrennt.

Das Erbauermuster erfaßt all diese Beziehungen. Jede Konvertierer-Klasse im Mu-
ster wird Erbauer genannt und jeder Leser Direktor. Wendet man das Muster auf
das Beispiel an, so trennt das Erbauermuster den Algorithmus zur Interpretierung
eines Textformats, also den Parser für RTF-Dokumente, von der Erzeugung und
Repräsentation des konvertierten Formats. Dies ermöglicht es uns, den Parsealgo-
rithmus des RTFLesers zum Erzeugen unterschiedlicher Textrepräsentationen von
RTF-Dokumenten wiederzuverwenden – man konfiguriert lediglich den RTFLeser
mit unterschiedlichen Unterklassen von TextKonvertierer.

Anwendbarkeit

Verwenden Sie das Erbauermuster in folgenden Situationen:

• Der Algorithmus zum Erzeugen eines komplexen Objekts soll unabhängig von
den Teilen sein, aus denen das Objekt besteht und wie sie zusammengesetzt
werden.

• Der Konstruktionsprozeß muß verschiedene Repräsentationen des zu konstru-
ierenden Objekts erlauben.

Struktur

Abbildung 3.5 zeigt die Struktur des Erbauermusters.

Abbildung 3.4

erbauer

erbauer

KonvertiereAbsatz()

KonvertiereAbsatz()

ASCIIKonvertierer

ParseRTF()

RTFLeser

GibASCIIText()

TextKonvertierer

KonvertiereZeichen(char)
KonvertiereZeichensatz(Zeichensatz)

KonvertiereZeichen(char)

KonvertiereAbsatz()

TeXKonvertierer

KonvertiereZeichen(char)
KonvertiereZeichensatz(Zeichensatz)

KonvertiereZeichen(char)
KonvertiereZeichensatz(Zeichensatz)

while (t = hole das nächste token) {
 switch t.Typ {
 CHAR:
 erbauer>KonvertiereZeichen(t.Zeichen)
 ZEICHENSATZ:
 erbauer>KonvertiereZeichensatz(t.Zeichensatz)
 ABSATZ:
 erbauer>KonvertiereAbsatz()
 }
}

ASCIIText TeXText TextWidget

TextWidgetKonvertierer

GibTextWidget()GibTeXText()

 Erbauer 121

Teilnehmer

• Erbauer (TextKonvertierer)

– spezifiziert eine abstrakte Schnittstelle zum Erzeugen von Teilen eines Pro-
duktobjekts.

• KonkreterErbauer (ASCIIKonvertierer, TeXKonvertierer, TextWidgetKonver-
tierer)

– konstruiert und fügt Teile des Produkts zusammen, indem es die Erbau-
erschnittstelle implementiert.

– definiert und verwaltet die von ihm erzeugte Repräsentation.

– bietet eine Schnittstelle zum Zurückgeben des Produkts (zum Beispiel GibA-
SCII-Text, GibTextWidget).

• Direktor (RTFLeser)

– konstruiert ein Objekt unter Verwendung der Erbauerschnittstelle.

• Produkt (ASCIIText, TeXText, TextWidget)

– repräsentiert das gerade konstruierte komplexe Objekt. Ein KonkreterEr-
bauer erstellt die interne Repräsentation des Produkts und definiert den
Prozeß, durch den es zusammengesetzt wird.

– schließt Klassen ein, welche die konstituierenden Teile definieren. Dies um-
faßt die Schnittstellen, mit denen die Teile zum endgültigen Resultat zu-
sammengefügt werden.

Abbildung 3.5

erbauer Erbauer

Konstruiere()

KonkreterErbauer

BaueTeil()

BaueTeil()

Produkt

GibErgebnis()

Direktor

für alle Objekte in der Struktur {
 erbauer–>BaueTeil()
}

122 3 Erzeugungsmuster

Interaktionen

• Der Klient erzeugt das Direktorobjekt und konfiguriert es mit dem erwünsch-
ten Erbauerobjekt.

• Der Direktor informiert den Erbauer, wenn ein Teil des Produkts gebaut wer-
den soll.

• Der Erbauer bearbeitet die Anfragen des Direktors und fügt Teile zum Produkt
hinzu.

• Der Klient erhält das Produkt vom Erbauer.

Das Interaktionsdiagramm in Abbildung 3.6 illustriert, wie Erbauer und Direktor
mit einem Klienten zusammenarbeiten:

Konsequenzen

Es folgen zentrale Konsequenzen des Erbauermusters:

1. Variation der internen Repräsentation eines Produkts. Das Erbauerobjekt bietet
dem Direktor eine abstrakte Schnittstelle zur Konstruktion des Produkts an.
Die Schnittstelle ermöglicht es dem Erbauer, die Repräsentation des Produkts,
seine interne Struktur und den Konstruktionsprozeß dieser Struktur zu verstek-
ken. Da das Produkt über eine abstrakte Schnittstelle zusammengebaut wird,
müssen Sie lediglich eine neue Art von Erbauer definieren, um die interne Re-
präsentation eines Produkts zu ändern.

Abbildung 3.6

einKlient einDirektor

BaueTeilA()

BaueTeilC()

BaueTeilB()

GibErgebnis()

Konstruiere()

new KonkreterErbauer

new Direktor(einErbauer)

einKonkreterErbauer

 Erbauer 123

2. Isolierung des Codes zur Konstruktion und Repräsentation. Das Erbauermuster ver-
bessert die Modularität eines Systems durch Kapselung des Konstruktionspro-
zesses und der Repräsentation eines komplexen Objekts. Klienten brauchen
nichts über die Klassen zu wissen, welche die interne Struktur des Produkts de-
finieren. Diese Klassen erscheinen nicht in der Schnittstelle eines Erbauers.

Jeder konkrete Erbauer enthält allen Code zur Erzeugung und zur Konstruktion
einer bestimmten Produktart. Der Code wird einmal geschrieben. Anschlie-
ßend können unterschiedliche Direktorobjekte ihn wiederverwenden, um Pro-
duktvarianten aus derselben Menge von Komponenten zu bauen. Im anfangs
angeführten RTF Beispiel können wir einen Leser für ein anderes Format als
RTF definieren, so zum Beispiel einen SGML-Leser. Wir können dabei diesel-
ben TextKonvertierer verwenden, um ASCIIText-, TeXText- und TextWidget-
Darstellungen von SGML-Dokumenten zu erzeugen.

3. Genauere Steuerung des Konstruktionsprozesses. Im Gegensatz zu den Erzeugungs-
mustern, die das Produkt in einem Durchgang erzeugen, erzeugt das Erbau-
ermuster das Produkt Schritt für Schritt unter der Steuerung des Direktors. Der
Klient holt sich das Produkt vom Erbauer erst nach seiner Fertigstellung. Somit
gibt die Erbauerschnittstelle den Konstruktionsprozeß des Produkts mehr als
die anderen Erzeugungsmuster wieder. Dies ermöglicht Ihnen eine feinere
Steuerung des Konstruktionsprozesses und somit der internen Struktur des re-
sultierenden Produkts.

Implementierung

Üblicherweise gibt es eine abstrakte Erbauerklasse, die eine Operation für jede
Komponente definiert, die der Direktor zu erzeugen verlangen könnte. Die Opera-
tionen sind per Voreinstellung leer implementiert. Eine KonkreterErbauer-Klasse
überschreibt die Operationen für Komponenten, die es erzeugen können möchte.

Es folgen weitere zu bedenkende Implementierungsaspekte:

1. Konstruktionsschnittstelle. Erbauer konstruieren ihre Produkte schrittweise. Des-
wegen muß die Erbauerklassenschnittstelle allgemein genug sein, um die Kon-
struktion von Produkten aller möglichen konkreten Erbauer zu erlauben.

Ein zentraler Entwurfsaspekt betrifft das Modell für den Prozeß des Zusammen-
sammelns und Konstruierens. Meistens reicht ein Modell aus, bei dem die Er-
gebnisse von Konstruktionsanfragen einfach an das Produkt angehängt
werden. Im Fall des RTF-Beispiels konvertiert der Erbauer das nächste Token
und hängt es an den bis zu diesem Zeitpunkt konvertierten Text an.

124 3 Erzeugungsmuster

Mitunter müssen Sie aber möglicherweise auf Teile des Produkts zugreifen, die
Sie bereits zu einem früheren Zeitpunkt konstruiert haben. Im Beispielcodeab-
schnitt präsentieren wir für das Labyrinthbeispiel die Klasse LabyrinthErbauer,
deren Schnittstelle es Ihnen ermöglicht, eine Tür zwischen zwei existierenden
Räumen einzufügen. Ein anderes Beispiel sind Baumstrukturen wie zum Bei-
spiel Parsebäume, die von unten her (bottom-up) aufgebaut werden. In einem
solchen Fall übergibt der Erbauer dem Direktor die Kindobjektknoten, also die
Wurzelknoten eines Teilbaums. Der Direktor gibt sie dem Erbauer zur Kon-
struktion der Elternobjektknoten zurück.

2. Keine abstrakte Produktklasse. Im allgemeinen Fall unterscheiden sich die von
konkreten Erbauern erzeugten Produkte so sehr, daß man durch die Einfüh-
rung einer gemeinsamen Oberklasse für die unterschiedlichen Produkte kaum
etwas gewinnen kann. Im RTF-Beispiel ist es eher unwahrscheinlich, daß die
ASCIIText- und TextWidget-Objekte eine gemeinsame Schnittstelle besitzen.
Sie benötigen sie auch gar nicht. Da der Klient üblicherweise den Direktor mit
den ihn interessierenden konkreten Erbauern konfiguriert, weiß er auch, wel-
che konkrete Unterklasse von Erbauer gerade benutzt wird und kann seine Pro-
dukte somit entsprechend handhaben.

3. Leere Methoden als Defaultimplementierung in der Erbaueroberklasse. Die Baue-
Operationen sind in C++ absichtlich nicht als rein virtuelle (pure virtual)
Member-Funktionen deklariert. Sie sind statt dessen als leere Operationen de-
finiert, so daß Klienten nur jene Operationen zu überschreiben brauchen, an
denen sie interessiert sind.

Beispielcode

Wir werden eine Variante der ErzeugeLabyrinth Member-Funktion (Seite 105) defi-
nieren, die einen Erbauer der Klasse LabyrinthErbauer als Argument entgegen-
nimmt.

Die Klasse LabyrinthErbauer definiert die folgende Schnittstelle zum Bau von Laby-
rinthen:

class LabyrinthErbauer {
public:

virtual void BaueLabyrinth() {}
virtual void BaueRaum(int raumNr) {}
virtual void BaueTuer(int vonRaumNr, int nachRaumNr) {}

virtual Labyrinth* GibLabyrinth() { return 0; }

 Erbauer 125

protected:
LabyrinthErbauer();

};

Über diese Schnittstelle können drei Dinge erzeugt werden: (1) das Labyrinth, (2)
Räume mit einer bestimmten Raumnummer und (3) Türen zwischen numerierten
Räumen. Die Operation GibLabyrinth gibt das Labyrinth an den Klienten zurück.
Unterklassen von LabyrinthErbauer überschreiben diese Operation, um das von ih-
nen gebaute Labyrinth zurückzugeben.

Alle das Labyrinth erzeugenden Operationen von LabyrinthErbauer sind default-
mäßig leer implementiert. Sie sind nicht als rein virtuell deklariert, um es abgelei-
teten Klassen zu ermöglichen, nur die sie interessierenden Operationen über-
schreiben zu müssen.

Da wir nun über die LabyrinthErbauer-Schnittstelle verfügen, können wir die Er-
zeugeLabyrinth-Member-Funktion ändern, so daß sie diesen Erbauer als Parameter
annimmt.

Labyrinth* LabyrinthSpiel::ErzeugeLabyrinth(
LabyrinthErbauer& erbauer)

{
erbauer.BaueLabyrinth();

erbauer.BaueRaum(1);
erbauer.BaueRaum(2);
erbauer.BaueTuer(1, 2);

return erbauer.GibLabyrinth();
}

Vergleichen Sie diese Version von ErzeugeLabyrinth mit dem Original. Beachten
Sie dabei, wie der Erbauer die interne Repräsentation des Labyrinths versteckt –
das heißt, die Klassen, welche die Räume, Türen und Wände definieren – und wie
diese Teile zusammengefügt werden, um das endgültige Labyrinth zu erstellen.
Von außen kann man erkennen, daß es Klassen zur Repräsentation von Räumen
und Türen gibt. Von Wänden aber fehlt jede Spur. Dies erleichtert es, die Reprä-
sentation des Labyrinths zu ändern, da kein Klient von LabyrinthErbauer geändert
werden muß.

Wie die anderen Erzeugungsmuster auch, kapselt das Erbauermuster die Erzeu-
gung von Objekten. Das geschieht in diesem Fall mittels der von LabyrinthErbauer
definierten Schnittstelle. Dies bedeutet, daß wir LabyrinthErbauer wiederverwen-

126 3 Erzeugungsmuster

den können, um unterschiedliche Labyrintharten zu bauen. Die Operation Erzeu-
geKomplexesLabyrinth ist ein Beispiel dafür:

Labyrinth* LabyrinthSpiel::ErzeugeKomplexesLabyrinth(
LabyrinthErbauer& erbauer)

{
erbauer.BaueRaum(1);
// ...
erbauer.BaueRaum(1001);

return erbauer.GibLabyrinth();
}

Beachten Sie, daß LabyrinthErbauer das Labyrinth nicht selbst erzeugt. Seine
Hauptaufgabe besteht lediglich darin, eine Schnittstelle zum Erzeugen von Laby-
rinthen zu definieren. Es definiert die leeren Implementierungen von Operatio-
nen hauptsächlich aus Bequemlichkeitsgründen. Unterklassen von LabyrinthEr-
bauer vollbringen die eigentliche Arbeit.

Die Unterklasse StandardLabyrinthErbauer stellt eine Implementierung dar, die ein-
fache Labyrinthe zusammenbaut. Es merkt sich das im Bau befindliche Labyrinth
in der Variablen _aktuellesLabyrinth.

class StandardLabyrinthErbauer : public LabyrinthErbauer {
public:

StandardLabyrinthErbauer();

virtual void BaueLabyrinth();
virtual void BaueRaum(int raumNr);
virtual void BaueTuer(int vonRaumNr, int nachRaumNr);

virtual Labyrinth* GibLabyrinth();

private:
Richtung GemeinsameWand(Raum*, Raum*);
Labyrinth* _aktuellesLabyrinth;

};

GemeinsameWand ist eine Hilfsoperation, die die Richtung der gemeinsamen
Wand zwischen zwei Räumen bestimmt.

Der Konstruktor von StandardLabyrinthErbauer initialisiert einfach _aktuelles-La-
byrinth.

 Erbauer 127

StandardLabyrinthErbauer::StandardLabyrinthErbauer() {
_aktuellesLabyrinth = 0;

}

BaueLabyrinth erzeugt ein Labyrinth, das mittels weiterer Operationen zusam-
mengefügt und am Ende über GibLabyrinth an den Klienten zurückgeben wird.

void StandardLabyrinthErbauer::BaueLabyrinth() {
_aktuellesLabyrinth = new Labyrinth;

}

Labyrinth* StandardLabyrinthErbauer::GibLabyrinth() {
Labyrinth* labyrinth = _aktuellesLabyrinth;
return labyrinth;

}

Die Operation BaueRaum erzeugt einen Raum und baut die Wände um ihn herum:

void StandardLabyrinthErbauer::BaueRaum(int raumNr) {
if (!_aktuellesLabyrinth->RaumNr(raumNr)) {

Raum* raum = new Raum(raumNr);
_aktuellesLabyrinth->FuegeRaumHinzu(raum);

raum->SetzeSeite(Norden, new Wand);
raum->SetzeSeite(Sueden, new Wand);
raum->SetzeSeite(Osten, new Wand);
raum->SetzeSeite(Westen, new Wand);

}
}

Um eine Tür zwischen zwei Räumen zu bauen, sucht StandardLabyrinthErbauer
beide Räume im Labyrinth sowie ihre gemeinsame Wand heraus:

void StandardLabyrinthErbauer::BaueTuer(int raumNr1,
int raumNr2)

{
Raum* raum1 = _aktuellesLabyrinth->RaumNr(raumNr1);
Raum* raum2 = _aktuellesLabyrinth->RaumNr(raumNr2);
Tuer* tuer = new Tuer(raum1, raum2);

raum1->SetzeSeite(GemeinsameWand(raum1, raum2), tuer);
raum2->SetzeSeite(GemeinsameWand(raum2, raum1), tuer);

}

128 3 Erzeugungsmuster

Klienten können nun zur Erzeugung eines Labyrinths ErzeugeLabyrinth zusam-
men mit StandardLabyrinthErbauer verwenden:

Labyrinth* labyrinth;
LabyrinthSpiel spiel;
StandardLabyrinthErbauer erbauer;

spiel.ErzeugeLabyrinth(erbauer);
labyrinth = erbauer.GibLabyrinth();

Wir hätten alle Operationen von StandardLabyrinthErbauer in die Schnittstelle von
Labyrinth aufnehmen und das Labyrinth sich selbst bauen lassen können. Da-
durch, daß wir die Schnittstelle von Labyrinth kleiner machen, ist die Klasse aber
leichter zu verstehen und zu verändern. Zudem ist StandardLabyrinthErbauer ohne-
hin leicht von Labyrinth zu trennen. Am wichtigsten aber ist, daß die Trennung
der zwei Klassen uns die Einführung beliebiger LabyrinthErbauer-Klassen ermög-
licht, die jeweils unterschiedliche Klassen für die Räume, Wände und Türen ver-
wenden können.

Eine eher exotische Variante von LabyrinthErbauer ist ZaehlenderLabyrinthErbauer.
Dieser Erbauer erzeugt überhaupt kein Labyrinth. Er ermittelt lediglich die Anzahl
der unterschiedlichen Komponenten, die im Fall eines normalen Labyrinth-Erbau-
ers erzeugt worden wären.

class ZaehlenderLabyrinthErbauer : public LabyrinthErbauer {
public:

ZaehlenderLabyrinthErbauer();

virtual void BaueLabyrinth();
virtual void BaueRaum(int);
virtual void BaueTuer(int, int);
virtual void FuegeWandHinzu(int, Richtung);

void GibAnzahl(int&, int&) const;

private:
int _tueren;
int _raeume;

};

Der Konstruktor initialisiert die Zähler, und die überschriebenen LabyrinthEr-
bauer-Operationen erhöhen sie entsprechend.

 Erbauer 129

ZaehlenderLabyrinthErbauer::ZaehlenderLabyrinthErbauer() {
_raeume = _tueren = 0;

}

void ZaehlenderLabyrinthErbauer::BaueRaum(int) {
_raeume++;

}

void ZaehlenderLabyrinthErbauer::BaueTuer(int, int) {
_tueren++;

}

void ZaehlenderLabyrinthErbauer::GibAnzahl(int& raeume,
int& tueren) const

{
raeume = _raeume;
tueren = _tueren;

}

Ein Klient könnte ein Exemplar von ZaehlenderLabyrinthErbauer folgendermaßen
benutzen:

int raeume, tueren;
LabyrinthSpiel spiel;
ZaehlenderLabyrinthErbauer erbauer;

spiel.ErzeugeLabyrinth(erbauer);
erbauer.GibAnzahl(raeume, tueren);

cout << "Das Labyrinth verfügt über "
<< raeume << " Räume und "
<< tueren << "Türen." << endl;

Bekannte Verwendungen

Die RTF-Konvertierer-Anwendung stammt aus ET++ [WGM88]. Sein Direktor zur
Textkonstruktion verwendet einen Erbauer, um einen im RTF-Format gespeicher-
ten Text zu bearbeiten.

Erbauer ist ein bekanntes Muster in Smalltalk-80 [Par90]:

• Die Klasse Parser im Übersetzersubsystem ist ein Direktor, der einen Pro-
gramNodeBuilder als Argument entgegennimmt. Ein Parser-Objekt informiert
sein ProgramNodeBuilder-Objekt jedesmal, wenn es ein syntaktisches Kon-

130 3 Erzeugungsmuster

strukt erkannt hat. Wenn der Parser fertig ist, fragt er den Erbauer nach dem
aufgebauten Parsebaum und gibt ihn an den Klienten zurück.

• ClassBuilder ist ein Erbauer, den Klassen verwenden, um Unterklassen von sich
selbst zu erzeugen. In diesem Fall ist Class sowohl der Direktor als auch das Pro-
dukt.

• ByteCodeStream ist ein Erbauer, der eine übersetzte Methode als Bytearray er-
zeugt. ByteCodeStream ist eine unübliche Anwendung des Erbauermusters,
weil das komplexe von ihm erzeugte Objekt als Bytearray und nicht als norma-
les Smalltalk-Objekt kodiert ist. Die Schnittstelle von ByteCodeStream ist aller-
dings typisch für einen Erbauer. Es wäre somit einfach, ByteCodeStream durch
eine andere Klasse zu ersetzen, die Programme zum Beispiel als zusammenge-
setzte Objekte repräsentieren.

Das Service-Configurator-Framework des Adaptive-Communications-Environ-
ment verwendet einen Erbauer, um Komponenten des Netzwerkservices zu kon-
struieren. Die Komponenten werden zur Laufzeit in einen Server eingebunden
[SS94]. Die Komponenten werden mittels einer Konfigurationssprache beschrie-
ben, die von einem LALR(1) Parser eingelesen wird. Die semantischen Aktionen
des Parser führen Operationen auf dem Erbauer aus, welche der Servicekompo-
nente Informationen hinzufügen. In diesem Fall stellt der Parser den Direktor dar.

Verwandte Muster

Das Abstrakte-Fabrik-Muster ist dem Erbauermuster in der Hinsicht ähnlich, daß
es ebenfalls komplexe Objekte konstruieren kann. Der Hauptunterschied ist, daß
das Erbauermuster sich auf den schrittweisen Konstruktionsprozeß eines komple-
xen Objekts konzentriert. Die Betonung des Abstrakte-Fabrik-Musters liegt auf Fa-
milien von Produktobjekten (ob nun einfach oder komplex). Erbauer gibt das Pro-
dukt als letzten Schritt zurück, während das Abstrakte-Fabrik-Muster das Produkt
unmittelbar zurückgibt.

Erbauer bauen oftmals Komposita (239).

 Fabrikmethode 131

Fabrikmethode

(Factory Method)

Ein klassenbasiertes Erzeugungsmuster

Zweck

Definiere eine Klassenschnittstelle mit Operationen zum Erzeugen eines Objekts,
aber lasse Unterklassen entscheiden, von welcher Klasse das zu erzeugende Objekt
ist. Fabrikmethoden ermöglichen es einer Klasse, die Erzeugung von Objekten an
Unterklassen zu delegieren.

Auch bekannt als

Virtueller Konstruktor

Motivation

Frameworks verwenden abstrakte Klassen, um die Beziehungen zwischen Objek-
ten zu definieren und zu verwalten. Ein Framework ist oft auch für die Erzeugung
dieser Objekte zuständig.

Stellen Sie sich ein Framework für Anwendungen vor, die dem Benutzer mehrere
Dokumente auf einmal präsentieren können. Zwei zentrale Abstraktionen dieses
Frameworks sind die Klassen Anwendung und Dokument. Beide Klassen sind ab-
strakt, und Klienten müssen Unterklassen von ihnen bilden, um ihre anwen-
dungsspezifischen Implementierungen einzubringen. Um beispielsweise eine Zei-
chenanwendung zu erstellen, definieren wir die Klassen ZeichenAnwendung und
ZeichenDokument. Die Klasse Anwendung ist für die Verwaltung von Dokumen-
ten zuständig und erzeugt sie auf Verlangen – beispielsweise wenn der Benutzer
Öffnen oder Neu in einem Menü auswählt.

Da die jeweilige Dokumentunterklasse, von der Objekte zu erzeugen sind, anwen-
dungsspezifisch ist, kann Anwendung diese Unterklasse nicht vorhersagen – sie
weiß lediglich, wann ein neues Dokument erzeugt werden soll, nicht aber welche
Art von Dokument zu erzeugen ist. Dies führt zu einem Dilemma: Das Framework
muß Objekte erzeugen, kennt aber nur ihre abstrakten Oberklassen, von denen es
keine Objekte erzeugen kann.

132 3 Erzeugungsmuster

Das Fabrikmethodemuster bietet eine Lösung. Es kapselt das Wissen um die zu er-
zeugende Dokument-Unterklasse und lagert es aus dem Framework aus (siehe Ab-
bildung 3.7).

Anwendungs-Unterklassen überschreiben eine abstrakte ErzeugeDokument-Ope-
ration von Anwendung, so daß sie ein Exemplar der passenden Dokument-Unter-
klasse zurückgibt. Sobald einmal ein Objekt einer Unterklasse von Anwendung er-
zeugt ist, kann sie anwendungsspezifische Dokumente erzeugen, ohne deren
exakte Klasse zu kennen. Wir nennen ErzeugeDokument eine Fabrikmethode, weil
sie für die »Herstellung« eines Objekts zuständig ist.

Anwendbarkeit

Verwenden Sie das Fabrikmethodemuster, wenn

• eine Klasse die Klassen von Objekten, die sie erzeugen muß, nicht im voraus
kennen kann.

• eine Klasse möchte, daß ihre Unterklassen die von ihr zu erzeugenden Objekte
festlegen.

• Klassen Zuständigkeiten an eine von mehreren Hilfsunterklassen delegieren
sollen und Sie das Wissen lokalisieren wollen, an welche Hilfsunterklasse die
Zuständigkeiten delegiert werden.

Struktur

Abbildung 3.8 zeigt die Musterstruktur.

Abbildung 3.7

MeineAnwendung

Anwendung

MeinDokument

Dokument
dokumente

NeuesDokument()
Oeffne()
Schliesse()
Speichere()
SetzeZurueck()

OeffneDokument()

Dokument* dok = ErzeugeDokument();
dokumente.FuegeHinzu(dok);
dok–>Oeffne();

ErzeugeDokument()

ErzeugeDokument() return new MeinDokument

 Fabrikmethode 133

Teilnehmer

• Produkt (Dokument)

– definiert die Klasse des von der Fabrikmethode erzeugten Objekts.

• KonkretesProdukt (MeinDokument)

– implementiert die Produktschnittstelle.

• Erzeuger (Anwendung)

– deklariert die Fabrikmethode, die ein Objekt des Typs Produkt zurückgibt.
Der Erzeuger kann möglicherweise eine Defaultimplementierung der Fa-
brikmethode definieren, die ein vordefiniertes KonkretesProduktObjekt er-
zeugt.

– kann die Fabrikmethode aufrufen, um ein Produktobjekt zu erzeugen.

• KonkreterErzeuger (MeineAnwendung)

– überschreibt die Fabrikmethode, so daß sie ein Exemplar von KonkretesPro-
dukt zurückgibt.

Interaktionen

• Der Erzeuger verläßt sich darauf, daß Unterklassen die Fabrikmethode definie-
ren, so daß sie ein Exemplar der passenden konkreten Produktklasse zurückge-
ben.

Abbildung 3.8

Fabrikmethode()

Fabrikmethode()
produkt = Fabrikmethode()

KonkretesProdukt KonkreterErzeuger

Erzeuger

Produkt

EineOperation()

return new KonkretesProdukt

...

...

134 3 Erzeugungsmuster

Konsequenzen

Fabrikmethoden verhindern es, daß Sie anwendungsspezifische Klassen in Frame-
workcode einbinden müssen. Der Code befaßt sich nur mit der Produktschnitt-
stelle; er kann somit mit jeder benutzerdefinierten KonkretesProdukt-Klasse arbei-
ten.

Ein möglicher Nachteil von Fabrikmethoden ist, daß Klienten potentiell die Er-
zeugerklasse ableiten müssen, nur um ein bestimmtes KonkretesObjekt-Exemplar
erzeugen zu können. Die Bildung von Unterklassen ist unproblematisch, wenn
der Klient die Erzeugerklasse sowieso ableiten muß. Ist dies nicht der Fall, so muß
er ausschließlich der Fabrikmethode wegen mit einem weiteren Evolutionsast sei-
ner Software zurechtkommen.

Es folgen zwei weitere Konsequenzen des Fabrikmethodemusters:

1. Spezialisierungmöglichkeiten für Unterklassen. Die Erzeugung von Objekten in-
nerhalb einer Klasse mittels einer Fabrikmethode ist immer flexibler als das di-
rekte Erzeugen eines Objekts. Die Fabrikmethode bietet Unterklassen die
Möglichkeit, eine erweiterte Version eines Objekts einzuführen.

Im Dokumentbeispiel könnte die Dokument-Klasse eine Fabrikmethode na-
mens ErzeugeDateiDialog definieren, die einen vordefinierten Dateidialog
zum Öffnen eines existierenden Dokuments erzeugt. Eine Dokument-Unter-
klasse kann einen anwendungsspezifischen Dateidialog durch Überschreiben
dieser Fabrikmethode definieren. In diesem Fall ist die Fabrikmethode nicht
abstrakt, sondern bietet eine sinnvolle Defaultimplementierung.

2. Verbindung paralleler Klassenhierarchien. In den bisher betrachteten Beispielen
wird die Fabrikmethode nur von Erzeugern aufgerufen. Dies muß aber nicht
immer so sein. Klienten können Fabrikmethoden ebenfalls als sinnvoll erach-
ten, insbesondere im Fall von parallelen Klassenhierarchien.

Parallele Klassenhierarchien ergeben sich, wenn eine Klasse Teile seiner Zu-
ständigkeiten an eine abgetrennte Klasse delegiert. Stellen Sie sich grafische
Objekte vor, die interaktiv manipuliert werden können; das heißt, sie können
mittels Maus gestreckt, bewegt oder rotiert werden. Die Implementierung die-
ser Interaktionen ist nicht immer einfach. Man muß oftmals Informationen
speichern und aktualisieren, die den Zustand der Manipulation zu einem be-
stimmten Zeitpunkt festhalten. Dieser Zustand wird lediglich während der Ma-
nipulation gebraucht; somit braucht er nicht im grafischen Objekt aufbewahrt
zu werden. Weiterhin verhalten sich verschiedene grafische Objekte unter-
schiedlich, wenn der Benutzer sie manipuliert. Beispielsweise hat das Strecken

 Fabrikmethode 135

einer Linie den Effekt des Bewegens eines Endpunkts, während das Strecken ei-
nes Textobjekts möglicherweise zur Änderung seines Zeilenabstands führt.

Unter diesen Bedingungen ist es sinnvoller, ein abgetrenntes Manipulator-Ob-
jekt zu verwenden, das die Interaktion implementiert und jeglichen benötig-
ten manipulationsspezifischen Zustand verwaltet. Unterschiedliche grafische
Objekte verwenden unterschiedliche Manipulator-Unterklassen, um bestimm-
te Interaktionsmöglichkeiten zu bieten. Die resultierende Manipulator-Klas-
senhierarchie verläuft zumindest teilweise parallel zur Klassenhierarchie der
grafischen Objekte (siehe Abbildung 3.9).

Die GrafischesObjekt-Klasse bietet eine ErzeugeManipulator-Fabrikmethode,
die es Klienten ermöglicht, ein zum grafischen Objekt passendes Manipulator-
Objekt zu erzeugen.

Die GrafischesObjekt-Unterklassen überschreiben diese Methode, so daß sie
ein Exemplar der für sie richtigen Manipulator-Unterklasse zurückgeben. Alter-
nativ kann die GrafischesObjekt-Klasse ErzeugeManipulator so implementie-
ren, daß sie ein Objekt einer vordefinierten Manipulator-Klasse zurückgibt. Die
Unterklassen können einfach diese Voreinstellung erben. Jene GrafischesOb-
jekt-Klassen, die dies tun, benötigen keine angepaßte Manipulator-Unterklasse
– somit sind die Klassenhierarchien nur teilweise parallel strukturiert.

Beachten Sie, wie die Fabrikmethode die Verbindung zwischen den zwei Klas-
senhierarchien definiert. Sie lokalisiert das Wissen, welche Klassen zueinander
gehören.

Abbildung 3.9

ErzeugeManipulator()
...

Abbildung

ErzeugeManipulator()
...

ErzeugeManipulator()

Linie

...

Text

Manipulator

Ziehe()
KnopfNachUnten()

KnopfNachOben()

Ziehe()
KnopfNachUnten()

KnopfNachOben()

LinienManipulator

Ziehe()
KnopfNachUnten()

KnopfNachOben()

TextManipulator

Klient

136 3 Erzeugungsmuster

Implementierung

Ziehen Sie die folgenden Aspekte bei der Anwendung des Fabrikmethodemusters
in Betracht:

1. Zwei größere Variationen. Die zwei wichtigsten Variationen des Fabrikmethode-
musters sind (1) der Fall, wenn die Erzeugerklasse abstrakt ist und keine Imple-
mentierung der von ihr deklarierten Fabrikmethode bietet, und (2) der Fall,
wenn die Erzeugerklasse konkret ist und eine Defaultimplementierung für die
Fabrikmethode bietet. Es ist auch möglich, wenngleich eher selten, über eine
abstrakte Klasse zu verfügen, die eine Defaultimplementierung bietet.

Der erste Fall verlangt, daß Unterklassen eine Implementierung definieren, weil
es keine sinnvolle Voreinstellung gibt. Es umgeht das Dilemma, Objekte nicht
vorhersehbare Klassen erzeugen zu müssen. Im zweiten Fall benutzt der kon-
krete Erzeuger die Fabrikmethode hauptsächlich aus Flexibilitätsgründen. Er
folgt einer Regel, die besagt, daß man Objekte in einer separaten Operation er-
zeugen soll, so daß Unterklassen den Erzeugungscode überschreiben können.
Diese Regel stellt sicher, daß Entwickler von Unterklassen, falls notwendig, die
Klassen der von ihren Oberklassen erzeugten Objekte ändern können.

2. Parametrierbare Fabrikmethoden. Eine weitere Variation des Musters ermöglicht
es der Fabrikmethode, mehrere Arten von Produkten zu erzeugen. Die Fabrik-
methode erhält einen Parameter, der die Art des zu erzeugenden Objekts
bestimmt. Alle von der Fabrikmethode erzeugten Objekte teilen die Produkt-
schnittstelle. Im Dokumentbeispiel unterstützt die Anwendung möglicherwei-
se unterschiedliche Arten von Dokumenten. Sie übergeben dann Erzeuge-
Dokument einen zusätzlichen Parameter, um die Art des zu erzeugenden
Dokuments festzulegen.

Das Unidraw-Framework für grafische Editoren [VL90] verwendet diesen An-
satz zur Rekonstruktion von auf der Festplatte gespeicherten Objekten. Uni-
draw definiert eine Klasse Creator mit einer Fabrikmethode Create, die einen
Klassenidentifizierer als Argument annimmt. Der Klassenidentifizierer spezifi-
ziert die Klasse, von der Objekte zu erzeugen sind. Wenn Unidraw ein Objekt
auf der Festplatte abspeichert, schreibt es zuerst den Klassenidentifizierer, ge-
folgt von den Exemplarvariablen. Wenn es das Objekt von der Festplatte re-
konstruiert, liest es zuerst den Identifizierer.

Ist der Klassenidentifizierer einmal gelesen, ruft das Framework Create auf und
übergibt dabei den Identifizierer als Parameter. Create sucht den Konstruktor
der entsprechenden Klasse heraus und benutzt ihn, um das Objekt zu erzeu-
gen. Zum Schluß ruft Erzeuge die Read-Operation des Objekts auf, welche die

 Fabrikmethode 137

auf der Festplatte verbliebenen Daten einliest und die Exemplarvariablen des
Objekts mit ihnen initialisiert.

Eine parametrierbare Fabrikmethode besitzt die folgende allgemeine Form, wo-
bei MeinProdukt und DeinProdukt Unterklassen von Produkt sind:

class Erzeuger {
public:

virtual Produkt* Erzeuge(ProduktId);
};

Produkt* Erzeuger::Erzeuge(ProduktId id) {
if (id == MEINS) return new MeinProdukt;
if (id == DEINS) return new DeinProdukt;
// Wiederholung für verbleibende Produkte...

return 0;
}

Das Überschreiben einer parametrierbaren Fabrikmethode ermöglicht es Ih-
nen, die von einem Erzeuger produzierten Produkte einfach und gezielt zu er-
weitern oder zu ändern. Sie können neue Identifizierer für neue Arten von
Produkten einführen, oder Sie können existierende Identifizierer an andere
Produkte binden.

Beispielsweise könnte eine Unterklasse von MeinErzeuger die Unterklassen Mein-
Produkt und DeinProdukt austauschen und eine neue Unterklasse IhrProdukt un-
terstützen:

Produkt* MeinErzeuger::Erzeuge(ProduktId id) {
if (id == DEINS) return new MeinProdukt;
if (id == MEINS) return new DeinProdukt;
// Die Produkte wurden vertauscht

if (id == IHRS) return new IhrProdukt;

return Erzeuger::Erzeuge(id);
// wird aufgerufen, wenn alles andere fehlschlägt

}

Beachten Sie, daß der letzte Arbeitsschritt dieser Operation im Aufruf von Er-
zeuge der Oberklasse besteht. Dies liegt daran, daß MeinErzeuger::Erzeuge nur
MEINS, DEINS und IHRS anders als die Oberklasse behandelt. Andere Klassen in-
teressieren es nicht. Somit erweitert MeinErzeuger die Arten erzeugbarer Produk-

138 3 Erzeugungsmuster

te. Es gibt die Zuständigkeit zum Erzeugen aller Produktarten bis auf einige
wenige an ihre Oberklasse weiter.

3. Sprachspezifische Varianten und Aspekte. Unterschiedliche Sprachen führen von
allein zu weiteren interessanten Variationen und Fragestellungen.

Smalltalk-Programme verwenden oft eine Methode, die die Klasse des zu erzeu-
genden Objekts zurückgibt. Eine Fabrikmethode des Erzeugers kann diesen
Rückgabewert dazu verwenden, ein Produkt zu erzeugen, und ein KonkreterEr-
zeuger kann diese Klasse speichern oder sogar berechnen. Das Ergebnis ist eine
noch einmal spätere Ermittlung des Typs von KonkretesProdukt, von dem ein
Objekt erzeugt werden soll.

Eine Smalltalk-Version des Dokumentbeispiels definiert möglicherweise eine
Methode dokumentKlasse der Klasse Anwendung. Die Methode dokumentKlasse gibt
die korrekte Dokument-Klasse zum Erzeugen von Dokumenten zurück. Die
Implementierung von dokumentKlasse in MeineAnwendung gibt die Klasse MeinDo-
kument zurück. Somit ergibt sich für die Klasse Anwendung:

klientenMethode
dokument := self dokumentKlasse new

dokumentKlasse
self subclassResponsibility

In der Klasse MeineAnwendung definieren wir:

dokumentKlasse
^ MeinDokument

Diese Methode gibt die Klasse MeinDokument zurück, von der Anwendung Exempla-
re erzeugt.

Ein noch flexiblerer Ansatz, vergleichbar parametrierbaren Fabrikmethoden,
besteht darin, die zu Klasse zu erzeugender Objekte als eine Klassenvariable
von Anwendung zu speichern. Man muß dann keine Unterklasse von Anwendung
bilden, um das Produkt zu variieren.

In C++ sind Fabrikmethoden immer virtuelle Funktionen, die meistens sogar
als rein virtuell deklariert werden. Sie müssen hierbei allerdings aufpassen, die
Fabrikmethoden nicht aus dem Konstruktor des Erzeugers heraus aufzurufen –
die Fabrikmethoden der Unterklasse KonkreterErzeuger sind zu diesem Zeit-
punkt noch nicht verfügbar.

Sie können dies vermeiden, indem Sie vorsichtigerweise auf Produkte aus-
schließlich durch Zugriffsoperationen zugreifen, die das Objekt auf Verlangen

 Fabrikmethode 139

erzeugen. Statt das konkrete Produkt im Konstruktor zu erzeugen, initialisiert
der Konstruktor es lediglich zu 0. Die Zugriffsoperation gibt das Objekt zurück,
testet allerdings vorher, ob das Produkt existiert. Falls dies nicht der Fall ist, er-
zeugt es das Produkt erst einmal. Diese Technik wird mitunter als verzögerte
Initialisierung (lazy initialization) bezeichnet. Der folgende Code zeigt eine
typische Implementierung:

class Erzeuger {
public:

Produkt* GibProdukt();

protected:
virtual Produkt* ErzeugeProdukt();

private:
Produkt* _produkt;

};

Produkt* Erzeuger::GibProdukt() {
if (_produkt == 0) {

_produkt = ErzeugeProdukt();
}
return _produkt;

}

4. Verwendung von Templates zur Vermeidung von Unterklassen. Ein weiteres poten-
tielles Problem von Fabrikmethoden besteht darin, daß Sie gezwungen sein
könnten, eine Unterklasse lediglich zur Erzeugung der passenden Produktob-
jekte zu erstellen. In C++ bietet sich eine weitere Möglichkeit, dieses Problem
zu umgehen. Dabei führt man eine templatebasierte Unterklasse von Erzeuger
ein, die mit der Produktklasse parametrierbar wird:

class Erzeuger {
public:

virtual Produkt* ErzeugeProdukt() = 0;
};

template<class DasProdukt>
class StandardErzeuger : public Erzeuger {
public:

virtual Produkt* ErzeugeProdukt();
};

template<class DasProdukt>
Produkt* StandardErzeuger<DasProdukt>::ErzeugeProdukt() {

140 3 Erzeugungsmuster

return new DasProdukt;
}

Unter Verwendung dieses Templates gibt der Klient nur noch die Produktklas-
se an – es muß keine Unterklasse von Erzeuger erstellt werden.

class MeinProdukt : public Produkt {
public:

MeinProdukt();
// ...

};

StandardErzeuger<MeinProdukt> meinProdukt;

5. Namenskonventionen. Es hat sich bewährt, Namenskonventionen zu verwen-
den, die klarstellen, daß Sie Fabrikmethoden verwenden. Beispielsweise dekla-
riert das Mac-App-Application-Framework für den Apple Macintosh [App89]
die eine Fabrikmethode definierende abstrakte Operation immer als Klasse*
DoMakeKlasse(), wobei Klasse die Produktklasse darstellt.

Beispielcode

Die Funktion ErzeugeLabyrinth (Seite 90) erzeugt ein Labyrinth und gibt es zurück.
Ein Nachteil dieser Funktion ist, daß sie die Klassen des Labyrinths, der Räume,
Türen und Wände fest codiert. Wir führen Fabrikmethoden ein, um Unterklassen
die Komponenten auswählen zu lassen.

Zuerst definieren wir Fabrikmethoden in LabyrinthSpiel, um Labyrinth-, Raum-,
Wand- und Türobjekte zu erzeugen:

class LabyrinthSpiel {
public:

Labyrinth* ErzeugeLabyrinth();

// Die Fabrikmethoden:
virtual Labyrinth* ErzeugeLabyrinth() const

{ return new Labyrinth; }
virtual Raum* ErzeugeRaum(int raumNr) const

{ return new Raum(raumNr); }
virtual Wand* ErzeugeWand() const

{ return new Wand; }
virtual Tuer* ErzeugeTuer(Raum* raum1, Raum* raum2) const

{ return new Tuer(raum1, raum2); }
};

 Fabrikmethode 141

Jede Fabrikmethode gibt eine Labyrinthkomponente eines gegebenen Typs zu-
rück. LabyrinthSpiel bietet Defaultimplementierungen, welche die einfachsten Ar-
ten von Labyrinthen, Räumen, Wänden und Türen zurückgeben.

Wir können nun ErzeugeLabyrinth so umschreiben, daß es diese Fabrikmethoden
verwendet:

Labyrinth* LabyrinthSpiel::ErzeugeLabyrinth() {
Labyrinth* einLabyrinth = ErzeugeLabyrinth();

Raum* raum1 = ErzeugeRaum(1);
Raum* raum2 = ErzeugeRaum(2);
Tuer* dieTuer = ErzeugeTuer(raum1, raum2);

einLabyrinth->FuegeRaumHinzu(raum1);
einLabyrinth->FuegeRaumHinzu(raum2);

raum1->SetzeSeite(Norden, ErzeugeWand());
raum1->SetzeSeite(Osten, dieTuer);
raum1->SetzeSeite(Sueden, ErzeugeWand());
raum1->SetzeSeite(Westen, ErzeugeWand());

raum2->SetzeSeite(Norden, ErzeugeWand());
raum2->SetzeSeite(Osten, ErzeugeWand());
raum2->SetzeSeite(Sueden, ErzeugeWand());
raum2->SetzeSeite(Westen, dieTuer);

return einLabyrinth;
}

Unterschiedliche Spiele können Unterklassen von LabyrinthSpiel bilden, um Teile
des Labyrinths zu spezialisieren. Diese Unterklassen können einige oder alle Fa-
brikmethoden neu definieren, um die Produkte zu variieren. Beispielsweise kann
ein LabyrinthMitBombenSpiel die Raum- und Wandprodukte neu definieren, um so
die bombardierbaren Versionen zurückzugeben:

class LabyrinthMitBombenSpiel : public LabyrinthSpiel {
public:

LabyrinthMitBombenSpiel();

virtual Wand* ErzeugeWand() const
{ return new BombardierbareWand; }

virtual Raum* ErzeugeRaum(int raumNr) const
{ return new RaumMitBombe(raumNr); }

};

142 3 Erzeugungsmuster

Ein Variante VerzaubertesLabyrinthSpiel kann so definiert werden:

class VerzaubertesLabyrinthSpiel : public LabyrinthSpiel {
public:

VerzaubertesLabyrinthSpiel();

virtual Raum* ErzeugeRaum(int raumNr) const
{ return new VerzauberterRaum(raumNr,

BenoetigterZauberspruch()); }
virtual Tuer* ErzeugeTuer(Raum* raum1, Raum* raum2) const

{ return new TuerMitZauberspruch(raum1, raum2); }

protected:
Zauberspruch* BenoetigterZauberspruch() const;

};

Bekannte Verwendungen

Fabrikmethoden werden in Klassenbibliotheken und Frameworks durchgängig
eingesetzt. Das einführende Dokumentbeispiel ist ein typischer Anwendungsfall
in MacApp und ET++ [WGM88]. Das Manipulator-Beispiel stammt aus Unidraw.

Die Klasse View im Smalltalk-80 MVC-Framework besitzt eine Methode default-
Controller, die ein Controller-Objekt erzeugt, so daß diese Methode wie eine Fa-
brikmethode aussieht [Par90]. Unterklassen von View spezifizieren allerdings die
Klasse ihres Default-Controllers durch die Definition der Methode defaultCon-
trollerClass, welche die Klasse zurückgibt, von der defaultController Exemplare
erzeugt. Somit ist defaultControllerClass die eigentliche Fabrikmethode, das heißt
jene Methode, die Unterklassen überschreiben sollten.

Ein eher abgehobenes Beispiel in Smalltalk-80 ist die Fabrikmethode parserClass,
die von Behavior definiert wird (Behavior ist die Oberklasse aller Objekte, die
Klassen repräsentieren). Dies ermöglicht es einer Klasse, einen maßgeschneider-
ten Parser für ihren Quelltext zu verwenden. Beispielsweise kann ein Klient eine
Klasse SQLParser definieren, um den Quelltext einer Klasse mit eingebetteten
SQL-Befehlen zu analysieren. Die Klasse Behavior implementiert parserClass so,
daß es die standardmäßige Smalltalk-Parserklasse zurückgibt. Eine Klasse, die SQL-
Befehle einbetten kann, überschreibt diese Methode (als eine Klassenmethode)
und gibt die SQLParser-Klasse zurück.

Das Orbix ORB-System von IONA Technologies [ION94] benutzt Fabrikmetho-
den, um ein Proxyobjekt (siehe Proxy (254)) des passenden Typs zu generieren,
wann immer ein Objekt eine Referenz auf ein Objekt in einem anderen Prozeß

 Fabrikmethode 143

verlangt. Fabrikmethode macht es einfach, das Defaultproxy durch ein anderes
Proxy zu ersetzen, das zum Beispiel Caching auf der Klientenseite verwendet.

Verwandte Muster

Das Abstrakte-Fabrik-Muster wird oft mittels Fabrikmethoden implementiert. Das
Beispiel aus dem Motivationsabschnitt des Abstrakte-Fabrik-Muster beschreibt
ebenfalls das Fabrikmethodemuster.

Fabrikmethoden werden üblicherweise innerhalb von Schablonenmethoden
(366) aufgerufen. Im obigen Dokumentbeispiel stellt NeuesDokument eine Scha-
blonenmethode dar.

Prototypen (144) benötigen keine Unterklasse von Erzeuger. Sie verlangen aller-
dings oftmals eine Initialisiere-Operation der Produktklasse. Erzeuger verwendet
Initialisiere zur Initialisierung des Objekts. Fabrikmethoden benötigen keine sol-
che Operation.

144 3 Erzeugungsmuster

Prototyp

(Prototype)

Ein objektbasiertes Erzeugungsmuster

Zweck

Bestimme die Arten zu erzeugender Objekte durch die Verwendung eines prototy-
pischen Exemplars und erzeuge neue Objekte durch Kopieren dieses Prototypen.

Motivation

Sie können einen Editor für Musikpartituren erstellen, indem Sie ein allgemeines
Framework für grafische Editoren anpassen und neue Objekte hinzufügen, welche
die Noten, Pausen und Notenlinien repräsentieren. Das Editor-Framework besitzt
vielleicht eine Palette von kleinen Werkzeugen, um Musikobjekte der Partitur
hinzuzufügen. Die Palette dürfte weiterhin Werkzeuge zum Auswählen, Bewegen
sowie für weitere Manipulationsmöglichkeiten der Musikobjekte besitzen. Die Be-
nutzer klicken auf das Werkzeug für Viertelnoten und benutzen es, um die Vier-
telnoten der Partitur hinzuzufügen. Oder Sie verwenden das Bewegungswerkzeug,
um eine Note auf den Notenlinien auf oder ab zu bewegen, wobei Sie seine Ton-
höhe verändern.

Nehmen wir an, daß das Framework eine abstrakte Klasse GrafischesObjekt für
grafische Komponenten wie die Noten und Notenlinien bietet. Weiterhin bietet
es eine abstrakte Klasse Werkzeug zur Definition von Werkzeugen wie denen in
der Palette. Das Framework definiert weiterhin eine Unterklasse GrafischesWerk-
zeug für Werkzeuge, die grafische Objekte erzeugen und dem Dokument hinzufü-
gen können.

Die Klasse GrafischesWerkzeug stellt ein Problem für den Frameworkentwickler
dar. Die Klassen für Noten und Notenlinien sind anwendungsspezifisch, die
Klasse GrafischesWerkzeug gehört aber zum Framework. Die Klasse Grafisches-
Werkzeug weiß nicht, wie die Exemplare unserer Musikklassen zu erzeugen sind,
die der Partitur hinzugefügt werden sollen. Wir könnten für jede Art von Musik-
objekt eine Unterklasse von GrafischesWerkzeug bilden, was aber zu vielen Unter-
klassen führen würde, die sich nur in der Art des zu erzeugenden Musikobjekts
unterscheiden. Wir wissen, daß Objektkomposition eine flexible Alternative zur
Unterklassenbildung ist. Die Frage ist, wie das Framework Objektkomposition ver-

 Prototyp 145

wenden kann, um Exemplare von GrafischesWerkzeug mit der Klasse der zu er-
zeugenden grafischen Objekte zu parametrieren.

Die Lösung besteht darin, GrafischesWerkzeug ein neues grafisches Objekt mittels
Kopieren oder »Klonen« eines Exemplars einer GrafischesObjekt-Unterklasse er-
zeugen zu lassen (siehe Abbildung 3.10). Wir nennen dieses Exemplar Prototyp.
GrafischesWerkzeug wird mit dem Prototyp parametrisiert, den es klonen und
dem Dokument hinzufügen soll. Wenn alle Unterklassen von GrafischesObjekt
eine Klone-Operation anbieten, kann GrafischesWerkzeug jede Art von Grafisches-
Objekt klonen.

Somit ist in unserem Musikeditor jedes Werkzeug zum Erzeugen eines Musikob-
jekts ein Exemplar von GrafischesWerkzeug, das mit einem anderen Prototypen
initialisiert wird. Jedes GrafischesWerkzeug-Exemplar produziert ein Musikobjekt,
indem es seinen Prototypen klont und das geklonte Objekt der Partitur hinzufügt.

Wir können das Prototypmuster sogar dazu verwenden, die Anzahl der Klassen
noch weiter zu senken. Wir verfügen über Klassen für ganze und für halbe Noten.
Dies ist möglicherweise unnötig. Statt dessen könnten sie Exemplare derselben
Klasse sein, die mit unterschiedlichen Bitmaps und unterschiedlicher Tondauer
initialisiert werden. Ein Werkzeug zum Erzeugen ganzer Noten wird somit zu ei-
nem GrafischesWerkzeug-Objekt, dessen Prototyp eine MusikNote ist, die so ini-
tialisiert wurde, daß sie eine ganze Note darstellt. Diese kann zu einer drastischen
Reduzierung der Klassenanzahl im System führen. Das Hinzufügen einer neuen
Art von Note zum Musikeditor wird ebenfalls einfacher.

Abbildung 3.10

prototyp

Klone()

HalbeNote

Klone()

NotenLinie

Klone()

GanzeNote

Werkzeug

Manipuliere()

Zeichne(Position)

Zeichne(Position) Zeichne(Position)

MusikNote

Grafisches Objekt

Klone()
Zeichne(Position)

GrafischesWerkzeug

Manipuliere()Manipuliere()

RotationsWerkzeug

p = prototyp->Klone()

while (Benutzer bewegt Maus) {
 p->Zeichne(new Position)
}
füge p in Zeichnung ein

return Kopie von sich return Kopie von sich

146 3 Erzeugungsmuster

Anwendbarkeit

Verwenden Sie das Prototypmuster, wenn ein System unabhängig davon sein soll,
wie seine Produkte erzeugt, zusammengesetzt und repräsentiert werden, und

• wenn die Klassen zu erzeugender Objekte erst zur Laufzeit spezifiziert werden,
beispielsweise durch dynamisches Laden, oder

• um zu vermeiden, eine Klassenhierarchie von Fabriken zu erstellen, die parallel
zur Klassenhierarchie der Produkte verläuft, oder

• wenn Exemplare einer Klasse nur wenige unterschiedliche Zustandskombina-
tionen haben können. Es ist möglicherweise bequemer, eine entsprechende
Anzahl von Prototypen einzurichten und sie zu klonen statt die Objekte einer
Klasse jedesmal von Hand mit dem richtigen Zustand zu erzeugen.

Struktur

Abbildung 3.11 zeigt die Struktur des Prototypmusters.

Teilnehmer

• Prototyp (GrafischesObjekt)

– deklariert eine Schnittstelle, um sich selbst zu klonen.

• KonkretesProdukt (NotenLinie, GanzeNote, HalbeNote)

– implementiert eine Operation, um sich selbst zu klonen.

Abbildung 3.11

Klone()

Prototyp

KonkreterPrototyp1

Klone()

KonkreterPrototyp2

Klient

Operation()

Klone()

prototyp

p = prototyp–>Klone()

return Kopie von sich return Kopie von sich

 Prototyp 147

• Klient (GrafischesWerkzeug)

– erzeugt ein neues Objekt, indem es einem Prototyp befiehlt, sich selbst zu
klonen.

Interaktionen

• Ein Klient befiehlt einem Prototyp, sich selbst zu klonen.

Konsequenzen

Das Prototypmuster hat viele derselben Konsequenzen, welche das Abstrakte-Fa-
brik-Muster (107) und das Erbauermuster (119) haben: Es versteckt die konkreten
Produktklassen vor dem Klienten und reduziert dadurch die Anzahl der dem
Klienten bekannten Namen. Weiterhin ermöglichen diese Muster es einem Klien-
ten, ohne Modifikation mit anwendungsspezifischen Klassen zu arbeiten.

Zusätzliche Möglichkeiten des Prototypmusters sind im Folgenden aufgeführt.

1. Hinzufügen und Entfernen von Produkten zur Laufzeit. Prototypen ermöglichen es
Ihnen, eine neue Produktklasse in ein System einfach dadurch einzubinden,
daß sie ein prototypisches Exemplar beim Klienten registrieren. Dies ist etwas
flexibler als die anderen Erzeugungsmuster, weil ein Klient Prototypen zur
Laufzeit installieren und entfernen kann.

2. Spezifikation neuer Objekte durch Variation von Werten. Hochdynamische Syste-
me ermöglichen es Ihnen, neues Verhalten durch die Objektkomposition zu
definieren – indem Sie beispielsweise Werte für die Variablen eines Objektes
spezifizieren – und nicht, indem Sie neue Klassen definieren. Sie definieren ef-
fektiv neue Arten von Objekten durch das Erzeugen von Objekten existieren-
der Klassen und die Registrierung der Objekte als Prototypen für
Klientenobjekte. Ein Klient kann neues Verhalten durch die Delegation von
Zuständigkeiten an den Prototypen ausüben.

Diese Art von Entwurf ermöglicht es Benutzern, neue »Klassen« ohne Program-
mierung zu definieren. Tatsächlich gleicht das Klonen eines Prototypen dem
Erzeugen eines Objekts einer Klasse. Das Prototypmuster ist in der Lage, die
von einem System benötigte Anzahl an Klassen deutlich zu reduzieren. In un-
serem Musikeditor kann eine einzige GrafischesWerkzeug-Klasse eine unbe-
grenzte Vielfalt von Musikobjekten erzeugen.

3. Spezifikation neuer Objekte durch Variation der Struktur. Viele Anwendungen kon-
struieren Objekte aus Teilen und Subteilen. Editoren für den Entwurf elektri-

148 3 Erzeugungsmuster

scher Schaltkreise konstruieren beispielsweise Schaltkreise mit Hilfe von
Teilschaltkreisen.1 Aus Bequemlichkeitsgründen ermöglichen diese Anwen-
dungen es Ihnen oft, komplexe, benutzerdefinierte Strukturen zu erzeugen,
etwa um einen bestimmten Teilschaltkreis immer wieder zu verwenden.

Das Prototypmuster unterstützt dies ebenfalls. Wir fügen diesen Teilschaltkreis
einfach als einen Prototyp zur Palette verfügbarer Schaltkreiselemente hinzu.
Solange das den zusammengesetzten Schaltkreis repräsentierende Objekt das
Klonen als tiefes Kopieren implementiert, können Schaltkreise mit unterschied-
lichen Strukturen als Prototypen verwendet werden.

4. Verringerte Unterklassenbildung. Das Fabrikmethodemuster (131) produziert oft
eine Hierarchie von Erzeugerklassen, die parallel zur Produktklassenhierarchie
verläuft. Das Prototypmuster ermöglicht es Ihnen, zur Erzeugung eines neuen
Objekts einen Prototypen zu klonen, statt eine Fabrikmethode aufzurufen. So-
mit benötigen Sie überhaupt keine Erzeugerklassenhierarchie. Dieser Vorteil
kommt hauptsächlich in Sprachen wie C++ zum Tragen, die Klassen nicht als
Objekte erster Ordnung behandeln. Sprachen wie Smalltalk oder Objective-C,
die dies tun, ziehen hieraus einen geringeren Vorteil, da Sie immer ein Klassen-
objekt als Erzeuger verwenden können. Klassenobjekte spielen in diesen Spra-
chen bereits die Rolle von Prototypen.

5. Dynamisches Konfigurieren einer Anwendung mit Klassen. Manche Laufzeitumge-
bungen ermöglichen es Ihnen, Klassen dynamisch zu einer Anwendung hin-
zuzuladen. Das Prototypmuster ist der Schlüssel zum Ausbeuten solcher
Möglichkeiten in einer Sprache wie C++.

Eine Anwendung, die Exemplare einer dynamisch geladenen Klasse erzeugen
möchte, wird nicht in der Lage sein, den Konstruktur dieser Klassen statisch zu
referenzieren. Statt dessen erzeugt die Laufzeitumgebung beim Laden jeder
Klasse automatisch ein Exemplar und registriert dieses Exemplar bei einem Pro-
totypenverwalter (siehe Implementierungsabschnitt). Die Anwendung kann
dann den Prototypenverwalter nach Exemplaren der gerade neu geladenen
Klassen fragen, Klassen die ursprünglich gar nicht in das Programm eingebun-
den waren. Das ET++-Application-Framework [WGM88] verfügt über ein Lauf-
zeitsystem, das diese Methode verwendet.

Die Hauptverpflichtung des Prototypmusters besteht darin, daß jede Unterklasse
von Prototyp die Operation Klone implementieren muß. Dies kann eine schwie-

1. Solche Anwendungen verwenden auch das Kompositionsmuster (239) und das Deko-
rierermuster (199).

 Prototyp 149

rige Aufgabe sein. Beispielsweise ist das Hinzufügen von Klone schwierig, wenn
die in Betracht gezogenen Klassen bereits existieren. Die Implementierung von
Klone kann schwierig sein, wenn ihre interne Repräsentation Objekte umfaßt, die
keine Kopiermöglichkeiten bieten oder über zirkuläre Referenzen verfügen.

Implementierung

Das Prototypmuster ist besonders nützlich in statisch typisierten Programmier-
sprachen wie C++, in denen Klassen keine Objekte sind und nur wenig oder gar
keine Typinformation zur Laufzeit verfügbar ist. In Sprachen wie Smalltalk oder
Objective-C, die Prototypen vergleichbarer Objekte zur Erzeugung von Exempla-
ren einer Klasse bieten, nämlich Klassenobjekte, ist es weniger wichtig. Dieses
Muster ist in prototyp-basierten Sprachen wie Self [US87], in denen alle Erzeu-
gung von Objekten durch das Klonen eines Prototyps geschieht, von Haus aus
vorhanden.

Beachten Sie die folgenden Aspekte, wenn Sie das Prototypmuster implementie-
ren.

1. Verwendung eines Prototypenverwalters. Wenn die Anzahl von Prototypen eines
Systems nicht von vorneherein festgelegt ist (das heißt, sie können dynamisch
erzeugt und gelöscht werden), sollten Sie die verfügbaren Prototypen in einer
Registratur vermerken. In diesem Fall verwalten Klienten die Prototypen nicht
selbst, sondern speichern sie in der Registratur ab und fordern sie wieder an.
Ein Klient holt sich einen Prototypen von der Registratur, bevor er ihn klont.
Wir nennen diese Registratur einen Prototypenverwalter.

Ein Prototypenverwalter verwendet einen assoziativen Speicher, der den zu ei-
nem Schlüssel passenden Prototypen zurückgibt. Er besitzt Operationen zum
Registrieren eines Prototypen bezüglich eines Schlüssels und zum Auflösen der
Registrierung. Klienten können die Registratur zur Laufzeit ändern oder sie
durchsuchen. Somit können die Klienten das System ohne Schreiben von
Code erweitern oder sich einen Überblick verschaffen.

2. Implementierung der Klone-Operation. Der schwierigste Aspekt am Prototypmu-
ster ist die korrekte Implementierung der Klone-Operation. Sie ist insbesonde-
re dann sehr trickreich, wenn die Objektstrukturen zirkuläre Referenzen
enthalten.

Die meisten Sprachen unterstützen das Klonen von Objekten zumindest teil-
weise. Zum Beispiel verfügt Smalltalk über eine Implementierung von copy, die
von allen Unterklassen von Object geerbt wird. C++ bietet einen Kopierkon-
struktor. Aber all diese Hilfsmittel lösen das Problem »flaches versus tiefes Ko-

150 3 Erzeugungsmuster

pieren« nicht [GR83]. Kurzgefaßt stellt dieses Problem die Frage, ob das Klonen
eines Objekts zum Klonen seiner Exemplarvariablen führt oder ob das Origi-
nalobjekt und der Klon dieselben Variablen miteinander teilen.

Eine flache Kopie ist einfach und oftmals ausreichend. Sie wird aus diesem
Grund von Smalltalk als die Defaulteinstellung angeboten. Der standardmäßi-
ge Kopierkonstruktor in C++ kopiert die Exemplarvariablen, was bedeutet, daß
im Fall von Objektreferenzen die referenzierten Objekte von Kopie und Origi-
nal gemeinsam genutzt werden. Üblicherweise aber verlangt das Klonen von
Prototypen mit komplexen Strukturen das Ausführen einer tiefen Kopie, weil
der Klon und das Original unabhängig voneinander sein müssen. Sie müssen
deswegen sicherstellen, daß die Komponenten des Klons wiederum Klons der
Komponenten des Prototypen sind. Sie werden durch das Klonen gezwungen,
zu entscheiden, was, wenn überhaupt, gemeinsam genutzt wird.

Wenn die Objekte im System Lade- und Speicheroperationen bieten, dann
können Sie diese für eine Defaultimplementierung der Klone-Operation ver-
wenden, indem Sie einfach das Objekt speichern und sofort wieder einladen.
Die Speicheroperation legt das Objekt in einem Zwischenspeicher ab, und die
Ladeoperation erzeugt ein Duplikat bei der Rekonstruktion des Objekts aus
dem Speicher.

3. Initialisierung geklonter Objekte. Während manche Klienten mit dem geklonten
Objekt völlig zufriedengestellt sind, verlangen andere Klienten die Initialisie-
rung von Teilen oder dem gesamten inneren Zustand mit Werten ihrer Wahl.
Sie können diese Werte üblicherweise nicht der Klone-Operation direkt über-
geben, weil ihre Anzahl zwischen den Klassen der Prototypen variiert. Manche
Prototypen benötigen möglicherweise mehrere Initialisierungsparameter,
während andere Prototypen keine benötigen. Die Übergabe von Parametern in
der Klone-Operation schließt eine einheitliche Schnittstelle zum Klonen aus.

Vielleicht definieren die Klassen ihrer Prototypen ja schon Operationen zum
Zurücksetzen wichtiger Teile des Zustands. Wenn dem so ist, können Klienten
diese Operationen direkt nach dem Klonen verwenden. Wenn nicht, müssen
sie vielleicht eine Initialisiere-Operation einführen (siehe Beispielcodeab-
schnitt), die die Initialisierungsparameter als Argumente entgegennimmt und
den internen Zustand des geklonten Objekts entsprechend setzt. Besondere
Aufmerksamkeit erfordern Klone-Operationen, die tiefe Kopien anfertigen –
die Kopien müssen möglicherweise gelöscht werden, entweder explizit oder in-
nerhalb von Initialisiere, bevor Sie sie erneut initialisieren können.

 Prototyp 151

Beispielcode

Wir werden eine Unterklasse LabyrinthPrototypFabrik der Klasse LabyrinthFabrik
(Seite 129) definieren. LabyrinthPrototypFabrik wird mit den Prototypen jener Ob-
jekte initialisiert, die es erzeugen soll, so daß wir keine Unterklassen bilden müs-
sen, nur um die Klassen der von ihr erzeugten Räume und Wände zu ändern.

LabyrinthPrototypFabrik erweitert die Schnittstelle von LabyrinthFabrik mit einem
Konstruktor, der die Prototypen als Argument erhält:

class LabyrinthPrototypFabrik : public LabyrinthFabrik {
public:

LabyrinthPrototypFabrik(Labyrinth*, Wand*, Raum*, Tuer*);

virtual Labyrinth* ErzeugeLabyrinth() const;
virtual Raum* ErzeugeRaum(int) const;
virtual Wand* ErzeugeWand() const;
virtual Tuer* ErzeugeTuer(Raum*, Raum*) const;

private:
Labyrinth* _prototypLabyrinth;
Raum* _prototypRaum;
Wand* _prototypWand;
Tuer* _prototypTuer;

};

Der neue Konstruktor initialisiert einfach seine Prototypen:

LabyrinthPrototypFabrik::LabyrinthPrototypFabrik(
Labyrinth* labyrinth, Wand* wand, Raum* raum, Tuer* tuer)

{
_prototypLabyrinth = labyrinth;
_prototypWand = wand;
_prototypRaum = raum;
_prototypTuer = tuer;

}

Die Member-Funktionen zum Erzeugen von Wänden, Räumen und Türen glei-
chen einander: Jede klont einen Prototypen und initialisiert ihn dann. Es folgen
die Definitionen von ErzeugeWand und ErzeugeTuer:

Wand* LabyrinthPrototypFabrik::ErzeugeWand() const {
return _prototypWand->Klone();

}

152 3 Erzeugungsmuster

Tuer* LabyrinthPrototypFabrik::ErzeugeTuer(
Raum* raum1, Raum* raum2) const

{
Tuer* tuer = _prototypTuer->Klone();
tuer->Initialisiere(raum1, raum2);
return tuer;

}

Wir können LabyrinthPrototypFabrik zum Erzeugen eines prototypischen Laby-
rinths oder eines Defaultlabyrinths verwenden, indem wir es einfach mit Prototy-
pen der grundlegenden Komponenten des Labyrinths initialisieren:

LabyrinthSpiel spiel;
LabyrinthPrototypFabrik einfacheLabyrinthFabrik(

new Labyrinth, new Wand, new Raum, new Tuer);

Labyrinth* labyrinth = spiel.ErzeugeLabyrinth(
einfacheLabyrinthFabrik);

Um den Labyrinthtyp zu ändern, initialisieren wir LabyrinthPrototypFabrik mit ei-
ner anderen Menge an Prototypen. Der folgende Aufruf erzeugt ein Labyrinth mit
Prototypen für BombardierbareTuer und RaumMitBombe:

LabyrinthPrototypFabrik bombardierbareLabyrinthFabrik(
new Labyrinth, new BombardierbareWand,
new RaumMitBombe, new Tuer);

Ein Objekt, das als Prototyp genutzt werden kann, wie zum Beispiel ein Exemplar
von Wand, muß die Klone-Operation unterstützen. Es muß ebenso über einen Ko-
pierkonstruktor zum Klonen verfügen. Es benötigt möglicherweise eine separate
Operation zur erneuten Initialisierung seines internen Zustands. Wir fügen des-
wegen die Operation Initialisiere der Klasse Tuer hinzu, um Klienten die Initiali-
sierung geklonter Räume zu ermöglichen.

Vergleichen Sie die folgende Definition von Tuer mit derjenigen auf Seite 104:

class Tuer : public KartenEintrag {
public:

Tuer();
Tuer(const Tuer&);

virtual void Initialisiere(Raum*, Raum*);
virtual Tuer* Klone() const;
virtual void Betrete();

 Prototyp 153

Raum* AndereSeiteVon(Raum*);

private:
Raum* _raum1;
Raum* _raum2;

};

Tuer::Tuer(const Tuer& andereTuer) {
_raum1 = andereTuer._raum1;
_raum2 = andereTuer._raum2;

}

void Tuer::Initialisiere(Raum* raum1, Raum* raum2) {
_raum1 = raum1;
_raum2 = raum2;

}

Tuer* Tuer::Klone() const {
return new Tuer(*this);

}

Die Unterklasse BombardierbareWand muß die Klone-Operation überschreiben und
einen entsprechenden Kopierkonstruktor implementieren.

class BombardierbareWand : public Wand {
public:

BombardierbareWand();
BombardierbareWand(const BombardierbareWand&);

virtual Wand* Klone() const;
bool IstBeschaedigt();

private:
bool _istBeschaedigt;

};

BombardierbareWand::BombardierbareWand(
const BombardierbareWand& andereWand) : Wand(andereWand)

{
_istBeschaedigt = andereWand._istBeschaedigt;

}

Wand* BombardierbareWand::Klone() const {
return new BombardierbareWand(*this);

}

154 3 Erzeugungsmuster

Obwohl BombardierbareWand::Klone einen Zeiger vom Typ Wand* zurückgibt, gibt
seine Implementierung einen Zeiger auf ein neues Exemplar einer Unterklasse,
nämlich vom Typ BombardierbareWand* zurück. Wir definieren Klone solcherart in
der Basisklasse, damit die Klienten nichts von den konkreten Unterklassen der
Prototypen wissen müssen, die sie klonen. Klienten sollten auf dem Rückgabewert
der Klone-Operation niemals einen Downcast zum erwünschten Typ ausführen
müssen.

In Smalltalk können Sie die von Object geerbte Standardmethode copy wiederver-
wenden, um beliebige Prototypen von KartenEintrag Unterklassen zu klonen. Sie
können eine LabyrinthFabrik verwenden, um die von Ihnen benötigten Prototy-
pen zu produzieren. Beispielsweise können Sie einen Raum erzeugen, indem sie
den Namen #raum übergeben. Die LabyrinthFabrik besitzt ein Dictionary, das Na-
men auf Prototypen abbildet. Seine erzeuge: Methode sieht folgendermaßen aus:

erzeuge: teilName
^ (teilKatalog at: teilName) copy

Wenn angemessene Methoden zur Initialisierung der LabyrinthFabrik mit Prototy-
pen gegeben sind, können Sie ein einfaches Labyrinth mit dem folgenden Code
erzeugen.

ErzeugeLabyrinth fuer:
(LabyrinthFabrik new
mit: Tuer new namens: #tuer;
mit: Wand new namens: #wand;
mit: Raum new namens: #raum;
yourself)

Hierbei sähe die Definition der in ErzeugeLabyrinth verwendeten Klassenmethode
fuer: so aus:

fuer: eineFabrik
| raum1 raum2 |
raum1 := (eineFabrik erzeuge: #raum) koordinate: 1@1.
raum2 := (eineFabrik erzeuge: #raum) koordinate: 2@1.
tuer := (eineFabrik erzeuge #tuer) von: raum1 nach: raum2.

raum1
aufSeite: #norden setze: (eineFabrik erzeuge: #wand);
aufSeite: #osten setze: tuer;
aufSeite: #sueden setze: (eineFabrik erzeuge: #wand);
aufSeite: #westen setze: (eineFabrik erzeuge: #wand);

 Prototyp 155

raum2
aufSeite: #norden setze: (eineFabrik erzeuge: #wand);
aufSeite: #osten setze: (eineFabrik erzeuge: #wand);
aufSeite: #sueden setze: (eineFabrik erzeuge: #wand);
aufSeite: #westen setze: tuer;

^ Labyrinth new
fuegeRaumHinzu: raum1;
fuegeRaumHinzu: raum2;
yourself

Bekannte Verwendungen

Das vermutlich erste Beispiel des Prototypmusters ist in Ivan Sutherlands Sketch-
pad-System [Sut63] zu finden. Die erste weithin bekannte Anwendung des Mu-
sters in einer objektorientierten Sprache geschah in ThingLab, bei dem Benutzer
ein zusammengesetztes Objekt erstellen und dann zu einem Prototypen machen
konnten, indem Sie es in einer Bibliothek wiederverwendbarer Objekte installier-
ten [Bor81]. Goldberg und Robson erwähnen Prototypen als Muster [GR83]. Aller-
dings gibt Coplien [Cop92] eine sehr viel umfassendere Beschreibung. Er be-
schreibt dem Prototypmuster verwandte C++-Idiome und nennt viele Beispiele
und Variationen.

Etgdb ist ein auf ET++ basierendes Debugger-Frontend, das eine Point-and-Click-
Benutzungsschnittstelle für verschiedene zeilenorientierte Debugger bietet. Zu je-
dem Debugger gibt es eine entsprechende DebuggerAdaptor-Unterklasse. Bei-
spielsweise paßt GdbAdaptor etgdb an die Befehlssyntax von GNUs gdb an, wäh-
rend SunDbxAdaptor dasselbe für Suns dbx debugger tut. Etgdb verfügt nicht
über eine fest codierte Menge von DebuggerAdaptor-Klassen, sondern es liest den
Namen des zu verwendenden Adapters aus einer Umgebungsvariablen ein, sucht
in einer globalen Tabelle nach einem Prototypen mit dem angegebenen Namen
und klont den Prototypen. Neue Debugger können zu etgdb hinzugefügt werden,
in dem man es mit dem DebuggerAdaptor für den Debugger zusammen linkt.

Die »interaction technique library« (Bibliothek für Interaktionstechniken) in Mo-
deComposer speichert die Prototypen von Objekten, die unterschiedliche Inter-
aktionstechniken unterstützen [Sha90]. Jede vom ModeComposer erzeugte Inter-
aktionstechnik kann als Prototyp genutzt werden, indem man ihn in die
Bibliothek einfügt. Das Prototypmuster ermöglicht es ModeComposer, eine unbe-
grenzte Anzahl von Interaktionstechniken zu unterstützen.

Das eingangs diskutierte Musikeditorbeispiel basiert auf dem Unidraw Zeichen-
Framework [VL90].

156 3 Erzeugungsmuster

Verwandte Muster

Wie am Ende des Kapitels diskutiert wird, konkurrieren das Prototypmuster und
das Abstrakte-Fabrik-Muster (107) in verschiedener Hinsicht miteinander. Sie
können auch zusammen angewendet werden. Eine abstrakte Fabrik könnte eine
Menge von Prototypen speichern, die geklont und zurückgegeben werden.

Sich stark auf das Kompositions- (239) und Dekorierermuster (199) abstützende
Entwürfe können ebenfalls oft vom Prototypmuster profitieren.

 Singleton 157

Singleton

Ein objektbasiertes Erzeugungsmuster

Zweck

Sichere ab, daß eine Klasse genau ein Exemplar besitzt, und stelle einen globalen
Zugriffspunkt darauf bereit.

Motivation

Bei manchen Klassen ist es wichtig, daß es genau ein Exemplar gibt. Obwohl es in
einem System viele Drucker geben kann, sollte es nur einen Druckerspooler ge-
ben. Es sollte nur ein Dateisystem und nur eine Fensterverwaltung geben. Ein di-
gitaler Filter besitzt einen A/D-Konvertierer. Ein Buchhaltungssystem dient wäh-
rend es arbeitet genau einer Firma.

Wie stellen wir sicher, daß eine Klasse über genau ein Exemplar verfügt und daß
einfach auf dieses Exemplar zugegriffen werden kann? Eine globale Variable er-
möglicht den Zugriff auf ein Objekt, verhindert aber nicht das Erzeugen mehrerer
Exemplare.

Es ist besser, die Klasse selbst für die Verwaltung ihres einzigen Exemplars zustän-
dig zu machen. Die Klasse kann durch Abfangen von Befehlen zur Erzeugung
neuer Objekte sicherstellen, daß kein weiteres Exemplar erzeugt wird, und sie
kann die Zugriffsmöglichkeit auf das Exemplar anbieten. Dies ist die Essenz des
Singletonmusters.

Anwendbarkeit

Verwenden Sie das Singletonmuster, wenn

• es genau ein Exemplar einer Klasse geben und es für Klienten an einem wohl-
definierten Punkt zugreifbar sein muß.

• das einzige Exemplar durch Bildung von Unterklassen erweiterbar sein soll
und Klienten in der Lage sein sollen, das erweiterte Exemplar ohne Modifika-
tion ihres Codes verwenden zu können.

158 3 Erzeugungsmuster

Struktur

Abbildung 3.12 zeigt die Struktur des Singletonmusters.

Teilnehmer

• Singleton

– definiert eine Exemplaroperation, die es Klienten ermöglicht, auf sein ein-
ziges Exemplar zuzugreifen. Exemplar ist eine Klassenoperation, also eine
Klassenmethode in Smalltalk und eine statische Member-Funktion in C++.

– ist potentiell für die Erzeugung seines einzigen Exemplars zuständig.

Interaktionen

Klienten greifen auf ein Singletonexemplar ausschließlich durch die Exemplar-
Operation der Singletonklasse zu.

Konsequenzen

Das Singletonmuster besitzt mehrere Vorteile:

1. Zugriffskontrolle auf das Exemplar. Da die Singletonklasse sein einziges Exemplar
kapselt, verfügt es über eine strikte Kontrolle darüber, wie und wann die Klien-
ten auf das Exemplar zugreifen können.

2. Eingeschränkter Namensraum. Das Singletonmuster ist eine Verbesserung gegen-
über globalen Variablen. Es vermeidet die Überfrachtung des Namensraums
mit globalen Variablen, welche die Singletonexemplare speichern.

3. Verfeinerung von Operationen und Repräsentation. Die Singletonklasse kann abgelei-
tet und spezialisiert werden. Zudem ist es einfach, eine Anwendung mit einem
Exemplar dieser erweiterten Klasse zu konfigurieren. Sie können sogar die An-
wendung mit einem Exemplar der benötigten Klasse zur Laufzeit konfigurieren.

Abbildung 3.12

Singleton

return einzigesExemplarstatic Exemplar()

static einzigesExemplar

SingletonOperation()
GibSingletonDaten()

singletonDaten

 Singleton 159

4. Variable Anzahl von Exemplaren. Sollten Sie Ihre Meinung ändern und doch
mehr als ein Exemplar der Singletonklasse benötigen, so macht das Muster es
Ihnen auch hierbei leicht. Sie können weiterhin denselben Ansatz dazu ver-
wenden, die Anzahl der von der Anwendung benutzten Exemplare zu steuern.
Sie müssen dafür nur jene Operation ändern, die den Zugriff auf das Singleton-
exemplar ermöglicht.

5. Flexibler als Klassenoperationen. Eine andere Möglichkeit, die Funktionalität ei-
nes Singletons zusammenzufassen, besteht in der Verwendung von Klassen-
operationen, also statischen Member-Funktionen in C++ oder Klassenmetho-
den in Smalltalk. Beide Sprachtechniken erschweren die Änderung eines
Entwurfs, möchte man doch über mehr als ein Exemplar einer Klasse verfügen.
In C++ sind statische Member-Funktionen zudem niemals virtuell, so daß Un-
terklassen sie nicht polymorph überschreiben können.

Implementierung

Es folgen einige Implementierungsaspekte, die man bei der Anwendung des Sin-
gletonmusters bedenken sollte:

1. Garantie eines einzigen Exemplars. Das Singletonmuster macht das einzige Ex-
emplar zu einem normalen Exemplar seiner Klasse. Die Klasse ist so geschrie-
ben, daß nur ein einziges Exemplar jemals erzeugt werden kann. Üblicherweise
versteckt man die das Exemplar erzeugende Operation hinter einer Klassen-
operation, die garantiert, daß nur ein Exemplar erzeugt wird. Diese Operation
kann auf die Variable, die das einzige Exemplar enthält, zugreifen, und sie
stellt sicher, daß die Variable mit dem einzigen Exemplar initialisiert ist, bevor
sie ihren Wert zurückgibt. Dieser Ansatz stellt sicher, daß ein Singleton vor sei-
ner ersten Benutzung erzeugt und initialisiert wird.

Sie können die Klassenoperation in C++ mit einer statischen Member-Funkti-
on Exemplar der Klasse Singleton definieren. Singleton definiert weiterhin eine
statische Member-Variable _exemplar, die einen Zeiger auf sein einziges Exem-
plar enthält.

Die Klasse Singleton ist folgendermaßen deklariert:

class Singleton {
public:

static Singleton* Exemplar();

protected:
Singleton();

160 3 Erzeugungsmuster

private:
static Singleton* _exemplar;

};

Die entsprechende Implementierung sieht so aus:

Singleton* Singleton::_exemplar = 0;

Singleton* Singleton::Exemplar() {
if (_exemplar == 0) {

_exemplar = new Singleton;
}
return _exemplar;

}

Klienten greifen auf das Singleton ausschließlich durch die Exemplar Member-
Funktion zu. Die Variable _exemplar wird mit 0 initialisiert, und die statische
Member-Funktion Exemplar gibt seinen Wert zurück, wobei sie ihn mit dem
einzigen Exemplar initialisiert, wenn er auf 0 steht. Exemplar verwendet verzö-
gerte Initialisierung (lazy initialization); der zurückgegebene Wert wird nicht
erzeugt und gespeichert, bis das erste Mal darauf zugegriffen wird.

Beachten Sie, daß der Konstruktor geschützt ist, das heißt als protected dekla-
riert ist. Versucht ein Klient, ein Singleton direkt zu erzeugen, so ergibt sich zur
Übersetzungszeit ein Fehler. Dies stellt sicher, daß nur ein Exemplar erzeugt
wird.

Da _exemplar ein Zeiger auf ein Singletonobjekt ist, kann die Exemplar Member-
Funktion ihm weiterhin einen Zeiger auf ein Exemplar einer Unterklasse von
Singleton zuweisen. Wir werden im Beispielcodeabschnitt ein Beispiel vorfüh-
ren.

Ein letzte Bemerkung zur C++-Implementierung: Es ist nicht ausreichend, das
Singleton als globales oder statisches Objekt zu definieren und sich dann auf
die automatische Initialisierung zu verlassen. Dafür gibt es drei Gründe:

a. Wir können nicht garantieren, daß insgesamt nur ein Exemplar eines stati-
schen Objekts erzeugt werden wird.

b. Wir verfügen möglicherweise nicht über genügend Informationen, jedes
Singleton zur statischen Initialisierungszeit zu erzeugen. Ein Singleton be-
nötigt möglicherweise Werte, die erst später während des Programmablaufs
berechnet werden.

 Singleton 161

c. C++ definiert über Übersetzungseinheiten hinweg keine Reihenfolge, in der
die Konstruktoren globaler Objekte aufgerufen werden [ES90]. Dies führt
dazu, daß keine Abhängigkeiten zwischen den Singletons existieren dürfen.
Gäbe es sie, so wären Fehler unvermeidlich.

Ein zusätzlicher, wenngleich weniger wichtiger Nebeneffekt des globalen/sta-
tischen Objektansatzes besteht darin, daß alle Singletons erzeugt werden, ob
sie nun benutzt werden oder nicht. Die Verwendung einer statischen Member-
Funktion vermeidet all diese Probleme.

In Smalltalk wird die Funktion, die das einzige Exemplar zurückgibt, als eine
Klassenmethode der Singletonklasse implementiert. Um sicherzustellen, daß
nur ein Exemplar erzeugt wird, überschreibt man die new-Operation. Somit be-
sitzt die resultierende Singletonklasse beispielsweise die folgenden zwei Klas-
senmethoden. Hierbei ist EinzigesExemplar eine Klassenvariable, die nirgendwo
anders verwendet wird:

new
self error: 'kann kein Objekt erzeugen'

default
EinzigesExemplar isNil ifTrue:[EinzigesExemplar := super new].
^ EinzigesExemplar

2. Ableiten der Singletonklasse. Das Hauptproblem besteht nicht so sehr in der De-
finition der Unterklasse, sondern in der Installation seines einzigen Exemplars,
so daß Klienten es verwenden können. Im wesentlichen muß die Variable, die
das Singletonexemplar referenziert, mit einem Exemplar der Unterklasse in-
itialisiert werden. Die einfachste Technik besteht in der Bestimmung des zu
verwendenden Singletons in der Operation Exemplar der Singletonklasse. Ein
Beispiel im Beispielcodeabschnitt zeigt, wie man diese Technik mittels Umge-
bungsvariablen implementiert.

Eine weitere Möglichkeit, die Singletonunterklasse auszuwählen, besteht dar-
in, die Implementierung von Exemplar aus seiner Oberklasse (zum Beispiel
LabyrinthFabrik) zu entfernen und in die Unterklasse einzufügen. Dies ermög-
licht es einem C++-Programmierer, die Klasse des Singletons erst während des
Bindens zu wählen (zum Beispiel durch das Binden einer Objektcodedatei mit
einer anderen Implementierung). Die Klasse bleibt aber weiterhin vor den
Klienten des Singletons versteckt.

Dieser Ansatz legt die Wahl der Singletonklasse zur Bindezeit fest. Somit ist es
schwer, die Singletonklasse zur Laufzeit zu wählen. Die Verwendung von be-

162 3 Erzeugungsmuster

dingten Anweisungen zur Bestimmung der Unterklasse ist flexibler, legt aber
die Menge möglicher Singletonklassen im Code fest. Keiner der Ansätze ist für
alle Fälle flexibel genug.

Ein flexiblerer Ansatz verwendet eine Registratur für Singletons. Statt die Exem-
plaroperation die Anzahl möglicher Singletonklassen definieren zu lassen,
melden sich die Singletonexemplare über ihren Namen bei einer wohlbekann-
ten Registratur an.

Die Registratur bildet von stringbasierten Namen auf Singletons ab. Wenn
Exemplar ein Singleton benötigt, konsultiert es die Registratur und fragt mittels
des Namens nach dem Singleton. Die Registratur sucht das entsprechende Sin-
gleton heraus (sofern es existiert) und gibt es zurück. Dieser Ansatz befreit
Exemplar vom Wissen um alle möglichen Singletonklassen oder Exemplare. Es
verlangt einzig eine gemeinsame Schnittstelle aller Singletonklassen. Diese
enthält auch die Operationen für die Registratur:

class Singleton {
public:

static void Registriere(char* name, Singleton*);
static Singleton* Exemplar();

protected:
static Singleton* Suche(const char* name);

private:
static Singleton* _exemplar;
static Liste<NameSingletonPaar>* _registratur;

};

Registriere registriert das Singletonexemplar unter dem gegebenen Namen.
Um die Registratur einfach zu halten, speichern wir die Exemplare in einer
Liste von NameSingletonPaar-Objekten. Jedes NameSingletonPaar bildet einen
Namen auf ein Singleton ab. Die Operation Suche sucht auf Basis eines überge-
benen Namen das Singleton heraus. Wir machen dabei die Annahme, daß eine
Umgebungsvariable den Namen der gewünschten Singletons spezifiziert.

Singleton* Singleton::Exemplar() {
if (_exemplar == 0) {

const char* exemplarName = getenv("SINGLETON");
// Benutzer oder Umgebung setzen die Variable
// beim Hochfahren

 Singleton 163

_exemplar = Suche(exemplarName);
// Suche gibt 0 zurück, wenn es noch kein Singleton gibt

}
return _exemplar;

}

Zu welchem Zeitpunkt registrieren sich Singletonklassen selbst? Eine Möglich-
keit ist ihr Konstruktor. Beispielsweise könnte eine Unterklasse MeinSingleton
das folgende machen:

MeinSingleton::MeinSingleton() {
//...
Singleton::Registriere("MeinSingleton", this);

}

Natürlich wird der Konstruktor nicht aufgerufen werden, bis jemand ein Ob-
jekt der Klasse erzeugt, was seinerseits genau jenes Problem darstellt, das das
Singletonmuster zu lösen versucht! In C++ können wir das Problem umgehen,
indem wir ein statisches Exemplar von MeinSingleton definieren. Wir können
zum Beispiel in der Datei, in der MeinSingleton implementiert wird, folgendes
schreiben:

static MeinSingleton dasSingleton;

Die Singletonklasse ist somit nicht länger für das Erzeugen des Singletons zu-
ständig. Seine primäre Aufgabe besteht darin, die gewünschten Singletonob-
jekte im System verfügbar zu machen. Der Ansatz, statische Objekte zu
verwenden, hat immer noch einen potentiellen Nachteil – es müssen nämlich
Exemplare von allen möglichen Singletonunterklassen erzeugt werden, da sie
andernfalls nicht registriert werden.

Beispielcode

Stellen Sie sich vor, daß wir eine wie auf Seite 129 beschriebene LabyrinthFabrik
zum Aufbau von Labyrinthen definieren wollen. LabyrinthFabrik definiert eine
Schnittstelle zum Aufbau von unterschiedlichen Teilen des Labyrinths. Unter-
klassen können die Operationen neu definieren, so daß sie Exemplare spezialisier-
ter Produktklassen zurückgeben (zum Beispiel BombardierbareWand-Objekte statt
einfachen Wand-Objekten).

Hierbei ist wichtig zu bemerken, daß die Labyrinthanwendung nur ein Exemplar
der Labyrinthfabrik benötigt. Dieses Exemplar sollte für jeglichen Code verfügbar
sein, der Teile des Labyrinths konstruiert. Hier kommt das Singletonmuster ins

164 3 Erzeugungsmuster

Spiel. Indem wir die LabyrinthFabrik zur Singletonklasse machen, können wir
auch das Labyrinthobjekt allgemein zugreifbar machen, ohne uns auf globale Va-
riablen abstützen zu müssen.

Um das Beispiel zu vereinfachen, nehmen wir an, daß wir LabyrinthFabrik niemals
ableiten werden (die Alternative werden wir in Kürze betrachten). In C++ machen
wir es zu einer Singletonklasse, indem wir eine statische Exemplar-Operation und
eine statische _exemplar Member-Variable hinzufügen, um das einzige Exemplar
zu halten. Wir müssen weiterhin den Konstruktor schützen, um eine zufällige Er-
zeugung von Objekten, die zu mehr als einem Exemplar führen könnte, zu ver-
hindern.

class LabyrinthFabrik {
public:

static LabyrinthFabrik* Exemplar();

// existierende Schnittstelle folgt hier
// ...

protected:
LabyrinthFabrik();

private:
static LabyrinthFabrik* _exemplar;

};

Die entsprechende Implementierung sieht so aus:

LabyrinthFabrik* LabyrinthFabrik::_exemplar = 0;

LabyrinthFabrik* LabyrinthFabrik::Exemplar() {
if (_exemplar == 0) {

_exemplar = new LabyrinthFabrik;
}
return _exemplar;

}

Lassen Sie uns nun betrachten, was passiert, wenn es Unterklassen der LabyrintFa-
brik gibt und die Anwendung entscheiden muß, welche zu verwenden ist. Wir
wählen die Art des Labyrinths durch eine Umgebungsvariable aus und fügen
Code hinzu, der ein Objekt der passenden LabyrinthFabrik-Unterklasse auf Basis
des Werts dieser Umgebungsvariablen erzeugt. Die Exemplar-Operation stellt einen
guten Ort für diesen Code dar, weil sie die LabyrinthFabrik bereits erzeugt:

 Singleton 165

LabyrinthFabrik* LabyrinthFabrik::Exemplar() {
if (_exemplar == 0) {

const char* labyrinthStil = getenv("LABYRINTHSTIL");

if (strcmp(labyrinthStil, "mitbomben") == 0) {
_exemplar = new LabyrinthMitBombenFabrik;

}
else if (strcmp(labyrinthStil, "verzaubert") == 0) {

_exemplar = new VerzaubertesLabyrinthFabrik;
}
// ... weitere mögliche Unterklassen
else {

_exemplar = new LabyrinthFabrik;
}

}
return _exemplar;

}

Beachten Sie, daß Exemplar jedesmal modifiziert werden muß, wenn Sie ein neue
Unterklasse der LabyrinthFabrik definieren. Dies stellt vermutlich kein Problem
für diese Anwendung dar, sähe aber im Fall einer in einem Framework definierten
abstrakten Fabrik schon anders aus.

Eine mögliche Lösung besteht in der Verwendung des im Implementierungsab-
schnitts beschriebenen Registraturansatzes. Dynamisches Binden kann sich hier-
bei ebenfalls als nützlich herausstellen – es würde die Anwendung davon abhal-
ten, alle nicht benötigten Unterklassen laden zu müssen.

Bekannte Verwendungen

Ein Beispiel des Singletonmusters in Smalltalk-80 [Par90] ist die Menge von Ände-
rungen des Codes, was als ChangeSet current verfügbar ist. Ein subtileres Beispiel ist
die Beziehung zwischen Klassen und ihren Metaklassen. Eine Metaklasse ist die
Klasse einer Klasse, und jede Metaklasse besitzt genau ein Exemplar. Metaklassen
haben keine Namen (außer über einen indirekten Weg: durch den Namen ihrer
einzigen Exemplare), aber sie verwalten ihre Exemplare und erzeugen üblicher-
weise keine weiteren Exemplare.

InterViews, eine Klassenbibliothek zur Erstellung von Benutzungsschnittstellen
[LCI+92], verwendet das Singletonmuster unter anderem zum Zugriff auf die ein-
zigen Exemplare seiner Klassen Session und WidgetKit. Session definiert die
Hauptschleife der Anwendung zum Dispatch von Ereignissen, speichert und lädt
die Datenbank an stilistischen Voreinstellungen des Benutzers und verwaltet die

166 3 Erzeugungsmuster

Verbindungen zu einem oder mehreren physikalischen Bildschirmen. WidgetKit
ist eine abstrakte Fabrik (107) zur Definition des Look-and-Feels von Benutzungs-
schnittstellenwidgets. Die WidgetKit::instance()-Operation bestimmt die jewei-
lige Unterklasse von WidgetKit, die unter Verwendung der von Session definier-
ten Umgebungsvariable erzeugt wird. Eine ähnliche Operation von Session legt
fest, ob monochrome oder Farbbildschirme unterstützt werden, und sie konfigu-
riert das einzige Session-Exemplar dementsprechend.

Verwandte Muster

Viele Muster können unter Verwendung des Singletonmusters implementiert
werden, so zum Beispiel das Abstrakte-Fabrik-Muster (107), das Erbauermuster
(119) und das Prototypmuster (144).

3.1 Diskussion der Erzeugungsmuster 167

3.1 Diskussion der Erzeugungsmuster

Es gibt zwei bekannte Möglichkeiten, ein System mit den Klassen von ihm erzeug-
ter Objekte zu parametrieren. Eine Möglichkeit besteht darin, eine Unterklasse
der Klasse zu erstellen, welche die Objekte erzeugt; dies entspricht der Verwen-
dung des Fabrikmethodemusters. Der Nachteil dieses Ansatzes besteht darin, daß
man möglicherweise eine neue Unterklasse erzeugen muß, nur um die Klasse des
Produkts zu ändern. Solche Änderungen können sich kaskadenförmig fortpflan-
zen. Wenn beispielsweise der Erzeuger eines Produkts selbst von einer Fabrikme-
thode erzeugt wird, so müssen Sie wiederum seinen Erzeuger spezialisieren.

Die andere Möglichkeit, ein System zu parametrieren, besteht in der Anwendung
von Objektkomposition: Definieren Sie ein Objekt, das für das Wissen um die
Klasse von Produktobjekten zuständig ist, und machen Sie es zu einem Parameter
des Systems. Dies ist ein zentraler Aspekt des Abstrakte-Fabrik-Musters (107), des
Erbauermusters (119) und des Prototypmusters (144). Alle drei führen zur Erzeu-
gung eines neuen »Fabrikobjekts«, dessen Zuständigkeit im Erzeugen von Produkt-
objekten liegt. Das Abstrakte-Fabrik-Muster verwendet ein Fabrikobjekt, das Ob-
jekte mehrerer verschiedener Klassen erzeugen kann. Erbauer verwendet ein
Fabrikobjekt, das ein komplexes Produkt unter Verwendung eines ebenso komple-
xen Protokolls inkrementell konstruiert. Prototyp verwendet ein Fabrikobjekt, das
ein Produkt durch Kopieren eines Prototypobjekts erzeugt. In diesem Fall sind Fa-
brikobjekt und Prototyp dasselbe Objekt, da der Prototyp für die Rückgabe des Pro-
dukts zuständig ist.

Stellen Sie sich das zum Prototypmuster beschriebene Framework für Zeichenedi-
toren vor. Es gibt verschiedene Wege, ein GrafischesWerkzeug-Objekt mit der
Klasse seines Produkts zu parametrieren:

• Die Anwendung des Fabrikmethodemusters führt zur Erzeugung einer Unter-
klasse von GrafischesWerkzeug für jede GrafischesObjekt-Klasse in der Palette.
GrafischesWerkzeug verfügt dann über eine NeuesGrafischesObjekt-Operati-
on, die jede GrafischesWerkzeug-Unterklasse überschreibt.

• Die Anwendung des Abstrakte-Fabrik-Musters führt zur einer Klassenhierar-
chie von GrafischeFabrik-Objekten, eines für jede GrafischesObjekt-Unterklas-
se. Jede Fabrik erzeugt in diesem Fall genau ein Produkt: KreisFabrik erzeugt
Kreise, LinienFabrik erzeugt Linien usw. Ein GrafischesWerkzeug wird mit ei-
ner Fabrik zum Erzeugen der passenden GrafischesObjekt-Klasse parametri-
siert.

168 3 Erzeugungsmuster

• Die Anwendung des Prototypmusters führt zur Implementierung der Klone-
Operation für jede Unterklasse von GrafischesObjekt. Jedes GrafischesWerk-
zeug-Objekt ist mit einem Prototypen der von ihm erzeugten grafischen Ob-
jekte parametrisiert.

Es hängt von vielen Faktoren ab, welches Muster am besten geeignet ist. Im Fall
unseres Zeicheneditor-Frameworks ist das Fabrikmethodemuster das anfangs am
einfachsten zu verwendende Muster. Es ist einfach, eine neue Unterklasse von
GrafischesWerkzeug zu definieren. Die Exemplare von GrafischesWerkzeug wer-
den nur dann erzeugt, wenn die Palette definiert wird. Der wesentliche Nachteil
ist, daß die GrapischesWerkzeug-Klassen sich fortpflanzen, aber keine von Ihnen
sonderlich viel tut.

Das Abstrakte-Fabrik-Muster bietet keine große Verbesserung der Situation, da es
eine genauso große GrafischeFabrik-Klassenhierarchie benötigt. Eine abstrakte Fa-
brik wäre der Fabrikmethode nur dann vorzuziehen, wenn es bereits eine Gra-
fischeFabrik-Klassenhierarchie gäbe – entweder, weil der Übersetzer es automa-
tisch anbietet (wie in Smalltalk oder Objective-C) oder weil es in anderen Teilen
des Systems gebraucht wird.

Insgesamt betrachtet ist das Prototypmuster wohl die beste Lösung für das Zeichen-
editor-Framework, weil es nur die Implementierung einer Klone-Operation für jede
GrafischesObjekt-Klasse verlangt. Dies reduziert die Anzahl von Klassen. Zudem
kann Klone für andere Zwecke als die reine Erzeugung von Objekten verwendet
werden (zum Beispiel für die Implementierung eines Dupliziere-Menüeintrags).

Eine Fabrikmethode macht einen Entwurf leichter anpaßbar und nur wenig kom-
plizierter. Andere Entwurfsmuster benötigen neue Klassen, während eine Fabrik-
methode nur eine neue Operation verlangt. Entwickler verwenden Fabrikmetho-
den oft als Standardlösung zum Erzeugen von Objekten. Fabrikmethoden werden
nicht benötigt, wenn die zu Klasse zu erzeugender Objekte sich nie ändert oder
wenn die Erzeugung der Objekte an einem Ort stattfindet, den Unterklassen
leicht überschreiben können, so zum Beispiel in einer Initialisierungsoperation.

Entwürfe, die das Abstrakte-Fabrik-Muster, das Prototypmuster oder das Erbau-
ermuster verwenden, sind sogar noch flexibler als Entwürfe, die das Fabrikmetho-
demuster benutzen. Sie sind aber auch komplexer. Oft beginnen Entwürfe mit der
Verwendung von Fabrikmethoden und entwickeln sich dann zur Anwendung der
anderen Erzeugungsmuster hin, wenn die Entwickler feststellen, daß Sie mehr Fle-
xibilität benötigen. Die Kenntnis mehrerer Entwurfsmuster gibt Ihnen eine grö-
ßere Auswahl an Möglichkeiten beim wechselseitigen Abwägen von Entwurfskri-
terien.

	Entwurfsmuster -Elemente wiederverwendbarer objektorientierter Software-
	(Probe-)Kapitel 3 Erzeugungsmuster
	Abstrakte Fabrik (Abstract Factory)
	Erbauer (Builder)
	Fabrikmethode (Factory Method)
	Prototyp (Prototype)
	Singleton

	Ins Internet: Weitere Infos zum Buch, Downloads, etc.

