
1

Introduction

The appeal of Machine Learning (ML) lies in the idea of computers teaching
themselves to solve problems, rather than relying on humans to specify their
every move. Relying on humans to hard-wire behaviour is limiting because of
the obvious di�culties of anticipating any number of situations in advance,
particularly in a changing world. But further, we often simply do not know
how it is we do what we do, and so cannot specify it to a computer. And, of
course, there are any number of problems we have trouble solving ourselves in
the �rst place. So there are limits to the complexity of the problems we can
address by building hard-wired solutions.

We can sidestep these problems by, instead of building hard-wired ma-
chines, building learning machines which generate desired behaviour on their
own. That is, by solving one problem (that of building a learning machine),
we obtain a solution to many problems (those to which we apply our ma-
chine). This leaves us the task of specifying what the desired behaviour of
the learning machine should be, but the assumption is that this should be
easier than programming this behaviour. Of course, the problem of building
learning machines which can handle complex tasks is itself a most di�cult
undertaking; it is generally easier to solve the problem at hand than to build
a learning machine which is capable of solving it.

Nonetheless, ML promises rewards commensurate with its di�culties. It
has already been suggested that learning machines promise to repay the e�ort
invested in them, and to do things which humans cannot. But research into
machine learning is not only a means of addressing engineering problems. It is
also ultimately a part of the endeavour to understand intelligence and create
machine intelligence, and so bears on philosophy, psychology, cognitive science,
ethology and other �elds. To sum up, ML involves very di�cult problems, but
holds tremendous promise, both in terms of extending the utility of computers
and in the study of intelligence.

This book is concerned with Learning Classi�er Systems (LCS), a form of
machine learning system introduced in the 1970s by John Holland, which typi-
cally incorporates both Evolutionary Algorithms and Reinforcement Learning



2 1 Introduction

algorithms. Like ML in general, building successful LCS involves terribly dif-
�cult problems, but successful LCS hold tremendous promise. Put another
way, if the goals of classi�er systems research were met, many of the goals of
machine learning would be met.

1.1 Two Example Machine Learning Tasks

This section introduces two example machine learning tasks and suggests a
few ways in which we might approach them. In x1.5 we introduce learning
classi�er systems which can be applied to these tasks.

Example: Classifying Mushrooms

Consider the problem of enabling a computer to distinguish between poisonous
and edible mushrooms. Human experts learn through experience how to dis-
tinguish the two, and it is di�cult to �nd simple rules with good predictive
power. Thus, it seems reasonable to apply machine learning to the problem
of �nding good, simple rules which distinguish the two cases. The standard
approach is to train a machine learning system on examples of preclassi�ed
mushrooms, that is, a set of example mushrooms which have already been
classi�ed by a human expert. For example, we might use a database of de-
scriptions of 100 poisonous and 100 edible mushrooms. Rather than present
the computer with a raw image of a mushroom, we can extract certain infor-
mation, e.g., concerning colour, size, shape and so on. The ML system can
then teach itself how to classify the mushrooms, using the human expert's
classi�cations for reference. Once the system has achieved good performance
on this training set, we can test it on a set of previously unseen mushrooms
(again, preclassi�ed by a human expert) to see how well it generalises from
the examples it has seen to new cases. If it performs well on this test, we may
be willing to trust its judgement concerning mushrooms which have not been
classi�ed by a human expert. In other words, the ML system learns to dupli-
cate a human expert's skill, and to generalise from its limited experience. One
use for such a system is to evaluate mushrooms without the need to consult
human experts, who may be few and far between. Another use is for the hu-
man expert to consider the decision-making rules found by the system, which
may di�er from those used by humans and which may o�er some insight into
the problem of mushroom classi�cation.

A great variety of ML systems could conceivably be applied to this prob-
lem, but let us consider a system which, in teaching itself how to classify
mushrooms, explicitly entertains many competing hypotheses and tests them
against the available data. If the data supports a hypothesis, this suggests it
should be retained (and perhaps used as the basis for new hypotheses). If the
data does not support a hypothesis, this suggests it should be discarded. This
approach seems fairly obvious and fundamental. (We might want to bias the



1.2 Types of Task 3

system to be more likely to misclassify non-poisonous mushrooms as poisonous
than the other way around, but we won't go into such details here.)

One issue in developing such a system is how to represent hypotheses. An
obvious and fundamental approach is to use condition-action rules, such as
these:

IF small AND green THEN edible
IF (small AND green) OR has-spots THEN poisonous
IF small AND pink THEN poisonous
IF small AND pink THEN edible

Example: Simulating a Frog

As another example, consider this problem: given sensors and e�ectors, pro-
vide a self-adapting control system for a simulated frog which learns only by
trial and error, that is, from rewards and punishments from its simulated en-
vironment. The frog's objectives are to maximise the number of ies it eats,
minimise its energy use, and to avoid being eaten itself.

This problem di�ers signi�cantly from the mushroom classi�cation task in
that the system learns only from rewards and punishments, not from preclas-
si�ed examples. Another di�erence is that in this case the learner interacts
with a problem environment; the frog's actions inuence the environment.
As with the mushroom classi�cation task, it may be di�cult for humans to
produce a system which e�ectively maximises the rewards and minimises the
punishments the frog receives. To address the problem, we might again rea-
sonably attempt to develop a machine learning system which entertains and
evaluates multiple competing hypotheses, and which represents them with
condition-action rules, for example:

IF small AND dark AND buzzes THEN eat-it
IF large AND white AND has-beak THEN hide

Classi�er Systems

The broad approach suggested for both problems in this section is that taken
by classi�er systems, so-called because they learn condition-action rules called
classi�ers.

1.2 Types of Task

1.2.1 Supervised and Reinforcement Learning

The two examples we've just seen are meant to illustrate two kinds of task
to which we can apply LCS. The mushroom classi�cation task is meant to



4 1 Introduction

illustrate a pattern classi�cation or data mining task, while the frog controller
is an on-line control task.

Each task is suitable for a di�erent learning paradigm, that is, a di�erent
model of interaction between the learning agent and the task. In the mushroom
classi�cation task we have a training set of pre-classi�ed exemplars, making
Supervised Learning (SL) feasible. For the frog controller task, however, we
have only certain conditions which are good (eating ies) or bad (being eaten),
and so the task must be modelled as a Reinforcement Learning (RL) task.
Learning paradigms are covered in Appendix C. Classi�er systems are suitable
for both paradigms, but this work focuses on RL.

1.2.2 Sequential and Non-sequential Decision Tasks

The two tasks illustrate a second important distinction to be made in the
space of tasks. The mushroom classi�cation task is non-sequential, that is, the
action taken by the learner on one time step does not inuence what inputs it
receives in the future. (The classi�cation it gives at time t has no inuence on
which mushroom it sees at time t + 1.) In contrast, the frog simulation task
is sequential; an action taken at time t may well inuence what inputs are
received in the future. For example, at time t the frog may choose between
hopping into a pond and hopping into some tall grass, each of which will lead
it through a di�erent sequence of states in the future. Sequential tasks are in
general more di�cult because they require the learner to consider the long-
term consequences of its actions. This work studies the application of classi�er
systems to both types of task.

1.3 Two Challenges for Classi�er Systems

Our suggestion that the system entertain competing hypotheses in the form
of condition-action rules is a rather vague speci�cation. Among the major
questions it leaves open are:

How do we choose between rules? The reader may have noticed that
some of the rules in the mushroom classi�cation example contradict each
other. When this happens some kind of conict resolution must be per-
formed. Good conict resolution relies on our ability to discriminate be-
tween good and bad rules, that is, to assess the utility of rules. Ideally, the
means by which we do so should be independent of the domain in which
the system operates; it is desirable to use the same methods for evaluat-
ing rules and resolving conicts between them in all domains, rather than
having to tailor them to each domain.

Where do rules come from? A classi�er system needs some automated
means of generating rules, and employs a generate-and-test approach. To
optimise this process, rather than generate random rules, we would like to



1.3 Two Challenges for Classi�er Systems 5

base new rules on existing high-quality rules. Thus we have two processes
which must choose between rules; conict resolution, and the selection of
rules on which to base new rules. The generation of rules must be inde-
pendent of human intervention, and, ideally, independent of the domain
in which the system operates; to minimise human input it is desirable to
use the same rule-discovery techniques in searching for good rules in all
domains, rather than have to tailor them to each problem.

These two questions are major issues for LCS research. They have been
the subject of much research over the years, and will be for many years to
come. The answers to these questions can de�ne vastly di�erent systems, with
vastly di�erent characteristics.

Because this work is concerned with RL classi�er systems, and because
it will borrow much from existing work on RL, the two challenges above are
recast below in terms of reinforcement learning. From this point on, we will
assume tasks and learning agents which fall under the RL heading, unless
otherwise noted.

1.3.1 Problem 1: Learning a Policy from Reinforcement

The challenge of choosing between conicting rules is really the problem of
learning a policy { a mapping from states to actions { which tells the learning
agent how to behave. Consequently, this is sometimes known as the control
problem. The goal of a learning agent is to �nd an optimal policy (xF.2), that
is, one which, over the long run, maximises the rewards and minimises the
punishments it receives.

One aspect of searching for good policies is the need to evaluate policies,
or parts of policies, e.g., to evaluate how good it is to take an action a in a
state s. This is also known as the prediction problem, since it can be seen as
the task of predicting the outcome of behaviour. Methods of addressing the
prediction problem are covered in Appendix E, and the interaction of control
and prediction is discussed in xF.3 and xG.7.1.

1.3.2 Problem 2: Generalisation

To scale up to large tasks learning methods must exploit regularities in the
task, in their representation of it and their operation. Consequently, it is not
enough to search for a good policy; to be e�ective, a learning system must
exploit regularities in doing so. One way to exploit regularities is to generalise
over (alias) aspects of the task. Appendix D discusses this subject in more
depth.



6 1 Introduction

1.4 Solution Methods

This work is concerned with two basic approaches to learning policies from
reinforcement, and are introduced in the following sections. Then, in x1.5,
classi�er systems, which are hybrids of the two basic methods, are introduced.

1.4.1 Method 1: Reinforcement Learning Algorithms

The sub�eld of AI called Reinforcement Learning is concerned with a certain
subset of the algorithms which can be used with the RL paradigm mentioned
in x1.2.1. It is important to understand the distinction between the RL learn-
ing paradigm { a class of learning tasks { and so-called RL algorithms, one
class of algorithms suited for such tasks. The distinction matters because RL
algorithms are not the only methods applicable to these tasks; for example,
the evolutionary algorithms of the following section are equally applicable.

RL algorithms learn policies by learning value functions (xE.4.1), which are
estimates of the (long-term) utility of components of the policy. In short, RL
algorithms iteratively evaluate the utility of the current policy (learn a value
function for it) and then derive a better policy based on the value function
(xF.3). RL algorithms are introduced in Appendices E and F.

RL algorithms do not address the question of generalisation directly, but
often make use of function approximators to provide generalisation. For exam-
ple, a value function is often stored (approximated) using a neural network,
rather than a look-up table. We will make frequent references to Q-learning
([287, 266], xE.4.5), the best-known RL algorithm.

1.4.2 Method 2: Evolutionary Algorithms

The sub�eld of AI called Evolutionary Computation (EC), introduced in Ap-
pendix G, is applicable to both the problem of learning a policy and the prob-
lem of generalisation. EC comprises many forms of Evolutionary Algorithms
(EAs), all of which, inspired by evolution in nature, employ simulated evolu-
tion of populations of candidate solutions. In short, this involves iteratively
evaluating the current generation of solutions and producing the next genera-
tion by means of probabilistic transformations and selective pressure towards
�tter members. EAs can be thought of as stochastic population-based search
methods.

1.5 Learning Classi�er Systems

Classi�er systems originated and have been developed primarily within the
�eld of Genetic Algorithms (see xG.2, and, e.g., [120, 95]), one of the stochas-
tic search methods studied in the �eld of Evolutionary Computation. Clas-
si�er systems are traditionally hybrid Evolutionary/Reinforcement Learning



1.5 Learning Classi�er Systems 7

systems, although some are Supervised Learning systems (e.g., [30]), or use
non-evolutionary means of generating rules (e.g., [260]). Although such sys-
tems are signi�cant, this work will focus on systems which are hybrids of EC
and RL algorithms, and which learn from rewards.

1.5.1 The Tripartite LCS Structure

To return to the two challenges of x1.3, the questions of how rules are evalu-
ated and generated are addressed, respectively, by a classi�er system's credit
assignment system and rule discovery system.

Rule Discovery System

The rule discovery system almost always consists primarily of a Genetic Al-
gorithm, which may be supplemented by other mechanisms (see x2.3.6).

Credit Assignment System

A great many credit assignment algorithms exist, and di�erent types will be
briey outlined in x1.5.3. Whatever method is used, the role of the credit
assignment system is to observe the use of the rules as the system interacts
with its problem environment, and the feedback the system receives from the
environment, and update a numerical estimate of each rule's utility called its
strength. (In the classi�er systems for RL in which we are interested, feedback
consists of rewards, that is, numbers.)

Production System

In addition to the two systems mentioned above, a classi�er systems needs
machinery which applies the right rules at the right time, that is, it is re-
sponsible for �nding the rules which apply, or match, the current state of the
problem. This machinery constitutes the third major component of a classi�er
system, the production system. We will see in more detail how these systems
�t together to produce a working classi�er systems in Chapter 2, and will
reconsider how they �t together in Chapters 3 and 6.

1.5.2 LCS = Policy Learning + Generalisation

It is worth emphasising that classi�er systems intrinsically address both the
problem of learning policies and the problem of generalisation. The inherent
capacity to generalise is one of the main features which distinguish LCS from
other approaches to RL, and a motivation for interest in LCS. Of course other
approaches to generalisation in RL exist; the most common is to use a neural
network to approximate the value function of, e.g., a tabular Q-learner. In



8 1 Introduction

this case, generalisation is achieved by combining tabular Q-learning with a
function approximator. The two processes are distinct. In a classi�er system,
however, we cannot separate generalisation and policy learning; a classi�er
system is a combination of both, and if either is missing we do not have a
classi�er system.

Although the potential to generalise is one reason for interest in LCS, it
also makes the problems faced by classi�er systems and study of them more
di�cult (x7.5.2).

1.5.3 Credit Assignment in Classi�er Systems

In sequential tasks, credit assignment is normally performed by some form
of Temporal Di�erence algorithm (see [266], xE.4.5), from the �eld of Re-
inforcement Learning. Various versions of the bucket brigade algorithm (see
[127, 95]) have most often been used, although Q-learning-like updates have
become popular in recent years (see [297, 298], xE.4.5).

However, not all LCS use Temporal Di�erence algorithms; some have used
what are referred to as epochal schemes in the LCS literature and Monte Carlo
updates (xE.4.4) in the RL literature (following the usage of Sutton and Barto
[266]). Such LCS include CS-1 [128] and RUDI [101]. Monte Carlo updates
have two disadvantages compared to Temporal Di�erence updates. First, it is
di�cult to apply Monte Carlo updates in tasks which do not divide naturally
into episodes, that is, which periodically terminate and restart. Such tasks
are termed episodic, as opposed to continuing tasks which do not terminate.
(See xC.3.3.) Second, Temporal Di�erence methods take advantage of the
sequential structure of a task in a way which Monte Carlo methods do not,
and so often outperform them. On the other hand, Monte Carlo methods have
some advantage on tasks which are not well-modelled as Markov processes (see
xC.5). There is, however, relatively little known about how the two compare
[266].

Some of the di�erent types of credit assignment schemes are illustrated in
Figure 1.1, which includes strength-based and accuracy-based forms of Tem-
poral Di�erence schemes, to be introduced in the following section. This work
is primarily concerned with strength and accuracy-based schemes, and has
little to say about Monte Carlo updates.

1.5.4 Strength and Accuracy-based Classi�er Systems

It is di�cult to generate new rules e�ciently without being able to determine
the quality of existing rules, meaning rule evaluation is an issue in rule discov-
ery. For example, the typical approach of using a genetic algorithm requires
an estimate of the value of each rule called its �tness.

Since rules are evaluated by the credit assignment system for conict res-
olution, an obvious approach is to use the same evaluation in rule discovery,



1.6 About the Book 9

Strength Accuracy

Temporal DifferenceMonte Carlo

Algorithms
SequentialNon-sequential

Algorithms

Algorithms
All Credit Assignment

Fig. 1.1. Some types of credit assignment schemes.

and this is just the approach used by strength-based classi�er systems. That is,
these systems use a rule's strength in both action selection and rule discovery.

In contrast, in Wilson's XCS classi�er system [298], a rule's strength is
used only in action selection. For reproduction, the utility (�tness) of a rule
is a di�erent value, although it is ultimately derived from the strength of a
rule. More speci�cally, in XCS, a rule's �tness is a function of the accuracy
with which it predicts the reward it will receive, which is why XCS is called
an accuracy-based classi�er system. The di�erence is illustrated in Figure 1.2,
in which arrows indicate the ow of information from its source (rewards) to
its use in the processes of action selection and rule discovery. We will see that
this simple di�erence has profound implications for the system. We will take
XCS as a representative of a class of related possible accuracy-based systems,
and, where possible, consider the class of such systems and not just XCS.

A major aim of this work is to explain the di�erences between the older
strength-based LCS and the newer XCS, and the signi�cance of these di�er-
ences. We will make extensive comparisons between strength and accuracy-
based systems, both theoretically and empirically. In order to do so, a system
called SB{XCS (Strength-Based XCS) will be introduced in Chapter 2.

1.6 About the Book

This work arises in response to a number of questions:

� How do strength and accuracy compare?
� Is a classi�er system GA-based or RL-based?
� How do classi�er systems relate to Q-learning?
� How do di�erent types of classi�er system relate to each other?

The goals of this work, then, are to compare two broad types of classi�er
system: strength-based and accuracy-based, and to improve our understanding



10 1 Introduction

Rule Strength

Action 
Selection

Reward

Rule Strength

Reward

Action 
Selection

Discovery
Rule

Rule Accuracy

Discovery
Rule

Strength-based LCS

Accuracy-based LCS

Fig. 1.2. How strength and accuracy-based systems use rewards to weight rules in
action selection and rule discovery.

how di�erent learning systems relate to each other, that is, how they `�t
together'. The following section explains the need for comparison between
strength and accuracy, while x1.6.2 explains the confusion over the question
of whether LCS are GA-based or RL-based. Finally, x1.6.3 casts this work as
an exploration of design space, and explains the necessity of this kind of work.

1.6.1 Why Compare Strength and Accuracy?

The creator of XCS, Stewart W. Wilson, motivates the switch to accuracy-
based �tness in [298], but this is the only discussion in the literature and a
comparison of the two approaches has been lacking. A better understanding
of the two approaches is important for a number of reasons.

� The question of how to calculate rule �tness has been the subject of much
study over the years. Fitness de�nition is a fundamental issue since a clas-
si�er system will not adapt well if �tness is not de�ned in a suitable way.
Thus, understanding of how strength and accuracy compare is important
for the development of the �eld of classi�er systems.

� There is evidence that traditional strength-based �tness is unsuitable for
some sequential tasks [298, 56] (but see [48]).

� There is a growing body of evidence that accuracy-based �tness is suitable
for sequential tasks (e.g., [298, 166, 11, 12, 13, 14]).



1.6 About the Book 11

� XCS has generated considerable interest and has become a major focus of
classi�er systems research [150].

� It has been suggested that XCS's complete mapping from inputs and ac-
tions to reward predictions is advantageous [298].

� Later in this work it will be suggested that XCS also has important ad-
vantages in handling the explore/exploit dilemma (xC.2) and value prop-
agation (x3.7.2) in reinforcement learning, and what we have called strong
and �t overgeneral rules (see Chapter 5).

� It has been suggested that accuracy-based �tness shows better generali-
sation than strength (and consequently requires smaller population sizes)
[298, 147, 304].

� However, it has also been suggested that accuracy may require larger pop-
ulation sizes than strength (see Chapter 3).

Most of these points suggest an advantage of accuracy-based �tness, and
a comparison is needed to ascertain whether this important new direction in
LCS research lives up to these expectations.

1.6.2 Are LCS Based on Evolutionary Computation or
Reinforcement Learning?

What a classi�er system is seems contentious, to the extent that discussion
of this issue dominated the First International Workshop on Learning Clas-
si�er Systems (IWLCS-92). As Robert Smith, paraphrasing Lashon Booker,
reported:

The LCS is usually described as a method: a set of algorithmic de-
tails that de�ne a way to solve a class of problems. However, in many
ways the LCS is more of an approach: a set of conceptual details that
de�ne a certain direction for developing methods. Therefore, the de�n-
ing issues for the LCS are not necessarily algorithmic, but conceptual.
The central problem addressed by the workshop's discussions was to
clarify these de�ning, conceptual issues. [243] p. 2.

That conceptual issues remain a concern for classi�er systems is indicated
by the inclusion of a series of 11 short essays under the title \What is a Learn-
ing Classi�er System?" in a recent publication [126]. Although I was unaware
of this diversity of opinion when I �rst began working with them in 1996, I
soon became concerned that I was unsure of the di�erence between a genetic
algorithm and a classi�er system. I had seen the LCS described as a combi-
nation of a production system, rule discovery system and credit assignment
system. I reasoned that since the rule discovery system typically is a genetic
algorithm, the LCS must be something more, since it has two additional com-
ponents. However, I decided the credit assignment system was just what we
call the �tness function of a genetic algorithm. Granted, credit assignment in
an LCS was more complex than the examples of function optimisation with a



12 1 Introduction

GA which I had seen, but it was still a kind of �tness function. This left the
production system as the real di�erence between the LCS and GA. But since
the production system is conceptually straightforward { its task is simply to
apply the rules when appropriate { a classi�er system seemed to be just a way
of applying a GA to certain kinds of problems. Certainly we need to wrap the
GA up with a little machinery (the production system and a special kind of
�tness function) to interface it with the problem, and perhaps the GA needs
a little help in the form of operators like covering (see, e.g., [121, 32, 298],
x2.3.6.2), but the LCS seemed to be essentially a GA.1

This is a view which I still think is consistent with Holland's intentions,
and those of many others. Classi�er systems have, after all, been described as
Genetics-Based Machine Learning (GBML) systems [95].

Less-genetic Classi�er Systems

The view of an LCS as essentially a GA is somewhat extreme, and other less
extreme views exist. In addition to the GA, a classi�er system may contain
rule discovery mechanisms such as covering, triggered chaining [214], bridging
[123, 211], and corporate linkage [315, 274]. In such systems the GA is just one
component of the rule discovery system, although perhaps an important one.
However, some LCS emphasise the use of non-genetic operators more heavily
than others, and in some cases the GA is even considered a `background'
operator [14].

Non-genetic Classi�er Systems

That an LCS is essentially a GA is atly contradicted by the considerable
recent work on LCS which use alternative rule discovery systems. In hindsight,
there seems no justi�cation for insisting on the use of GAs as opposed to other
evolutionary algorithms. Alternatives were suggested some time ago [297, 278,
279, 244] and some recent work has indeed used Genetic Programming rather
than Genetic Algorithms [165, 4]. What's more, a signi�cant amount of recent
work has been on systems which contain no evolutionary algorithms [255, 257,
256, 258, 259, 49, 50, 260, 261, 262, 52]. If we accept such systems as classi�er
systems (as is the norm, e.g., work on such systems has appeared at the
International Workshop on Learning Classi�er Systems { IWLCS), we are
dealing with a much broader concept than that of a GA and some wrapping.
Unfortunately, discussion of this trend lies outside the scope of this book.

Linking Classi�er Systems and Mainstream RL

A second trend which breaks from the view of an LCS as a GA-based system is
that which seeks to link LCS and mainstream reinforcement learning. RL has

1 A more detailed account of the di�erences between the two would be desirable,
but must be deferred to another work.



1.6 About the Book 13

made great strides since the introduction of LCS, and it is clear that (most)
LCS are RL systems, that they address many of the same issues addressed by
other RL systems, and that there is much to be gained from integrating LCS
with mainstream RL. The need to bridge LCS and mainstream RL appeared
to be the consensus during the discussion at IWLCS-99.

The GA-view and RL-view

This leaves us with two contradictory views of what a classi�er system really
is, what we might call theGA-view { that the LCS is essentially the application
of a GA to a problem { and the RL-view; that the LCS is a kind of RL system,
i.e., a Q-learning-like system in which the GA is (or may be) a component, but
in which many of the interesting issues are to do with credit assignment. The
two views place di�erent emphasis on di�erent subsystems: according to the
GA-view, the GA, and issues relating to it, are of primary importance, while
the RL-view places greater importance on credit assignment. The existence of
two alternative views begs an important question: does an LCS solve problems
using evolutionary means, or does it solve them in the way non-evolutionary
RL systems do?

One aim of this work is to recognise and publicise the existence of these
alternative views, since they seem under-recognised, particularly in the liter-
ature. Another aim is to clarify these views, and to justify the RL-view of
(some) LCS. Signi�cantly, the RL-view focuses on XCS, which, it will be ar-
gued, di�ers fundamentally from Holland's LCS, to the extent that it more
closely resembles mainstream RL systems, such as tabular or neural network-
based Q-learners.2

In order to make this RL-view clear, and accessible to the many in the
LCS community who are not well versed in RL, this work goes to considerable
lengths introducing RL in Appendices C, E and F. Those familiar with RL
may wish to skip over these sections, but they are highly recommended to
those unfamiliar with the subject. Without a good, basic understanding of
RL, the distinction between the GA and RL views of LCS is likely to be
unclear. What's more, the future of LCS research (for sequential tasks) seems
heavily grounded in this view; the most important issues to be addressed
in LCS research are those which are and will be addressed in RL. This is
not to marginalise evolutionary approaches to RL, but to say that they too
will bene�t from understanding of non-evolutionary approaches. The text by
Sutton and Barto [266] o�ers a far more complete introduction to RL, and
should be required reading for anyone wishing to apply LCS to RL problems.

2 Despite this, XCS originated and has been studied exclusively within the LCS
community, and is by far most strongly integrated with the LCS literature. Much
better integration with mainstream RL awaits.



14 1 Introduction

1.6.3 Moving in Design Space

This section briey discusses ways in which progress can be made in a scienti�c
�eld, and the contribution this book makes to the study of LCS.

The Design-based Approach

The literature contains a great number of designs for classi�er systems, and
will surely see new ones introduced in the future. One can think of these sys-
tems as points in the space of possible designs { design space { and the space of
requirements for our designs { niche space. These are concepts from the design-
based approach, which involves taking the role of an engineer who is trying to
design a system that meets certain requirements, and is inspired by software
engineering and conceptual analysis in philosophy [237, 238, 239, 240]. It in-
volves analysing alternative sets of requirements, designs and implementations
in an attempt to establish the nature of their relationships. It allows a high
level functional comparison of systems, both natural and arti�cial, despite dif-
ferences in origin or implementation. This comparison seeks to identify which
aspects of a system are essential for given functions and which are not. Note
that this approach does not require a full understanding of the requirements
or the available tools at the outset, nor does it assume that there is a single
correct design to be found.

The succession of designs for classi�er systems can be seen as a search in
design space, a search for optimised designs. How does search in design space
progress? Ideally, one would make as big a jump as necessary to reach, all
at once, an optimum design for one's requirements. But even if the optimum
design was found immediately, how would one know one had found the opti-
mum?Without some formal method which can be used to prove the optimality
of a design, one can only continue to search for better designs (i.e., consider
other designs). (In the study of classi�er systems (or Arti�cial Intelligence
more generally), the requirements of our systems are not fully understood,
and so the set of requirements an optimal design would meet is not de�ned.
Chapter 4, however, does at least address the issue of the requirements of a
classi�er system.)

An Analogy with Evolutionary Computation

Search in design space can be thought of in terms of the familiar idea of
an evolutionary algorithm moving across a �tness landscape (xG.3). Move-
ment consists of iteratively generating and evaluating new designs. Because
a �eld consists of a population of researchers, many of them generating and
evaluating di�erent designs, a community of researchers conducts a parallel,
interacting search { e�ectively an evolutionary algorithm.



1.6 About the Book 15

Interleaving Analysis and Invention

How well must one evaluate a design before one can move on? There is a
form of explore/exploit tradeo� (xC.2) at work; the better one understands
the current area of design space, the better one can direct oneself to a prefer-
able region. The cost of gaining deeper understanding is time and e�ort. As
with other explore/exploit problems, the optimal tradeo� between evaluating
designs and generating new ones is di�cult to achieve.

In Evolutionary Computation one typically only needs to know the approx-
imate �tness of an individual to plausibly generate improved ones. Similarly,
in searching design space, one may only need to evaluate a design incompletely
before moving on to consider others. For example, if a design fails to meet
a vital requirement, it can be rejected without exploring how it meets other
requirements.

However, in cases where designs are not evaluated deeply, one is likely
to make smaller improvements on them than one might otherwise. That is,
in making an informed jump in design space, the size of jump which can be
made is limited by how well one understands that space; limited understanding
restricts the points to which one can jump. Small jumps may consign us to
hill-climbing; approaching a locally optimal design. Bigger jumps can escape
local optima, but making bigger jumps { in the direction intended { requires
greater understanding of the surrounding space.

XCS as a Jump in Design Space

XCS is a big jump in the design space of classi�er systems; even the shift to
accuracy-based �tness by itself constitutes a big jump. Though the di�erences
between the speci�cation of XCS and its strength-based twin SB{XCS are
quite minor, the resulting systems operate in a very di�erent way. (But then
changing a few genes in an animal can have a huge e�ect.) In fact, it is argued
later (Chapter 6) that XCS has more in common with tabular Q-learners than
with older classi�er systems, or even with its twin SB{XCS.

The Contribution of this Book

So far, XCS has been shown to be worthy of further consideration. However,
it is not yet well understood, and neither are earlier classi�er systems. This
work addresses the di�cult problem of showing that strength-based LCS are
indeed unsuitable for many tasks, and why this is so. We will see considerable
evidence for this argument, particularly in x2.5 and Chapter 5.

I have pursued the study of strength and accuracy presented here because
I believed it was the best way to make progress with classi�er systems. Rather
than extend XCS, or create a new system, I wanted to understand { in detail
{ the di�erences between XCS and other LCS, and between LCS and other
reinforcement learning systems.



16 1 Introduction

1.7 Structure of the Book

� Chapter 2 begins with a discussion of the range of classi�er systems in
the literature, and the di�culties of classifying them given our limited
understanding of how they compare. It then reviews representations used
by classi�er systems, in particular the standard ternary language. Finally,
it introduces two systems, XCS and SB{XCS, in detail and presents an
initial comparison of them.

� Chapter 3 studies the di�erences between XCS and SB{XCS in greater
detail, and considers rationales for why they should adapt to a task. It
then examines representational di�erences between the two, and evaluates
the alternative representations.

� Chapter 4 considers what features the representation of a solution should
have, and examines metrics for them.

� Chapter 5 analyses what types of rules are possible and under what con-
ditions they can be expected to occur. Competition between sel�sh rules
is shown to produce various forms of rules which are detrimental to the
performance of the system as a whole, namely overgeneral, strong over-
general and �t overgeneral rules. It is shown that XCS does not produce
such rules in the circumstances in which SB{XCS does. However, it is
also shown that there are circumstances in which XCS will produce such
rules. The prospects for adaptation of the two systems to sequential and
non-sequential tasks are evaluated.

� Chapter 6 considers the relationship between classi�er systems and Q-
learning, and revisits the issue of the GA-view and RL-view from x1.6.2.

� Chapter 7, the conclusion, outlines a model of the capacities of various
types of classi�er systems, lists the contributions of the book, discusses
open problems and future work, and ends with some remarks on the history
and state of the �eld.

� Appendix A examines XCS with and without the use of macroclassi�ers
(x2.3.2) and �nds in favour of their use.

� Appendix B walks through a step of the XCS algorithm in order to illus-
trate the process.

� Appendices C and D introduce the Reinforcement Learning and General-
isation problems respectively.

� Appendix E introduces methods for solving the prediction problem, while
F introduces RL methods which are based on policy improvement and
Appendix G introduces Evolutionary Computation.

� Appendix H points out thatWilson developed a version of the Sarsa update
(xE.4.5) contemporaneously with Rummery and Niranjan.

� Finally, Appendix I lists the notation used in this work.



1.7 Structure of the Book 17

How to Read this Book

Readers wishing to cover any of the introductions to Reinforcement Learning
problems (Appendix C), Generalisation problems (Appendix D), prediction
methods (Appendix E), RL algorithms (Appendix F) and Evolutionary Com-
putation (Appendix G) may wish to do so before proceeding to Chapter 2.
The material in these Appendices should help clarify Chapters 2{7, although
familiarity with this material should not be strictly necessary.


