
Preface

The motion of classical mechanical systems is determined by Hamilton’s dif-
ferential equations: {

ẋ(t) = ∂yH(x(t), y(t))
ẏ(t) = −∂xH(x(t), y(t))

For instance, if we consider the motion of n particles in a potential field, the
Hamiltonian function

H =
1
2

n∑
i=1

y2
i − V (x1, . . . , xn)

is the sum of kinetic and potential energy; this is just another formulation of
Newton’s Second Law.

A distinguished class of Hamiltonians on a cotangent bundle T ∗X con-
sists of those satisfying the Legendre condition. These Hamiltonians are ob-
tained from Lagrangian systems on the configuration space X , with coordi-
nates (x, ẋ) = (space, velocity), by introducing the new coordinates (x, y) =
(space, momentum) on its phase space T ∗X . Analytically, the Legendre con-
dition corresponds to the convexity of H with respect to the fiber variable y.
The Hamiltonian gives the energy value along a solution (which is preserved
for time–independent systems) whereas the Lagrangian describes the action.
Hamilton’s equations are equivalent to the Euler–Lagrange equations for the
Lagrangian:

d
dt
∂ẋL(x(t), ẋ(t)) = ∂xL(x(t), ẋ(t)).

These equations express the variational character of solutions of the La-
grangian system. A curve x : [t0, t1] → Rn is a Euler–Lagrange trajectory
if, and only if, the first variation of the action integral, with end points held
fixed, vanishes:

δ

∫ t1

t0

L(x(t), ẋ(t)) dt
∣∣∣x(t1)

x(t0)
= 0.



VI Preface

In other words, solutions extremize the action with fixed end points on each
finite time interval.

This is not quite what one usually remembers from school1, namely that
solutions should minimize the action. The crucial point here is that the min-
imizing property holds only for short times. For instance, when looking at
geodesics on the round sphere, the movement along a great circle ceases to be
the shortest connection as soon as one comes across the antipodal point.

However, under certain circumstances there may well be action minimizing
trajectories. The investigation of these minimal objects is one of the central
topics of the present work. In fact, they do not always exist as genuine solu-
tions, but they do so as invariant measures. This is the outcome of a theory by
Mather and Mañé which generalizes Aubry–Mather theory from one to more
degrees of freedom. In particular, there exist action minimizing measures with
any prescribed “asymptotic direction” (described by a homological rotation
vector). Associating to each such rotation vector the action of a minimal mea-
sure, we obtain the minimal action functional

α : H1(X,R) → R.

By construction, the minimal action does not describe the full dynamics but
concentrates on a very special part of it. The fundamental question is how
much information about the original system is contained in the minimal ac-
tion?

The first two chapters of this book provide the necessary background on
Aubry–Mather and Mather–Mañé theories. In the following chapters, we in-
vestigate the minimal action in four different settings:

1. convex billiards
2. fixed points and invariant tori
3. Hofer’s geometry
4. symplectic geometry.

We will see that the minimal action plays an important role in all four situa-
tions, underlining the significance of that particular variational principle.
1. Convex billards. Can one hear the shape of a drum? This was Kac’ pointed
formulation of the inverse spectral problem: is a manifold uniquely determined
by its Laplace spectrum? We do know now that this is not true in full gen-
erality; for the class of smooth convex domains in the plane, however, this
problem is still open.

We ask a somewhat weaker question for the length spectrum (i.e., the set
of lengths of closed geodesics) rather than the Laplace spectrum, which is
closely related to the previous one: how much geometry of a convex domain
is determined by its length spectrum? The crucial observation is that one can
consider this geometric problem from a more dynamical viewpoint. Namely,
1 depending on the school, of course. . .
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following a geodesic inside a convex domain that gets reflected at the bound-
ary, is equivalent to iterating the so–called billiard ball map. The latter is a
monotone twist map for which the minimal action is defined.

The main results from Chapter 3 can be summarized as follows.

Theorem 1. For planar convex domains, the minimal action is invariant un-
der continuous deformations of the domain that preserve the length spectrum.

In particular, every geometric quantity that can be written in terms of the
minimal action is automatically a length spectrum invariant.

In fact, the minimal action is a complete invariant and puts all previously
known ones (e.g., those constructed in [2, 19, 63, 87]) into a common frame-
work.
2. Fixed points and invariant tori. We consider a symplectic diffeomorphism
in a neighbourhood of an elliptic fixed point in R2. If the fixed point is of
“general” type, the symplectic character of the map makes it possible (under
certain restrictions) to find new symplectic coordinates in which the map
takes a particularly simple form, the so–called Birkhoff normal form. The
coefficients of this normal form, called Birkhoff invariants, are symplectically
invariant.

The Birkhoff normal form describes an asymptotic approximation, in the
sense that it coincides with the original map only up to a term that vanishes
asymptotically when one approaches the fixed point. In general, it does not
give any information about the dynamics away from the fixed point.

The main result in this context introduces the minimal action as a sym-
plectically invariant function that contains the Birkhoff normal form, but also
reflects part of the dynamics near the fixed point.

Theorem 2. Associated to an area–preserving map near a general elliptic
fixed point there is the minimal action α, which is symplectically invariant.

It is a local invariant, i.e., it contains information about the dynamics
near the fixed point. Moreover, the Taylor coefficients of the convex conjugate
α∗ are the Birkhoff invariants.

Area–preserving maps near a fixed point occur as Poincaré maps of closed
characteristics of three–dimensional contact flows. A particular example is
given by the geodesic flow on a two–dimensional Riemannian manifold. In
this case, the minimal action is determined by the length spectrum of the
surface, and we obtain the following result.

Theorem 3. Associated to a general elliptic closed geodesic on a two–dimen-
sional Riemannian manifold there is the germ of the minimal action, which is
a length spectrum invariant under continuous deformations of the Riemannian
metric.

The minimal action carries information about the geodesic flow near the
closed geodesic; in particular, it determines its C0–integrability.
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In higher dimensions, we consider a symplectic diffeomorphism φ in a
neighbourhood of an invariant torus Λ. If we assume that the dynamics on Λ
satisfy a certain non–resonance condition, one can transform φ into Birkhoff
normal form again. If this normal form is positive definite the map φ deter-
mines the germ of the minimal action α, and we will show again that the
minimal action contains the Birkhoff invariants as Taylor coefficients of α∗.
3. Hofer’s geometry. Whereas the first three settings had many features in
common, the viewpoint here is quite different. Instead of looking at a single
Hamiltonian system, we investigate all Hamiltonian systems on a symplectic
manifold (M,ω) at once, collected in the Hamiltonian diffeomorphism group
Ham(M,ω). It is one of the cornerstones of symplectic topology that this group
carries a bi–invariant Finsler metric d, usually called Hofer metric, which is
constructed as follows.

Think of Ham(M,ω) as infinite–dimensional Lie group whose Lie algebra
consists of all smooth, compactly supported functions H : M → R with mean
value zero. Introduce any norm ‖ · ‖ on those functions that is invariant under
the adjoint action H �→ H ◦ψ−1. Then the Hofer distance of a diffeomorphism
φ from the identity is defined as the infimum of the lengths of all paths in
Ham(M,ω) that connect φ to the identity:

d(id, φ) = inf
{∫ 1

0

‖Ht‖ dt | ϕ1
H = φ

}
.

The problem is to choose the norm ‖·‖. The Hamiltonian system is determined
by the first derivatives of H , but ‖dH‖C0, for instance, is not invariant under
the adjoint action. It turns out that the oscillation norm

‖ · ‖ = osc := max−min

is the right choice although it seems to have nothing to do with the dynamics.
Loosely speaking, the Hofer metric generates a C−1–topology and measures
how much energy is needed to generate a given map.

The resulting geometry is far from being understood completely. This is
due to the fact that, despite its simple definition, the Hofer distance is very
hard to compute. After all, one has to take all Hamiltonians into account
that generate the same time–1–map. A fundamental question concerns the re-
lation between the Hofer geometry and dynamical properties of a Hamiltonian
diffeomorphism: does the dynamical behaviour influence the Hofer geometry
and, vice versa, can one infer knowledge about the dynamics from Hofer’s
geometry? Only little is known in this direction.

In Chap. 5, we take up this question for Hamiltonians on the cotan-
gent bundle T ∗Tn satisfying a Legendre condition. This leads to convex La-
grangians on TTn for which the minimal action α is defined. On the other
hand, the Hamiltonians under consideration are unbounded and do not fit
into the framework of Hofer’s metric. Therefore, we have to restrict them to
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a compact part of T ∗Tn, e.g., to the unit ball cotangent bundle B∗Tn, but in
such a way that we stay in the range of Mather’s theory.

Let α denote the minimal action associated to a convex Hamiltonian diffeo-
morphism on B∗Tn. Our main result in this context shows that the oscillation
of α∗, which is nothing but α(0), is a lower bound for the Hofer distance. This
establishes a link between Hofer’s geometry of convex Hamiltonian mappings
and their dynamical behaviour.

Theorem 4. If φ ∈ Ham(B∗Tn) is generated by a convex Hamiltonian then

d(id, φ) ≥ oscα∗ = α(0).

4. Symplectic geometry. Consider the cotangent bundle T ∗Tn with its canon-
ical symplectic form ω0 = dλ. Here, λ is the Liouville 1–form which is y dx in
local coordinates (x, y). Suppose H : T ∗Tn → R is a convex Hamiltonian. Be-
cause H is time–independent the energy is preserved under the corresponding
flow, i.e., all trajectories lie on (fiberwise) convex (2n−1)–dimensional hyper-
surfaces Σ = {H = const.}. Of particular importance in classical mechanics
are so–called KAM–tori. i.e., invariant tori carrying quasiperiodic motion.
These are graphs over the base manifold Tn, with the additional property
that the symplectic form ω0 vanishes on them; submanifolds with the latter
property are called Lagrangian submanifolds.

We want to study symplectic properties of Lagrangian submanifolds on
convex hypersurfaces. To do so, we observe that a Lagrangian submanifold
possesses a Liouville class aΛ, induced by the pull-back of the Liouville form
λ to Λ. The Liouville class is invariant under Hamiltonian diffeomorphisms,
i.e., it belongs to the realm of symplectic geometry. On the other hand, be-
ing a graph is certainly not a symplectic property. Our starting question in
this context is as follows: is it possible to move a Lagrangian submanifold Λ
on some convex hypersurface Σ by a Hamiltonian diffeomorphism inside the
domain UΣ bounded by Σ?

In a first part, we will see that, under certain conditions on the dynamics
on Λ, it is impossible to move Λ at all; we call this phenomenon boundary
rigidity. In fact, the Liouville class aΛ already determines Λ uniquely.

Theorem 5. Let Λ be a Lagrangian submanifold with conservative dynamics
that is contained in a convex hypersurface Σ, and let K be another Lagrangian
submanifold inside UΣ. Then

aΛ = aK ⇐⇒ Λ = K.

What can happen if boundary rigidity fails? Surprisingly, even if it is pos-
sible to push Λ partly inside the domain UΣ , it cannot be done completely.
Certain pieces of Λ have to stay put, and we call them non–removable inter-
sections. In the case where Σ is some distinguished “critical” level set, these
non–removable intersections always contain an invariant subset with specific
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dynamical behaviour; this subset is the so–called Aubry set from Mather–
Mañé theory. This result reveals a hidden link between aspects of symplectic
geometry and Mather–Mañé theory in modern dynamical systems.

Finally, we come back to the somewhat annoying fact that the property
of being a Lagrangian section is not preserved under Hamiltonian diffeomor-
phisms. For this, we consider

Theorem 6. Let U be a (fiberwise) convex subset U of T ∗Tn. Then every
cohomology class that can be represented as the Liouville class of some La-
grangian submanifold in U , can actually be represented by a Lagrangian sec-
tion contained in U .

So, from this rather vague point of view at least, Lagrangian sections actually
do belong to symplectic geometry.

Furthermore, the above result allows symplectic descriptions of seemingly
non–symplectic objects: the stable norm from geometric measure theory, and
also our favourite, the minimal action.

Theorem 7. The stable norm of a Riemannian metric g on Tn, and the min-
imal action of a convex Lagrangian L : TTn → R, both admit a symplectically
invariant description.

This closes the circle for our investigation of the Principle of Least Action
in geometry and dynamics.
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