
Preface

Many organizations have an urgent need of mining their multiple databases
inherently distributed in branches (distributed data). In particular, as the
Web is rapidly becoming an information flood, individuals and organizations
can take into account low-cost information and knowledge on the Internet
when making decisions. How to efficiently identify quality knowledge from
different data sources has become a significant challenge.

This challenge has attracted a great many researchers including the au-
thors who have developed a local pattern analysis, a new strategy for dis-
covering some kinds of potentially useful patterns that cannot be mined in
traditional multi-database mining techniques. Local pattern analysis deliv-
ers high-performance pattern discovery from multiple databases. There has
been considerable progress made on multi-database mining in such areas as
hierarchical meta-learning, collective mining, database classification, and pe-
culiarity discovery. While these techniques continue to be future topics of
interest concerning multi-database mining, this book focuses on these inter-
esting issues under the framework of local pattern analysis.

The book is intended for researchers and students in data mining, dis-
tributed data analysis, machine learning, and anyone else who is interested
in multi-database mining. It is also appropriate for use as a text supplement
for broader courses that might also involve knowledge discovery in databases
and data mining.

The book consists of ten chapters. Chapter 1 states the multi-database
mining problem and its importance. Chapter 2 lays a common foundation
for subsequent material. This includes the preliminaries on data mining and
multi-database mining, as well as necessary concepts, previous efforts, and
applications. Chapter 3 introduces the framework of local pattern analysis.
The later chapters are essentially self-contained and may be read selectively,
and in any order. Chapters 4, 5, and 6 develop techniques for preprocessing
the data in multi-databases. Chapters 7, 8, and 9 presents techniques for
identifying interesting patterns from multi-databases based on local pattern
analysis. And Chapter 10 presents a summary of the previous chapters and
demonstrates some open problems.

Beginners should read Chapters 1 and 2 before selectively reading other
chapters. Although the opening problems are very important, techniques in
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other chapters may be helpful for experienced readers who want to attack
such problems.

Shichao Zhang March 2004

Chengqi Zhang

Xindong Wu
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2. Data Mining and Multi-database Mining

2.1 Introduction

This chapter provides an introduction to data mining, reviews existing re-
search into multi-database mining, and describes some required concepts.

The pressure to enhance corporate profitability has caused companies to
spend more time identifying diverse opportunities in areas such as sales and
investment. To this end, huge amounts of data are collected in company
databases for decision-support purposes. Also, amalgamations, new partner-
ships, and takeovers have resulted in the formation of particularly large com-
panies, or organizations, that utilize increasingly larger multi-database sys-
tems. Government enterprises and academic research are also generating, and
making use of, growing amounts of data.

The examples below should be sufficient to put the current situation into
perspective.

– NASA’s Earth Observing System (EOS), for orbiting satellites and other
space-borne instruments, sends one terabyte of data to receiving stations
each day.

– By the year 2000 a typical Fortune 500 company was projected to possess
more than 400 trillion characters in their electronic databases, requiring
400 terabytes of mass storage.

With the increasing use of databases the need to be able to digest large
volumes of data is now critical. Therefore, data mining techniques are being
widely researched as new innovations become imperative.

As we have stated, this book presents new techniques for multi-database
mining. By way of a preliminary discussion, this chapter briefly introduces
data mining techniques, existing research into multi-database mining, and
basic concepts.

We begin by summarizing the process of knowledge discovery. Then, in
Section 2.3, we introduce some of the basic concepts, the knowledge of which
is required for understanding this book. In Section 2.4, we outline past re-
search into mono-database mining and, in Section 2.5, past research into
multi-database mining. Finally we summarize the chapter.
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2.2 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) (also referred to as data mining), is
the extraction of hidden predictive information from large databases. It is a
powerful new technology with great potential to help companies, for example,
to focus on the most important information in their data warehouses. KDD
tools predict future trends and behavior, allowing businesses to make proac-
tive, knowledge-driven decisions. The automated prospective analyses offered
by KDD move beyond the analysis of past events provided by retrospective
tools typical of decision-support systems. KDD tools can answer business
questions that were traditionally too time consuming to resolve. They scour
databases for hidden patterns, finding predictive information that experts
might miss because it lies outside their expectations.

Most companies already collect and refine massive quantities of data.
KDD techniques can be implemented rapidly on existing software and hard-
ware platforms to enhance the value of existing information resources, and
can be integrated with new products and systems as they are brought online.
When implemented on high performance client/server or parallel process-
ing computers, KDD tools can analyze massive databases to deliver answers
to questions such as: Which clients are most likely to respond to my next
promotional mailing, and why?

A widely accepted definition of KDD is given by Fayyad et al. in which
KDD is defined as the nontrivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data (Fayyad-Piatetsky-
Smyth 1996). The definition regards KDD as a complicated process compris-
ing a number of steps. Data mining is one step in the process.

2.2.1 Processing Steps of KDD

In general, the process of knowledge discovery in databases consists of an
iterative sequence of the following steps (Han-Huang-Cercone-Fu 1996, Han
1999, Liu-Motoda 1998, Wu 1995, Zhang 1989).

Defining the problem. The goals of the knowledge discovery project must be
identified and must be verified as actionable. For example, if the goals
are met, a business can then put newly discovered knowledge to use. The
data to be used must also be identified.

Data preprocessing. This includes data collection, data cleaning, data inte-
gration, data selection, and data transformation.
• Data collection obtains necessary data from various internal and ex-

ternal sources; resolves representation and encoding differences; and
joins data from various tables to create a homogeneous source.

• Data cleaning checks and resolves data conflicts, outliers (unusual or
exception values), noisy, erroneous, missing data, and ambiguity; and
uses conversions and combinations to generate new data fields, such
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as ratios or rolled-up summaries. These steps require considerable
effort, often as much as 70 percent, or more, of the total data mining
effort.

• Data integration integrates multiple, heterogeneous data-sources into
a single source.

• Data selection is where data relevant to the analysis task is retrieved
from the database. In other words, it selects a dataset, or focuses on
a subset of variables or data samples, on which discovery is to be
performed.

• Data transformation is where data are transformed or consolidated
into forms appropriate for mining, by performing summary, or ag-
gregation, operations.

Data mining is an essential process where intelligent methods are applied in
order to extract data patterns. It searches for patterns of interest in a
particular representational form, or a set of such representations, includ-
ing classification rules or trees, regression, clustering, sequence modeling,
dependency, and so forth. The user can significantly aid the data mining
method by correctly performing the preceding steps.

Post data mining includes pattern evaluation, deployment of the model,
maintenance, and the presentation of knowledge.

• Pattern evaluation identifies the truly interesting patterns representing
knowledge, based on certain interesting measures, tests the model for
accuracy on an independent dataset — one that has not been used to
create the model; assesses the sensitivity of a model, and pilot tests
the model for usability. For example, if a model is used to predict
customer response, then a prediction can be made and a test mailing
done to a subset in order to check how closely the responses match
predictions.

• Deployment of the model. A predictive model is used to predict results
for new cases. The prediction is then used to improve organizational
behavior. Deployment may require building computerized systems
that capture the appropriate data and generate a prediction in real
time so that a decision maker can apply the prediction. For example,
a model can determine whether a credit card transaction is likely to
be fraudulent.

• Maintenance. Whatever is being modeled, things are likely to change
over time. The economy changes, competitors introduce new prod-
ucts, or the news media comes up with a new hot topic. Any of
these forces can alter customer behavior. So the model that was cor-
rect yesterday and today might no longer be appropriate tomorrow.
Maintaining models requires constant revalidation of the model using
new data to assess whether it is still appropriate.
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• The presentation of knowledge is where visualization and knowledge
representation techniques are used to present mined knowledge to
users.

The knowledge discovery process is iterative. For example, while cleaning
and preparing data you might discover that data from a certain source are
unusable, or that you require data from a previously unidentified source to
be merged with other data. Often, the first time through, the data mining
step will reveal that additional data cleaning is required.

2.2.2 Data Pre-processing

The ability to analyze and understand massive datasets lags far behind the
ability to gather and store the data. Therefore, knowledge discovery and data
mining are rapidly becoming an important field of research. No matter how
powerful computers are now, or will be in the future, KDD researchers and
practitioners must consider ways of efficiently managing the ever-growing
data generated by the extensive use of computers and ease of data collection.
Many different approaches have been introduced to address the data explosion
issue. These include algorithm scale-up and data reduction (by data pre-
processing). As a result, data pre-processing can be more time consuming,
and can present more challenges than can data mining (Fayyad-Simoudis
1997).

Data collection is a very important step in knowledge discovery within
databases. This step obtains necessary data from various internal and exter-
nal data-sources that are relevant to a mining application. This can take ad-
vantage of the remarkable possibilities of access to information and knowledge
that the Internet provides. Web technologies, such as HTTP and HTML, have
dramatically changed enterprise information management. The vast amount
of information available on the World Wide Web has great potential to im-
prove the quality of decision-making (Lesser 1998, 2000). A corporation can
benefit from intranets and the Internet to gather, manage, distribute, and
share data, inside and outside the corporation.

Real-world data often have to be transformed in many ways for use in
different situations. Also, the data can have discrepancies in structure and
content that must be cleaned. In addition, many visualization tools, or tools
for analysis, require the data to be in particular formats. Traditionally, such
transformation has been done through ad hoc scripts, or through cookie-
cutter transformation tools that require much laborious and errorprone pro-
gramming. Moreover, the transformation process is typically decoupled from
the analysis process. On large datasets, such transformation and analysis is
quite timeconsuming. Users often need to perform many iterations of analysis
and transformation, and have to endure many long, frustrating delays.

Data integration joins all relevant internal and external data to create
a single homogeneous dataset. When internal and external data are joined
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into a single dataset for mining tasks all of the data play an equal role in
data mining. However, because some collected data may be untrustworthy
(even fraudulent), useful patterns can be disguised. If external data are not
pre-processed before they are applied, patterns identified from the data can
result in a high-risk application. For example, a stock investor might need to
collect information from outside data-sources to make an investment decision.
If the investor gathers fraudulent information, and the information is directly
applied to investment decisions, he or she might lose money. Hence, it is very
important to collect quality data.

Data often contain noise and erroneous components, and can have missing
values. There is also the possibility that redundant or irrelevant variables
have been recorded, while important features have been overlooked. Data
cleaning includes provision for correcting inaccuracies, removing anomalies,
eliminating duplicate records, filling holes in the data, and checking entries
for consistency. Cleaning is required to make the necessary transformation of
the original into a format suitable for use by data mining tools.

Another important requirement with the KDD process is feature selection
(Liu-Motoda 1998, Wu 2000). KDD is a complicated task and often depends
on the proper selection of features. Feature selection is the process whereby
features are chosen that are necessary and sufficient to represent the data.
There are several issues that influence feature selection. These include: mask-
ing variables, the number of variables employed in the analysis, and relevancy
of variables.

Masking variables hides, or disguises, patterns in data. Numerous studies
have shown that inclusion of irrelevant variables can hide real clustering of
the data, so only those variables which help discriminate the clustering should
be included in the analysis.

The number of variables used in data mining is also an important consider-
ation. There is generally a tendency to use more and more variables. However,
increased dimensionality has an adverse effect because, for a fixed number
of data patterns, increased dimensionality makes the multi-dimensional data
space sparse.

However, failing to include relevant variables also causes failure in identi-
fying the clusters. A practical difficulty in mining some industrial data is
knowing whether all important variables have been included in the data
records.

2.2.3 Data Mining

Data mining has been popularly treated as a synonym of knowledge discovery
in databases, although some researchers even view data mining as the kernel
step of knowledge discovery. Data mining derives its name from similarities
between searching for valuable business information in a large database and
mining a mountain for a vein of valuable ore. Both processes require either
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sifting through an immense amount of material, or intelligently probing it to
find exactly where the value resides.

Strictly speaking, data mining is the process of discovering inter-
esting knowledge, such as patterns, associations, changes, anoma-
lies and significant structures, from large amounts of data stored in
databases, data warehouses, or other information repositories. This
valuable information can be in the form of patterns, associations,
changes, anomalies, and significant structures (Fayyad-Piatetsky-
Smyth 1996). In other words, data mining attempts to extract po-
tentially useful knowledge from data.

Given databases of sufficient size and quality, data mining technology can
generate new business opportunities as follows.

1. Prediction of trends and behaviors. Data mining seeks predictive
information in large databases. Questions that traditionally required ex-
tensive hands-on analysis can now be quickly answered directly from
the data. A typical example of a predictive problem is targeted mar-
keting. Data mining uses data on past promotional mailings to identify
the targets most likely to maximize return on investment in future mail-
ings. Other predictive problems include forecasting bankruptcy and other
forms of default, and identifying segments of a population likely to re-
spond similarly to given events.

2. Discovery of previously unknown patterns. Data mining tools
sweep through databases and, in one step, identify previously hidden
patterns. An example of pattern discovery is the analysis of retail sales
data to identify seemingly unrelated products that are often purchased
together. Other pattern discovery problems include detecting fraudulent
credit card transactions and identifying anomalous data that could rep-
resent data entry keying errors.

Data mining techniques can yield the benefits of automation on exist-
ing software and hardware platforms, and can be implemented on new sys-
tems as existing platforms are upgraded and new products developed. When
data mining tools are implemented on high-performance parallel processing
systems, they are able to analyze massive databases in minutes. Faster pro-
cessing means that users can automatically experiment with more models to
understand complex data. This makes it practical for users to analyze huge
quantities of data. Larger databases, in turn, yield improved predictions.
With the rapid advance in data capture, transmission, and storage, large-
system users will increasingly need to implement new and innovative ways to
mine the after-market value of their vast stores of detailed data, employing
MPP (massive parallel processing) systems to create new sources of business
advantage.

The most commonly used techniques in data mining are as follows.
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Decision trees: Tree-shaped structures that represent sets of decisions.
These decisions generate rules for the classification of a dataset. Spe-
cific decision tree methods include Classification and Regression Trees
(CART) and Chi-Square Automatic Interaction Detection (CHAID).

Nearest neighbor method: A technique that classifies each record in a
dataset based on a combination of the classes of k record(s) most similar
to it in an historical dataset, sometimes known as the k-nearest neighbor
technique.

Rule induction: The extraction of useful if-then rules from data, based on
statistical significance.

Genetic algorithms: Optimization techniques that use processes such as
genetic combination, mutation, and natural selection in a design based
on the concepts of evolution.

Artificial neural networks: Nonlinear predictive models that learn
through training, and resemble biological neural networks in structure.

Many of these technologies have been in use for more than a decade
with specialized analysis tools that work with relatively small volumes of
data. These capabilities are now evolving to integrate directly with industry-
standard data warehouses and OLAP platforms.

One of the important topics in data mining is association rule mining.
Since its introduction in 1993 (Agrawal-Imielinski-Swami 1993) the method
of association rule mining has received a great deal of attention. It has been
mainly developed to identify the relationships among itemsets that have high
frequency and strong correlation. Association rules enable us to detect the
items that often occur together in an application. This book illustrates pro-
posed techniques for mining multi-databases, using association rules.

2.2.4 Post Data Mining

Post data mining is used to analyze, cluster, and maintain the patterns discov-
ered from databases. Pattern analysis and clustering are helpful in improving
efficiency when using patterns. Pattern maintenance is necessary to identify
the changes of patterns in real-world applications.

However, even when patterns have been identified from a database, it does
not mean that the mining process can be terminated. We must analyze and
cluster the mined patterns so as to detail a way to use the patterns. On the
other hand, the number of patterns discovered may be so large that browsing
the pattern set and finding interesting patterns can be somewhat difficult
for users. It can be hard to identify which of the patterns are really useful
to applications. One of the tasks required in post data mining is to improve
efficiency when using the patterns.

In many applications, the databases are dynamic, that is, transactions
are continuously being added. There is much work that focuses on mining
frequent itemsets in market basket datasets (e.g., (Agrawal-Imielinski-Swami
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1993, Brin-Motwani-Silverstein 1997)). However, many items such as suits,
toys and some foods, represent smart model in market basket data. For ex-
ample, jeans and white shirt may have often been purchased at one time from
a department store, and black trousers and blue T-shirt often purchased at
another time. The department store may have made different decisions when
buying according to such different purchasing models. This means that cer-
tain goods are very often purchased at one time according to market basket
data, and they are solely purchased at another time. These items are called
fashionable goods. Although most fashionable items may not be large itemsets
in a market basket dataset, such itemsets are useful when making decisions
on buying. Consequently, mining fashionable patterns is an important issue
when mining market basket data. Indeed, since new data may represent a
changing trend of customer buying patterns, we should intuitively have more
confidence in the new data than in the old. Thus, novelty of data should
be highlighted in mining models. However, although mining customer buying
patterns based on the support-confidence framework can reflect the frequency
of itemsets, it cannot catch the stylishness of data. Another task of post data
mining is to maintain patterns and identify trend patterns.

2.2.5 Applications of KDD

KDD is potentially valuable in virtually any industrial and business sector
where database and information technology are used. A wide range of compa-
nies has deployed successful applications of data mining. While early adopters
of this technology have tended to be in information-intensive industries such
as financial services and direct-mail marketing, the technology is applicable
to any company looking to leverage a large data warehouse to better manage
their customer relations. Two critical factors for success with data mining
are: a large, well-integrated data warehouse and a well-defined understand-
ing of the business process within which data mining is to be applied (such
as customer prospecting, retention, campaign management, and so on).

Some successful application areas include the followings.

1. A pharmaceutical company can analyze its recent sales force activities
and its results to improve its targeting of high-value physicians and to
determine which marketing activities will have the greatest impact in the
next few months. The data need to include competitor market activity
as well as information about the local health-care systems. The results
can be distributed to the sales force via a wide-area network that enables
the representatives to review the recommendations from the perspective
of the key attributes in the decision process. The ongoing dynamic anal-
ysis of the data warehouse allows best practices from throughout the
organization to be applied in specific sales situations.

2. A credit card company can leverage its vast warehouse of customer trans-
action data to identify customers most likely to be interested in a new
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credit product. Using a small test mailing, the attributes of customers
with an affinity to the product can be identified. Recent projects have
indicated more than a twenty-fold decrease in costs for targeted mailing
campaigns over conventional approaches.

3. A diversified transportation company, with a large direct sales force, can
apply data mining to identify the best prospects for its services. Us-
ing data mining to analyze its own customer experience, this company
can build a unique segmentation identifying the attributes of high-value
prospects. Applying this segmentation to a general business database,
such as those provided by Dun and Bradstreet, can yield a prioritized
list of prospects by region.

4. A large consumer package goods company can apply data mining to
improve its sales process to retailers. Data from consumer panels, ship-
ments, and competitor activity can be applied to understand the reasons
for brand and store switching. Through this analysis, the manufacturer
can select promotional strategies that best reach their target customer
segments.

Each of these examples has a clear common ground. They leverage the
knowledge about customers implicit in a data warehouse to reduce costs and
improve the value of customer relations. These organizations can now focus
their efforts on the most important (profitable) customers and prospects, and
design targeted marketing strategies to best reach them.

One of the most popular and successful applications of database systems
is in the area of marketing, where a great deal of information about customer
behavior is collected. Marketers are interested in finding customer prefer-
ences so as to target them in future campaigns (Berry, 1994, Fayyad-Simoudis
1997).

There are various applications reported in recent data mining conferences
and journals and in various journal special issues on data mining. The fol-
lowing are some applications reported in (Fayyad-Simoudis 1997, Piatetsky-
Matheus 1992).

– The SKICAT (Sky Image Cataloging and Analysis Tool) system concerns
an automation of reduction and analysis of the large astronomical dataset
known as the Palomar Observatory Digital Sky Survey (POSS-II) (Fayyad-
Piatetsky-Smyth 1996). The database is huge: three terabytes of images
containing on the order of two billion sky objects. This research was initi-
ated by George Djorgovski from the California Institute of Technology who
realized that new techniques were required in order to analyze such huge
amounts of data. He teamed up with Jet Propulsion Laboratory’s Usama
Fayyad and others. The result was SKICAT.

– Health-KEFIR (Key Findings Reporter) is a knowledge discovery system
used in health care as an early warning system (Fayyad-Piatetsky-Smyth
1996). The system concentrates on ranking deviations according to mea-
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sures of how interesting these events are to the user. It focuses on dis-
covering and explaining key findings in large and dynamic databases. The
system performs an automatic drill-down through data along multiple di-
mensions to determine the most interesting deviations of specific quantita-
tive measures relative to their previous and expected values. The deviation
technique is a powerful tool used in KEFIR to identify interesting patterns
from the data. The deviations are then ranked, using some measure of in-
terestingness, such as looking at the actions that can be taken in response
to the relevant deviations. They might even generate recommendations for
corresponding actions. KEFIR uses Netscape to present its findings in a
hypertext report, using natural language and business graphics.

– TASA (Telecommunication Network Alarm Sequence Analyzer) was devel-
oped for predicting faults in a communication network (Fayyad-Piatetsky-
Smyth 1996). A typical network generates hundreds of alarms per day. The
TASA system generates rules like if a certain combination of alarms occurs
within (...) time, then an alarm of another type will occur within (...) time.
The time periods for the “if” part of the rules are selected by the user, who
can rank or group the rules once they are generated by TASA.

– R-MINI system uses both deviation detection and classification techniques
to extract useful information from noisy domains (Fayyad-Piatetsky-Smyth
1996). It uses logic to generate a minimal size rule set that is both complete
and consistent.

– Knowledge Discovery Workbench (KDW) (Piatetsky-Matheus 1992) is
a collection of methods used for interactive analysis of large business
databases. It includes many different methods for clustering, classification,
deviation detection, summarization, dependency analysis, and so forth. It
is the user, however, who needs to guide the system in searches. Thus, if
the user is knowledgeable in both the domain and the tools used, the KDW
system can be domain independent and versatile.

– Experiment result analysis summarizes experiment results and predictive
models.

– Clementine is a commercial software package for data mining (Integrated
Solutions, Ltd.) (Fayyad-Piatetsky-Smyth 1996). Basically, it is a classi-
fier system based on neural networks and inductive machine learning. It
has been applied for the prediction of viewing audiences for the BBC, se-
lection of retail outlets, anticipating toxic health hazards, modeling skin
corrosivity, and so on.

2.3 Association Rule Mining

This section recalls some concepts required for association rule mining in this
book.
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Let I = {i1, i2, ..., im} be a set of literals, or items. For example, goods
such as milk, sugar, and bread for purchase in a store are items; and Ai = v
is an item, where v is a domain value of attribute Ai in a relation R(A1, ...,
An).

X is an itemset if it is a subset of I. For example, a set of items for
purchase from a store is an itemset; and a set of Ai = v is an itemset for the
relation R(PID, A1, A2, ..., An), where PID is a key.

D = {ti, ti+1, ..., tn} is a set of transactions, called the transaction
database, where each transaction t has a tid and a t-itemset: t = (tid, t-itemset).
For example, the shopping cart of a customer going through checkout is a
transaction; and a tuple (v1, ..., vn) of the relation R(A1, ..., An) is a transac-
tion.

A transaction t contains an itemset X if, and only if, (iff) for all items,
i ∈ X, i is in t-itemset. For example, a shopping cart contains all items in
X when going through checkout; and for each Ai = vi in X, vi occurs at
position i in the tuple (v1, ..., vn).

An itemset X in a transaction database D has a support, denoted as
supp(X) (we also use p(X) to stand for supp(X)), that is, the ratio of trans-
actions in D contains X. Or

supp(X) = |X(t)|/|D|,

where X(t) = {t in D|t contains X}.
An itemset X in a transaction database D is called a large (frequent)

itemset if its support is equal to, or greater than, a threshold of minimal
support (minsupp), which is given by users or experts.

An association rule is an implication X → Y , where itemsets X and Y
do not intersect.

Each association rule has two quality measurements: support and confi-
dence, defined as

– the support of a rule X → Y is the support of X ∪ Y , where X ∪ Y means
both X and Y occur at the same time;

– the confidence of a rule X → Y is conf(X → Y ) as the ratio |(X ∪
Y )(t)|/|X(t)| or supp(X ∪ Y )/supp(X).

That is, support = frequencies of occurring patterns; confidence = strength
of implication.

The support-confidence framework (Agrawal-Imielinski-Swami 1993): Let
I be the set of items in database D, X, Y ⊆ I be itemsets, X ∩ Y = ∅,
p(X) �= 0, and p(Y ) �= 0. Minimal support (minsupp) and minimal confidence
(minconf) are given by users or experts. Then X → Y is a valid rule if

(1) supp(X ∪ Y ) ≥ minsupp,
(2) conf(X → Y ) = supp(X∪Y )

supp(X) ≥ minconf ,
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where conf(X → Y ) stands for the confidence of the rule X → Y .
Mining association rules can be broken down into the subproblems:

(1) generating all itemsets that have support greater than, or equal to, the
user-specified minimum support; that is, generating all large itemsets;

(2) generating all the rules that have minimum confidence in the following
naive way: for every large itemset X, and any B ⊂ X, let A = X − B. If
the confidence of a rule A → B is greater than, or equal to, the minimum
confidence (or supp(X)/supp(A) ≥ minconf), then it can be extracted
as a valid rule.

To demonstrate the use of the support-confidence framework, we detail
the process of mining association rules by an example as follows.

Let the item universe be I = {A, B, C, D, E}; and a transaction database
be TID = {100, 200, 300, 400}. The data in the transactions are listed in
Table 2.1.

Table 2.1 Sample transaction database

TID Items
100 A C D
200 B C E
300 A B C E
400 B E

In Table 2.1, 100, 200, 300, 400 are the unique identifiers of the four
transactions; and A = sugar, B = bread, C = coffee, D = milk, and E =
cake.

Each row in Table 2.1 can be taken as a transaction. We can discover asso-
ciation rules from these transactions using the support-confidence framework.
Let

minsupp = 50% (to be frequent, an itemset must be in at least two
transactions);
minconf = 60% (to be a high-confidence (valid) rule, at least 60% of
the time the antecedent is found in the transaction, the consequent
must also be found there).

By the support-confidence framework, we present the two-step association
rule mining as follows.

(1) The first step is to count the frequencies of k-itemsets.

For Table 2.1, item {A} occurs in two transactions TID = 100 and TID =
300, its frequency is 2, and its support (supp(A)) is 50%, which is equal
to minsupp = 50%; item {B} occurs in three transactions TID = 200,
TID = 300, and TID = 400, its frequency is 3, and its support supp(B) is
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75%, which is greater than minsupp; item {C} occurs in three transactions
TID = 100, TID = 200 and TID = 300, its frequency is 3, and its support
supp(C) is 75%, which is greater than minsupp; item {D} occurs in one
transaction TID = 100, its frequency is 1, and its support supp(D) is 25%,
which is less than minsupp; item {E} occurs in three transactions TID =
200, TID = 300, and TID = 400, its frequency is 3, and its support supp(E)
is 75%, which is greater than minsupp. They are summarized in Table 2.2.

Table 2.2 1-itemsets in the database
Itemsets Frequency > minsupp

{A} 2 y
{B} 3 y
{C} 3 y
{D} 1 n
{E} 3 y

We now consider 2-itemsets. For Table 2.1, itemset {A, B} occurs in one
transaction TID = 300, its frequency is 1, and its support supp(A ∪ B) is
25%, which is less than minsupp = 50%, where A ∪ B is used to stand for
{A, B} in formulas in this book; itemset {A, C} occurs in two transactions
TID = 100 and TID = 300, its frequency is 2, and its support supp(A ∪ C)
is 50%, which is equal to minsupp = 50%; itemset {A, D} occurs in one
transaction TID = 100, its frequency is 1, and its support supp(A ∪ D)
is 25%, which is less than minsupp = 50%; itemset {A, E} occurs in one
transaction TID = 300, its frequency is 1, and its support supp(A ∪ E)
is 25%, which is less than minsupp = 50%; itemset {B, C} occurs in two
transactions TID = 200 and TID = 300, its frequency is 2, and its support
supp(B∪C) is 50%, which is equal to minsupp; and so on. This is summarized
in Table 2.3.

Table 2.3 2-itemsets in the database
Itemsets Frequency > minsupp
{A, B} 1 n
{A, C} 2 y
{A, D} 1 n
{A, E} 1 n
{B, C} 2 y
{B, E} 3 y
{C, D} 1 n
{C, E} 2 y

Also, we can obtain 3-itemsets and 4-itemsets as listed in Table 2.4 and
Table 2.5.
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Table 2.4 3-itemsets in the database
Itemsets Frequency > minsupp
{A, B, C} 1 n
{A, B, E} 1 n
{A, C, D} 1 n
{A, C, E} 1 n
{B, C, E} 2 y

Table 2.5 4-itemsets in the database

Itemsets Frequency > minsupp
{A, B, C, E} 1 n

Here, 5-itemsets in the database is empty. According to the above defini-
tions, {A}, {B}, {C}, {E}, {A, C}, {B, C}, {B, E}, {C, E}, and {B, C, E}
in the dataset are frequent itemsets.

(2) The second step is to generate all association rules from the frequent
itemsets.

Because there is no frequent itemset in Table 2.5, 4-itemsets do not con-
tribute any valid association rule. In Table 2.4, there is one frequent itemset,
{B, C, E}, with supp(B ∪ C ∪E) = 50% = minsupp. For frequent itemset
{B, C, E}, because supp(B ∪ C ∪ E)/supp(B ∪ C) = 2/2 = 100% is greater
than minconf = 60%, B ∪ C → E can be extracted as a valid rule; because
supp(B ∪ C ∪ E)/supp(B ∪ E) = 2/3 = 66.7% is greater than minconf , B
∪ E → C can be extracted as a valid rule; because supp(B ∪ C ∪ E)/supp(C
∪ E) = 2/2 = 100% is greater than minconf , C ∪ E → B can be extracted
as a valid rule; and because supp(B ∪ C ∪ E)/supp(B) = 2/3 = 66.7% is
greater than minconf , B → C ∪ E can be extracted as a valid rule; and so
on. The generated association rules from {B, C, E} are in Tables 2.6 and 2.7.

Table 2.6 For frequent 3-itemsets, start with 1-item consequences

RuleNo Rule Confidence support > minconf
Rule1 B ∪ C → E 100% 50% y
Rule2 B ∪ E → C 66.7% 50% y
Rule3 C ∪ E → B 100% 50% y

Table 2.7 Form all 2-item consequences from high-conf 1-item
consequences

RuleNo Rule Confidence support > minconf
Rule4 B → C ∪ E 66.7% 50% y
Rule5 C → B ∪ E 66.7% 50% y
Rule6 E → B ∪ C 66.7% 50% y
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Also, we can generate all association rules from frequent 2-itemsets as
shown in Table 2.3. They are illustrated in Tables 2.8 through 2.11.

Table 2.8 For 2-itemsets, start with 1-item consequences for {A, C}
RuleNo Rule Confidence support > minconf
Rule7 A → C 100% 50% y
Rule8 C → A 66.7% 50% y

Table 2.9 For 2-itemsets, start with 1-item consequences for {B, C}
RuleNo Rule Confidence support > minconf
Rule9 B → C 66.7% 50% y
Rule10 C → B 66.7% 50% y

Table 2.10 For 2-itemsets, start with 1-item consequences for {B, E}
RuleNo Rule Confidence support > minconf
Rule11 B → E 100% 75% y
Rule12 E → B 100% 75% y

Table 2.11 For 2-itemsets, start with 1-item consequences for {C, E}
RuleNo Rule Confidence support > minconf
Rule13 C → E 66.7% 50% y
Rule14 E → C 66.7% 50% y

According to the above definitions, the 14 association rules listed in the
above data set can be extracted as valid rules.

2.4 Research into Mining Mono-databases

Association rule mining is one of the most prevailing research topics in mono-
database mining. We now briefly introduce some well-known research into
mining association rules.

1. The support-confidence framework measures the uncertainty of an asso-
ciation rule with two factors: support and confidence.

However, this measure is inadequate for modeling some uncertainties of
association rules. For instance, the measurement does not provide a test to
capture the correlation of two itemsets, and some of the association rules
mined are not of interest. In order to improve this framework, some measures
on the support and confidence of association rules, such as the chi-squared
test model (Brin-Motwani-Silverstein 1997) and the collective-strength-based
measure (Aggarawal-Yu 1998), have recently been proposed. These different
measurements on support and confidence lead to different models for mining
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association rules. Hence, the measuring of uncertainty of association rules
has recently become one of the crucial problems in mining association rules.

In fact, measurement of the uncertainty of an event is a well-known topic.
Mathematical probability theory and statistics offer many mature techniques
for measuring uncertainty. Thus, there are a great many measuring models
that can be applied to estimate the uncertain factors (supp and conf) of an
association rule. Below, we briefly recall some of the familiar methods for
measuring association rules, which are relevant to the work in this book.

2. Piatetsky-Shapiro (Piatetsky 1991) argued that a rule X → Y is not
interesting if

support(X → Y ) ≈ support(X) × support(Y )

where support(X → Y ) = support(X ∪ Y ).

According to probability interpretation, support(X ∪ Y ) = p(X ∪ Y ) and
confidence(X → Y ) = p(Y |X) = p(X ∪ Y )/p(X). Then Piatetsky-Shapiro’s
argument can be denoted as

p(X ∪ Y ) ≈ p(X)p(Y ).

This means that X → Y cannot be extracted as a rule if p(X ∪ Y ) ≈
p(X)p(Y ). In fact, in probability theory, p(X ∪ Y ) ≈ p(X)p(Y ) denotes X is
approximately independent of Y .

3. A statistical definition of (Brin-Motwani-Silverstein 1997) for the depen-
dence of the sets X and Y is

Interest(X, Y ) =
p(X ∪ Y )
p(X)p(Y )

,

with the obvious extension to more than two sets. This formula, which we
refer to as the interest of Y , given X, is one of the main measurements of
uncertainty for association rules. Certainly, the further the value is from
1, the more the dependence. Or, for 1 > mininterest > 0, if | p(X∪Y )

p(X)p(Y ) −
1| ≥ mininterest, then X → Y is a rule of interest.

By Piatetsky-Shapiro’s argument, we can divide Interest(X, Y ) into sev-
eral cases as follows:

(1) if p(X ∪ Y )/(p(X)p(Y )) = 1, or p(X ∪ Y ) = p(X)p(Y ), then Y and X
are independent;

(2) if p(X ∪ Y )/(p(X)p(Y )) > 1, or p(X ∪ Y ) > p(X)p(Y ), then Y is
positively dependent on X;

(3) if p(X ∪ Y )/(p(X)p(Y )) < 1, or p(X ∪ Y ) < p(X)p(Y ), then Y is nega-
tively dependent on X, or ¬Y is positively dependent on X.
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In this way, we can define another form of interpretation of rules of interest
as follows. For 1 > mininterest > 0, (a) if

p(X ∪ Y )
p(X)p(Y )

− 1 ≥ mininterest

then X ⇒ Y is a rule of interest; and (b) if

−(
p(X ∪ Y )
p(X)p(Y )

− 1) ≥ mininterest

then X → ¬Y is a rule of interest, where ¬Y is the logical “not” of Y , or Y
is not contained for transactions in a database.

This leads to two new definitions of association rules of interest as follows.

Definition 2.1 (Piatetsky-Shapiro’s argument) Let I be the set of items in
database TD, X, Y ⊆ I be itemsets, X ∩ Y = ∅, p(X) �= 0, and p(Y ) �= 0.
minsupp, minconf , and mininterest > 0 are given by users or experts. Then,
X → Y can be extracted as a valid rule of interest if

(1) p(X ∪ Y ) ≥ minsupp,
(2) p(Y |X) ≥ minconf , and
(3) |p(X ∪ Y ) − p(X)p(Y )| ≥ mininterest.

Definition 2.2 (Brin, Motwani, and Silverstein’s argument) Let I be the set
of items in database D, X, Y ⊆ I be itemsets, X ∩ Y = ∅, p(X) �= 0, and
p(Y ) �= 0. The thresholds minimum support (minsupp), minimum confidence
(minconf), and minimum interest (mininterest > 0) are given by users or
experts. Then, X → Y can be extracted as a valid rule of interest if

(1) p(X ∪ Y ) ≥ minsupp,
(2) p(Y |X) ≥ minconf , and
(3) | p(X∪Y )

p(X)p(Y ) − 1| ≥ mininterest.

Here, condition (3) ensures that X → Y is a rule of interest.

According to the above framework, we can take

(1) X ∩ Y = ∅;
(2) p(X ∪ Y ) ≥ minsupp;
(3) p(Y |X) ≥ minconf (e.g., conf(X → Y ) ≥ minconf); and
(4) | p(X∪Y )

p(X)p(Y ) − 1| ≥ mininterest

as the conditions under which association rule X → Y can be extracted as
a valid rule of interest in this book, where the thresholds minimum sup-
port (minsupp), minimum confidence (minconf), and minimum interest
(mininterest > 0) are given by users or experts.
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4. The J-measure is as

J(X; Y ) = p(Y )[p(X|Y )log(
p(X|Y )
p(X)

) + (1 − p(X|Y ))log(
1 − p(X|Y )
1 − p(X)

)]

for a rule X → Y , where the term inside the square brackets is the relative
(or cross) entropy. (Relative entropy is the similarity, or goodness of fit,
of two probability distributions.)

The J-measure is the average information content of a probabilistic classi-
fication rule (Smyth-Goodman 1991). It is used to find the best rules relating
to discrete attributes. A probabilistic classification rule is a logical implica-
tion X → Y with some probability p, where the left- and right-hand sides
correspond to a single attribute. The right-hand side is restricted to sim-
ple, single-valued, assignment expressions, while the left-hand side may be a
conjunction of these simple expressions.

High values for J(X; Y ) are desirable, but are not necessarily associated
with the best rule. For example, rare conditions may be associated with the
highest values for J(X;Y ) (i.e., where a particular Y is highly unlikely), but
the resulting rule is insufficiently general to provide any new information.
Consequently, analysis may be required in which the accuracy of a rule is
traded for some level of generality or goodness-of-fit.

5. The distance metric between two rules R1 and R2 is defined in (Dong-Li
1998) as

D(R1, R2) = δ1 × |(X1 ∪ Y1)Θ(X2 ∪ Y2)| + δ2 × |X1ΘX2| + δ3 × |Y1ΘY2|,
where R1 = X1 → Y1, R2 = X2 → Y2, δ1, δ2, and δ3 are parameters to
weight the relative importance of all three terms, and Θ is an operator
denoting the symmetric difference between X and Y (i.e., (X −Y )∪(Y −
X)).

Dong and Li’s interestingness is used to evaluate the importance of an as-
sociation rule by considering its unexpectedness in terms of other association
rules in its neighborhood. The neighborhood of an association rule consists of
all association rules within a given distance. An r-neighborhood of a rule is
given by the set

N(R0, r) = {R|D(R, R0) ≤ r, R is a potential rule}.

The set is used to define the interestingness of a rule. Two types of inter-
estingness are unexpected confidence and isolation. Unexpected confidence
interestingness is defined as

UCI =






1, if ||c(R0) − ac(R0, r)| − sc(R0, r)|,

0, otherwise,
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where c(R0) is the confidence of R0, ac(R0, r) are the average confidence and
standard deviation of the rules in the set M ∩ N(R0, r) − {R0} (M being
the set of rules satisfying the minimum support and confidence), and t1 is a
threshold. Isolated interestingness is defined as

II =






1, if ||N(R0, r)| − |M ∩ N(R0, r)| > t2,

0, otherwise,

where |N(R0, r)| is the number of potential rules in an r-neighborhood, |M ∩
N(R0, r)| is the number of rules generated from the neighborhood, and t2 is
a threshold.

6. The ratio p(Y |X)−p(Y )
1−p(Y ) of the conditional probability and the priori proba-

bility to describe the increased degree of p(Y |X) relative to p(Y ), referred
to as the CPIR model, is defined in (Wu-Zhang-Zhang 2002) as

CPIR(Y |X) =
supp(X ∪ Y ) − supp(X)supp(Y )

supp(X)(1 − supp(Y ))
.

CPIR is taken as a metric for the confidence measure conf of the rule
X ⇒ Y in the following discussion. Here, supp(X ∪ Y ) ≥ supp(X)supp(Y )
and supp(X)(1−supp(Y )) �= 0, where supp(Y |X) = p(Y |X) in the model
is replaced with supp(X ∪ Y )/supp(X) for the convenience of mining as-
sociation rules.

While positive association rules that enable us to detect the companionate
correlations among items are useful in decision-making, it is also desirable
in applications to capture the mutually exclusive correlations among items.
These mutually exclusive correlations are referred to as negative association
rules, and are hidden in infrequent itemsets. The development of negative
association rule mining will mean that companies will gain more business
opportunities through using infrequent itemsets of interest than will those
that only take into account frequent itemsets.

The interestingness in (Wu-Zhang-Zhang 2002) is used for identifying
both positive and negative association rules in databases. This method
extends traditional associations to include association rules of the forms
A ⇒ ¬B, ¬A ⇒ B, and ¬A ⇒ ¬B, which indicate negative associations
between itemsets.

With the increasing use and development of data mining techniques and
tools, much work has recently focused on finding alternative patterns, in-
cluding unexpected patterns (Padmanabhan 1998, 2000), exceptional pat-
terns (Hussain 2000, Hwang 1999, Liu 1999, Suzuki 1996, 1997), and strong
negative associations (Savasere 1998).

Unexpected patterns and exceptional patterns are referred to as excep-
tions of rules, also known as surprising patterns. An exception, which is de-
fined as a deviational pattern to a well-known fact, exhibits unexpectedness.
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For example, while bird(x) ⇒ flies(x) is a well-known fact, mining excep-
tional rules is used to find patterns such as bird(x), penguin(x) ⇒ ¬flies(x).
This means unexpected patterns and exceptional patterns are default rules
as well as not being negative rules.

A strong negative association is referred to as a negative relation between
two itemsets. This negative relation really implies a negative rule between
the two itemsets. However, strong negative association only reveals the exis-
tence in a hidden representation. For example, X �⇒ Y is a strong negative
association. Obviously, this rule cannot be used in an automated reasoning
system.

Unlike existing mining techniques, the interestingness in (Wu-Zhang-
Zhang 2002) extends traditional associations to include association rules of
forms A ⇒ ¬B, ¬A ⇒ B, and ¬A ⇒ ¬B, which indicate negative asso-
ciations between itemsets. We call rules of the form A ⇒ B positive rules,
and rules of the other forms negative rules. This work differs from existing
work in association analysis in two aspects. Infrequent itemsets in databases
are of interest to us for mining negative association rules. The following con-
straints have been defined for identifying interesting negative rules of the
form A ⇒ ¬B.

(1) A ∩ B = ∅;
(2) supp(A) ≥ minsupp, supp(B) ≥ minsupp, and supp(A ∪ ¬B) ≥

minsupp;
(3) supp(A ∪ ¬B) − supp(A)supp(¬B) ≥ mininterest;
(4) supp(A ∪ ¬B)/supp(A) ≥ minconf .

Also, to design an efficient model for mining both positive and negative
association rules, the CPIR model was designed to estimate the confidence
of association rules. This uses the increasing degree of the rule’s conditional
probability relative to its priori probability.

7. An anytime framework for mining very large databases shared by multi-
users has been designed by (Zhang-Zhang 2002b). It generates approx-
imate results that can be accessed at any time while the system is au-
tonomously mining a database.

Mining approximate frequent itemsets from the sample of a large database
can reduce computation costs significantly. For example, we can select a sam-
ple from a large database for estimating the support of candidates using
Chernoff bounds (Srikant-Agrawal 1997, Toivonen 1996). This technique is
effective for mono-user applications, where mono-user applications are those
that can work well under a unique precision on frequent itemsets. However,
multi-user applications require different precisions.

In real-world applications, a database is developed to be shared by multi-
users. Therefore, data mining must be developed to serve multi-user appli-
cations. For a very large database, multi-users might demand different pre-
cisions on results for different applications. For example, a short-term stock
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investor might demand approximate frequent itemsets quickly from a shared
stock database for high-profits as time may mean money. A long-term stock
investor is more likely to wait for more accurate results.

Using traditional instance-selection (sampling) techniques, one must re-
sample a database multiple times, and mine the selected instance sets for
different precisions when the database is very large. For example, consider
a very large database TD, shared by five users. For the time/performance
tradeoff, the five users require 0.85, 0.90, 0.92, 0.95, and 0.98 precisions when
estimating frequent itemsets. Existing instance selection based approaches
are efficient for meeting the requirements of a user when identifying approxi-
mate frequent itemsets by sampling (Liu 2001-Motoda, Srikant-Agrawal 1997,
Toivonen 1996, Zhang-Zhang 2001c). However, for the five different preci-
sions, we need to select five instance sets, and mine them.

Zhang and Zhang’s anytime mining framework can support inquiries from
multiple users at any time. In this way, users can make tradeoff decisions when
they choose, depending upon the required accuracy of results. Our approach
is different from traditional mining techniques because it aims at attacking
the multi-user application problem.

As there are a great many large databases shared by multi-users, the
mining of large databases for serving multi-user applications is a new and
pressing topic in data mining research. Because of the essential differences
between mining tasks for multi- and mono-user applications, research into
the multi-user application problem will have an impact on both industry and
academia.

8. Han et al. have proposed a novel frequent pattern mining model, based
on the frequent pattern tree (FP-tree) (Han-Pei-Yin 2000).

An FP-tree is a tree structure as defined below.

It consists of one root labeled null, a set of item prefix subtrees, which are
the children of the root, and a frequent-item header table.

Each node in the item prefix subtree consists of three fields: item-name,
count and node-link, where item-name registers which item the particular
node represents, count registers the number of transactions represented
by the portion of the path reaching the node, and node-link links to the
next node in the FP-tree which carries the same item-name; or it is null
if there are none.

Each entry in the frequent-item header table consists of two fields, item-
name and head of node-link, which points to the first node in the FP-tree
carrying the item-name.

The process of the FP-tree-based model is as follows.
First, an FP-tree is constructed, which is an extended prefix-tree struc-

ture storing crucial quantitative information about frequent patterns. Only
frequent length-1 items will have nodes in the tree, and the tree nodes are
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arranged in such a way that more frequently occurring nodes will have a
better chance of sharing nodes than less frequently occurring ones.

Second, an FP-tree-based pattern fragment growth mining method is de-
veloped, which starts from a frequent length-1 pattern (as an initial suffix pat-
tern), and examines only its conditional pattern base (a subdatabase which
consists of the set of frequent items co-occurring with the suffix pattern). It
then constructs its (conditional) FP-tree, and performs mining recursively
with such a tree. The pattern growth is achieved via concatenation of the
suffix pattern with the new patterns generated from a conditional FP-tree.
Since a frequent itemset in any transaction is always encoded in the cor-
responding path of the frequent pattern trees, pattern growth ensures the
completeness of the result. In this context, the method is not an Apriori-like
restricted generation-and-test, but a restricted test only. The major opera-
tions of mining are count accumulation and prefix path count adjustment,
which are usually much less costly than the candidate generation and pattern-
matching operations performed in most Apriori-like algorithms.

Third, the search technique employed in mining is a partitioning-based,
divide-and-conquer method, rather than the Apriori-like bottom-up genera-
tion of frequent itemset combinations. This dramatically reduces the size of
the conditional pattern base generated at the subsequent level of search, as
well as the size of its corresponding conditional FP-tree. Moreover, it trans-
forms the problem of finding long frequent patterns into looking for shorter
ones, and then concatenating the suffix. It employs the least frequent items
as the suffix, which offers good selectivity. All these techniques contribute to
a substantial reduction in search costs.

9. Zhang and Zhang have proposed a method for identifying causality be-
tween variables X and Y , represented in the form X → Y with condi-
tional probability matrix MY |X (Zhang-Zhang 2002e).

While there has been much work done on discovering item-based asso-
ciation rules and quantitative association rules, some work has focused on
mining causal rules in databases (Cooper 1997, Heckerman 1995, Silverstein
1998). Mining models for causality, such as the LCD algorithm (Cooper 1997)
and the CU-path algorithm (Silverstein 1998), which are used for constraint-
based causal discovery, have been proposed for mining causal relationships
in market basket data. In fact, the CU-path algorithm is an improved model
of the LCD algorithm, which applies the chi-squared formula to test the de-
pendence, independence, and conditional independence between variables so
as to discover the possible causal relationships between those variables.

However, these models are only suitable for mining causal rules among
simple variables, such as “states → united” for words in the clari.world news
hierarchy (Silverstein 1998). They are inadequate for discovering causal rules
among multi-value variables in large databases, and for representing them. In
fact, mining causality among multi-value variables in many applications, such
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as decision-making, diagnosis, and planning, is useful for solving application
problems.

Another distinct difference with Zhang and Zhang’s model is that it of-
fers a method for optimizing conditional probability matrices for causal rules,
which merges unnecessary information for the extracted causal rules. Obvi-
ously, this model can be used to optimize the knowledge in intelligent systems.

10. Webb has presented an alternative approach to a direct search for associ-
ation rules for some applications (Webb 2000). This method applies the
OPUS search to prune the search space on the basis of interrelationships
between itemsets.

In Webb’s model, association rule mining is tackled as a search process
that starts with general rules (rules with one condition on the left-hand
side (LHS)) and searches through successive specializations (rules formed
by adding additional conditions to the LHS). Such a search is unordered.
That is, the order in which successive specializations are added to an LHS
is not significant, and A ∧ B ∧ C → X is the same as C ∧ B ∧ A → X.
An important component of an efficient search in this context is minimizing
the number of association rules that need to be considered. A key technique
used to eliminate potential association rules from consideration is “optimistic
pruning”.

Optimistic pruning operates by forming an optimistic evaluation of the
highest rule value that might occur in a region of the search space. An op-
timistic evaluation is one that cannot be lower than the actual maximum
value. If the optimistic value for the region is lower than the lowest value
that is of interest, then that region can be pruned. If a search seeks the top
m association rules, then it can maintain a list of the top m rules encoun-
tered at that point during the search. If an optimistic evaluation is lower
than the lowest value of a rule in the top m, then the corresponding region of
the search space may be pruned. Other pruning rules could perhaps identify
regions that could be pruned if they contained only rules that failed to meet
pre-specified constraints such as:

– minimum support (the frequency in the data of the right-hand side (RHS)
or of the RHS and LHS in combination);

– minimum lift; or
– being one of the top m association rules on some specified criterion.

Here, lift is a frequently utilized measure of association rule utility. The lift
of an association rule = |LHS∧RHS|

|LHS| / |RHS|
n , where |X| is the number of cases

with conditions X, and n is the total number of cases in the dataset.
The term credible rule is used to denote association rules for which, at

some given point in a search, it is possible that the rule will be of interest,
using whatever criterion of interest applies for the given search.

If we restrict association rules to having a single condition on the RHS,
these search strategies are plausible:
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(1) for each potential RHS, the condition explores the space of possible LHS
conditions; or

(2) for each potential LHS combination of conditions, the space of possible
RHS conditions is explored.

The former strategy leads to the most straightforward implementation, as
it involves a simple iteration through a straightforward search for each poten-
tial RHS condition. However, this implies accessing the count of the number
of cases covered by the LHS many times, once for each RHS condition for
which an LHS is considered. At the very least, this entails computational
overheads for caching information. At worst, it requires a pass through the
data each time the value is to be utilized. While a pass through the data has
lower overheads when the data are stored in memory rather than on disk, it
is still a time-consuming operation that must be avoided if computation is to
be efficient.

The algorithm, which applies the OPUS search algorithm to obtain an
efficient search for association rules, is designed as a recursive procedure with
these arguments:

(1) CurrentLHS: the set of conditions in the LHS of the rule currently
being considered;

(2) AvailableLHS: the set of conditions that may be added to the LHS of
rules to be explored below this point; and

(3) AvailableRHS: the set of conditions that may appear on the RHS of a
rule in the search space at this point and below.

This algorithm is computationally efficient for an association rule analysis
during which the number of rules to be found can be constrained and all data
can be maintained in memory.

A number of efforts on research into efficient algorithms for mining asso-
ciation rules (Agrawal-Srikant 1994, Park-Chen-Yu 1997), measures of item-
sets (Aggarawal-Yu 1998), parallel data mining for association rules (Han-
Karypis-Kumar 1997), FP-tree-based model (Han-Pei-Yin 2000), and OPUS-
based algorithm (Webb 2000), have been reported.

There has also been much work on mining special databases. For exam-
ple, spatial data mining is the discovery of novel and interesting relation-
ships and characteristics that may exist implicitly in spatial databases (Cai
et al. 1991, Ester et al. 1997, Han 1997, Ng 1994); temporal database min-
ing (Chen 1998), image data mining for multi-dimensional remotely sensed
images (Cromp 1993); probabilistic database mining (Zhang-Zhang 2004);
mining time-series databases (Tsumoto 1999); text mining (Feldman et al.
1999); and Web mining for the discovery and application of usage patterns
from Web data (Srivastava 2000).
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2.5 Research into Mining Multi-databases

As we have seen, knowledge discovery in databases aims at the discovery of
useful information from large collections of data. The discovered knowledge
can consist of rules describing properties of the data, frequently occurring
patterns, clustering of objects in the database, and so on. These can be used
to support various intelligence activities, such as decision-making, planning,
and problem-solving.

Recently, it has been recognized in the KDD community that multi-
database mining is an important research topic (Zhong-Yao-Ohsuga 1999).
So far, most of the KDD methods that have been developed are on the single
universal relation level. Although, theoretically, any multi-relational database
can be transformed into a single universal relation, in fact this can lead to
many complications such as universal relations of unmanageable size, infiltra-
tion of uninteresting attributes, the loss of useful relation names, unnecessary
join operations, and inconveniences inherent in distributed processing. In par-
ticular, certain concepts, regularities, causal relationships, and rules cannot
be discovered if we just search a single database, since some basic knowledge
hides in multiple databases.

Multi-database mining involves many related topics, including interesting-
ness checking, relevance, database reverse engineering, granular computing,
and distributed data mining. For example, Liu et al. have proposed an inter-
esting method for relevance measurement, and an efficient implementation
for identifying relevant databases, as the first step for multi-database mining
(Liu-Lu-Yao 1998, Yao-Liu 1997). Zhong et al. have proposed a way of mining
peculiarity rules from multiple statistical and transaction databases (Zhong-
Yao-Ohsuga 1999). Ribeiro et al. have described a method for extending the
INLEN system for multi-database mining by the incorporation of primary
and foreign keys, as well as the development and processing of knowledge
segments (Ribeiro-Kaufman-Kerschberg 1995). Wrobel has extended the con-
cept of foreign keys into foreign links, because multi-database mining is also
concerned with getting to non-key attributes (Wrobel 1997). Aronis et al.
have introduced a system called WoRLD that uses spreading activation to
enable inductive learning from multiple tables in multiple databases spread
across the network (Aronis et al. 1997).

In this section, we briefly recall some related work, including the multi-
database mining techniques in (Liu-Lu-Yao 1998, Yao-Liu 1997, Zhong-Yao-
Ohsuga 1999).

2.5.1 Parallel Data Mining

Due to the size of large databases, and the amount of intensive computation
involved in association analysis, parallel and distributed data mining has
been a crucial mechanism for large-scale data mining applications. Existing
research in this area has focused on the study of the degree of parallelism,
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synchronization, data locality issues, and optimization techniques necessary
for global association computation.

For example, Cheung et al. have proposed some strategies to leverage
the skew of association patterns in a distributed database environment, and
have offered some optimizations to efficiently generate global frequent sets
(Cheung-Ng-Fu-Fu 1996). Their main idea is to use local pruning to support
count exchange to achieve efficient association analysis.

As discussed in Chapter 1, there are some limitations in applying paral-
lel and distributed data mining techniques when searching for patterns from
multi-databases. However, parallel and distributed data mining can be com-
bined with our synthesizing model by weighting, for very large database min-
ing applications, as we demonstrate in Chapter 6. If each of the databases
is still large, we can apply an association rule mining technique upon the
paralleling (MARP) algorithm to discover the local associations from each
data-source,. We can then analyze local patterns.

2.5.2 Distributed Data Mining

Distributed data mining (DDM) deals with different possibilities of data
distribution. A well-known method is hierarchical meta-learning, which has
a similar goal of efficiently processing large amounts of data (Chan 1996,
Prodromidis-Stolfo 1998, Prodromidis-Chan-Stolfo 2000). Meta-learning
starts with a distributed database, or a set of data subsets of an original
database, concurrently running a learning algorithm (or different learning al-
gorithms) on each of the subsets. It combines the predictions from classifiers
learned from these subsets by recursively learning “combiner” and “arbiter”
models in a bottom-up tree manner. The focus of meta-learning is to com-
bine the predictions of learned models from the partitioned data subsets in
a parallel and distributed environment.

In addition, Kargupta et al. have built a collective mining technique for
distributed data (Kargupta-HS 1997, Kargupta-HSPW 2000, Kargupta-HSJ
2001); and Grossman et al. have established a system, known as Papyrus, for
distributed data mining (Grossman-BRMT 2000, Turinsky-Grossman 2001).

However, unlike the mining strategy in this book, meta-learning, collective
mining, and Papyrus do not produce a global learning model from classifiers
from different data subsets.

Meta-learning Strategy for Mining Multi-databases. Meta-learning
is a technique that seeks to compute higher-level classifiers (or classifi-
cation models), referred to as meta-classifiers, that integrate in a certain
basic fashion multiple classifiers, which compute separately over different
databases (Prodromidis-Stolfo 1998, Prodromidis-Chan-Stolfo 2000). Meta-
learning starts with a distributed database, or a set of data subsets of an
original database, concurrently running a learning algorithm (or different
learning algorithms) on each of the subsets. It combines the predictions from
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classifiers learned from these subsets by recursively learning combiner and
arbiter models in a bottom-up tree manner. The focus of meta-learning is to
combine the predictions of learned models from the partitioned data subsets
in a parallel and distributed environment.

Given a set of training examples, that is, {(x1, y1), ..., (xn, yn)}, for some
unknown function, y = f(x), with each xi interpreted as a set of attribute
(feature) vectors xi of the form {xi1, xi2, ..., xik}, and with each yi repre-
senting the class label associated with each vector (yi ∈ {y1, y2, ..., ym}), the
task is to compute a classifier or model f̂ that approximates f , and correctly
labels any feature vector drawn from the same source as the training set. It is
common to refer to the body of knowledge that classifies data with the label
y as the concept of class y.

Some of the common representations used for the generated classifiers are
decision trees, rules, version spaces, neural networks, distance functions, and
probability distributions. In general, these representations are associated with
different types of algorithms that extract different types of information from
the database. They also provide alternative capabilities besides the common
ability to classify unseen exemplars drawn from a certain domain. For exam-
ple, decision trees are declarative, and thus more comprehensible to humans
than weights computed within a neural network architecture. However, both
are able to compute concept y, and classify unseen records (examples).

Meta-learning is loosely defined as learning from learned knowledge. In
this case, we concentrate on learning from the output of concept learning
systems. This is achieved by learning from the predictions of these classifiers
on a common validation dataset. Thus, we are interested in the output of the
classifiers, not the internal structure and strategies of the learning algorithms
themselves. Moreover, in some of the schemes defined, the data presented
to the learning algorithms may also be available to the meta-learner. The
different stages in a simplified meta-learning scenario are listed below.

1. The classifiers (base classifiers) are trained from the initial (base-level)
training sets.

2. Predictions are generated by the learned classifiers on a separate valida-
tion set.

3. A meta-level training set is composed from the validation set, and the
predictions generated by the classifiers on the validation set.

4. The final classifier (meta-classifier) is trained from the meta-level training
set.

In meta-learning, a learning algorithm is used to learn how to integrate
the learned classifiers. That is, rather than having a predetermined and fixed
integration rule, the integration rule is learned based on the behavior of the
trained classifiers.

For example, let x be an instance whose classification we seek, and
C1(x), C2(x), ..., Ck(x) be the predicted classifications of x from the k base
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classifiers, Ci, i = 1, 2, ..., k. Then, class(x) and attrvec(x) denote the correct
classification and attribute vector of example x, respectively.

In the combiner strategy, the predictions of the learned base classifiers
on the validation set form the basis of the meta-learner’s training set. A
composition rule, which varies in different schemes, determines the content
of training examples for the meta-learner. From these examples, the meta-
learner generates a meta-classifier, that we call a combiner. In classifying an
instance, the base classifiers first generate their predictions. Based on the
same composition rule, a new instance is generated from the predictions,
which is then classified by the combiner. The aim of this strategy is to “coa-
lesce” the predictions from the base classifiers by learning the relationship, or
correlation, between these predictions and the correct prediction. A combiner
computes a prediction that may be entirely different from any proposed by
a base classifier, whereas an arbiter chooses one of the predictions from the
base classifiers and the arbiter itself.

Several schemes for the composition rule are evaluated. First, the pre-
dictions C1(x), C2(x), ..., Ck(x), for each example x in the validation set of
examples, E, are generated by the k base classifiers. These predicted clas-
sifications are used to form a new set of “meta-level training instances” T ,
which is used as input to a learning algorithm that computes a combiner.
The manner in which T is computed varies, as defined below.

class-combiner: The meta-level training instances consist of the cor-
rect classification and predictions; that is, T = {(class(x), C1(x), C2(x),
..., Ck(x)) | x ∈ E}. This “stacking” scheme was also proposed by Wolpert
(Wolpert 1992).

class-attribute-combiner: The meta-level training instances are formed
as in a class-combiner, with the addition of the attribute vectors; that is,
T = {(class(x), C1(x), C2(x), ..., Ck(x), attrvec(x)) | x ∈ E}.

binary-class-combiner: The meta-level training instances are composed
in a manner similar to that in the class-combiner scheme, except that each
prediction Ci(x) has l binary predictions, Ci1(x), ..., Cil(x), where l is the
number of classes. Each prediction Cij(x) is produced from a binary classifier,
which is trained on examples that are labeled with classes j and ¬j. In other
words, we are using more specialized base classifiers and attempting to learn
the correlation between the binary predictions and the correct prediction.
For concreteness, T = {(class(x), C11(x), ..., C1l(x), C21(x), ..., C2l(x), ...,
Ck1(x), ..., Ckl(x)) |x ∈ E}.

These three schemes for the composition rule are defined in the context
of forming a training set for the combiner. These composition rules are also
used in a similar manner during classification after a combiner has been
computed. Given an instance where classification is sought, we first compute
the classifications predicted by each of the base classifiers. The composition
rule is then applied to generate a single meta-level test instance, which is
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then classified by the combiner to produce the final predicted class of the
original test datum.

Meta-learning improves efficiency by executing in parallel the base-learning
processes (each implemented as a distinct serial program) on (possibly dis-
joint) subsets of the training data set (a data reduction technique). This
approach has the advantage, first, of using the same serial code without the
time-consuming process of parallelizing it and, second, of learning from small
subsets of data that fit in the main memory.

Meta-learning improves predictive performance by combining different
learning systems, each having a different inductive bias (e.g., representation,
search heuristics, search space). By combining separately learned concepts,
meta-learning is expected to derive a higher-level model that explains a large
database more accurately than any of the individual learners. Furthermore,
meta-learning constitutes a scalable machine-learning method, since it can
be generalized to hierarchical, multi-level meta-learning.

Meta-learning is particularly suitable for distributed data mining appli-
cations, such as fraud detection in financial information systems. Financial
institutions today typically develop custom fraud detection systems targeted
to their own asset bases. Recently though, banks have come to search for
unified and global approaches that would also involve the periodic sharing
with each other of information about attacks.

The key difficulties in this approach are: financial companies avoid sharing
their data for a number of competitive and legal reasons; the databases that
companies maintain on transaction behavior are huge, and growing rapidly;
real-time analysis is highly desirable to update models when new events are
detected; and easy distribution of models in a networked environment is es-
sential to maintain up-to-date detection capability. Meta-learning is a general
strategy that provides the means of learning how to combine and integrate
a number of classifiers, or models, learned separately at different financial
institutions. The designed system JAM allows financial institutions to share
their models of fraudulent transactions that each computes separately, while
not disclosing their own proprietary data.

Determining the optimal set of classifiers for meta-learning is a combinato-
rial problem. Hence, the objective of pruning is to utilize heuristic methods
to search for partially grown meta-classifiers (meta-classifiers with pruned
subtrees) that are more efficient and scalable, and at the same time, achieve
comparable or better predictive performance results than fully grown (un-
pruned) meta-classifiers. Two stages of pruning meta-classifiers are: the a
priori pruning, or pre-training pruning, and the a posteriori pruning, or post-
training pruning, stages. Both levels are essential, and complementary to
each other, with respect to the improvement of accuracy and efficiency of the
system.

A priori pruning, or pre-training pruning, refers to the filtering of the
classifiers before they are combined. Instead of combining classifiers in a
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brute force manner, with pre-training pruning we introduce a preliminary
stage for analyzing the available classifiers and qualifying them for inclusion
in a combined meta-classifier. Only those classifiers that appear, according to
one or more pre-defined metrics, to be most “promising” participate in the
final meta-classifier. Here, we adopt a “black-box” approach, which evaluates
the set of classifiers based only on their input and output behavior, not their
internal structure. Conversely, a posteriori pruning, or post-training pruning,
denotes the evaluation and pruning of constituent base classifiers after a
complete meta-classifier has been constructed.

Parallel Data Mining Agent (PADMA). PADMA is an agent-based
architecture for parallel/distributed data mining (Kargupta-HS 1997). The
PADMA system attempts to develop a flexible system that will exploit data
mining agents from a special application. Although PADMA is not specialized
for any particular kind of data mining domain, the current implementation
uses agents specializing in unstructured text document classification. The
main structural components of PADMA are:

(1) data mining agents,
(2) facilitator for coordinating the agents, and
(3) Web- based user interface.

Data mining agents are responsible for accessing data and extracting
higher level useful information from the data. A data mining agent specializes
in performing some activity in the domain of interest. In the current imple-
mentation, data mining agents specialize in text classification. Agents work
in parallel and share their information through the facilitator. The facilitator
module coordinates the agents, presents information to the user interface,
and provides feedback to the agents from the user.

The PADMA has a graphical, Web-based, interface for presenting infor-
mation extracted by the agents for the user. The facilitator accepts queries
from the user interface in standard SQL (Structured Query Language) for-
mat; and the queries are broadcast to the agents. Agents come up with the
extracted information relevant to the query. The facilitator collects the infor-
mation and presents it to the user.

The PADMA model has demonstrated that agent-based data mining tools
are suitable for exploiting the benefits of parallel computing. The PADMA
model presents some distinct characteristics as follows:

(1) parallel query processing and data accessing,
(2) parallel data analysis, and
(3) interactive data/cluster visualization.

Collective Data Mining (CDM). Collective data mining offers a frame-
work for distributed data modeling and knowledge discovery (Kargupta-
HSPW 2000). It draws its motivations from theories of communication and
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blends them with our existing understanding of statistics and machine learn-
ing. This merger has evolved into an interdisciplinary framework for designing
and implementing efficient algorithms that generate models from heteroge-
neous and distributed data with guaranteed global correctness of the model.

The CDM model makes use of an appropriate set of orthonormal basis
functions, and computes the basis coefficients to generate a global model of
the data. Basis functions are chosen to be orthonormal, since the orthonor-
mality property can be exploited for generating correct, unambiguous local
basis coefficients. Computing the basis coefficients requires computation of
the basis functions of the different domain features. The CDM model dis-
tributes the task of approximate computation of the basis coefficient among
different sites, using the decomposition outlined below.

1. It generates the coefficients that can be computed, using only the locally
available feature data.

2. It computes the coefficients, corresponding to the basis functions that
require features from different sites, using the locally generated basis
coefficients and a small dataset collected from different sites.

The main steps of the CDM are:

1. generate approximate orthonormal basis coefficients at each local site;
2. move an appropriately chosen sample of the datasets from each site to a

single site, and generate the approximate basis coefficients corresponding
to nonlinear cross terms; and

3. combine the local models, transforming the model into the user-described
canonical representation, and then output the model.

The development of different CDM-based, and other distributed data
analysis algorithms, are listed below:

(a) collective decision rule learning using Fourier analysis;
(b) collective hierarchical clustering;
(c) collective multivariate regression using wavelets; and
(d) collective principal component analysis.

For example, given distributed heterogeneous data sites, we show how to
approximate the results of the global Principal Component Analysis (PCA),
namely, a certain number of dominant eigenvalues/eigenvectors with minimal
data communication, as follows.

1. Centralized PCA from distributed heterogeneous datasets typically in-
volves moving all the data to one single site and computing the eigenval-
ues and eigenvectors of the covariance matrix of the combined dataset.

2. Collective PCA analyzes each data partition at a site and decomposes
it as the sum of the product of a certain number of score vectors
and the transpose of corresponding loading vectors. The number of the
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score/loading vectors is an empirical value that could be changed for dif-
ferent accuracy requirements. This decomposition can also be presented
as the product of a score matrix (whose column vectors are score vectors)
and the transpose of a loading matrix (whose column vectors are loading
vectors). Then, the score matrix is sampled. That is, a certain number
of rows are randomly chosen from it. The chosen rows, and the complete
loading matrix, comprise the data which need to be moved, and the size
of these data is far less than that of the whole data partition.

3. Once the loading matrices and sampled score matrices of all local sites are
generated, they are moved to one single site, and the approximated global
covariance matrix is constructed. PCA is then applied to this matrix to
obtain the approximate PCA results.

2.5.3 Application-dependent Database Selection

For multi-database mining, Yao and Liu have proposed an approach to search
for interesting knowledge in multiple databases, according to a user’s query
(Yao-Liu 1997). This process involves selecting all interesting information
from many databases by retrieval. Mining only works on the selected data. Liu
et al.have also proposed a mining technique that identifies relevant databases.
Their work has been focused on the first step of multi-database mining, which
is to identify databases that are most likely relevant to an application (Liu-
Lu-Yao 1998). Thus, a relevance measure was proposed to identify relevant
databases for mining tasks, with the objective of finding patterns, or regular-
ities, in certain attributes. We briefly recall the work below. For more detail,
please see (Liu-Lu-Yao 1998, Yao-Liu 1997).

A relop C is called a selector, where A is an attribute name that is not
referenced by the query predicate Q, relop ∈ {=, <, >,≤,≥, �=}, and C is a
constant value in the domain of A. The relevance factor of selector s with
respect to Q is

RF (s, Q) = Pr(s|Q)Pr(Q)log
Pr(s|Q)
Pr(s)

,

where Pr(Q) and Pr(s) are prior probabilities and are estimated by the ratios
of how frequently they appear in a database; and Pr(s|Q) is the posterior
of the frequency ratio of s appearing, given that Q occurs. The rationale of
defining relevance is as follows.

Pr(s|Q)/Pr(s) shows the degree of deviation of the posterior from the
prior. This ratio tells us the following different relationships between Pr(s|Q)
and Pr(s).

Case 1 If Pr(s|Q)
Pr(s) is close to 1 (i.e., Pr(s|Q) ≈ Pr(s)), s is independent of Q;

Case 2 If Pr(s|Q)
Pr(s) is close to 0 (i.e., Pr(s|Q) is almost 0), s rarely occurs given

Q;
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Case 3 If Pr(s|Q)
Pr(s) is less than 1, s is not frequent enough when using Pr(Q)

as a reference;
Case 4 If Pr(s|Q)

Pr(s) is greater than 1, then s occurs more often given Q than
without Q. Hence, s and Q are correlated.

With the above definition for the relevance factor of selectors, we can have
a definition of the relevance of databases as follows:

• a selector s is relevant to Q if RF (s, Q) > δ, where δ (> 0) is the given
threshold;

• a table is relevant to Q if there exists at least one selector sj (Ai relop C),
where sj is relevant to Q.

With the relevance factor RF , we can determine whether a database is
relevant to an application (such as for a query predicate) before applying data
mining algorithms. To compute RF (s, Q), we need only to count three values,
Pr(Q), Pr(s), and Pr(s ∧ Q). To determine whether a database is relevant
to Q, we need to test all selectors, which can be done by scanning the table
once. Let us assume that there are m+1 attributes, A0, ..., Am. Attribute A0
is referenced by Q. For each of the other attribute, Ai (1 ≤ i ≤ m), a table
Si is maintained to keep track of selectors and related counters. An entry
of Si is a triple of (Svalue, Scounter, SQcounter), where Svalue is the value of
the selector, Scounter records the number of tuples for which Ai = Svalue

is true, and SQcounter records the number of tuples for which both Q and
Ai = Svalue are true. With the Si table, we can determine the relevance of
a database by scanning it once. This process has specific parts: (1) reading
each record in the database; and (2) searching for the entry of selectors and
updating the counters for each attribute in the record. The cost of part (1) is
proportional to the number of records in the database. As for part (2), with a
proper data structure, for example, using a hashing function for the selector
tables, the search for selector entries can be kept constant, regardless of the
number of selectors of an attribute. Therefore, the run-time for the overall
calculation is O(NM), where V is the number of records in the database and
M is the number of attributes.

Identifying relevant databases is typically application-dependent. It has
to be carried out multiple times to identify relevant databases for two or
more real-world applications. It should be noted that, when users need to
mine their multi-databases without reference to any specific application, the
technique does not work well.

2.5.4 Peculiarity-oriented Multi-database Mining

Zhong et al. have proposed a way of mining peculiarity rules from multiple
statistical and transaction databases (Zhong-Yao-Ohsuga 1999). A peculiar-
ity rule is discovered from peculiar data by searching for the relevance among
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those data. Roughly speaking, data are peculiar if they represent a peculiar
case described by a relatively small number of objects and are very different
from other objects in a dataset. Although it looks like an exception rule,
because it describes a relatively small number of objects, the peculiarity rule
represents a well-known common-sense fact, which is a feature of the general
rule. To find peculiar data, an attribute-oriented method was proposed as
follows.

Let X = {x1, x2, ..., xn} be a dataset related to an attribute in a relation,
where n is the number of different values in the attribute. The peculiarity of
xi can be evaluated by the Peculiarity Factor PF (xi),

PF (xi) =
n∑

j=1

√
N(xi, xj).

It evaluates whether xi occurs as a relatively small number and is very dif-
ferent from the other data xj by calculating the sum of the square root of
the conceptual distance between xi and xj . The reason why the square root
is used in the peculiarity factor is that we prefer to evaluate closer distances
for relatively large amounts of data so that peculiar data can be found from
relatively small amounts of data.

The major merits of the method are: (1) it can handle both continuous
and symbolic attributes based on a unified semantic interpretation, and (2)
background knowledge represented by binary neighborhoods can be used to
evaluate the peculiarity if such background knowledge is provided by a user.

If X is the dataset of a continuous attribute, and no background knowl-
edge is available, then

N(xi, xj) = |xi − xj |.
On the other hand, if X is a data set of a symbolic attribute, and/or the back-
ground knowledge for representing the conceptual distances between xi and
xj is provided by a user, the peculiarity factor is calculated by the conceptual
distances, N(xi, xj).

After evaluation for peculiarity, the peculiar data are elicited by using a
threshold value

threshold = mean of PF (xi) + α × variance of PF (xi),

where α can be specified by a user. That is, if PF (xi) is over the threshold
value, xi is peculiar data.

Because a peculiarity rule is discovered from the peculiar data by search-
ing for the relevance among those data, a measurement for relevant databases
is also proposed as follows.

Let X(x) and Y (y) be the peculiar data found in two attributes X and
Y , respectively. We deal with the following two cases.
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– If X(x) and Y (y) are found in a relation, the relevance between X(x) and
Y (y) is evaluated in the following formula,

R1 = P1(X(x)|Y (y))P2(Y (y)|X(x)).

That is, the larger the product of the probabilities of P1 and P2, the
stronger the relevance between X(x) and Y (y).

– If X(x) and Y (y) are in two different relations, we need to use a value (or
its granule) in a key (or foreign key/link) as the relevance factor, K(k), to
find the relevance between X(x) and Y (y). Thus, the relevance between
X(x) and Y (y) is evaluated in the following formula,

R2 = P1(K(k)|X(x))P2(K(k)|Y (y)).

Furthermore, the above two formulae are suitable for handling more than two
lots of peculiar data, found in more than two attributes, if X(x) (or Y (y)) is
a granule of the peculiar data.

Although this work can identify new kinds of patterns in multi-databases,
it still utilizes techniques already used in mono-database mining.

From the above efforts on multi-database mining, we can see that existing
techniques are limited by mono-database mining techniques. Thus, as we
mentioned in Chapter 1, there are still some limitations in traditional multi-
database mining methods.

2.6 Summary

Due to the increasingly large number of multi-database systems, multi-
database mining has become very important. Although, theoretically, any
multi-relational database can be transformed into a single universal relation,
in fact this can lead to many extra problems, such as universal relations of
unmanageable size, infiltration of uninteresting attributes, the loss of useful
relation names, unnecessary join operations, and the inconvenience for dis-
tributed processing (Zhong-Yao-Ohsuga 1999). Also, some concepts, such as
regularity, causal relationships, and rules cannot be discovered if we simply
search a single database, since the basic knowledge can be hidden in multiple
databases. Thus, dual-level applications present more challenges than those
faced by mono-database mining.

As an introduction to this book, we have described KDD techniques,
existing research into multi-database mining and necessary basic concepts.
From Chapter 3 on, we present techniques in multi-database mining.


