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Kapitel

Einfache elektrische
Netzwerke

Bei der Analyse von elektronischen Schaltungen geht man in der Regel so vor, dass in
einem ersten Schritt die realen Bauelemente durch einfache Ersatzschaltbilder (Modelle)
ersetzt werden. Die Ableitung der Modellparameter haben wir bereits fiir einfache geo-
metrische Anordnungen, z.B. bei der Berechnung der Kapazitit eines Vielschichtkonden-
sators kennen gelernt. Mit Hilfe von geeigneten Rechenverfahren und unter Zuhilfenahme
vereinfachender Annahmen werden die im allgemeinen Fall komplizierten dreidimensio-
nalen Feldverteilungen zuriickgefiihrt auf die integralen Gré8en, wie z.B. R und C. Diese
Modellierung der Komponenten ist im Wesentlichen Aufgabe der Bauelementehersteller,
die die bendtigten Informationen in Datenblittern zur Verfiigung stellen. Die Aufgabe fiir
den Schaltungsentwickler besteht darin, aus den bekannten Komponenten gezielt Netz-
werke fiir bestimmte Zwecke zusammenzubauen.

Die Berechnung von Netzwerken spielt daher in der Elektrotechnik eine zentrale Rolle.
Bevor wir uns mit dem einfachsten Fall der Gleichstromnetzwerke beschéftigen, sollen
einige immer wiederkehrende Begriffe definiert werden.

Zweipole:

Unter einem Zweipol versteht man ein Bauelement mit zwei Anschlussklemmen. Fiir die
Behandlung von Zweipolen in den Netzwerken ist nur noch ihr Klemmenverhalten
(gemeint ist der Zusammenhang zwischen den Groflen Strom und Spannung an dem
betreffenden Bauelement) von Interesse, die praktische Realisierung durch eine drei-
dimensionale Anordnung und die ortsabhédngige Verteilung der Feldgroen spielen keine
Rolle mehr. Die Beschreibung erfolgt durch einfache skalare Beziehungen zwischen den
an den Klemmen zuginglichen Grofen Strom und Spannung. Als Beispiel sei an den
Kugelkondensator in Abb. 1.31 erinnert, der lediglich durch seine Kapazitit (1.76) cha-
rakterisiert wird.

Schaltkreise:

Durch die Zusammenschaltung von Bauelementen entstehen elektrische Netzwerke
(Schaltkreise). Zur vollstindigen Beschreibung eines Netzwerks muss neben dem Klem-
menverhalten aller Komponenten auch die Verkniipfung der Bauelemente untereinander
bekannt sein. Die Zusammenschaltung bezeichnet man als Topologie bzw. Schaltungs-
topologie.
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Schaltbilder:

Die grafische Darstellung von Netzwerken bezeichnet man als Schaltbilder. Zur Darstel-
lung der Bauelemente werden die Schaltsymbole verwendet. Die leitende Verbindung
zwischen den Bauelementen (in der Praxis z.B. durch diinne leitende Drihte realisiert)
wird als idealer (widerstandsloser) Leiter angesehen und spielt bei der Schaltungsanalyse
keine Rolle. Die einzelnen Verbindungen sollten moglichst geradlinig, kreuzungsfrei und
ohne Richtungsidnderungen dargestellt werden. Gleichzeitig sollte die Wirkungsrichtung
bzw. die Signalflussrichtung den Normen entsprechend von links nach rechts oder von
oben nach unten verlaufen.

3.1 Zahlpfeile

Erinnern wir uns noch einmal an die Definition der elektrischen Spannung nach GlI. (1.30)
als das Wegintegral der elektrischen Feldstéirke

B
U, =9¢.P)-0.0)= IE'dS

B

Die beiden Indizes bei der Spannung verdeutlichen die Richtung, in der die Feldstéirke
integriert wird. Wenden wir diese Beziehung auf die zylindrische Anordnung in der Abb.
2.16 an, dann wird die Feldstirke von einem in der Aquipotentialfliche ¢,; liegenden
Punkt P, bis zu einem in der Aquipotentialfliche ¢,, liegenden Punkt P,, d.h. in Richtung
der x-Koordinate integriert. Die Spannung wird dann ebenfalls in der gleichen Richtung
positiv gezéhlt und in einem Schaltbild mit einem Zihlpfeil versehen. Eine spezielle
Kennzeichnung der beiden Anschlussklemmen mit den Zahlen 1 und 2 ist dann nicht
mehr notwendig. Ist der Wert der Spannung auf der rechten Seite der Abb. 3.1 positiv,
dann stimmt die Richtung des elektrischen Feldes mit der Integrationsrichtung und damit
auch mit der Zahlrichtung fiir die Spannung iiberein, und der Pfeil zeigt von positiven
Ladungen zu negativen Ladungen.

U

Abbildung 3.1: Kennzeichnung der Spannung durch Zahlpfeile

Auf dhnliche Weise wird ein Zihlpfeil fiir den Strom vereinbart. In Kap. 2.2 hatten wir
bereits die Richtung der Stromdichte durch die Bewegungsrichtung der positiven
Ladungstriger in Gl. (2.9) definiert. Den Strom erhélt man nach Gl. (2.11), indem man
das Skalarprodukt aus der gerichteten Stromdichte mit dem vektoriellen Flichenelement
iiber die zu betrachtende Fliche integriert. Je nach Orientierung der vektoriellen Fliche
ergeben sich unterschiedliche Vorzeichen fiir den Strom. Betrachten wir auch hier wieder
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die in der Abb. 2.16 dargestellte Anordnung. Nach Festlegung der Richtung von dA kann
dem Strom eindeutig ein Zihlpfeil in diese Richtung zugeordnet werden (vgl. Abb. 3.2).
Besitzt der Strom 7 auf der rechten Seite des Bildes einen positiven Wert, dann bewegen
sich die positiven Ladungstriger in Richtung des vektoriellen Flichenelementes. Entspre-
chend bedeutet ein negativer Wert von /, dass sich die positiven Ladungstréger entgegen
der Flachenorientierung bewegen.

Abbildung 3.2: Kennzeichnung des Stromes durch Zahlpfeile

3.2 Spannungs- und Stromquellen

Zur Aufrechterhaltung eines Gleichstromes in einer Schaltung miissen Quellen
vorhanden sein, die die von den Elektroden abflieBenden Ladungstriger immer wieder
nachliefern. Betrachten wir zunzchst die Abb. 3.3, bei der sich auf den Platten eines Kon-
densators die Ladungen +Q befinden. An den Kondensator wird ein Verbraucher, symboli-
siert durch einen Widerstand, angeschlossen, an den die im Kondensator gespeicherte
Energie abgegeben werden soll. Da die auf der negativ geladenen Platte befindlichen
Elektronen durch die angeschlossenen Drihte und den Widerstand zur positiv geladenen
Platte flieBen konnen, wird die anfinglich vorhandene Kondensatorspannung stetig
abnehmen. Die aus dem Kondensator entnommene Energie wird im Widerstand in
Wiirme umgewandelt!.

' Strenggenommen wird bei diesem zeitabhiingigen Vorgang auch ein geringer Teil der Energie

durch Wellenausbreitung in den freien Raum abgestrahlt. Dieser Anteil tritt aber bei den im Fol-
genden behandelten Gleichstromnetzwerken nicht auf und wird daher auch nicht weiter betrachtet.
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U>0

Quelle Verbraucher
Abbildung 3.3: Spannungsquelle und Verbraucher

Der Kondensator in der vorliegenden Anordnung ist nur bedingt als Spannungsquelle ein-
setzbar. Einerseits nimmt seine Spannung zeitlich ab, und andererseits kann er nur fiir
einen begrenzten Zeitabschnitt Leistung abgeben, da lediglich die zuvor im elektrischen
Feld zwischen den Kondensatorplatten gespeicherte Energie zur Verfiigung steht. Der
iiblicherweise verwendete Begriff Quelle ist etwas irrefithrend, da keine Energieerzeu-
gung, sondern immer nur Energiewandlung stattfindet. In einem Akkumulator wird bei-
spielsweise chemische Energie in elektrische Energie umgewandelt, im betrachteten Bei-
spiel wird die elektrische Energie des Kondensators in Warmeenergie am Widerstand
umgewandelt.

Von einer idealen Gleichspannungsquelle wird jedoch erwartet, dass sie die Spannung
unabhingig von dem Belastungswiderstand zeitlich konstant hilt. Eine Batterie bzw. ein
Akkumulator? mit hinreichend groBer Energiereserve kommt dieser Situation schon sehr
nahe. Mit elektronischen Schaltungen, die die vom 230V-Netz angebotene Energie in eine
Gleichspannung umwandeln, lassen sich nahezu ideale Spannungsquellen realisieren. Fiir
eine solche ideale Spannungsquelle gilt:

B die Ausgangsspannung ist unabhingig von dem angeschlossenen Netzwerk,

B der Strom hingt von dem angeschlossenen Netzwerk ab und stellt sich z.B. im Falle
eines ohmschen Widerstandes entsprechend der Beziehung / = U/R ein.

Ein vollig anderes Verhalten zeigen die Stromquellen, die ebenfalls mit Hilfe elektroni-
scher Schaltungen realisiert werden konnen. Fiir eine ideale Stromquelle gilt:

B der Ausgangsstrom ist unabhingig von dem angeschlossenen Netzwerk,

B die Ausgangsspannung hingt von dem angeschlossenen Netzwerk ab und stellt sich
im Falle eines ohmschen Widerstandes entsprechend der Beziehung U = R/ ein.

Ein Akkumulator wird genauso wie ein Kondensator durch seine Kapazitit gekennzeichnet.
Allerdings hat dieser Begriff beim Akkumulator eine etwas andere Bedeutung. Er bezeichnet
nicht das Verhiltnis von aufgenommener Ladung zu angelegter Spannung [As/V] entsprechend
GIL. (1.70), sondern den iiber einen Zeitraum zur Verfiigung stehenden Entladestrom. Die Kapa-
zitdt des Akkumulators wird daher in Ah oder mAh angegeben. Die Bezeichnung h steht als Ab-
kiirzung fiir Stunde (hour).
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Ol  ®o  ®w

Gleichspannung Zeitlich beliebig Zeitlich beliebig
veranderliche Spannung veranderlicher Strom

Abbildung 3.4: Ideale Spannungs- und Stromquellen

Fiir die Spannungs- und Stromquellen werden die in der Abb. 3.4 dargestellten Symbole
verwendet. Dabei sind auch bereits die Fille dargestellt, bei denen Strom und Spannung
zeitlich verédnderlich sind.

3.3 Zahlpfeilsysteme

In Abschnitt 3.1 haben wir bereits ein Zihlpfeilsystem am ohmschen Widerstand (Ver-
braucherzihlpfeilsystem) kennen gelernt (rechte Seite der Abb. 3.5), bei dem Strom und
Spannung gleich gerichtet sind. Fiir U > 0 wird der in die positive Anschlussklemme hin-
einflieBende Strom positiv gezihlt. Fiir die Quellen verwendet man iiblicherweise das
Generatorzihlpfeilsystem, bei dem Spannung und Strom entgegengesetzt gerichtet sind.
Der aus der positiven Anschlussklemme herausflieBende Strom wird positiv gezihlt.
Diese Festlegung ist angepasst an den physikalischen Hintergrund, dass der Generator
(Quelle) die Energie liefert, wihrend der Verbraucher die Energie aufnimmt.

! 1
—»—o0 o—p—
<=> U U I:I U=RI
—o o—
Generatorzéhlpfeilsystem Verbraucherzahlpfeilsystem

Abbildung 3.5: Generator- und Verbraucherzéhlpfeilsystem
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3.4 Die Kirchhoff’schen Gleichungen

Eine der Hauptaufgaben der Netzwerkanalyse besteht darin, die Strome und Spannungen
an den einzelnen Zweipolen auszurechnen, sofern die verwendeten Bauelemente (Wider-
stande, Kondensatoren usw.), ihre Verkniipfungen untereinander sowie die Quellen inner-
halb des Netzwerks bekannt sind. Betrachten wir das an eine Spannungsquelle angeschlos-
sene, allein aus ohmschen Widerstinden aufgebaute Netzwerk der Abb. 3.6, dann wird
deutlich, dass zur Berechnung der gesuchten Groflen das Ohm’sche Gesetz allein nicht
ausreicht.? Zwar kann mit dem Ohm’schen Gesetz an jedem Widerstand der Strom durch
die Spannung oder die Spannung durch den Strom ausgedriickt werden, dennoch bleibt an
jedem Zweipol eine Grofie unbestimmt. Dies gilt auch fiir den Zweipol mit der Span-
nungsquelle, in dem der Strom zunichst unbekannt ist.

Abbildung 3.6: Einfaches Netzwerk

Zur allgemeinen Netzwerkanalyse werden offenbar weitere Bestimmungsgleichungen
benotigt. Einen ersten Zusammenhang erhalten wir aus der Bedingung (1.22). Diese
besagt, dass das Umlaufintegral der elektrischen Feldstirke entlang eines geschlossenen
Weges verschwinden muss. Zur Verdeutlichung dieses Zusammenhangs betrachten wir
eine beliebige Masche aus dem in Abb. 3.6 dargestellten Netzwerk. Nummeriert man die
Verbindungspunkte in der in Abb. 3.7 angegebenen Weise, dann kann die Gl. (1.22) mit
den Feldstidrken folgendermalen geschrieben werden

3 Vereinbarung: Die schwarz ausgefiillten Markierungspunkte (Knoten) in dem Netzwerk zeigen

an, dass die Leitungen an dieser Stelle elektrisch leitend miteinander verbunden sind, z.B. durch
Zusammenschrauben oder Verloten. Die Kreisringe markieren diejenigen Punkte im Netzwerk,
zwischen denen die eingezeichnete Spannung gemessen wird.
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Abbildung 3.7: Maschenregel

Py
Py

3 1

E.ds+ |E.ds+|E-ds=0. (3.2)

T e, 0
T —, T

SBE.d§:
C

Diese Gleichung lésst sich mit den in der Abb. 3.7 eingetragenen Spannungen und den
ihnen willkiirlich zugeordneten Zahlpfeilen folgendermalien schreiben

U, +U, -U, =0 (3.3)

Verlduft der Integrationsweg ds entgegen der willkiirlich angenommenen Zihlrichtung
bei der Spannung, dann ist diese mit negativem Vorzeichen einzusetzen. Dieser hier an
einem Beispiel gezeigte Zusammenhang wird als Maschenregel bezeichnet und lésst sich
fiir jede geschlossene Masche in der allgemeinen Form

Yu=0 (3.4)

darstellen. Damit gilt die Aussage:

Einen weiteren Zusammenhang erhalten wir aus dem Hiillflichenintegral der Strom-
dichte, das im stationédren Stromungsfeld nach Gl. (2.13) verschwindet

g[gSj.dZ\:o. 3.5
A

Zur Verdeutlichung dieses Zusammenhangs betrachten wir den in Abb. 3.8 dargestellten
Knoten aus dem Netzwerk der Abb. 3.6. Die Gl. (3.5) besagt, dass im stationédren
Zustand die Zahl der Ladungstriger innerhalb des markierten Bereiches konstant sein
muss, d.h. die Summe der zu dem Knoten hinflieBenden Ladungstriger muss gleich sein
zu der Summe der vom Knoten wegflieBenden Ladungstriger.
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Abbildung 3.8: Knotenregel

Dieser Sachverhalt lédsst sich mit den Stromen gemif Abb. 3.8 und den ihnen zugeordne-
ten Zidhlpfeilen folgendermaf3en schreiben

I, -1

R

R3_1R5 =0

Die Zihlrichtung fiir die Strome durch die Widerstinde R, und Rj ist nicht mehr frei wihl-
bar. Sie muss in Ubereinstimmung mit den bereits festgelegten Zihlpfeilen fiir die Span-
nungen in Abb. 3.7 entsprechend dem Verbraucherzéhlpfeilsystem festgelegt werden.

Der hier an einem Beispiel gezeigte Zusammenhang wird als Knotenregel bezeichnet
und ldsst sich fiir jeden Knoten in der allgemeinen Form

21 =0 3.7

Knoten

schreiben. Damit gilt die Aussage:

Die Summe aller zu einem Knoten hinflieBenden Strome ist gleich der Summe aller
von dem Knoten wegflieBenden Strome.

Die beiden Gleichungen (3.4) und (3.7) werden als Kirchhoff’sche Gleichungen
bezeichnet (nach Gustav Robert Kirchhoff, 1824-1887).

Der Begriff Knoten gilt nicht nur fiir die bisher betrachtete leitende Verbindung zwischen
den Drihten entsprechend der Abb. 3.8, sondern er schliefit, wie in Abb. 3.9 dargestellt,
die Moglichkeit ein, einzelne Bauelemente oder auch groflere Teile einer Schaltung als
Bestandteile des Knotens anzusehen.

Die Knotenregel bezieht sich auch in diesem Fall auf alle durch die Hiillfliche in den
Knoten hinein- bzw. aus dem Knoten herausflieBenden Strome. Mit den in Abb. 3.9 defi-
nierten Stromen erhilt man z.B. die zur Gl. (3.6) identische Beziehung

I+, =1, +1, +1,
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Abbildung 3.9: Zur Verallgemeinerung des Begriffes Knoten

Wir betrachten jetzt noch einmal die Abb. 3.5, wobei wir aber Generator und Verbraucher
entsprechend Abb. 3.10 zusammenschalten.

! !

O O

e | o [Joer

O

Abbildung 3.10: Zusammenspiel von Zahlpfeilsystemen und Kirchhoff'schen Gleichungen

Der Maschenumlauf (3.4) liefert das richtige Ergebnis U — U = 0 und der Strom hat in der
gesamten Masche die gleiche Zahlrichtung, d.h. jeder beliebige grau hinterlegte und als
Knoten deklarierte Bereich liefert entsprechend Gl. (3.7) das Ergebnis 7 — 7= 0.

3.5 Einfache Widerstandsnetzwerke

In vielen Féllen kann die Netzwerkanalyse dadurch vereinfacht werden, dass einzelne
Teile eines Netzwerks vorab zusammengefasst werden. Dabei muss lediglich darauf
geachtet werden, dass sich das Klemmenverhalten des neuen vereinfachten Netzwerks
gegeniiber dem urspriinglichen Netzwerk nicht dndert, d.h. beim Anlegen der gleichen
Spannung an die Klemmen muss in beiden Fillen der gleiche Strom flieBen. Ahnlich wie
bei der Zusammenschaltung von Kondensatoren in Kap. 1.18 wollen wir an dieser Stelle
die beiden Moglichkeiten der Reihenschaltung (Serienschaltung) und Parallelschaltung
von Widerstinden untersuchen.
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Uge.s‘ |:> Ugex R ges []

n

R
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R,

k=1

o

Abbildung 3.11: Reihenschaltung von Widerstanden

Bei der in Abb. 3.11 dargestellten Reihenschaltung werden nach Gl. (3.7) alle Wider-
stinde von dem gleichen Strom durchflossen. Entsprechend dem Maschenumlauf nach
Gl. (3.4) setzt sich die gesamte an den Eingangsanschliissen anliegende Spannung aus
den Teilspannungen an den einzelnen Widerstinden zusammen

(34) n (229) n
Uy = DU, = YRI=R,I
k=1 k=1
Der Vergleich mit dem Netzwerk mit nur einem Gesamtwiderstand liefert unmittelbar das
Ergebnis

R, =R, . (3.10)
k=1
[gex
- . o———
Gges = Gk
k=1
. Jow]
1 51
In e -
Rge.v k=1 Rk
-_—— o—

Abbildung 3.12: Parallelschaltung von Widerstanden
Bei der Parallelschaltung ist die Spannung an allen Widerstinden gleich grofl und der

gesamte Eingangsstrom setzt sich nach Gl. (3.7) aus den Stromen durch die einzelnen
Widerstidnde zusammen

=— @3.11)
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In diesem Fall liefert der Vergleich mit dem Ersatznetzwerk das Ergebnis

R
—=y—. (3.12)
R, 2R,

ges

Fiir den Sonderfall mit nur zwei parallel geschalteten Widerstidnden gilt dann

RR
s = . (3.13)
R +R,

Ein weiterer Sonderfall ist die Parallelschaltung von n gleichen Widerstidnden. Der resul-
tierende Gesamtwiderstand nimmt in diesem Fall den Wert

r R (3.14)

ges
n

an. Bei der Parallelschaltung ist die Verwendung der Leitwerte (2.32) sinnvoll, fiir die der
Zusammenhang direkt aus Gl. (3.12) abgelesen werden kann

G, =G, . (3.15)
k=1

In einem elektrischen Netzwerk konnen also in Reihe liegende Widerstinde durch den
nach GI. (3.10) berechneten und parallel liegende Widerstinde durch den nach Gl. (3.12)
berechneten resultierenden Gesamtwiderstand ersetzt werden. Wihrend bei der Reihen-
schaltung der Gesamtwiderstand stets groBer als der grofite Einzelwiderstand ist, gilt fiir
die Parallelschaltung, dass der Gesamtwiderstand stets kleiner als der kleinste Einzel-
widerstand ist.

Beispiel 3.1: Widerstand einer Hohlkugel

In Kap. 2.6 haben wir den exakten Widerstand einer Hohlkugel mit Hilfe der Feldver-
teilung innerhalb der Hohlkugel berechnet. In diesem Beispiel betrachten wir eine al-
ternative Moglichkeit zur Berechnung des gleichen Ergebnisses. Da der Strom nach
Voraussetzung radialsymmetrisch von der inneren zur dufleren Kugelschale flief3t,
konnen wir uns die gesamte Hohlkugel aufgebaut denken aus einer Reihenschaltung
von iibereinander liegenden diinnen Hohlkugeln.
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V

Abbildung 3.13: Widerstand einer Hohlkugel

Betrachten wir die markierte Kugelschale in Abb. 3.13 mit der elementaren Dicke dr
und der Querschnittsfliiche 477 r?, dann besitzt diese nach GL. (2.27) den elementaren
Widerstand

dr

dR = -
K4mr

(3.16)

Die Kriimmung spielt wegen der kleinen Dicke keine Rolle mehr. Geméf3 der Reihen-
schaltung der tibereinander liegenden diinnen Hohlkugeln miissen deren Widerstinde
nach GI. (3.10) addiert bzw. im Grenziibergang dr — O von r = a bis r = b integriert
werden. Diese Rechnung liefert das mit Gl. (2.36) tibereinstimmende Ergebnis

1 bi 1 b-a

ark Y1’ " 4zk ba

3.5.1 Der Spannungsteiler

R=TdR= (3.17)

Die Reihenschaltung von Widerstinden kann benutzt werden, um eine gegebene Span-
nung U mit hoher Genauigkeit in kleinere Teilspannungen umzuwandeln. Fiir den fest
eingestellten Spannungsteiler in Abb. 3.14 wollen wir das Spannungsverhiltnis U,/U,
sowie das Verhiltnis von Ausgangsspannung zu Eingangsspannung U,/U bestimmen.

I

Abbildung 3.14: Schaltung zur Spannungsteilung
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Die Schaltung besteht aus einer einzigen Masche, in der iiberall der gleiche Strom [ flief3t.
Aus dem Ohm’schen Gesetz (2.29) und mit der Maschenregel (3.4) erhilt man die Bezie-
hungen

U=RI Uy=RJ und U=U, +U,=(R,+RyI, (3.18)

mit deren Hilfe die gesuchten Spannungsverhiltnisse durch Quotientenbildung direkt
angegeben werden konnen

U _ g EOEECES 3.19
v, R, " U R+R,’ (3.19)

Aus der Gl. (3.19) lasst sich die Schlussfolgerung ziehen:

Die an den Widerstinden in Wirme umgewandelte Leistung berechnet sich nach GI.
(2.49) aus dem Produkt von Strom und Spannung. Infolge des gleichen Stromes stehen
die Leistungen an den Widerstidnden im gleichen Verhéltnis zueinander wie die Spannun-
gen und nach Gl. (3.19) auch wie die Widerstinde.

Die an einem Widerstand entstehende Teilspannung wird als Spannungsabfall bezeich-
net. Dieser Begriff ldsst sich mit Hilfe der Abb. 3.15 leicht veranschaulichen. Definiert
man das Potential am Minusanschluss der Spannungsquelle in Abb. 3.14 als Bezugswert
@, = 0, dann besitzt das Potential am positiven Anschluss den Wert ¢, = U. Mit einem
ortsunabhingigen Feldstdrkeverlauf innerhalb der Widerstéinde nimmt das Potential linear
ab und man erhilt entlang der Reihenschaltung den in Abb. 3.15 fiir ein angenommenes
Widerstandsverhéltnis dargestellten Potentialverlauf.

U
% A >
© o
R, R, =3R,

0 - : >

Abbildung 3.15: Potentialverlauf an einer Reihenschaltung
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3.5.2  Der belastete Spannungsteiler

Die Spannung an dem Schleifkontakt eines Potentiometers soll gemi3 Abb. 3.16 mit
einem realen Spannungsmessgerit (Voltmeter) gemessen werden. Dabei ist zu beachten,
dass fast alle Spannungsmessgerite von einem kleinen Strom durchflossen werden, der
die in Gl. (3.19) berechnete Spannungsteilung beeinflusst und das Messergebnis ver-
filscht. Diesen Einfluss konnen wir erfassen, indem wir das reale Messgerit durch ein
ideales Messgerit mit unendlich groBem Innenwiderstand und zusitzlich einen parallel
geschalteten Widerstand R, ersetzen.

U,

l 0
I

Messgerat

Abbildung 3.16: Belasteter Spannungsteiler

Die Berechnung der resultierenden Spannung U, wird wesentlich vereinfacht, wenn wir
die Parallelschaltung der beiden Widerstinde R, und R,, durch einen neuen Widerstand
R,,, ersetzen und die Spannung U, aus der Reihenschaltung von R, und R, bestimmen

(313) R2 RM - U2 (319) Rl’”" — R2 RM
131(1?2 + Ieﬂl )-F 132 I?Al

== . (3.20)
R, +R, U R +R

par
par

Zur Darstellung dieses Ergebnisses werten wir ein Zahlenbeispiel aus. Der Gesamtwider-
stand des Potentiometers soll R, + R, = 10kQ betragen. In Abhingigkeit von der Position
des Schleifkontaktes durchlduft der Widerstand R, den Wertebereich 0 < R, < 10kQ. Die
Abb. 3.17 zeigt das Spannungsverhéltnis (3.20) als Funktion des Widerstandes R,. Die
Gerade entspricht der GI. (3.19), d.h. dem Sonderfall R;, — . Mit kleiner werdendem
Widerstand R,, geht die Linearitdt zwischen der Position des Schleifkontaktes und der
Ausgangsspannung U, mehr und mehr verloren. Ideal wire also ein Voltmeter mit einem
unendlich groen Innenwiderstand.
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0,6
o0 /
10 ‘%

6 8 10
—> R,/kQ

Abbildung 3.17: Ausgangsspannung am belasteten Spannungsteiler

3.5.3  Messbereichserweiterung eines
Spannungsmessgerates

Ein Anwendungsbeispiel fiir den Spannungsteiler ist die Messbereichserweiterung eines
Voltmeters. Soll mit dem Messgerit in Abb. 3.18 eine Spannung U gemessen werden, die
die maximal zulédssige Spannung am Voltmeter U, iiberschreitet, dann kann die zu mes-
sende Spannung mit einem Vorwiderstand R, heruntergeteilt werden.

Voltmeter

Abbildung 3.18: Voltmeter mit Vorwiderstand

Der Wert des Vorwiderstandes kann mit Hilfe der Gl. (3.19) berechnet werden

U R
“ms - M, R =(UU —IJRM. (3.21)

14
max
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Beispiel 3.2: Zahlenbeispiel

Ein Voltmeter mit einem Innenwiderstand R,, = 10kQ hat einen Messbereich von ma-
ximal 10 V. Welcher Vorwiderstand Ry, ist erforderlich, um Spannungen bis 200 V
messen zu konnen?

Aus der GI. (3.21) folgt unmittelbar das Ergebnis

R, = (21—%0 - lj 10k =190kQ . (3.22)

3.54 Der Stromteiler

Zur Aufteilung eines Gesamtstromes in mehrere Teilstrome werden Widerstdnde parallel
geschaltet. Fiir die Schaltung in Abb. 3.19 wollen wir das Verhiltnis /,/I, sowie das Ver-
hiltnis von Ausgangsstrom zu Quellenstrom /,/ bestimmen.

\f/ R, R, lU

Abbildung 3.19: Schaltung zur Stromteilung

Mit der gleichen Spannung an den beiden parallel liegenden Widerstiinden gelten nach
dem Ohm’schen Gesetz (2.29) die Beziehungen

=% wa =Y. (3.23)
Rl R2
Mit der Knotenregel (3.7)
R +R
I=1+1, =0 L4l |-pBtR (3.24)
Rl R2 Rl RZ

erhilt man die gesuchten Verhiltnisse durch Quotientenbildung

L_R_G
12 Rl GZ

12_ Rl _ GZ
I R+R, G +G,

(3.25)
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Die Leistungen an den Widerstidnden verhalten sich wegen der gleichen Spannung wie die
Strome durch die Widerstinde und stehen nach Gl. (3.25) im gleichen Verhéltnis wie die
Leitwerte.

3.5.5  Messbereichserweiterung eines
Strommessgerates

Zur Messung eines Stromes wird das Messgeridt (Amperemeter) in den Strompfad
geschaltet, sein Innenwiderstand R, sollte daher moglichst gering sein, um das Messer-
gebnis nur wenig zu beeinflussen. Soll ein Strom gemessen werden, der den maximal
zuldssigen Bereich des Amperemeters [, liberschreitet, dann kann der Gesamtstrom /
durch einen parallel geschalteten Widerstand (shunt) heruntergeteilt werden.

Amperemeter

Abbildung 3.20: Amperemeter mit Parallelwiderstand

Der Wert des Parallelwiderstandes kann mit Hilfe der GI. (3.25) berechnet werden

Imax RP R Imax R 3 26
- = . .
TR <R, P =Ry (3.26)

Beispiel 3.3: Zahlenbeispiel

Ein Amperemeter mit einem Innenwiderstand von R,, = 5Q hat einen Messbereich
von maximal 100 mA. Welcher Parallelwiderstand R ist erforderlich, um Strome bis

1 A messen zu konnen?

Aus der Gl. (3.26) folgt unmittelbar Rp = R;, /9 = 0,55Q.
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3.6 Reale Spannungs- und Stromquellen

In der Abb. 3.4 haben wir die Schaltzeichen fiir ideale Spannungs- und Stromquellen
definiert. Man kann sich jedoch leicht vorstellen, dass reale Quellen durch die alleinige
Angabe des Spannungs- oder Stromwertes nach Abb. 3.4 nicht vollstindig beschrieben
werden konnen. Wird eine Spannungsquelle durch einen Verbraucher belastet, dann ruft
der Strom innerhalb der Quelle, z.B. an den internen Anschlussleitungen, einen Span-
nungsabfall und damit Verluste hervor. Dieser Einfluss wird durch einen zur idealen
Quellenspannung U, in Reihe liegenden Innenwiderstand R; erfasst. In der Praxis kann
die Beschreibung des Quellenverhaltens durch Ersatznetzwerke noch wesentlich kompli-
zierter werden, insbesondere wenn zeitabhidngige Strome und Spannungen betrachtet
werden, dies soll uns aber hier nicht weiter beschiftigen.

R;
—_‘f'.—,’*’
Ols s

O

Abbildung 3.21: Spannungsquelle mit Innenwiderstand

Die Beriicksichtigung der Verlustmechanismen fiihrt auf das in Abb. 3.21 dargestellte
einfache Ersatzschaltbild (Modell) einer Spannungsquelle. Wird kein Verbraucher ange-
schlossen, dann flie3t kein Strom und die an den Anschlussklemmen vorliegende Span-
nung U = U, = U, wird als Leerlaufspannung U, (= Quellenspannung) bezeichnet.

Verbindet man die beiden Anschlussklemmen miteinander (Kurzschluss), dann wird der
Kurzschlussstrom

I, = UyR, (3.27)

nur durch den Innenwiderstand begrenzt. Die gesamte von der Quelle abgegebene Ener-
gie wird in diesem Fall am Innenwiderstand in Wiarme umgewandelt, d.h. Spannungs-
quellen sollten nicht im Kurzschluss betrieben werden.

Die Spannungsquelle in der Abb. 3.21 wird durch Angabe von Leerlaufspannung U; = U,
und Innenwiderstand R; oder durch Angabe von Leerlaufspannung U, = U, und Kurz-
schlussstrom 7 eindeutig beschrieben.

Ein geladener Kondensator, der seine Energie gemidl Abb. 3.3 an einen Widerstand
abgibt, verhilt sich wie eine Spannungsquelle. Der Wert der Spannung ist nach Gl. (1.85)
durch die im Kondensator gespeicherte elektrische Energie gegeben und der Strom durch
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einen angeschlossenen Widerstand stellt sich in Abhédngigkeit von dem Wert des Wider-
standes ein.

Im Gegensatz dazu werden wir in Kap. 5 als weiteres Bauelement die Spule kennen ler-
nen, deren Verhalten dem einer Stromquelle vergleichbar ist. In diesem Fall wird der
Strom durch die magnetische Energie in der Spule bestimmt und die Spannung stellt sich
in Abhingigkeit von dem Wert eines angeschlossenen Widerstandes entsprechend dem
Ohm’schen Gesetz ein.

Die Abb. 3.22 zeigt eine Stromquelle mit dem Quellenstrom 7, und dem Innenwiderstand
R;. Da der Strom vorgegeben ist, muss immer ein geschlossener Strompfad vorhanden
sein. Bei gedffneten Anschlussklemmen flie3t der gesamte Strom /;, durch den parallel zur
Quelle liegenden Innenwiderstand und die von der Quelle abgegebene Energie wird an R;
in Wirme umgewandelt, d.h. Stromquellen sollten nicht im Leerlauf betrieben werden.

Der an den Anschlussklemmen im Kurzschlussbetrieb zur Verfiigung stehende Strom
I = I = I, wird als Kurzschlussstrom / (= Quellenstrom) bezeichnet.

Abbildung 3.22: Stromquelle mit Innenwiderstand

Fiir die Leerlaufspannung gilt
U, = 1,R. (3.28)

Beziiglich ihres Klemmenverhaltens konnen Spannungs- und Stromquelle ineinander
umgerechnet werden. Dazu muss sichergestellt werden, dass beide Quellen die gleiche
Leerlaufspannung und den gleichen Kurzschlussstrom aufweisen. Beide Forderungen
werden erfiillt, wenn der Zusammenhang

Uy = IR, (3.29)

zwischen Quellenstrom und Quellenspannung gilt. Unter dieser Voraussetzung verhalten
sich beide Quellen beziiglich ihrer Anschlussklemmen gleich und der Strom / durch einen
beliebigen Verbraucher R hat in beiden Fillen den gleichen Wert I = Uy/(R + R;). Das
Ergebnis ldsst sich mit den beiden dquivalenten Schaltungen in Abb. 3.23 leicht bestétigen.



Kapitel 3 — Einfache elektrische Netzwerke

Ol

Abbildung 3.23: Aquivalente Quellen

3.7 Wechselwirkungen zwischen Quelle
und Verbraucher

Die Zusammenschaltung von Quellen und Verbrauchern wirft naturgemif einige Fragen
auf. In den folgenden Abschnitten werden die Besonderheiten bei der Verwendung meh-
rerer Quellen betrachtet und die Fragen nach der maximal von einer Quelle zur Verfiigung
gestellten Leistung sowie nach dem Wirkungsgrad beantwortet.

3.7.1 Zusammenschaltung von Spannungsquellen

In vielen Anwendungen findet man Reihenschaltungen von Spannungsquellen zur Erho-
hung der Gesamtspannung oder auch Parallelschaltungen zur Erhohung des verfiigbaren
Stromes oder zur Erhohung der Kapazitit, z.B. um einen Verbraucher iiber einen ldngeren
Zeitraum mit Energie versorgen zu konnen.

Die damit zusammenhéngenden Probleme wollen wir an einem einfachen Beispiel disku-
tieren. Wir betrachten zwei Spannungsquellen mit den gleichen Innenwiderstinden R;,
aber mit unterschiedlichem Ladezustand. Aus den beiden parallel geschalteten Quellen
mit den Leerlaufspannungen U, und U, soll ein Verbraucher R mit Energie versorgt
werden (Abb. 3.24).

1

| | o]0

Abbildung 3.24: Parallel geschaltete Spannungsquellen
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Aus den Kirchhoff’schen Gleichungen folgen unmittelbar die Zusammenhinge

(3.7) (3.4) (3.4)

U=RI = R(I,+1,) = Uy,—RI, = Uyy—R],, (3.30)
aus denen die beiden Strome

1
" R’+2RR

1
R’ +2RR,

i

[(Ri +R) Uy _RUzo] und I, = [(Ri +R)U20 _RUIO] (3.30)

1

berechnet werden konnen. Die Richtigkeit dieser Ergebnisse kann durch Einsetzen der
Gln. (3.31) in (3.30) leicht bestitigt werden. Setzen wir als Beispiel die Zahlenwerte
Uyp=12,8V, Uy, = 11,8V, R; = 1Q und R = 20Q ein, dann nehmen die beiden Strome die
Werte /,= 0,8A und /, = —0,2A an. Infolge der unterschiedlichen Leerlaufspannungen
wird in dem betrachteten Netzwerk die Quelle 2 zum Verbraucher. Die aus der Span-
nungsquelle U, entnommene Energie wird teilweise an den Widerstand R abgegeben und
teilweise zum Nachladen der zweiten Spannungsquelle U,, verwendet. Eine gleichmiBig
aufgeteilte Energieabgabe ist nur moglich bei identischen Quellen.

Fassen wir die Ergebnisse zusammen:

B Die Leistungsabgabe von parallel geschalteten Spannungsquellen ist unterschiedlich,
wenn die Leerlaufspannungen oder die Innenwiderstinde unterschiedlich sind.

B In einem Netzwerk mit mehreren Quellen kann ein Teil der Quellen als Verbraucher
wirken, wenn sie ndmlich die von anderen Quellen abgegebene Energie aufnehmen.
Dieser Zustand ist gewollt beim Nachladen einer Batterie.

3.7.2  Leistungsanpassung

Eine weitere wichtige Frage im Zusammenwirken von Quelle und Verbraucher ist die
Frage nach der maximal von einer Quelle zur Verfiigung gestellten Leistung. Ausgehend
von der Schaltung in Abb. 3.25, in der ein Verbraucher (Lastwiderstand) R; an eine durch
die Leerlaufspannung U, und den Innenwiderstand R, charakterisierte Spannungsquelle
angeschlossen ist, soll die Bedingung fiir maximale Leistungsabgabe an den Verbraucher
abgeleitet werden.

v ||

<[]

oft

Abbildung 3.25: Berechnung der maximalen Ausgangsleistung
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Gesucht ist also derjenige Wert fiir R,, fiir den die Leistung P, an diesem Verbraucher den
Maximalwert erreicht. Fiir die Leistung gilt mit GI. (2.49)

+R,

i

2
U
PL=12RL=(R 0 JRL. (3.32)

Die maximale Leistung in Abhéngigkeit von dem Wert R; erhilt man aus der Forderung
nach dem Verschwinden der ersten Ableitung

ﬂ_U 2

d R _y2 R-R,_
dr, " dR, (R+R,)* " (R+R,)

=0. (3.33)

Daraus folgt unmittelbar

R, =R, . (3.34)

Die maximale Ausgangsleistung (verfiigbare Leistung) betrigt dann mit Gl. (3.32)
=—2_ X (3.35)

Das Verhiltnis aus der an den Widerstand R; abgegebenen Leistung (3.32) zu der verfiig-
baren Leistung (3.35)

P, 4RR, 4R, IR,
= = 3.36
P (R +R,) (+R,/R)’ (3:36)

ist fiir den gesamten Wertebereich zwischen Kurzschluss und Leerlauf 0 < R; < oo in Abb.
3.26 dargestellt.

Zur besseren Ubersicht wird auf der Abszisse aber nicht der Wertebereich von R; zwi-
schen Null und unendlich aufgetragen. Das Ergebnis lidsst sich niamlich anschaulicher
darstellen, wenn der von der Quelle abgegebene Strom

— UO
R +R,

(3.37)

fiir die Achseneinteilung verwendet wird. Dieser Strom nimmt seinen Maximalwert

Lo =~ (3.38)
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im Kurzschlussfall, d.h. bei R; = 0 an. Das Verhiiltnis der beiden Strome

1 R 1

i

I.. R +R, 1+R,/R

max

(3.39)

dndert sich also von O auf 1, wenn sich der Lastwiderstand von Leerlauf (R; = o) auf
Kurzschluss (R, = 0) reduziert.

L / \
L max 0,8

0 f
0,2 0,4 0,6 0,8

A
R

8 » o

1

A

R, = =R, ; =0
1

max

Abbildung 3.26: Normierte Ausgangsleistung als Funktion des normierten Stromes

Die Kurve in Abb. 3.26 lisst sich leicht berechnen, indem fiir verschiedene Zahlenver-
hiltnisse R;/R; mit Gl. (3.39) der Abszissenwert und mit GI. (3.36) der jeweils zugehorige
Ordinatenwert berechnet wird. Alternativ kann auch die GI. (3.39) nach dem Wider-
standsverhiltnis R;/R; aufgelost und das Ergebnis in Gl. (3.36) eingesetzt werden. Damit
erhélt man direkt den gesuchten Zusammenhang

o4 (1— ! ] (3.40)

CRRRIN

Die drei interessantesten Zustinde, nimlich Leerlauf, Widerstandsanpassung und Kurz-
schluss sind in der Abbildung besonders gekennzeichnet. Bei Widerstandsanpassung R; =
R; nimmt die Ausgangsleistung ihren Maximalwert P, = P, .. an. Weicht der Widerstand
R; von dem Wert R; ab, dann wird weniger Leistung von der Quelle an den Verbraucher
abgegeben. An den beiden Grenzen Leerlauf und Kurzschluss verschwinden entweder
Strom oder Spannung am Verbraucher, so dass die Leistung P, = Ul ebenfalls in beiden
Fillen verschwindet.
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3.7.3  Wirkungsgrad

Mit kleiner werdendem Lastwiderstand in der Abb. 3.25 steigt der Strom kontinuierlich
an. Obwohl die von der Quelle gelieferte Leistung Uyl damit ebenfalls ansteigt, nimmt die
Leistung an dem Verbraucher in dem Bereich R; < R; nach Abb. 3.26 kontinuierlich ab. In
diesem Zusammenhang stellt sich die Frage nach dem Wirkungsgrad 7. Darunter ver-
steht man das Verhiltnis von der an dem Lastwiderstand verbrauchten Leistung P; (Nutz-

leistung) zu der gesamten von der Quelle abgegebenen Leistung P,

(2.49) 2 )
n =i.100% = L-IOO% = R./R,

S 1009% 341
P,, I*(R +R,) 1+R, /R, ’ (34D

Setzt man die nach dem Widerstandsverhiltnis R;/R; aufgeloste Beziehung (3.39) in Gl.

(3.41) ein, dann kann der Wirkungsgrad als Funktion des Stromverhiltnisses angegeben
werden

n= (1—%]-100%. (3.42)

max

Diese linear abfallende Funktion ist in Abb. 3.27 dargestellt. Man erkennt, dass der Wir-
kungsgrad mit zunehmendem Strom aus der Quelle geringer wird. Bei Widerstandsanpas-
sung betrdgt der Wirkungsgrad nur 50%, d.h. am Innenwiderstand der Quelle wird genau
soviel Leistung verbraucht wie am Lastwiderstand.

100
n

% 80
T 60

40

20

0 :

0 0,2 0,4 0,6 0,8 1
R, = =R, =0

_> L
[max
Abbildung 3.27: Wirkungsgrad
Die Wirkungsgradfrage ist von besonderem Interesse bei Energielibertragungssystemen.

Die im Kraftwerk erzeugte Energie soll moglichst verlustarm zum Verbraucher transpor-
tiert werden. Bei vorgegebener Verbraucherleistung P; = UI und ebenfalls vorgegebenem



3.8 Das Uberlagerungsprinzip

Innenwiderstand R; (dazu gehdrt nicht nur der Innenwiderstand des Generators, sondern
auch der gesamte Widerstand der Ubertragungsleitungen) lisst sich der Wirkungsgrad
steigern, wenn der Strom moglichst klein und als Konsequenz die Spannung entspre-
chend grof} wird. In der Praxis erfolgt die Energieiibertragung auf Hochspannungsleitun-
gen mit Spannungen im Bereich von einigen hundert k'V.

3.8  Das Uberlagerungsprinzip

Enthilt eine Schaltung mehrere Quellen, dann konnen die Strome und Spannungen in den
einzelnen Zweigen des Netzwerks durch die Uberlagerung von Teillosungen berechnet
werden. Voraussetzung dafiir ist, dass an den einzelnen Netzwerkelementen lineare
Beziehungen zwischen Strom und Spannung gelten. Zur Berechnung einer Teillosung
wird nur eine einzige Quelle betrachtet, die anderen Quellen werden zu Null gesetzt. Fiir
diese Quelle wird dann die Netzwerkanalyse durchgefiihrt, d.h. es werden die Strome und
Spannungen in den interessierenden Zweigen berechnet.

Bei dieser Vorgehensweise muss sichergestellt werden, dass nach der Uberlagerung der
Teillosungen in jedem Zweig, der eine Stromquelle enthélt, genau der vorgegebene Quel-
lenstrom flieit, und dass in jedem Zweig mit einer Spannungsquelle genau die vorgege-
bene Spannung vorliegt. Bei der Uberlagerung diirfen keine zusitzlichen Strome zu einer
Stromquelle und keine zusétzlichen Spannungen zu einer Spannungsquelle addiert wer-
den. Null setzen der Quellen bedeutet also, dass eine Spannungsquelle durch einen Kurz-
schluss (keine Spannung in dem Zweig, d.h. U = 0) und eine Stromquelle durch einen
Leerlauf (kein Strom in dem Zweig, d.h. I = 0) ersetzt wird.

Ist die Netzwerkanalyse in dieser Weise fiir jede Quelle einzeln durchgefiihrt, dann ist der
gesamte Strom in einem Zweig des Netzwerks bei Vorhandensein aller Quellen gleich der
Summe aller vorher berechneten Teilstrome in diesem Zweig.

Zur Veranschaulichung der Vorgehensweise betrachten wir das Netzwerk in Abb. 3.28
mit jeweils einer Strom- und einer Spannungsquelle. Wir wollen mit der beschriebenen
Methode den Strom I, durch den Widerstand R, berechnen. (Zum Vergleich kann das
Netzwerk auch durch Aufstellung von Maschen- und Knotengleichungen direkt geldst
werden).

Abbildung 3.28: Uberlagerung von Quellen
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In der ersten Teillosung soll der Beitrag der Spannungsquelle U, zum gesuchten Strom
berechnet werden. Wird die Stromquelle durch einen Leerlauf ersetzt, dann vereinfacht
sich das Netzwerk wie in Abb. 3.29a) dargestellt. Der Strom /,, durch den Widerstand R,
kann fiir diese Teillosung mit dem Ohm’schen Gesetz unmittelbar angegeben werden

I, = _ (3.43)

b)
Abbildung 3.29: Netzwerke fur die beiden Teilldsungen

In der zweiten Teillosung wird nur die Stromquelle I, betrachtet, wobei die Spannungs-
quelle durch einen Kurzschluss ersetzt werden muss. Das resultierende Netzwerk in Abb.
3.29b) ist aber identisch zu dem Stromteiler in Abb. 3.19, so dass der Strom durch R, mit
Gl. (3.25) ebenfalls direkt angegeben werden kann

R I
1, =——"— 44
=R, (3.44)

Damit ist der Gesamtstrom fiir das Ausgangsnetzwerk in Abb. 3.28 bekannt

U,+R/]1
=1+, =——>"". 3.45
2 2a 2b RI + R2 ( )
Am Anfang dieses Abschnitts haben wir als Voraussetzung fiir die Uberlagerung einen
linearen Zusammenhang zwischen Strom und Spannung an den Komponenten gefordert.
Als Gegenbeispiel betrachten wir die Gleichung fiir die Leistung an dem Widerstand R,,
in der der Strom nicht mehr linear, sondern quadratisch vorkommt

(2.49)

P, = 1R, = (I, + 10, )’ Ry = (I, + 20,0y + 1, )R, (3.46)
Bei linearer Uberlagerung der einzelnen Beitrige fillt das gemischte Glied weg

(3.46

) !
P, +P, =1,'R,+1,’R, = P,-2I,1,,R, #P, (3.47)

und man erhilt ein falsches Ergebnis.
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Vorsicht

Wegen des nichtlinearen Zusammenhangs zwischen Strom und Leistung darf die
Leistung an einem Widerstand nicht durch Summation der Teilleistungen infolge der
Teilstrome berechnet werden.

3.9 Analyse umfangreicher Netzwerke

Nachdem wir uns in den bisherigen Kapiteln ausschlieBlich mit sehr einfachen Netzwer-
ken beschiftigt haben, wollen wir uns jetzt den Fragen im Zusammenhang mit der Ana-
lyse umfangreicher Netzwerke zuwenden. Diese konnen Spannungsquellen, Stromquel-
len und Widerstinde enthalten. Wir werden den folgenden Betrachtungen lineare
Netzwerke zugrunde legen, d.h. an allen im Netzwerk vorhandenen Widerstinden sind
Spannung und Strom proportional zueinander. Die Gleichungen zur Beschreibung der
Netzwerke sind dann ebenfalls linear. Unabhéngig von dieser Einschrinkung gelten die
folgenden Uberlegungen allgemein auch fiir nichtlineare Netzwerke. Der Unterschied
besteht lediglich in dem erhohten mathematischen Aufwand bei der Auflosung der sich
ergebenden nichtlinearen Gleichungssysteme.

Ausgangspunkt fiir die weiteren Betrachtungen ist die Schaltung in Abb. 3.6. Wir haben
bereits in Kap. 3.4 festgestellt, dass wir mit Hilfe des Ohm’schen Gesetzes die Anzahl der
Unbekannten auf die Anzahl der Zweipole reduzieren kénnen. An jedem Widerstand
bleibt entweder Spannung oder Strom unbestimmt, an einer Spannungsquelle ist der
Strom unbekannt und an einer Stromquelle die Spannung. In Abb. 3.30 sind einige Bei-
spiele fiir zusammengesetzte Zweipole dargestellt. Auch in diesen Fillen verbleibt immer
genau eine Unbekannte. Ist beispielsweise der Strom im mittleren Zweipol bekannt, dann
lasst sich daraus die Spannung am Widerstand berechnen.

Abbildung 3.30: Zweipolnetzwerke

Unabhingig von dem Aufbau der Zweipole kénnen wir feststellen, dass die Anzahl der
Zweipole in einem Netzwerk identisch ist mit der Anzahl der unbekannten Grof3en. In der
Netzwerktheorie spricht man allgemein von Zweigen und meint damit die beliebig
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zusammengesetzten Zweipole, die zwischen zwei Knoten des Netzwerks liegen. Fassen
wir die bisherigen Ergebnisse noch einmal zusammen:

B Unter Zuhilfenahme der an den Komponenten geltenden Beziehungen zwischen
Strom und Spannung* kann die Anzahl der unbekannten Strome und Spannungen fiir
jeden Zweig auf eine Unbekannte reduziert werden.

B Setzt sich ein Netzwerk aus z Zweigen zusammen, dann werden genau z linear unab-
hiingige Gleichungen zur Bestimmung der verbleibenden Unbekannten benétigt.

B Zur Aufstellung der Gleichungen stehen uns die Kirchhoff’schen Sitze, ndmlich die
Maschenregel (3.4) und die Knotenregel (3.7) zur Verfiigung.

Die vor uns liegende Aufgabe besteht offenbar darin, mit Hilfe einer systematischen Vor-
gehensweise genau z linear unabhingige Gleichungen aufzustellen. Eine Gleichung ist
allgemein linear unabhdngig von anderen Gleichungen, wenn sie sich nicht durch lineare
Uberlagerung wie Addition oder Subtraktion aus den anderen Gleichungen herleiten
lasst. Am einfachsten lédsst sich diese Eigenschaft erkennen, wenn eine Gleichung eine
GroBe enthilt, die in den anderen Gleichungen nicht vorkommt.

Die schematisierte Vorgehensweise bei der Netzwerkanalyse erfolgt in mehreren Teil-
schritten, die wir am Beispiel der ausgewihlten Schaltung nach Abb. 3.6 nacheinander
betrachten wollen.

1. Schritt: Darstellung des Netzwerkgraphen

Das Netzwerk wird ohne die Komponenten nochmals dargestellt. In dieser als Netzwerk-
graph bezeichneten Darstellung in Abb. 3.31 ist die Struktur des Netzwerks, d.h. welche
Zweige an welchen Knoten miteinander verbunden sind, besonders gut zu erkennen.

2. Schritt: Festlegung der Zéhlrichtungen

Fiir jeden Zweig wird vereinbart, in welcher Richtung der Strom positiv gezidhlt werden
soll. Diese Festlegung ist willkiirlich und hat keinen Einfluss auf das Ergebnis, sie muss
aber fiir die gesamte Analyse konsequent beibehalten werden. Die tatséchliche Strom-
richtung ist erst nach Auflosung des Gleichungssystems bekannt. Hat der Strom dann
einen positiven Wert, dann stimmt seine tatsdchliche Richtung mit der gewihlten Rich-
tung iiberein, hat er dagegen einen negativen Wert, dann flie3t er entgegengesetzt zur
gewihlten Richtung. Die Zahlrichtung fiir die Spannung wird am Verbraucher in Rich-
tung des Stromes gewihlt, am Generator entgegengesetzt.

4 Bisher verwenden wir nur das Ohm’sche Gesetz am Widerstand, spiiter kommen entsprechende

Beziehungen an anderen Komponenten, wie z.B. am Kondensator hinzu.
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Abbildung 3.31: Netzwerkgraph

3. Schritt: Aufstellung der Knotengleichungen

Zur Vermeidung linear abhiingiger Gleichungen betrachtet man iiblicherweise nur Knoten
entsprechend Abb. 3.8, in denen keine Komponenten enthalten sind. Wir haben nimlich
bereits in den Abbildungen 3.8 und 3.9 festgestellt, dass scheinbar unterschiedliche Kno-
ten auf identische und damit linear abhingige Gleichungen fithren. Unter Beriicksichti-
gung dieser Einschrinkung besitzt das zu betrachtende Netzwerk in Abb. 3.31 die einge-
zeichneten vier Knoten. Da die Summe aller Strome in allen Knoten immer Null ergibt,
ist eine der Knotengleichungen linear von den anderen drei abhéngig. Allgemein gilt:
Besitzt ein Netzwerk k£ Knoten, dann kénnen immer k — 1 linear unabhingige Knotenglei-
chungen aufgestellt werden. Die Auswahl des nicht zu beriicksichtigenden Knotens hat
keinen Einfluss auf das Ergebnis. Fiir das betrachtete Beispiel gilt

K: I,-1, I, =0
Ky: +1, - Is =0

Die lineare Unabhingigkeit dieser Gleichungen erkennt man unmittelbar daran, dass in
jeder Gleichung ein Strom enthalten ist, der in den anderen Gleichungen nicht auftritt.
Auf der anderen Seite ist die lineare Abhédngigkeit der Gleichung am Knoten K, leicht zu
iiberpriifen, da diese Gleichung identisch ist zur Summe der bereits angegebenen Glei-
chungen.

4. Schritt: Aufstellung der Maschengleichungen

Die Anzahl m der noch benétigten Maschengleichungen betriagt m = z — (k — 1). Im
betrachteten Beispiel miissen somit m = 6 — 3 unabhingige Maschengleichungen aufge-
stellt werden. Wihrend die Aufstellung der £ — 1 Knotengleichungen vollig unproblema-
tisch ist, miissen bei der Auswahl der Maschen bestimmte Vorgehensweisen eingehalten
werden. Es gibt verschiedene Moglichkeiten, die Maschen so auszuwihlen, dass die
resultierenden Gleichungen zwangsliufig linear unabhéngig sind. Die unterschiedlichen
Methoden laufen im Prinzip darauf hinaus, sicherzustellen, dass in jeder Masche ein
Zweig enthalten ist, der in keiner anderen Masche vorkommt. Im Folgenden werden zwei
unterschiedliche Methoden vorgestellt.
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Die erste Methode wird als vollstiindiger Baum bezeichnet. Zunichst werden alle k
Netzwerkknoten entlang der Zweige so miteinander verbunden, dass keine geschlossene
Masche entsteht. Bei k Knoten werden genau k — 1 Zweige fiir die Verbindungen benotigt.
Die Abb. 3.32 zeigt nur zwei der Moglichkeiten, fiir das gegebene Netzwerk einen voll-
standigen Baum zu konstruieren.

K, K, K, K,

K4 K3 K4 K3

Abbildung 3.32: Vollstandiger Baum

Von den insgesamt z Zweigen des Netzwerks gehoren damit k£ — 1 Zweige zu dem voll-
standigen Baum und z — (k — 1) = m Zweige, die so genannten Verbindungszweige, sind
unabhingig von dem vollstindigen Baum. Da die Anzahl der Verbindungszweige iden-
tisch ist zu der noch benétigten Anzahl unabhédngiger Maschengleichungen, werden die
Maschen jetzt so gewihlt, dass jeder Verbindungszweig in genau einer Masche enthalten
ist. Dazu muss jeder Verbindungszweig iiber den vollstindigen Baum zu einer Masche
geschlossen werden. Die Vorgehensweise wird am rechten Beispiel der Abb. 3.32
demonstriert.

Abbildung 3.33: Aufstellung der Maschengleichungen beim vollstindigen Baum

Die drei in der Abb. 3.33 dargestellten Maschen fiihren auf die Gleichungen

M;: U, ‘U = U,
M,: U, + U, U, =0

Zusammen mit den Ohm’schen Beziehungen an den fiinf Widerstinden liegen jetzt elf
Gleichungen zur Bestimmung aller unbekannten Stréme und Spannungen in dem
Netzwerk vor®. Zur Reduzierung des Gleichungssystems konnen die Zweigspannungen in
Gl. (3.49) mit Hilfe des Ohm’schen Gesetzes durch die Zweigstrome ersetzt werden
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M;: R/, +RJ;  =U,

Mit den Gleichungen (3.48) und (3.50) liegen jetzt genau z = 6 Bestimmungsgleichungen
vor, aus denen alle Zweigstrome I,..I5 eindeutig berechnet werden konnen. Mit den Stro-
men sind auch alle Zweigspannungen bekannt und das Problem ist vollstindig gelost.

Wir wollen noch eine zweite Methode zur Aufstellung der Maschengleichungen vorstel-
len, die als Auftrennung der Maschen bezeichnet wird. Die Vorgehensweise ist relativ
einfach. Man wihlt einen beliebigen Maschenumlauf und stellt die zugehérige Gleichung
auf. Diese Masche wird jetzt an einem beliebigen Zweig aufgetrennt, der in den folgen-
den Maschen nicht mehr verwendet werden darf.

K, K, K K, K, K,

A\}

K, K, K, K, K, K,

Abbildung 3.34: Auftrennung der Maschen

Ausgehend von dem verbleibenden Netzwerk stellt man wieder eine Maschengleichung
auf und trennt diese Masche ebenfalls auf. Die fortgesetzte Anwendung dieser Methode
liefert ebenfalls die bendtigten m = z — (k — 1) Gleichungen. Die lineare Unabhingigkeit
dieser Gleichungen ist leicht einzusehen. Beginnt man die Uberpriifung bei der zuletzt
aufgestellten Beziehung, dann erkennt man unmittelbar, dass die jeweils zuvor aufge-
stellte Gleichung einen weiteren Zweig enthilt, der nachher nicht mehr verwendet wurde,
d.h. jede Gleichung ist infolge der Maschenauftrennung zwangslédufig linear unabhiingig
von den nachfolgend aufgestellten Gleichungen.

5 Beiz Zweigen liegen normalerweise 2z Unbekannte vor (z Strome und z Spannungen). Da aber

in dem betrachteten Beispiel ein Zweig nur eine Quelle mit bereits bekannter Spannung enthilt,
reduziert sich die Anzahl der Unbekannten um eins.
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