
1

Introduction

1.1 Overview and Background

1.1.1 Overview

Evolutionary algorithms (EAs) are heuristic, stochastic search algorithms of-
ten used for optimization of complex, multi-dimensional, multi-modal func-
tions, where the actual functional form is not known. EAs are adaptive algo-
rithms in the sense that they accumulate and use information to progressively
improve their ability to solve some problem of interest. EAs operate by creat-
ing a population of potential solutions to a particular problem and evaluating
those solutions directly. The mechanism by which an EA accumulates infor-
mation regarding the problem of interest is an exact evaluation of the quality
of each of the potential solutions, using a problem-specific evaluation method,
referred to as the fitness function. Various iterative operations, called genetic
operators, then improve the quality of the solution by: (1) successive refine-
ment of the best solutions found, and (2) searching the unexplored solution
space to identify promising areas containing solutions better than those found
so far. Identification of the appropriate balance of exploitation of the best
solutions and further exploration of the solution space have been the focus of
much research in the EA community.

The robust capability of EAs to find solutions to difficult problems has
permitted them to become the optimization and search techniques of choice
by many industries. From the design of jet engines [30] to the scheduling of
airline crews [39], EAs, in their various forms, are routinely solving a multitude
of complex, multi-dimensional, multi-modal optimization problems.

But what happens if the information that has been provided to the EA
changes? Despite the obviously successful application of evolutionary tech-
niques to complex problems in many different environments, the resultant
solutions are often fragile, and prone to failure when subjected to even minor
changes in the problem. In the context of evolutionary computation, a prob-
lem with an objective function that changes over time is referred to as having



2 1 Introduction

a “dynamic fitness landscape.” Since information is accumulated by the EA
during successive iterations, there is an implicit assumption of consistency in
the evaluation function. Unfortunately, the consistency assumption is not the
case in many real problems. A variety of engineering, economic, and informa-
tion technology problems require systems that adapt to changes over time.
Examples of problems where environmental changes could cause the fitness
landscape to be dynamic include: target recognition, where the sensor perfor-
mance varies based on environmental conditions; scheduling problems, where
available resources vary over time; financial trading models, where market
conditions can change abruptly; investment portfolio evaluation, where the
assessment of investment risk varies over time; and data mining, where the
contents of the database are continuously updated. These types of problems
may experience simple dynamics, where the fitness peaks that represent the
optimal problem solution drift slowly from one value to the next, or com-
plicated dynamics, where the fitness peaks change more dramatically, with
current peaks being destroyed and new, remote peaks arising from valleys.

The motivation for designing EAs for solving dynamic problems is sim-
ple. With the continuing increases in available processing power, it is becom-
ing computationally possible to assign an EA to continuously solve actual
dynamic problems without the need for human intervention. This, however,
requires that the EA can continuously provide a “satisfactory” level of per-
formance when subjected to a dynamic fitness landscape and, at our current
level of understanding, we are not able to ensure such performance. In this
book we will discuss research that exploits insights provided by biology and
control systems engineering to address issues involved in the design of EAs
for dynamic fitness landscapes. The results of this research provide a basis
for the improved ability to create EAs that successfully operate in dynamic
environments without human intervention.

1.1.2 EAs Described

There are four major classes of EAs: genetic algorithms (GAs), evolutionary
strategies (ESs), evolutionary programming (EP), and genetic programming
(GP) [5], [33]. Solving a problem with EAs involves ten steps. The differences
between the classes of EAs result from a difference in emphasis on, or approach
to, some of the ten steps [41], [7], [34].

The ten steps are:

1. Decide on an encoding scheme for the possible solutions to the prob-
lem that will permit alternative solutions to be “evolved.” This selection
of problem representation involves mapping the problem solution space
(called phenotypic space) into an equivalent representation (called the
genotypic space) that is amenable to application of the operators of an
EA. For genetic algorithms, the encoding scheme most often used is bit-
strings, whereas evolutionary strategies and evolutionary programming



1.1 Overview and Background 3

most often use strings of real numbers for their representation. In genetic
programming computer programs are represented as variable-sized trees
consisting of arithmetic functions, conditional operators, variables, and
constants.

2. Select an initial population size and randomly create an initial population
of potential solutions to the problem. The initial population size selection
involves tradeoffs between the need to adequately sample the solution
space and the need to bound the computational requirements of the EA.
In most EAs, the population size, once selected, remains constant during
operation. Less traditional implementations involve population sizes that
vary.

3. Select an evolutionary architecture. Two main architectures are used in
EAs: generational and steady-state. In the generational architecture, there
are distinct generations, where all population members are replaced by
the succeeding generation. In a steady-state EA, population members are
added at the same rate that population members are removed. The most
common EA architecture is generational.

4. Evaluate the quality of the solutions in the population. This step involves
converting the genotype representation for each member of the population
into the phenotype representation for evaluation using an unequivocal
evaluation of how “good” the solution is. This is measured by use of a
fitness function. The design of an appropriate fitness function for each
problem being solved by an EA can be very difficult. When it is not
possible to determine an unequivocal gradation of “better” and “worse”
for alternative solutions, an EA is not a good choice of method for problem
solution.

5. Select the parents of the next generation. This is where the “best” mem-
bers of the population are selected for the generation of offspring. In EAs,
this is the step where the genetic material that will survive to the next
generation is determined. In some EA implementations the entire popu-
lation has offspring. Genetic algorithms usually use a probabilistic rule,
based on fitness evaluations, to select parents for the offspring.

6. Mix the genes of the parents to form offspring. This step, called crossover
or recombination, is a major focus in the construction of new potential
problem solutions in genetic algorithms and genetic programming; it is
used to a lesser extent or not at all in evolutionary strategies; and is
not used at all in evolutionary programming. Genetic algorithms use a
variety of crossover techniques, including 1 to N -point crossover (where
N is the length of the genome). In GAs, individual genes are generally left
unaltered in their recombination to a new genome. When crossover is used
with real-numbered encoding schemes in evolutionary strategies, genes are
sometimes recombined to an intermediate value between the values at the
crossover points. Crossover techniques usually involve two parents, but
schemes have been devised that involve three or more parents.



4 1 Introduction

7. Apply a mutation operator to either modify the offspring just created or
create new offspring from the parents. In evolutionary programming and
in evolutionary strategies without recombination, this is the method for
creating new offspring from the parents. Mutation operators randomly
change individual genes of the members of the population. In GAs, muta-
tion is usually fixed at some small uniform probability, whereas for both
evolutionary strategies and evolutionary programming, mutation is gov-
erned by statistical operators that vary during the operation, based on
genetic diversity, fitness, or both.

8. Select which of the offspring survive. This is the primary method of selec-
tion for the survival of genetic material in the case of evolutionary strate-
gies and evolutionary programming, where the entire population generates
offspring. Evolutionary strategies most commonly use one of two selection
methods: a new generation is created from the µ best (1 ≤ µ ≤ λ) indi-
viduals from the set of λ offspring, referred to as (µ, λ) selection; or a new
generation is created from the µ best individuals from the union set of
λ offspring and their immediate antecedents, referred to as (µ + λ) selec-
tion. Evolutionary programming normally involves a tournament selection
technique for survival from the union of parents and offspring.

9. Loop through steps 4 through 8 until termination. It is necessary to have
some criterion for stopping. Most often, this criterion is a measure of
failure to improve over some number of iterations.

10. Repeat steps 1 through 9 a statistically significant number of times. Since
the actual results of the EA vary based on the randomly selected ini-
tial population and the stochastic genetic operators, EAs are usually run
repeatedly with different initial populations until their experimental per-
formance on a problem of interest is statistically established. In actual
practice, there are times where one operation will derive a satisfactory
solution to a problem at hand, and there is no reason to execute the first
nine steps more than once.

The application of these ten steps, in their various forms, has been a re-
search focus for over 25 years [20], [29], [18] and, with the increased perfor-
mance of commonly available computers, has been the source of solutions to
practical engineering and mathematical problems for over ten years. To un-
derstand the difficulties anticipated in the analysis of the performance of EAs
in dynamic fitness landscapes, we must first briefly review what is known, or
at least fairly widely accepted, about the mechanisms by which EAs operate
in static fitness landscapes.

When a population is initialized, it randomly samples the solution space for
promising areas to pursue. A histogram of the fitness values for this population
would illustrate the fitness distribution for the population. If an appropriate
encoding scheme has been selected, the problem is well formed, and the pop-
ulation is large enough to adequately sample the solution space, this fitness
distribution should have a range of fitness values that is large enough to per-



1.1 Overview and Background 5

mit the EA to distinguish between promising areas of the solution space and
areas that are less promising. Occasionally, when designing an EA solution for
a real problem, it is found that the initial population has fitness values that
are all zeros (or all some other value). This situation provides no information
to the EA about where to focus the search in the solution space, so an EA
in this situation becomes just an inefficient method for random search. Other
difficult problems exist where the regions of the search space with increas-
ing fitness lead the EA away from the desired solution. These problems are
referred to as deceptive [24].

The parent-selection step determines which genetic material will survive
to future generations. Different selection strategies place different emphasis
on retention of the genetic material in the best solutions found so far. When
using an elitist strategy, for example, the best solutions found are retained
in the population at the expense of losing the genetic material present in
the lower-fitness population members [40]. Other selection strategies may not
exclusively retain the highest fitness members, but merely bias their selection
towards the members of higher fitness. It should be noted that important
genetic material can be lost during selection, because it was only present in
members with relatively low overall fitness.

The two operators which are responsible for the creation of offspring are
crossover and mutation. Because its effects are easier to describe, mutation
will be discussed first, although, in practice, it is often applied second.

Mutation makes small random changes to the genetic material that has
made it through the selection stage. Since mutation rates are generally small
and mutation is applied to the genetic material of population members that
have already been determined to be relatively highly fit, minor random
changes can be visualized as small local searches of a promising area of the
solution space. This search, however, is “local” in genotypic space, whereas fit-
ness is measured in phenotypic space. It is easy to envision encoding schemes
where minor genetic material changes cause jumps to vastly different areas
of the phenotypic solution space. It is also important to notice that many of
the studies of the performance of EAs ignore the additional dynamics caused
by the genotypic to phenotypic mappings, and focus on problems where this
mapping is trivial (such as the ONEMAX problem described in the next para-
graph). The point to remember here is that mutation is a local search operator
as viewed in genotypic space.

Crossover is the mixing of the genes of the selected parents and is a much
more complicated operator. An excellent analysis of the effects of crossover
can be found in [62] but we will adopt a simplified explanation here to fa-
cilitate conceptual understanding. There are many techniques for mixing the
genetic material of the selected parents to form offspring, but the reason that
we mix the genetic material is to examine the ability of the genetic material
from one highly fit individual to improve the overall fitness of another highly
fit individual. This can be illustrated with a trivial, binary-encoded GA at-



6 1 Introduction

tempting to find a string of all ones (known as the ONEMAX problem), where
the fitness evaluation is a simple count of the number of ones in the string:

Parent 1: 1111OOOO Fitness = 4 Parent 2: OOOO1111 Fitness = 4.

With simple one-point crossover, it is possible for the GA to supplement the
genetic material of Parent 1 with that of Parent 2 and create an offspring:

11111111 Fitness = 8.

Of course, in this case it is also possible to create an offspring of fitness zero.
It is also possible in other cases for the crossover operator to disrupt good
sequences of alleles that existed in one of the parents and are necessary for the
solution. In the case of multi-modal fitness landscapes, when mixing the genes
of relatively highly fit individuals from the same peak, crossover is essentially
a local search operator that is strongly examining the solution space near
that peak. If the highly fit parents are from different peaks in a multi-modal
landscape, crossover becomes a global search operator. Unfortunately, it is
usually not possible to easily identify whether population members are on the
same peak in a multi-modal problem due to lack of detailed knowledge of the
functional form of the fitness landscape.

Although our theoretical understanding of EA behavior in static fitness
landscapes is far from complete (see, for example, [63], [6]), the situation gets
much worse when dynamic fitness landscapes are introduced. Dynamic fitness
landscapes present the additional problems of detecting and responding to
changes in information that the EA has used.

1.2 Previous Research

Early research into EA performance in dynamic fitness landscapes was con-
ducted over ten years ago [25], [14], [27]. Recent years have seen a significant
increase in interest in this subject [42], [35], [4], [69], [64], [67], [38], [72], [55],
[12]. Despite this increased interest in the performance of EAs in changing en-
vironments, the “successes and failures” of EAs in dynamic fitness landscapes
that have been reported to date have mostly just measured the speed of the
adaptation of some specific EA implementation. This measurement is usually
made using a simple example problem and often reported without analysis of
the dynamics of the sample problem selected or the generality of any results.
As has been shown in the study of EAs in static environments, comparative
studies of the effectiveness of various EAs in dynamic environments will re-
quire rigorous and standardized test functions. Furthermore, since it is likely
that techniques that are successful in improving the performance of EAs in
adapting to some types of fitness landscape changes are likely to be less effec-
tive in other types of landscape changes, standardized test functions will be
required to cover a variety of different types of dynamic behavior.



1.2 Previous Research 7

Until recently, most of the studies of dynamic fitness landscape perfor-
mance have involved randomly or gradually changing the location of the fitness
peak during the progress of a GA and examining the resulting performance of
the algorithm. This type of study only answers the question, “How fast can
a particular EA solve a particular problem, starting with the population that
remains after solving (or partially solving) a different problem with a simi-
lar structure?” The answer, not surprisingly, is often “not very well,” since
finding the new peak location in a fitness landscape involves solution-space
exploration, and a partially converged population has already lost some of
its genetic diversity and may no longer adequately cover the solution space.
When the portion of the search space that is changing is not covered by the
population, an EA will not detect that a change in the fitness landscape has
occurred, and therefore not alter its behavior to accommodate the change.

Interesting results upon which to initiate this research have been reported
in several studies of EAs in dynamic fitness landscapes and in the literature
regarding the on-line adaptation of various genetic operators. The previous
research potentially applicable to the study of EAs in dynamic fitness land-
scapes is categorized below in terms of the EA processes.

1.2.1 Diversity Introduction and Maintenance

If a dynamic fitness landscape changes, modifications to EAs that encour-
age re-exploration, such as increased mutation, should improve performance.
These would help re-explore the fitness landscape in the event of a change,
so that the new solution, wherever it resides in the fitness landscape, can be
discovered.

Some of the more extensive studies of EAs in dynamic fitness land-
scapes have focused on the introduction of mutation mechanisms for increased
solution-space exploration when changes in the solution space are detected.
Cobb devised an adaptive mutation operator, called triggered hypermutation,
for increasing the genetic search when changes in the fitness landscape are de-
tected [14]. The triggered hypermutation algorithm, as originally published,
is based on a standard generational EA, with a fixed population size, propor-
tional selection, N -point crossover, and a small mutation rate (0.001) that is
applied uniformly to the population. Where the algorithm differs from stan-
dard EAs is that the small mutation rate (called the “base” mutation rate) is
not always the mutation rate that is applied to the population. The algorithm
is adaptive in that the mutation rate does not remain constant over time.
When a change in the fitness landscape is detected, the mutation rate is mul-
tiplied by a hypermutation factor before it is applied. If the hypermutation
factor is very large (∼1000), the effect of hypermutation is equivalent to re-
initializing the population and starting the EA over. Smaller hypermutation
factors introduce less diversity into the population.

Grefenstette continued this research [27] and proposed two diversity in-
troduction processes intended to maintain a continuous exploration of the



8 1 Introduction

search space while disrupting ongoing search as little as possible: (1) a par-
tial hypermutation step, and (2) the introduction of random immigrants into
the population. Both Cobb and Grefenstette examined the performance of an
adaptive mutation operator in the context of several different kinds of fitness
landscape changes [15].

Another strategy for increasing search after detecting a change in the envi-
ronment was suggested by Varak [65]. They developed a variable, local-search
operator to enable GA-based control systems to track slowly varying solutions
to a specific control system problem. As suggested by Cobb, the new search
operator is triggered only when the time-averaged best performance of the
population deteriorates.

Other EAs depend on adaptive mutation operators, even in static fitness
landscapes. Some of these techniques were pioneered by Schwefel and, in their
most general form, use a mutation mechanism that enables the algorithm to
evolve its own mutation strategy parameters during the search, creating an
explicit link between the amount and type of mutation and the fitness of the
population [5], [28]. Bäck has also performed an initial evaluation of the per-
formance of evolutionary strategies in dynamic landscapes and illustrated that
the performance of evolutionary strategy self-adaptation methods is sensitive
to the type of dynamic problem [4].

Finally, an interesting recent study examined the use of variable-length
EAs in dynamic environments [73]. The results showed promise on the prob-
lems examined, but whether the improved EA performance is due to additional
genetic material availability substituting for enhanced diversity or some other
effect of the variable-length EA dynamics is uncertain at this time.

1.2.2 Addition of Memory

An early study that combines EAs and case-based reasoning in dynamic en-
vironments was conducted by Ramsey and Grefenstette. They applied case-
based reasoning to create a history of good solutions for previously encoun-
tered cases and, when a change was detected in the environment, the EA was
re-started, using these previous cases to seed the initialized population [54].

More recently, several researchers have examined whether the addition of
a memory component to an EA is useful in dynamic fitness landscapes of
a recurrent nature. A novel modification to the standard (µ, λ) evolutionary
strategy was evaluated in [50]. This modification adds adaptive predictors
that are based on the parents’ memories to the normal adaptive parameters
of the ES. Alternative memory addition was suggested by Mori, who combined
a thermodynamical genetic algorithm (TDGA), which maintains population
diversity by an entropy measure, with a memory-based feature, inspired by
natural immune systems, to address changing fitness landscapes with a recur-
rently varying nature [42]. Diploid representation and polygenic inheritance
have been examined as methods for retaining genetic information about previ-
ously found, high-quality solutions in dynamic environments by Connor Ryan



1.3 Open Research Issues 9

[57], [58]. Additional memory mechanisms for use in fitness landscapes where
the global optimum frequently revisits the same regions were also examined
in [12].

1.2.3 Importance of the Characteristics of the Landscape

While the characteristics of the landscape dynamics would be expected to
affect the performance of an EA, few studies have examined this subject in
any detail. Wilke examined some of the effects of landscape ruggedness in
dynamic environments [69], and Karsten and Nichole Weicker have done some
research into varying how much information is available to an EA in a dynamic
environment and how the EA exploits that information [67].

With each type of landscape characteristic, there may be a variety of
dynamic properties. For example, the magnitude of the change can be large
or small, and the speed of the changes can be rapid or slow relative to EA
time. Each of these dynamic properties can, in turn, be uniform, periodic,
recurrent but aperiodic, random, or chaotic.

The speed of the fitness landscape changes (rapid or slow) relative to EA
“time” (measured in generations) is one of the dynamic properties that has
only recently received initial systematic study. This dynamic property is re-
ferred to as the “landscape change period” (or just “period”), and is defined
as the number of EA generations between fitness landscape changes. We have
previously performed an initial study of the effects of changing this dynamic
characteristic on the performance of Cobb and Grefenstette’s triggered hyper-
mutation technique [46].

It should also be noted that for most experiments with dynamic fitness
landscapes, dynamics are overlaid onto an underlying static landscape. These
static landscapes usually have their own set of attributes that can facilitate
or inhibit the EA performance, and the effects of these static attributes are
also often poorly understood.

1.3 Open Research Issues

As can be seen in the research described above, the techniques that have been
added to EAs to improve their performance in dynamic fitness landscapes
have considered only limited types of EA modifications that may be required
to achieve success in dynamic landscapes. There has been little analysis of the
different types of dynamic fitness landscape problems that may be solved by
EAs and also little comparative analysis of the types of EA extensions that
may be effective in solving the different types of problems.

There are many open research issues regarding the design of EAs for dy-
namic fitness landscapes. Among the most fundamental and interesting of
these issues are:



10 1 Introduction

1. Improved theoretical understanding of the performance of EAs in dynamic
fitness landscapes. The theoretical understanding of EAs in static fitness
landscapes is far from mature, but very little is understood about the
behavior of EAs in dynamic fitness landscapes.

2. Diversity quantification. While a number of researchers have intuitively
focused on increases in diversity to improve EA performance in dynamic
fitness landscapes, there has been little research into quantitative identifi-
cation of the necessary amount of diversity for different types of problems.

3. Diversity measurement for dynamic problems. Although diversity has been
identified as an important aspect of EA performance in dynamic land-
scapes, the concept of diversity for dynamic landscapes has been carried
over from studies of static EAs. However, common usage of diversity mea-
sures suggests some misunderstanding regarding what aspects of diversity
are important to EA performance in dynamic fitness landscapes.

4. Performance measurement. The measurement of the relevant aspects of
EA performance in dynamic landscapes is a complex issue and is largely
unaddressed in the literature. Results are most often reported in simple
graphs over time without any method to determine the overall EA per-
formance, nor the statistical significance of differing results.

5. Exploration of new methods to improve the performance of EAs in practi-
cal dynamic fitness landscapes. Biological systems suggest many potential
enhancements to EAs that may improve performance in dynamic fitness
landscapes that have not been evaluated.

6. Comparative studies. There has not been any comprehensive comparative
study of the performance of EA techniques in a controlled, representative
suite of dynamic fitness landscapes. For over 20 years, the De Jong test
suite [18] has been used to measure the performance of various GAs in
function optimization. Additional test functions have been added over
time; some of the more frequently encountered ones are known as the
Rastrigin, Schwefel, and Griewangk functions. Recently, test generators
suitable for use in dynamic environments have started to become available
[45], [10]. These test generators are starting to be used to evaluate EA
extensions in a variety of dynamic environments.

1.4 Importance and Relevance

Dynamic fitness landscapes are common in a wide variety of problems where
EAs are currently being applied. For example, in financial applications, EAs
are being used for portfolio balancing, risk analysis, and the identification of
trading strategy parameters. Difficulties arise because the underlying behavior
of the financial markets and the risk analysis basis change over time. In an-
other example, EAs are being used for data mining in large databases [22]. As
these databases change, however, new relationships in the data go unnoticed
until the EA-based data-mining effort is performed again. Without effective



1.5 Book Structure 11

methods for dealing with dynamic fitness landscapes in these applications and
many others, an often-applied current practice is to “periodically” re-run the
EA to see if anything has changed. If circumstances have not changed, the
effort to re-run the EA was wasted. If circumstances change before the an-
ticipated need to re-run the EA, whatever information the EA was providing
is likely to be wrong, and could be very wrong. Awaiting notice that the un-
derlying problem environment has changed through the observation that the
system you are using for making business decisions no longer works is often
expensive, usually time consuming, and can be disastrous. The ability to al-
low an EA to continuously provide appropriate solutions to these (and other)
changing problems without the need for discontinuous operation or human
intervention would improve efficiency in these complex domains.

The research described herein will contribute to the understanding of the
performance of EAs in dynamic fitness landscapes. It will examine the appli-
cability and effectiveness of promising EA improvements that were inspired
by biological and engineering systems performing in a variety of complex dy-
namic environments. Along the way, we will address a number of important
design issues that will facilitate further research in this area. Several of these
issues are related to the methods for determining population diversity and
the methods for reporting EA performance. We will also provide a problem
generator for dynamic fitness landscape problems that easily delivers a wide
range of reproducible dynamic behaviors for EA researchers.

The combination of the resolution of some fundamental design issues with
comparative experiments in a variety of dynamic fitness landscapes will pro-
vide a step towards the goal of designing EAs to continuously solve important,
but changing, problems without human intervention.

1.5 Book Structure

The remainder of this book is structured as follows:

• Chapter 2 will discuss dynamic problems and the characteristics of EAs
that are required for effective performance in dynamic environments.

• Chapter 3 will provide some insights from biology and control system en-
gineering regarding methods for exploiting diversity-creating mechanisms
to deal with the complexities of dynamic fitness landscapes.

• Chapter 4 will discuss measurement of population diversity and intro-
duce new and efficient methods for computing the traditional measures
of population diversity. This chapter will then go on to address signifi-
cant shortcomings in the use of traditional population diversity measures
and provide a new and efficient population diversity measure that corrects
these shortcomings.

• Chapter 5 will present the architecture of an extended EA which has been
designed to exploit our new understanding of population diversity mea-
surement to improve the performance of the EA in dynamic environments.



12 1 Introduction

Additionally, techniques developed for the creation of this new EA archi-
tecture will be addressed in the context of their potential applicability to
population initialization techniques for static EAs.

• Chapter 6 will describe the experimental framework for testing this new
EA. A new test problem generator will be presented to provide a stan-
dardized capability for testing EAs in dynamic landscapes and comparing
results. Additionally, this chapter will address shortcomings in common
performance measures for comparing results in examining EAs in dynamic
fitness landscapes, and provide a performance measure that addresses the
shortcomings.

• Chapter 7 will address the issue of performance measurement of EAs in
dynamic fitness landscapes and derive appropriate performance reporting
measures that cover an EA’s exposure to a range of fitness landscape
dynamics with results that can be checked for statistical significance.

• Chapter 8 will provide an analysis of the results of the performance of
the extended EA, described in Chap. 5, in the dynamic fitness landscape
problems described in Chap. 6. This chapter will also identify and ana-
lyze discovered relationships between important EA parameters and the
resulting EA performance.

• Chapter 9 will return to the techniques developed in Chap. 5 to demon-
strate their usefulness in the problem of static EA population initialization.

• Chapter 10 will provide a summary of this research and provide suggestions
for future research.




