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Preliminaries

In this Chapter we collect some definitions and results which will be useful
later in the book. Virtually no proofs are given, but we provide references to
works where these matters are dealt with in a comprehensive way. All vector
spaces which will be mentioned will be assumed to be over the complex field,
unless otherwise stated.

1.1 Hausdorff and Minkowski dimensions

Definition 1.1.1. Given any s ≥ 0, ε > 0 and E ⊂ Rn, we put

Hs
ε (E) = inf

⎧⎨
⎩

∞∑
j=1

ωs2−s(diam Aj)s : E ⊂
∞⋃
j=1

Aj , diam Aj < ε

⎫⎬
⎭ ,

where
ωs = πs/2/Γ

(s
2

+ 1
)
.

Note that Hs
ε is an outer measure on Rn. Since Hs

ε (E) is non-decreasing
in ε, we define

Hs(E) = lim
ε→0

Hs
ε (E)

and call this the s−dimensional Hausdorff outer measure of E. The
restriction of Hs to the σ−field of Hs−measurable sets (which can be shown
to include the Borel sets) is called the s−dimensional Hausdorff measure

The reason for introducing Hs is to provide a means of distinguishing
between various lower-dimensional subsets of Rn. We summarise some of the
more important properties of Hs as follows and refer to [90], [93] and [79] for
proofs and further information:
(i) Hs is a Borel regular measure;
(ii) H0 is counting measure;
(iii) Hn coincides with n−dimensional Lebesgue measure µn on Rn;
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(iv) if s > n, Hs is the zero measure on Rn;
(v) Hs(λE) = λsHs(E) for all s ≥ 0, all λ > 0 and all E ⊂ Rn;
(vi) if f : Rm → R

n is Lipschitz-continuous on Rm (that is, there exists C > 0
such that for all x, y ∈ Rm, |f(x)− f(y)| ≤ C |x− y| , where | · | denotes the
corresponding Euclidean distance), then for all E ⊂ Rn and all s ≥ 0,

Hs(f(E)) ≤ CsHs(E).

To help us define the Hausdorff dimension of subsets of Rn the following
Lemma will be very useful.

Lemma 1.1.2. Let E ⊂ Rn and suppose that 0 ≤ s < t <∞. If Hs(E) <∞,
then Ht(E) = 0; if Ht(E) > 0, then Hs(E) =∞.

Proof. First suppose that Hs(E) <∞, and let δ > 0. Then for some sets Aj
(j ∈ N) with diam Aj ≤ δ and E ⊂ ∪∞j=1Aj we have

∞∑
j=1

ωs2−s(diam Aj)s ≤ Hs
δ (E) + 1 ≤ Hs(E) + 1.

Hence

Ht
δ(E) ≤

∞∑
j=1

ωt2−t(diam Aj)t

=
ωt
ωs

2s−t
∞∑
j=1

ωs2−s(diam Aj)s(diam Aj)t−s

≤ ωt
ωs

2s−tδt−s {Hs(E) + 1} .

Now let δ → 0 : it follows that Ht(E) = 0. The rest is obvious. 
�

Definition 1.1.3. The Hausdorff dimension of a subset E of Rn is defined
to be

d(E) = inf {s ∈ [0,∞) : Hs(E) = 0} .

Note that in view of Lemma 1.1.2,

Hs(E) =
{

0 if s > d(E),
∞ if s < d(E).

Moreover, 0 ≤ d(E) ≤ n; d(E) need not be an integer, and even if d(E) = k ∈
N, E need not be a “k−dimensional surface” in any reasonable sense.

Now we turn to the Minkowski dimension. Let E be a compact subset of
R
n, let ε > 0 and put

Eε = {x ∈ Rn : d(x,E) < ε} .
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Definition 1.1.4. Given any compact subset E of Rn and any d ≥ 0,

Md(E) := lim sup
ε→0+

ε−(n−d) |Eε|n

is the d−dimensional upper Minkowski content of E. Here |E|n is the
Lebesgue n-measure of E. The Minkowski dimension of E is defined to be

dM (E) = inf
{
d ≥ 0 : Md(E) = 0

}
= sup

{
d ≥ 0 : Md(E) =∞

}
.

If 0 < MdM (E)(E) <∞ and

MdM(E)(E) = lim
ε→0+

ε−(n−d) |Eε|n ,

then E is said to be Minkowski-measurable and MdM(E)(E) is called the
Minkowski measure of E. It is known (see, for example, [153]) that if Ω is
a non-empty open subset of Rn with boundary ∂Ω, then n−1 ≤ dM (∂Ω) ≤ n.

1.2 The area and coarea formulae

These important formulae relate to functions f : Rm → R
n, where m,n ∈ N,

which are Lipschitz-continous so that there is a constant C > 0 such that
for all x, y ∈ Rm,

|f(x)− f(y)| ≤ C |x− y| .

The weaker notion of a locally Lipschitz function is also useful: by this we
mean that for each compact set K ⊂ Rm, there is a constant C(K) such that
for all x, y ∈ K,

|f(x)− f(y)| ≤ C(K) |x− y| .
An important result for such functions is

Theorem 1.2.1. (Rademacher’s theorem) Let f : Rm → R
n be locally Lip-

schitz and let µm be Lebesgue m−measure on Rm. Then f is differentiable
µm−a.e. on Rm.

From this it is not difficult to prove

Corollary 1.2.2. Let f : Rm → R
n be locally Lipschitz. Then its derivative

Df(x) is zero for µm−a.e. x ∈ ker(f).

For these results see [79].
We shall also need the Jacobian of a Lipschitz map f : Rm → R

n. For this
we recall some basic facts concerning linear maps L : Rm → R

n. Such a map is
called orthogonal if (Lx,Ly)n = (x, y)m for all x, y ∈ Rm; it is symmetric
if m = n and (x, Ly)m = (Lx, y)m for all x, y ∈ Rm. Here (·, ·)k denotes the
inner product in Rk. If m ≤ n, there are a symmetric map S : Rm → R

m and
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an orthogonal map O : Rm → R
n such that L = O ◦ S; if m ≥ n, there are

a symmetric map S : Rn → R
n and an orthogonal map O : Rn → R

m such
that L = S ◦ O∗, where O∗ is the adjoint of O. In both cases we define the
Jacobian of L to be |det S| . For details of all this, and for a proof that the
Jacobian is well-defined (that is, independent of the particular choices of O
and S) we refer to [79].

Returning to our Lipschitz map f : Rm → R
n, we note that by Rademacher’s

theorem, f is differentiable µm−a.e., so that its derivative Df(x) exists and
corresponds to a linear map from R

m to Rn for µm−a.e. x ∈ Rm. The Jaco-
bian of f at µm−a.e. x ∈ Rm is defined to be the Jacobian of this linear map
and is denoted by Jf(x).

After these preliminaries we can give the area theorem:

Theorem 1.2.3. Let m,n ∈ N, m ≤ n, let f : Rm → R
n be Lipschitz-

continuous and let A be a µm−measurable subset of Rm. Then
∫
A

Jfdx =
∫

Rn

H0
(
A ∩ f−1(y)

)
dHm(y).

The corresponding result when m ≥ n is the coarea theorem :

Theorem 1.2.4. Let m,n ∈ N, m > n, let f : R
m → R

n be Lipschitz-
continuous, let g ∈ L1(Rm) and let A be a µm−measurable subset of Rm.
Then ∫

A

g(x)Jf(x)dx =
∫

Rn

∫
A∩f−1(y)

g(x)dHm−n(x)dy.

For a proof of these important theorems we refer to [79] and [93].
From the special case n = 1, m > 1, A = R

m of the coarea theorem we
have a result of particular interest.

Corollary 1.2.5. Let f : Rm → R be Lipschitz-continuous and let g ∈
L1(Rm). Then

∫
Rm

g(x) |∇f(x)| dx =
∫ ∞

0

∫
{x∈Rm:|f(x)|=t}

g(x)dHm−1(x)dt.

Proof. Just observe that Jf = |∇f | and use Theorem 1.2.4. 
�

A more general version of the coarea formula will be useful. To explain
this, let Ω be an open subset of Rn and let f ∈ L1(Ω). We say that f is of
bounded variation in Ω if its first-order distributional partial derivatives
are signed Radon measures with finite total variation in Ω. The family of all
functions of bounded variation on Ω is denoted by BV (Ω). If u ∈ BV (Ω),
the distributional gradient Du of u is a vector-valued measure whose total
variation ‖Du‖ (Ω) is a finite measure on Ω, and
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‖Du‖ (Ω) = sup
{∫

Ω

u div φ dx : φ ∈ C∞
0 (Ω,Rn), |φ(x)| ≤ 1 for all x ∈ Ω

}
.

Given any u ∈ BV (Ω), the measure Du can be split into a part which is
absolutely continuous with respect to Lebesgue measure, and a singular part.
The density of the absolutely continuous part will be denoted by ∇u : thus if
u ∈W 1

1 (Ω), dDu = ∇udx and

‖Du‖ (Ω) =
∫
Ω

|∇u| dx.

A set E ⊂ Rn is said to have finite perimeter if its characteristic function
χE is in BV (Rn), in which case the perimeter of E is defined to be

P (E) = ‖DχE‖ (Rn).

It can be shown that sets with minimally smooth boundary, such as Lipschitz
domains, have finite perimeter. The version of the coarea theorem which we
shall need involves the perimeter of sets of the form

Et := {x ∈ Ω : u(x) > t} , t > 0, u ∈ BV (Ω).

With this notation, the theorem reads as follows.

Theorem 1.2.6. Let Ω be an open subset of Rn and let u ∈ BV (Ω). Then

‖Du‖ (Ω) =
∫

R

‖DχEt‖ (Ω)dt.

Moreover, if u ∈ W 1
1 (Rn) (the Sobolev space consisting of functions which,

together with their first-order distributional derivatives, are in L1(Rn)) and f
is any Borel function on Rn,∫

Rn

f |∇u|dx =
∫

R

∫
{u=t}

fdHn−1(x)dt.

For proofs of results of this nature we refer to the books of Giusti [100],
Maz’ya [171] and Ziemer [231].

In conjunction with the coarea theorem we shall sometimes need the clas-
sical isoperimetric inequality:

Let E be a subset of Rn with finite n−measure |E|n and finite perimeter.
Then

P (E) ≥ nω1/n
n |E|1−1/n

n . (1.2.1)

The books just mentioned may be consulted for details of this famous result.
It implies that if E is a subset of Rn with finite n−measure and appropriate
boundary, then

Hn−1(∂E) ≥ nω1/n
n |E|1−1/n

n . (1.2.2)

Often it is applied in the situation where E = {x ∈ Rn : |u(x)| > t} , t > 0,
where u is a smooth function on Rn with compact support.
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1.3 Approximation numbers

First, it may be helpful to give some information about quasi-normed spaces.
A quasi-norm on a linear space X is a map ‖· | X‖ : X → [0,∞) which has
the following three properties:
(i) ‖x | X‖ = 0 if, and only if, x = 0;
(ii) ‖λx | X‖ = |λ| ‖x | X‖ for all scalars λ and all x ∈ X ;
(iii) there is a constant C such that for all x, y ∈ X ;

‖x + y | X‖ ≤ C (‖x | X‖+ ‖y | X‖) .

It is clear that C ≥ 1. If it is possible to take C = 1, then (iii) is the
familiar triangle inequality and ‖· | X‖ is a norm on X. A quasi-norm ‖· | X‖
defines a topology on X which is compatible with the linear structure of X :
this topology has a basis of (not necessarily open) neighbourhoods of any
point x ∈ X given by the sets {y ∈ X : ‖x− y | X‖ < 1/n} , n ∈ N. The
pair (X, ‖· | X‖) is said to be a quasi-normed space and is a special type of
metrisable topological vector space. The notions of convergence and of Cauchy
sequences are defined in the obvious way, and if every Cauchy sequence in X
converges, to a point in X, then X is called a quasi-Banach space.

Let p ∈ (0, 1]. By a p−norm on a linear space X is meant a map ‖· | X‖ :
X → [0,∞) which has properties (i) and (ii) above and instead of (iii) satisfies
(iii’) ‖x + y | X‖p ≤ ‖x | X‖p + ‖x | X‖p for all x, y ∈ X.

Two quasi-norms or p−norms ‖· | X‖1 and ‖· | X‖2 on X are called equiv-
alent if there is a constant c ≥ 1 such that for all x ∈ X,

c−1 ‖x | X‖1 ≤ ‖x | X‖2 ≤ c ‖x | X‖1 .

It can be shown that if ‖· | X‖1 is a quasi-norm on X, then there exist
p ∈ (0, 1] and a p−norm ‖· | X‖2 on X which is equivalent to ‖· | X‖1 ; the
connection between p and the constant C in (iii) is given by C = 2

1
p−1.

Conversely, any p−norm is a quasi-norm with C = 2
1
p−1.

The standard examples of quasi-Banach spaces which are not Banach
spaces are lp and Lp, with 0 < p < 1.

Let X,Y be quasi-Banach spaces and let T : X → Y be linear. As in the
Banach space case, T is called bounded or continuous if

‖T ‖ := sup {‖Tx | Y ‖ : x ∈ X, ‖x | X‖ ≤ 1} <∞.

Let X and Y be Banach spaces and let B(X,Y ) be the space of all bounded
linear maps from X to Y. If T ∈ B(X,Y ) and k ∈ N, the kth approximation
number of T, denoted by ak(T ), is defined by

ak(T ) = inf {‖T − L‖ : L ∈ B(X,Y ), rank L < k} ,

where rank L = dim L(X). The same definition can be used for the situation
in which X and Y are quasi-Banach spaces.
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It is easy to verify that if X, Y and Z are Banach spaces and S, T ∈
B(X,Y ), R ∈ B(Y, Z), then
(i) ‖T ‖ = a1(T ) ≥ a2(T ) ≥ ... ≥ 0;
(ii) for all k, l ∈ N,

ak+l−1(S + T ) ≤ ak(S) + al(T )

and
ak+l−1(R ◦ S) ≤ ak(R)al(S);

(iii) ak(T ) = 0 if, and only if, rank T < k;
(iv) if dim X ≥ n and id : X → X is the identity map, then ak(id) = 1 for
k = 1, ..., n.

With more effort (see [46], Prop. II.2.5), it can be shown that
(v) if T is compact, then ak(T ) = ak(T ∗) for all k ∈ N.

In view of (i) above, it is clear that

α(T ) := lim
k→∞

ak(T )

exists. If α(T ) = 0, then T is the limit (in the operator norm sense) of a
sequence of finite-dimensional maps and so is compact. However, if T is com-
pact it does not follow that α(T ) = 0 : this is a consequence of Per Enflo’s
work on the approximation problem (see [78]). Compactness of T does imply
that the approximation numbers converge to zero if Y has the bounded ap-
proximation property (see [228]): we recall that this means that there is a
constant C such that for every finite subset F of Y and every ε > 0, there is
a bounded linear map L : Y → Y with finite rank such that ‖Ly − y | Y ‖ ≤ ε
for all y ∈ F, and ‖L‖ ≤ C. This is so if, for example, Y is a Hilbert space or
Y = Lp(Ω), where 1 ≤ p < ∞ and Ω is an open subset of Rn; in both these
cases (see [46], Corollary V.5.4),

α(T ) := inf {‖T −K‖ : K is a compact linear map from X to Y } .

An important property of the approximation numbers is their connection
with eigenvalues, in a Hilbert space setting. Thus if H is a complex Hilbert
space and T is a compact linear map from H to itself, then T ∗T has a posi-
tive compact square root |T | , which accordingly has a sequence {λk(|T |)} of
positive eigenvalues, each repeated according to multiplicity and ordered so
that

λ1(|T |) ≥ λ2(|T |) ≥ ... ≥ 0.

If T has only a finite number of distinct positive eigenvalues and M is the
sum of their multiplicities, we put λk(|T |) = 0 for all k > M. The eigenvalues
λk(|T |) of |T | are called the singular values of T. It turns out (see, for
example, Theorem II.5.10 of [46]) that for all k ∈ N,

ak(T ) = λk(|T |).
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In particular, if T is compact and positive (hence self-adjoint), then for all
k ∈ N,

ak(T ) = λk(T ).

It is plain that for a compact map T ∈ B(X,Y ) the approximation numbers
may be thought of as providing a means of measuring ‘how compact’ it is, at
least under some restrictions on Y.There are other sequences of numbers which
perform the same function: here we single out the entropy numbers for special
mention. Let X and Y be Banach spaces and let UX = {x ∈ X : ‖x | X‖ ≤ 1} .
Given T ∈ B(X,Y ) and k ∈ N, the kth entropy number of T, denoted by
ek(T ), is defined by

ek(T ) = inf
{
ε > 0 : T (UX) can be covered by 2k−1 balls in Y of radius ε

}
.

It may be easily checked that properties (i) and (ii) above of the approximation
numbers are also enjoyed by the entropy numbers. This is not so for (iii)-(v),
however. Moreover,

β(T ) := lim
k→∞

ek(T )

is the (ball) measure of non-compactness of T ; and T is compact if, and
only if, β(T ) = 0.

If T is a compact linear map from a Banach space X to itself, its spectrum,
apart from the point 0, consists of eigenvalues of finite algebraic multiplicity:
we let {λk(T )} be the sequence of all non-zero eigenvalues of T, repeated ac-
cording to algebraic multiplicity and ordered by decreasing modulus. If T has
only a finite number of distinct eigenvalues and M is the sum of their alge-
braic multiplicities, then just as before we put λk(T ) = 0 for all k > M. A
most useful connection between the spectral properties of T and its geometri-
cal characteristics as expressed by the entropy numbers is provided by Carl’s
inequality (see [28]):

|λk(T )| ≤
√

2ek(T ) for all k ∈ N.

For another proof of this and a more general inequality see [30]; an extension
to quasi-Banach spaces is given in [74].

Two-sided estimates of the approximation numbers of embeddings between
Sobolev spaces (and much more general spaces) are available. To illustrate
this, let Ω be a bounded domain in Rn with smooth boundary, and for any
k ∈ N and any p ∈ (0,∞] let W k

p (Ω) be the Sobolev space of all functions
u which, together with their distributional derivatives of all orders up to and
including k, are in Lp(Ω). When endowed with the quasi-norm

∥∥u |W k
p (Ω)

∥∥ =

⎛
⎝∑

|α|≤k
‖Dαu | Lp(Ω)‖p

⎞
⎠

1/p

(with the natural interpretation when p = ∞), this is a quasi-Banach space.
Now suppose that
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s1, s2 ∈ N; p1, p2 ∈ (0,∞] and that δ+ := s1 − s2 − n

(
1
p1
− 1
p2

)
+

> 0.

Then W s1
p1 (Ω) is compactly embedded in W s2

p2 (Ω); denote the embedding map
by id. It turns out that if in addition 0 < p1 ≤ p2 ≤ 2, or 2 ≤ p1 ≤ p2 ≤ ∞,
or 0 < p2 ≤ p1 ≤ ∞, then

ak(id) ≈ k−δ
+/n.

The situation when p1 and p2 lie on opposite sides of 2, with p1 < p2, is more
complicated, but it can be shown that if in addition to the hypothesis that
δ+ > 0 we have 0 < p1 < 2 < p2 < ∞ (or 1 < p1 < 2 < p2 = ∞) and
δ+ < n/min{p′1, p2}, then

ak(id) ≈ k−
δ+
2n min{p′1,p2}.

For these results we refer to [74], Chapter 3, and [26].
Additional results relating to the material in this section, and in particular

concerning comparisons between approximation and entropy numbers, may be
found in [29], [46], [74], [143], [198] and [199].

1.4 Inequalities

Here we give some inequalities which will be of help in the text. The first is
of Minkowski type.

Theorem 1.4.1. Let (S1, µ1) and (S2, µ2) be positive measure spaces and let
K be a µ1 × µ2−measurable function on S1 × S2. Then if 1 ≤ p <∞,

{∫
S1

[∫
S2

|K(s1, s2)| dµ1(s1)
]p
dµ2(s2)

}1/p

≤
∫
S1

{∫
S2

|K(s1, s2)|p dµ2(s2)
}1/p

dµ1(s1).

For this we refer to [44], Vol. 1, p. 530.
The next is Jensen’s inequality.

Theorem 1.4.2. Let (X,µ) be a finite measure space, let I be an interval
in R, let Φ : I → R be convex and suppose that f ∈ L1(X,µ) is such that
f(X) ⊂ I and Φ ◦ f ∈ L1(X,µ). Then

Φ

(
1

µ(X)

∫
X

fdµ

)
≤ 1
µ(X)

∫
X

(Φ ◦ f)dµ.

We refer to [126], p.202, for this.




