
1

Introduction

Finite model theory studies the expressive power of logics on �nite models.
Classical model theory, on the other hand, concentrates on in�nite structures:
its origins are in mathematics, and most objects of interest in mathematics
are in�nite, e.g., the sets of natural numbers, real numbers, etc. Typical exam-
ples of interest to a model-theorist would be algebraically closed �elds (e.g.,
〈C, +, ·〉), real closed �elds (e.g., 〈R, +, ·, <〉), various models of arithmetic
(e.g., 〈N, +, ·〉 or 〈N, +〉), and other structures such as Boolean algebras or
random graphs.

The origins of �nite model theory are in computer science where most ob-
jects of interest are �nite. One is interested in the expressiveness of logics over
�nite graphs, or �nite strings, other �nite relational structures, and sometimes
restrictions of arithmetic structures to an initial segment of natural numbers.

The areas of computer science that served as a primary source of examples,
as well as the main consumers of techniques from �nite model theory, are
databases, complexity theory, and formal languages (although �nite model
theory found applications in other areas such as AI and veri�cation). In this
chapter, we give three examples that illustrate the need for studying logics
over �nite structures.

1.1 A Database Example

While early database systems used rather ad hoc data models, from the early
1970s the world switched to the relational model. In that model, a database
stores tables, or relations, and is queried by a logic-based declarative lan-
guage. The most standard such language, relational calculus, has precisely
the power of �rst-order predicate calculus. In real life, it comes equipped with
a specialized programming syntax (e.g., the select-from-where statement of
SQL).

Suppose that we have a company database, and one of its relations is the
Reports To relation: it stores pairs (x, y), where x is an employee, and y is

2 1 Introduction

his/her immediate manager. Organizational hierarchies tend to be quite com-
plicated and often result in many layers of management, so one may want to
skip the immediate manager level and instead look for the manager's manager.

In SQL, this would be done by the following query:

select R1.employee, R2.manager

from Reports_To R1, Reports_To R2

where R1.manager=R2.employee

This is simply a di�erent way of writing the following �rst-order logic
formula:

ϕ(x, y) ≡ ∃z
(
Reports To(x, z) ∧ Reports To(z, y)

)
.

Continuing, we may ask for someone's manager's manager's manager:

∃z1∃z2

(
Reports To(x, z1) ∧ Reports To(z1, z2) ∧ Reports To(z2, y)

)
,

and so on.
But what if we want to �nd everyone who is higher in the hierarchy than

a given employee? Speaking graph-theoretically, if we associate a pair (x, y)
in the Reports To relation with a directed edge from x to y in a graph, then
we want to �nd, for a given node, all the nodes reachable from it. This does
not seem possible in �rst-order logic, but how can one prove this?

There are other queries naturally related to this reachability property.
Suppose that once in a while, the company wants to make sure that its man-
agement hierarchy is logically consistent; that is, we cannot have cycles in the
Reports To relation. In graph-theoretic terms, it means that Reports To is
acyclic. Again, if one thinks about it for a while, it seems that �rst-order logic
does not have enough power to express this query.

We now consider a di�erent kind of query. Suppose we have two managers,
x and y, and let X be the set of all the employees directly managed by x (i.e.,
all x′ such that (x′, x) is in Reports To), and likewise let Y be the set of all
the employees directly managed by y. Can we write a query asking whether
|X | = |Y |; that is, a query asking whether x and y have the same number of
people reporting to them?

It turns out that �rst-order logic is again not suÆciently expressive for
this kind of query, but since queries like those described above are so common
in practice, SQL adds special features to the language to perform them. That
is, SQL can count: it can apply the cardinality function (and more complex
functions as well) to entire columns in relations. For example, in SQL one can
write a query that �nds all pairs of managers x and y who have the same
number of people reporting to them:

1.1 A Database Example 3

select R1.manager, R2.manager

from Reports_To R1, Reports_To R2

where (select count(Reports_To.employee)

from Reports_To

where Reports_To.manager = R1.manager)

= (select count(Reports_To.employee)

from Reports_To

where Reports_To.manager = R2.manager)

Since this cannot be done in �rst-order logic, but can be done in SQL (and,
in fact, in some rather simple extensions of �rst-order logic with counting), it
is natural to ask whether counting provides enough expressiveness to de�ne
queries such as reachability (can node x be reached from node y in a given
graph?) and acyclicity.

Typical applications of �nite model theory in databases have to deal with
questions of this sort: what can, and, more importantly, what cannot, be
expressed in various query languages.

Let us now give intuitive reasons why reachability queries are not express-
ible in �rst-order logic. Consider a di�erent example. Suppose that we have
an airline database, with a binary relation R (for routes), such that an entry
(A, B) in R indicates that there is a
ight from A to B. Now suppose we want
to �nd all pairs of cities A, B such that there is a direct
ight between them;
this is done by the following query:

q0(x, y) ≡ R(x, y),

which is simply a �rst-order formula with two free variables. Next, suppose
we want to know if one can get from x to y with exactly one change of plane;
then we write

q1(x, y) ≡ ∃z R(x, z) ∧R(z, y).

Doing \with at most one change" means having a disjunction

Q1(x, y) ≡ q1(x, y) ∨ q0(x, y).

Clearly, for each �xed k we can write a formula stating that one can get from
x to y with exactly k stops:

qk(x, y) ≡ ∃z1 . . .∃zk R(x, z1) ∧R(z1, z2) ∧ . . . ∧R(zk, y),

as well as Qk =
∨

j≤k qj testing if at most k stops suÆce.
But what about the reachability query: can we get from x to y? That is,

one wants to compute the transitive closure of R. The problem with this is
that we do not know in advance what k is supposed to be. So the query that
we need to write is ∨

k∈N
qk,

4 1 Introduction

but this is not a �rst-order formula! Of course this is not a formal proof that
reachability is not expressible in �rst-order logic (we shall see a proof of this
fact in Chap. 3), but at least it gives a hint as to what the limitations of
�rst-order logic are.

The inability of �rst-order logic to express some important queries moti-
vated a lot of research on extensions of �rst-order logic that can do queries
such as transitive closure or cardinality comparisons. We shall see a number
of extensions of these kinds { �xed point logics, (fragments of) second-order
logic, counting logics { that are important for database theory, and we shall
study properties of these extensions as well.

1.2 An Example from Complexity Theory

We now turn to a di�erent area, and to more expressive logics. Suppose that
we have a graph, this time undirected, given to us as a pair 〈V, E〉, where V
is the set of vertices, or nodes, and E is the edge relation. Assume that now
we can specify graph properties in second-order logic; that is, we can quantify
over sets (or relations) of nodes.

Consider a well-known property of Hamiltonicity. A simple circuit in a
graph G is a sequence (a1, . . . , an) of distinct nodes such that there are
edges (a1, a2), (a2, a3), . . . , (an−1, an), (an, a1). A simple circuit is Hamiltonian
if V = {a1, . . . , an}. A graph is Hamiltonian if it has a Hamiltonian circuit.

We now consider the following formula:

∃L ∃S


linear order(L)
∧ S is the successor relation of L
∧ ∀x∃y (L(x, y) ∨ L(y, x))
∧ ∀x∀y (S(x, y)→ E(x, y))

 (1.1)

The quanti�ers ∃L ∃S state the existence of two binary relations, L and S,
that satisfy the formula in parentheses. That formula uses some abbreviations.
The subformula linear order(L) in (1.1) states that the relation L is a linear
ordering; it can be de�ned as(

∀x¬L(x, x)
)
∧

(
∀x∀y∀z (L(x, y) ∧ L(y, z)→ L(x, z))

)
∧ ∀x∀y

(
(x 6= y)→

(
L(x, y) ∨ L(y, x)

))
.

The subformula S is the successor relation of L states that S is the successor
relation associated with the linear ordering L; it can be de�ned as

∀x∀y S(x, y)↔
((

L(x, y) ∧ ¬∃z
(
L(x, z) ∧ L(z, y)

))
∨

(
¬∃z L(x, z) ∧ ¬∃z L(z, y)

))

1.2 An Example from Complexity Theory 5

Note that S is the circular successor relation, as it also includes the pair (x, y)
where x is the maximal and y the minimal element with respect to L.

Then (1.1) says that L and S are de�ned on all nodes of the graph, and
that S is a subset of E. Hence, S is a Hamiltonian circuit, and thus (1.1) tests
if a graph is Hamiltonian.

It it well known that testing Hamiltonicity is an NP-complete problem. Is
this a coincidence, or is there a natural connection between NP and second-
order logic? Let us turn our attention to two other well-known NP-complete
problems: 3-colorability and clique.

To test if a graph is 3-colorable, we have to check that there exist three
disjoint sets A, B, C covering the nodes of the graph such that for every edge
(a, b) ∈ E, the nodes a and b cannot belong to the same set. The sentence
below does precisely that:

∃A∃B∃C


∀x

 (A(x) ∧ ¬B(x) ∧ ¬C(x))
∨ (¬A(x) ∧B(x) ∧ ¬C(x))
∨ (¬A(x) ∧ ¬B(x) ∧ C(x))


∧

∀x, y E(x, y)→ ¬

 (A(x) ∧A(y))
∨ (B(x) ∧B(y))
∨ (C(x) ∧ C(y))




(1.2)

For clique, typically one has a parameter k, and the problem is to check
whether a clique of size k exists. Here, to stay purely within the formalism of
second-order logic, we assume that the input is a graph E and a set of nodes
(a unary relation) U , and we ask if E has a clique of size |U |. We do it by
testing if there is a set C (nodes of the clique) and a binary relation F that is
a one-to-one correspondence between C and U . Testing that the restriction of
E to C is a clique, and that F is one-to-one, can be done in �rst-order logic.
Thus, the test is done by the following second-order sentence:

∃C∃F


∀x∀y

(
F (x, y)→ (C(x) ∧ U(y))

)
∧ ∀x

(
C(x) → ∃!y(F (x, y) ∧ U(y))

)
∧ ∀y

(
U(y)→ ∃!x(F (x, y) ∧ C(x))

)
∧ ∀x∀y

(
C(x) ∧ C(y)→ E(x, y)

)
 (1.3)

Here ∃!xϕ(x) means \there exists exactly one x such that ϕ(x)"; this is
an abbreviation for ∃x

(
ϕ(x) ∧ ∀y (ϕ(y)→ x = y)

)
.

Notice that (1.1), (1.2), and (1.3) all follow the same pattern: they start
with existential second-order quanti�ers, followed by a �rst-order formula.
Such formulas form what is called existential second-order logic, abbreviated
as ∃SO. The connection to NP can easily be seen: existential second-order
quanti�ers correspond to the guessing stage of an NP algorithm, and the
remaining �rst-order formula corresponds to the polynomial time veri�cation
stage of an NP algorithm.

6 1 Introduction

It turns out that the connection between NP and ∃SO is exact, as was
shown by Fagin in his celebrated 1974 theorem, stating that NP = ∃SO.
This connection opened up a new area, called descriptive complexity. The
goals of descriptive complexity are to describe complexity classes by means
of logical formalisms, and then use tools from mathematical logic to analyze
those classes. We shall prove Fagin's theorem later, and we shall also see logical
characterizations of a number of other familiar complexity classes.

1.3 An Example from Formal Language Theory

Now we turn our attention to strings over a �nite alphabet, say Σ = {a, b}.
We want to represent a string as a structure, much like a graph.

Given a string s = s1s2 . . . sn, we create a structure Ms as follows: the
universe is {1, . . . , n} (corresponding to positions in the string), we have one
binary relation < whose meaning of course is the usual order on the natural
numbers, and two unary relations A and B. Then A(i) is true if si = a, and
B(i) is true if si = b. For example, Mabba has universe {1, 2, 3, 4}, with A
interpreted as {1, 4} and B as {2, 3}.

Let us look at the following second-order sentence in which quanti�ers
range over sets of positions in a string:

Φ ≡ ∃X∃Y

 ∀x
(
X(x)↔ ¬Y (x)

)
∧ ∀x ∀y (X(x) ∧ Y (y)→ x < y)
∧ ∀x (X(x)→ A(x) ∧ Y (x)→ B(x))


When is Ms a model of Φ? This happens i� there exists two sets of posi-

tions, X and Y , such that X and Y form a partition of the universe (this is
what the �rst conjunct says), that all positions in X precede the positions in
Y (that is what the second conjunct says), and that for each position i in X ,
the ith symbol of s is a, for each position j in Y , the jth symbol is b (this
is stated in the third conjunct). That is, the string starts with some a's, and
then switches to all b's. Using the language of regular expressions, we can say
that

Ms |= Φ i� s ∈ a∗b∗.

Is quanti�cation over sets really necessary in this example? It turns out
that the answer is no: one can express the fact that s is in a∗b∗ by saying that
there are no two positions i < j such that the ith symbol is b and the jth
symbol is a. This, of course, can be done in �rst-order logic:

¬∃i∃j
(
(i < j) ∧ B(i) ∧ A(j)

)
.

A natural question that arises then is the following: are second-order quan-
ti�ers of no use if one wants to describe regular languages by logical means?
The answer is no, as we shall see later. For now, we can give an example.

1.3 An Example from Formal Language Theory 7

First, consider the sentence Φa ≡ ∀i A(i), which is true in Ms i� s ∈ a∗.
Next, de�ne a relation i ≺ j saying that j is the successor of i. It can be
de�ned by the formula

(
(i < j) ∧ ∀k ((k ≤ i) ∨ (k ≥ j))

)
. Now consider the

sentence

Φ1 ≡ ∃X∃Y


∀i

(
X(i)↔ ¬Y (i)

)
∧ ∀i

(
¬∃j(j < i)→ X(i)

)
∧ ∀i

(
¬∃j(j > i)→ Y (i)

)
∧ ∀i∀j

(
(i ≺ j) ∧X(i)→ Y (j)

)
∧ ∀i∀j

(
(i ≺ j) ∧ Y (i)→ X(j)

)


This sentence says that the universe {1, . . . , n} can be partitioned into two

sets X and Y such that 1 ∈ X , n ∈ Y , and the successor of an element of X
is in Y and vice versa; that is, the size of the universe is even.

Now what is Φ1 ∧ Φa? It says that the string is of even length, and has
only a's in it { hence, Ms |= Φ1∧Φa i� s ∈ (aa)∗. It turns out that one cannot
de�ne (aa)∗ using �rst-order logic alone: one needs second-order quanti�ers.
Moreover, with second-order quanti�ers ranging over sets of positions, one
de�nes precisely the regular languages. We shall deal with both expressibility
and inexpressibility results related to logics over strings later in this book.

There are a number of common themes in the examples presented above.
In all the cases, we are talking about the expressive power of logics over �nite
objects: relational databases, graphs, and strings. There is a close connection
between logical formalisms and familiar concepts from computer science: �rst-
order logic corresponds to relational calculus, existential second-order logic to
the complexity class NP, and second-order logic with quanti�ers ranging over
sets describes regular languages.

Of equal importance is the fact that in all the examples we want to show
some inexpressibility results. In the database example, we want to show that
the transitive closure is not expressible in �rst-order logic. In the complexity
example, it would be nice to show that certain problems cannot be expressed
in ∃SO { any such result would give us bounds on the classNP, and this would
hopefully lead to separation results for complexity classes. In the example from
formal languages, we want to show that certain regular languages (e.g., (aa)∗)
cannot be expressed in �rst-order logic.

Inexpressibility results have traditionally been a core theme of �nite model
theory. The main explanation for that is the source of motivating examples
for �nite model theory. Most of them come from computer science, where one
is dealing not with natural phenomena, but rather with arti�cial creations.
Thus, we often want to know the limitations of these creations. In general,
this explains the popularity of impossibility results in computer science. After
all, the most famous open problem of computer science, the Ptime vs NP
problem, is so fascinating because the expected answer would tell us that a
large number of important problems cannot be solved eÆciently.

8 1 Introduction

Concentrating on inexpressibility results highlights another important fea-
ture of �nite model theory: since we are often interested in counterexamples,
many constructions and techniques of interest apply only to a \small" frac-
tion of structures. In fact, we shall see that some techniques (e.g., locality)
degenerate to trivial statements on almost all structures, and yet it is that
small fraction of structures on which they behave interestingly that gives us
important techniques for analyzing expressiveness of logics, query languages,
etc. Towards the end of the book, we shall also see that on most typical struc-
tures, some very expressive logics collapse to rather weak ones; however, all
interesting separation examples occur outside the class of \typical" structures.

1.4 An Overview of the Book

In Chap. 2, we review the background material from mathematical logic, com-
putability theory, and complexity theory.

In Chap. 3 we introduce the fundamental tool of Ehrenfeucht-Fra��ss�e
games, and prove their completeness for expressibility in �rst-order logic (FO).
The game is played by two players, the spoiler and the duplicator, on two
structures. The spoiler tries to show that the structures are di�erent, while
the duplicator tries to show that they are the same. If the duplicator can
succeed for k rounds of such a game, it means that the structures cannot
be distinguished by FO sentences whose depth of quanti�er nesting does not
exceed k. We also de�ne types, which play a very important role in many
aspects of �nite model theory. In the same chapter, we see some bounds on
the expressive power of FO, proved via Ehrenfeucht-Fra��ss�e games.

Finding winning strategies in Ehrenfeucht-Fra��ss�e games becomes quite
hard for nontrivial structures. Thus, in Chap. 4, we introduce some suÆcient
conditions that guarantee a win for the duplicator. These conditions are based
on the idea of locality. Intuitively, local formulae cannot see very far from their
free variables. We show several di�erent ways of formalizing this intuition,
and explain how each of those ways gives us easy proofs of bounds on the
expressiveness of FO.

In Chap. 5 we continue to study �rst-order logic, but this time over struc-
tures whose universe is ordered. Here we see the phenomenon that is very
common for logics over �nite structures. We call a property of structures
order-invariant if it can be de�ned with a linear order, but is independent
of a particular linear order used. It turns out that there are order-invariant
FO-de�nable properties that are not de�nable in FO alone. We also show that
such order-invariant properties continue to be local.

Chap. 6 deals with the complexity of FO. We distinguish two kinds of
complexity: data complexity, meaning that a formula is �xed and the structure
on which it is evaluated varies, and combined complexity, meaning that both
the formula and the structure are part of the input. We show how to evaluate

1.4 An Overview of the Book 9

FO formulae by Boolean circuits, and use this to derive drastically di�erent
bounds for the complexity of FO: AC0 for data complexity, and Pspace for
combined complexity. We also consider the parametric complexity of FO: in
this case, the formula is viewed as a parameter of the input. Finally, we study
a subclass of FO queries, called conjunctive queries, which is very important
in database theory, and prove complexity bounds for it.

In Chap. 7, we move away from FO, and consider its extension with
monadic second-order quanti�ers: such quanti�ers can range over subsets of
the universe. The resulting logic is called monadic second-order logic, or MSO.
We also consider two restrictions of MSO: an ∃MSO formula starts with a se-
quence of existential second-order quanti�ers, which is followed by an FO
formula, and an ∀MSO formula starts with a sequence of universal second-
order quanti�ers, followed by an FO formula. We �rst study ∃MSO and ∀MSO
on graphs, where they are shown to be di�erent. We then move to strings,
where MSO collapses to ∃MSO and captures precisely the regular languages.
Further restricting our attention to FO over strings, we prove that it captures
the star-free languages. We also cover MSO over trees, and tree automata.

In Chap. 8 we study a di�erent extension of FO: this time, we add mech-
anisms for counting, such as counting terms, counting quanti�ers, or certain
generalized unary quanti�ers. We also introduce a logic that has a lot of
counting power, and prove that it remains local, much as FO. We apply these
results in the database setting, considering a standard feature of many query
languages { aggregate functions { and proving bounds on the expressiveness
of languages with aggregation.

In Chap. 9 we present the technique of coding Turing machines as �nite
structures, and use it to prove two results: Trakhtenbrot's theorem, which
says that the set of �nitely satis�able sentences is not recursive, and Fagin's
theorem, which says that NP problems are precisely those expressible in ex-
istential second-order logic.

Chapter 10 deals with extensions of FO for expressing properties that,
algorithmically, require recursion. Such extensions have �xed point operators.
There are three
avors of them: least, in
ationary, and partial �xed point
operators. We study properties of resulting �xed point logics, and prove that
in the presence of a linear order, they capture complexity classes Ptime (for
least and in
ationary �xed points) and Pspace (for partial �xed points). We
also deal with a well-known database query language that adds �xed points to
FO: Datalog. In the same chapter, we consider a closely related logic based
on adding the transitive closure operator to FO, and prove that over order
structures it captures nondeterministic logarithmic space.

Fixed point logics are not very easy to analyze. Nevertheless, they can be
embedded into a logic which uses in�nitary connectives, but has a restriction
that every formula only mentions �nitely many variables. This logic, and
its fragments, are studied in Chap. 11. We introduce the logic Lω

∞ω, de�ne
games for it, and prove that �xed point logics are embeddable into it. We

10 1 Introduction

study de�nability of types for �nite variable logics, and use them to provide
a purely logical counterpart of the Ptime vs. Pspace question.

In Chap. 12 we study the asymptotic behavior of FO and prove that every
FO sentence is either true in almost all structures, or false in almost all struc-
tures. This phenomenon is known as the zero-one law. We also prove that
Lω
∞ω , and hence �xed point logics, have the zero-one law. In the same chapter

we de�ne an in�nite structure whose theory consists precisely of FO sentences
that hold in almost all structures. We also prove that almost everywhere, �xed
point logics collapse to FO.

In Chap. 13, we show how �nite and in�nite model theory mix: we look
at �nite structures that live in an in�nite one, and study the power of FO
over such hybrid structures. We prove that for some underlying in�nite struc-
tures, like 〈N, +, ·〉, every computable property of �nite structures embedded
into them can be de�ned, but for others, like 〈R, +, ·〉, one can only de�ne
properties which are already expressible in FO over the �nite structure alone.
We also explain connections between such mixed logics and database query
languages.

Finally, in Chap. 14, we outline other applications of �nite model theory:
in decision problems in mathematical logic, in formal veri�cation of properties
of �nite state systems, and in constraint satisfaction.

1.5 Exercises

Exercise 1.1. Show how to express the following properties of graphs in �rst-order
logic:

• A graph is complete.
• A graph has an isolated vertex.
• A graph has at least two vertices of out-degree 3.
• Every vertex is connected by an edge to a vertex of out-degree 3.

Exercise 1.2. Show how to express the following properties of graphs in existential
second-order logic:

• A graph has a kernel, i.e., a set of vertices X such that there is no edge between
any two vertices in X, and every vertex outside of X is connected by an edge
to a vertex of X.
• A graph on n vertices has an independent set X (i.e., no two nodes in X are

connected by an edge) of size at least n/2.
• A graph has an even number of vertices.
• A graph has an even number of edges.
• A graph with m edges has a bipartite subgraph with at least m/2 edges.

Exercise 1.3. (a) Show how to de�ne the following regular languages in monadic
second-order logic:

• a∗(b + c)∗aa∗;

1.5 Exercises 11

• (aaa)∗(bb)+;

•
��

(a + b)∗cc∗
�∗

(aa)∗
�∗

a.

For the �rst language, provide a �rst-order de�nition as well.

(b) Let Φ be a monadic second-order logic sentence over strings. Show how to
construct a sentence Ψ such that Ms |= Ψ i� there is a string s′ such that |s |=|s′ |
and Ms·s′ |= Φ. Here |s | refers to the length of s, and s · s′ is the concatenation of
s and s′.

Remark: once we prove B�uchi's theorem in Chap. 7, you will see that the above
statement says that if L is a regular language, then the language

1

2
L = {s | for some s′, |s |=|s′ | and s · s′ ∈ L}

is regular too (see, e.g., Exercise 3.16 in Hopcroft and Ullman [126]).

