
Preface

One of the goals of software production in future decades must be to reduce
production costs and time to market considerably, while improving the quality
and stability of the product. This can be achieved most effectively if the broad
mass of application programmers is given the opportunity to apply their expert
knowledge in their application domain but is not expected to have in-depth
knowledge of the issues of software engineering and implementation.

The considerable gap between application-level problem solutions and effi-
cient implementations at the level of today’s source programs as written in C or
Java must be bridged by sophisticated optimizing techniques of program gen-
eration. At best, these techniques should be fully automatable – at least, they
should have strong automatic support. If this can be achieved, program genera-
tion has the potential to revolutionize software development just like automation
and components revolutionized manufacturing.

This book is about domain-specific program generation. It is a condensation
of contributions all but one of which were presented at a five-day seminar with
the same title at Schloss Dagstuhl, Germany, in March of 2003. The seminar
brought together researchers from four different communities:

– Domain-specific languages: Language developers in a specific application do-
main have often been unaware of the domain-independent aspects of their
domain-specific work. Vice versa, researchers who do not work in a specific
domain are often unaware of some of the factors that make an application
work.

– High-performance parallelism: This is one application domain which has led
to the development of a particular form of domain-specific language (so-
called skeletons). Researchers in this community are becoming interested in
the wider aspects of domain-specific program generation.

– Program generators: This domain is concerned with the fast and reliable gen-
eration of members of a program family, also called a product line. There are
many applications of product lines in industry, commerce, and the military.

– Metaprogramming: Researchers in this community develop a technology for
combining and specializing program fragments. This requires at least two
levels of code: one in which the fragments are coded and one which combines
and specializes the fragments. This technology can be used for customizing
compilation and translation systems for domain-specific purposes. Multi-
staging is a special form of metaprogramming, in which each level is coded
in the same programming language.

This volume has four parts.
Surveys. Six surveys attempt to give some structure to the diverse world of
domain-specific programming technology.

1. Batory retraces the evolution of the very successful domain of data base
query optimization and discusses what lessons can potentially be learned for
other domains.



VI Preface

2. Consel makes the point that a domain is best defined as a set of existing
programs and sketches how one might derive a domain-specific language from
such a set, with which one can then specify other programs in this set.

3. Taha illustrates the technique of multi-stage programming on the example
of a staged interpreter.

4. Czarnecki et al. describe staged interpreters and templates as a suitable way
of extending a host language with domain-specific constructs. They evalu-
ate and compare three languages for template programming: MetaOCaml,
Template Haskell and C++.

5. One step beyond domain-specific program generation lies the goal of domain-
specific program optimization. Lengauer reviews different optimization tech-
niques in the domain of high-performance parallelism.

6. Smaragdakis offers a personal assessment of the approaches and attitudes in
the research community of generative programming.

Domain-Specific Languages. Five contributions describe domain-specific
programming languages or language enhancements.

1. Bischof, Gorlatch and Leshchinskiy present the skeleton library DatTeL for
the domain of high-performance parallelism. The library’s two key features
are (1) its user interface, which is similar to the C++ Standard Template
Library (STL) and which facilitates a smooth transition from sequential
to parallel programming, and (2) an efficient implementation of STL-like
constructs on parallel computers.

2. Hammond and Michaelson describe the language Hume for the domain of
real-time embedded systems. Hume has high-level features typical for func-
tional languages. Since it consists of three layers, Hume also allows for
domain-specific metaprogramming.

3. O’Donnell describes an embedding of the language Hydra for the domain of
digital circuit design into the host language Template Haskell.

4. Consel and Réveillère present a programming paradigm for the domain of
services for mobile communication terminals. This domain is subject to fre-
quent changes in technology and user requirements. The paradigm enables
the quick development of robust communication services under these chal-
lenging circumstances.

5. Cremet and Odersky choose the π-calculus for mobile processes as their
domain. They describe the domain-specific language PiLib, which is imple-
mented as a library in Odersky’s new language Scala. With the features of
Scala, calls to PiLib can be made to look almost like π-formulas.

Tools for Program Generation. Three further contributions stress issues of
tool support for program generation in a domain-specific language.

1. Gregg and Ertl work with their language vmIDL for describing virtual ma-
chine instructions. Their tool vmgen takes the specification of such instruc-
tions in their domain-specific language and returns efficient implementations
of the instructions in C.



Preface VII

2. Visser presents the Stratego language for the domain of rewriting program
transformations, and the corresponding toolset Stratego/XT.

3. Fischer and Visser work with AutoBayes, a fully automatic, schema-based
program synthesis system for applications in the analysis of statistical data.
It consists of a domain-specific schema library, implemented in Prolog. In
their contribution to this volume, they discuss the software engineering chal-
lenges in retro-fitting the system with a concrete, domain-specific syntax.

Domain-Specific Optimization. Finally, four contributions describe domain-
specific techniques of program optimization.

1. Kuchen works with a skeleton library for high-performance parallelism, sim-
ilar to the library DatTel of Bischof et al. However, Kuchen’s library is not
based on STL. Instead, it contains alternative C++ templates which are
higher-order, enable type polymorphism and allow for partial application.
In the second half of his treatise, Kuchen discusses ways of optimizing (i.e.,
“retuning”) sequences of calls of his skeletons.

2. Gorlatch addresses exactly the same problem: the optimization of sequences
of skeleton calls. His skeletons are basic patterns of communication and com-
putation – so-called collective operations, some of which are found in stan-
dard communication libraries like MPI. Gorlatch also discusses how to tune
compositions of skeleton calls for a distributed execution on the Grid.

3. Beckmann et al. describe the TaskGraph library: a further library for C++
which can be used to optimize, restructure and specialize parallel target code
at run time. They demonstrate that the effort spent on the context-sensitive
optimization can be heavily outweighed by the gains in performance.

4. Veldhuizen pursues the idea of a compiler for an extensible language, which
can give formal guarantees of the performance of its target code.

Each submission was reviewed by one person who was present at the corre-
sponding presentation at Schloss Dagstuhl and one person who did not attend
the Dagstuhl seminar.1 There were two rounds of reviews. Aside from the editors
themselves, the reviewers were:

Ira Baxter Christoph M. Kirsch Ulrik Schultz
Claus Braband Shriram Krishnamurthy Tim Sheard
Krzysztof Czarnecki Calvin Lin Satnam Singh
Albert Cohen Andrew Lumsdaine Yannis Smaragdakis
Marco Danelutto Anne-Françoise Le Meur Jrg Striegnitz
Olivier Danvy Jim Neighbors Andrew Tolmach
Prem Devanbu John O’Donnell Todd Veldhuizen
Sergei Gorlatch Catuscia Palamidessi Harrick Vin
Kevin Hammond Susanna Pelagatti David Wile
Christoph A. Herrmann Simon Peyton Jones Matthias Zenger
Zhenjiang Hu Frank Pfenning
Paul H. J. Kelly Laurent Réveillère

1 An exception is the contribution by Cremet and Odersky, which was not presented
at Schloss Dagstuhl.



VIII Preface

IFIP Working Group. At the Dagstuhl seminar, plans were made to form an
IFIP TC-2 Working Group: WG 2.11 on Program Generation. In the meantime,
IFIP has given permission to go ahead with the formation. The mission statement
of the group follows this preface.

Acknowledgements. The editors, who were also the organizers of the Dagstuhl
seminar, would like to thank the participants of the seminar for their contribu-
tions and the reviewers for their thoughtful reviews and rereviews. The first
editor is grateful to Johanna Bucur for her help in the final preparation of the
book.

We hope that this volume will be a good ambassador for the new IFIP WG.

March 2004 Christian Lengauer
Don Batory

Charles Consel
Martin Odersky




