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Summary. The large size and the dynamic nature of the Web make it necessary to continually
maintain Web based information retrieval systems. Crawlers facilitate this process by following
hyperlinks in Web pages to automatically download new and updated Web pages. While some
systems rely on crawlers that exhaustively crawl the Web, others incorporate “focus” within
their crawlers to harvest application- or topic-specific collections. In this chapter we discuss the
basic issues related to developing an infrastructure for crawlers. This is followed by a review
of several topical crawling algorithms, and evaluation metrics that may be used to judge their
performance. Given that many innovative applications of Web crawling are still being invented,
we briefly discuss some that have already been developed.

1 Introduction

Web crawlers are programs that exploit the graph structure of the Web to move from
page to page. In their infancy such programs were also called wanderers, robots,
spiders, fish, and worms, words that are quite evocative of Web imagery. It may be
observed that the noun “crawler” is not indicative of the speed of these programs, as
they can be considerably fast. In our own experience, we have been able to crawl up
to tens of thousands of pages within a few minutes while consuming a small fraction
of the available bandwidth.4

From the beginning, a key motivation for designing Web crawlers has been to
retrieve Web pages and add them or their representations to a local repository. Such
a repository may then serve particular application needs such as those of a Web
search engine. In its simplest form a crawler starts from a seed page and then uses the
external links within it to attend to other pages. The process repeats with the new pages
4 We used a Pentium 4 workstation with an Internet2 connection.
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offering more external links to follow, until a sufficient number of pages are identified
or some higher-level objective is reached. Behind this simple description lies a host
of issues related to network connections, spider traps, canonicalizing URLs, parsing
HTML pages, and the ethics of dealing with remote Web servers. In fact, a current
generation Web crawler can be one of the most sophisticated yet fragile parts [5] of
the application in which it is embedded.

Were the Web a static collection of pages we would have little long-term use
for crawling. Once all the pages had been fetched to a repository (like a search
engine’s database), there would be no further need for crawling. However, the Web
is a dynamic entity with subspaces evolving at differing and often rapid rates. Hence
there is a continual need for crawlers to help applications stay current as new pages
are added and old ones are deleted, moved or modified.

General-purpose search engines serving as entry points to Web pages strive for
coverage that is as broad as possible. They use Web crawlers to maintain their index
databases [3], amortizing the cost of crawling and indexing over the millions of queries
received by them. These crawlers are blind and exhaustive in their approach, with
comprehensiveness as their major goal. In contrast, crawlers can be selective about
the pages they fetch and are then referred to as preferential or heuristic-based crawlers
[10, 6]. These may be used for building focused repositories, automating resource
discovery, and facilitating software agents. There is a vast literature on preferential
crawling applications including [15, 9, 31, 20, 26, 3]. Preferential crawlers built to
retrieve pages within a certain topic are called topical or focused crawlers. Synergism
between search engines and topical crawlers is certainly possible, with the latter
taking on the specialized responsibility of identifying subspaces relevant to particular
communities of users. Techniques for preferential crawling that focus on improving
the “freshness” of a search engine have also been suggested [3].

Although a significant portion of this chapter is devoted to description of crawlers
in general, the overall slant, particularly in the latter sections, is toward topical
crawlers. There are several dimensions about topical crawlers that make them an
exciting object of study. One key question that has motivated much research is: How
is crawler selectivity to be achieved? Rich contextual aspects, such as the goals of the
parent application, lexical signals within the Web pages, and also features of the graph
built from pages already seen, are all reasonable kinds of evidence to exploit. Addi-
tionally, crawlers can and often do differ in their mechanisms for using the evidence
available to them.

A second major aspect that is important to consider when studying crawlers, es-
pecially topical crawlers, is the nature of the crawl task. Crawl characteristics such as
queries and/or keywords provided as input criteria to the crawler, user-profiles, and de-
sired properties of the pages to be fetched (similar pages, popular pages, authoritative
pages, etc.) can lead to significant differences in crawler design and implementation.
The task could be constrained by parameters like the maximum number of pages to be
fetched (long crawls versus short crawls) or the available memory. Hence, a crawling
task can be viewed as a constrained multiobjective search problem. However, the wide
variety of objective functions, coupled with the lack of appropriate knowledge about
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the search space, make the problem a hard one. Furthermore, a crawler may have to
deal with optimization issues such as local versus global optima [28].

The last key dimension is regarding crawler evaluation strategies necessary to
make comparisons and determine circumstances under which one or the other crawlers
work best. Comparisons must be fair and be made with an eye toward drawing out
statistically significant differences. Not only does this require a sufficient number
of crawl runs but also sound methodologies that consider the temporal nature of
crawler outputs. Significant challenges in evaluation include the general unavailability
of relevant sets for particular topics or queries. Thus evaluation typically relies on
defining measures for estimating page importance.

The first part of this chapter presents a crawling infrastructure and within this
describes the basic concepts in Web crawling. Following this, we review a number of
crawling algorithms that are suggested in the literature. We then discuss current meth-
ods to evaluate and compare performance of different crawlers. Finally, we outline
the use of Web crawlers in some applications.

2 Building a Crawling Infrastructure

Figure 1 shows the flow of a basic sequential crawler (in Sect. 2.6 we consider multi-
threaded crawlers). The crawler maintains a list of unvisited URLs called the frontier.
The list is initialized with seed URLs, which may be provided by a user or another
program. Each crawling loop involves picking the next URL to crawl from the fron-
tier, fetching the page corresponding to the URL through HTTP, parsing the retrieved
page to extract the URLs and application-specific information, and finally adding the
unvisited URLs to the frontier. Before the URLs are added to the frontier they may be
assigned a score that represents the estimated benefit of visiting the page correspond-
ing to the URL. The crawling process may be terminated when a certain number of
pages have been crawled. If the crawler is ready to crawl another page and the frontier
is empty, the situation signals a deadend for the crawler. The crawler has no new page
to fetch, and hence it stops.

Crawling can be viewed as a graph search problem. The Web is seen as a large
graph with pages at its nodes and hyperlinks as its edges. A crawler starts at a few
of the nodes (seeds) and then follows the edges to reach other nodes. The process of
fetching a page and extracting the links within it is analogous to expanding a node
in graph search. A topical crawler tries to follow edges that are expected to lead to
portions of the graph that are relevant to a topic.

2.1 Frontier

The frontier is the to-do list of a crawler that contains the URLs of unvisited pages. In
graph search terminology the frontier is an open list of unexpanded (unvisited) nodes.
Although it may be necessary to store the frontier on disk for large -scale crawlers, we
will represent the frontier as an in-memory data structure for simplicity. Based on the
available memory, one can decide the maximum size of the frontier. Because of the
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Fig. 1. Flow of a basic sequential crawler

large amount of memory available on PCs today, a frontier size of a 100,000 URLs
or more is not exceptional. Given a maximum frontier size we need a mechanism to
decide which URLs to ignore when this limit is reached. Note that the frontier can
fill rather quickly as pages are crawled. One can expect around 60,000 URLs in the
frontier with a crawl of 10,000 pages, assuming an average of about 7 links per page
[30].

The frontier may be implemented as a FIFO queue, in which case we have a
breadth-first crawler that can be used to blindly crawl the Web. The URL to crawl
next comes from the head of the queue, and the new URLs are added to the tail of the
queue. Because of the limited size of the frontier, we need to make sure that we do not
add duplicate URLs into the frontier. A linear search to find out if a newly extracted
URL is already in the frontier is costly. One solution is to allocate some amount of
available memory to maintain a separate hash-table (with URL as key) to store each of
the frontier URLs for fast lookup. The hash-table must be kept synchronized with the
actual frontier. A more time -consuming alternative is to maintain the frontier itself
as a hash-table (again with URL as key). This would provide fast lookup for avoiding
duplicate URLs. However, each time the crawler needs a URL to crawl, it would need
to search and pick the URL with the earliest time stamp (the time when a URL was
added to the frontier). If memory is less of an issue than speed, the first solution may
be preferred. Once the frontier reaches its maximum size, the breadth-first crawler
can add only one unvisited URL from each new page crawled.

If the frontier is implemented as a priority queue we have a preferential crawler,
which is also known as a best-first crawler. The priority queue may be a dynamic
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array that is always kept sorted by the estimated score of unvisited URLs. At each
step, the best URL is picked from the head of the queue. Once the corresponding page
is fetched, the URLs are extracted from it and scored based on some heuristic. They
are then added to the frontier in such a manner that the order of the priority queue
is maintained. We can avoid duplicate URLs in the frontier by keeping a separate
hash-table for lookup. Once the frontier’s maximum size (MAX) is exceeded, only the
best MAX URLs are kept in the frontier.

If the crawler finds the frontier empty when it needs the next URL to crawl,the
crawling process comes to a halt. With a large value of MAX and several seed URLs
the frontier will rarely reach the empty state.

At times, a crawler may encounter a spider trap that leads it to a large number of
different URLs that refer to the same page. One way to alleviate this problem is by
limiting the number of pages that the crawler accesses from a given domain. The code
associated with the frontier can make sure that every consecutive sequence of k (say
100) URLs, picked by the crawler, contains only one URL from a fully qualified host
name (e.g., www.cnn.com). As side effects, the crawler is polite by not accessing
the same Web site too often [14], and the crawled pages tend to be more diverse.

2.2 History and Page Repository

The crawl history is a time-stamped list of URLs that were fetched by the crawler.
In effect, it shows the path of the crawler through the Web, starting from the seed
pages. A URL entry is made into the history only after fetching the corresponding
page. This history may be used for post-crawl analysis and evaluations. For example,
we can associate a value with each page on the crawl path and identify significant
events (such as the discovery of an excellent resource). While history may be stored
occasionally to the disk, it is also maintained as an in-memory data structure. This
provides for a fast lookup to check whether a page has been crawled or not. This check
is important to avoid revisiting pages and also to avoid adding the URLs of crawled
pages to the limited size frontier. For the same reasons it is important to canonicalize
the URLs (Sect. 2.4) before adding them to the history.

Once a page is fetched, it may be stored/indexed for the master application (such
as a search engine). In its simplest form a page repository may store the crawled
pages as separate files. In that case, each page must map to a unique file name. One
way to do this is to map each page’s URL to a compact string using some form of
hashing function with low probability of collisions (for uniqueness of file names).
The resulting hash value is used as the file name. We use the MD5 one-way hash-
ing function that provides a 128-bit hash code for each URL. Implementations of
MD5 and other hashing algorithms are readily available in different programming
languages (e.g., refer to Java 2 security framework5). The 128-bit hash value is
then converted into a 32-character hexadecimal equivalent to get the file name. For
example, the content of http://www.uiowa.edu/ is stored into a file named
160766577426e1d01fcb7735091ec584. This way we have fixed-length file
5 http://java.sun.com
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names for URLs of arbitrary size. (Of course, if the application needs to cache only a
few thousand pages, one may use a simpler hashing mechanism.) The page repository
can also be used to check if a URL has been crawled before by converting it to its
32-character file name and checking for the existence of that file in the repository.
In some cases this may render unnecessary the use of an in-memory history data
structure.

2.3 Fetching

In order to fetch a Web page, we need an HTTP client that sends an HTTP re-
quest for a page and reads the response. The client needs to have timeouts to make
sure that an unnecessary amount of time is not spent on slow servers or in read-
ing large pages. In fact, we may typically restrict the client to download only the
first 10–20KB of the page. The client needs to parse the response headers for status
codes and redirections. We may also like to parse and store the last-modified header
to determine the age of the document. Error checking and exception handling are
important during the page-fetching process since we need to deal with millions of
remote servers using the same code. In addition, it may be beneficial to collect statis-
tics on timeouts and status codes for identifying problems or automatically chang-
ing timeout values. Modern programming languages such as Java and Perl provide
very simple and often multiple programmatic interfaces for fetching pages from the
Web. However, one must be careful in using high-level interfaces where it may be
harder to find lower-level problems. For example, with Java one may want to use
the java.net.Socket class to send HTTP requests instead of using the more
ready-made java.net.HttpURLConnection class.

No discussion about crawling pages from the Web can be complete without talking
about the Robot Exclusion Protocol. This protocol provides a mechanism for Web
server administrators to communicate their file access policies; more specifically to
identify files that may not be accessed by a crawler. This is done by keeping a file
named robots.txt under the root directory of the Web server (such as http:
//www.biz.uiowa.edu/robots.txt). This file provides access policy for
different User-agents (robots or crawlers). A User-agent value of “*” denotes a default
policy for any crawler that does not match other User-agent values in the file. A
number of Disallow entries may be provided for a User-agent. Any URL that starts
with the value of a Disallow field must not be retrieved by a crawler matching the
User-agent. When a crawler wants to retrieve a page from a Web server, it must
first fetch the appropriate robots.txt file and make sure that the URL to be
fetched is not disallowed. More details on this exclusion protocol can be found at
http://www.robotstxt.org/wc/norobots.html. It is efficient to cache
the access policies of a number of servers recently visited by the crawler. This would
avoid accessing a robots.txt file each time you need to fetch a URL. However,
one must make sure that cache entries remain sufficiently fresh.
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2.4 Parsing

Once a page has been fetched, we need to parse its content to extract information that
will feed and possibly guide the future path of the crawler. Parsing may imply simple
hyperlink/URL extraction or it may involve the more complex process of tidying up
the HTML content in order to analyze the HTML tag tree (Sect. 2.5). Parsing might
also involve steps to convert the extracted URL to a canonical form, remove stopwords
from the page’s content, and stem the remaining words. These components of parsing
are described next.

URL Extraction and Canonicalization

HTML parsers are freely available for many different languages. They provide the
functionality to easily identify HTML tags and associated attribute–value pairs in a
given HTML document. In order to extract hyperlink URLs from a Web page, we can
use these parsers to find anchor tags and grab the values of associated href attributes.
However, we do need to convert any relative URLs to absolute URLs using the base
URL of the page from where they were retrieved.

Different URLs that correspond to the same Web page can be mapped onto a single
canonical form. This is important in order to avoid fetching the same page many times.
Here are some of the steps used in typical URL canonicalization procedures:

• Convert the protocol and hostname to lowercase. For example,
HTTP://www.UIOWA.edu is converted to http://www.uiowa.edu.

• Remove the “anchor” or “reference” part of the URL. Hence,
http://myspiders.biz.uiowa.edu/faq.html#what is reduced to
http://myspiders.biz.uiowa.edu/faq.html.

• Perform URL encoding for some commonly used characters such
as “˜”. This would prevent the crawler from treating
http://dollar.biz.uiowa.edu/∼pant/ as a different URL from
http://dollar.biz.uiowa.edu/%7Epant/.

• For some URLs, add trailing “/”s. http://dollar.biz.uiowa.edu and
http://dollar.biz.uiowa.edu/ must map to the same canonical form.
The decision to add a trailing “/” will require heuristics in many cases.

• Use heuristics to recognize default Web pages. File names such as index.html
or index.htm may be removed from the URL with the assumption that they
are the default files. If that is true, they would be retrieved by simply using the
base URL.

• Remove “..” and its parent directory from the URL path. Therefore, URL path
/%7Epant/BizIntel/Seeds/../ODPSeeds.dat is reduced to
/%7Epant/BizIntel/ODPSeeds.dat.

• Leave the port numbers in the URL unless it is port 80. As an alternative, leave
the port numbers in the URL and add port 80 when no port number is specified.

It is important to be consistent while applying canonicalization rules. It is possible
that two seemingly opposite rules work equally well (such as that for port numbers)
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as long as you apply them consistently across URLs. Other canonicalization rules
may be applied based on the application and prior knowledge about some sites (e.g.,
known mirrors).

As noted earlier spider traps pose a serious problem for a crawler. The “dummy”
URLs created by spider traps often become increasingly larger in size. A way to tackle
such traps is by limiting the URL sizes to, say, 128 or 256 characters.

Stoplisting and Stemming

When parsing a Web page to extract content information or in order to score new
URLs suggested by the page, it is often helpful to remove commonly used words or
stopwords6 such as “it” and “can”. This process of removing stopwords from text is
called stoplisting. Note that the Dialog7 system recognizes no more than nine words
(“an,” “and,” “by,” “for,” “from,” “of,” “the,” “to,” and “with”) as the stopwords. In
addition to stoplisting, one may also stem the words found in the page. The stemming
process normalizes words by conflating a number of morphologically similar words
to a single root form or stem. For example, “connect,” “connected,” and “connection”
are all reduced to “connect.” Implementations of the commonly used Porter stem-
ming algorithm [29] are easily available in many programming languages. One of the
authors has experienced cases in the biomedical domain where stemming reduced the
precision of the crawling results.

2.5 HTML tag tree

Crawlers may assess the value of a URL or a content word by examining the HTML
tag context in which it resides. For this, a crawler may need to utilize the tag tree or
Document Object Model (DOM) structure of the HTML page [8, 24, 27]. Figure 2
shows a tag tree corresponding to an HTML source. The <html> tag forms the root
of the tree, and various tags and texts form nodes of the tree. Unfortunately, many
Web pages contain badly written HTML. For example, a start tag may not have an
end tag (it may not be required by the HTML specification), or the tags may not be
properly nested. In many cases, the <html> tag or the <body> tag is altogether
missing from the HTML page. Thus structure-based criteria often require the prior
step of converting a “dirty” HTML document into a well-formed one, a process that
is called tidying an HTML page.8 This includes both the insertion of missing tags and
the reordering of tags in the page. Tidying an HTML page is necessary for mapping
the content of a page onto a tree structure with integrity, where each node has a
single parent. Hence, it is an essential precursor to analyzing an HTML page as a tag
tree. Note that analyzing the DOM structure is only necessary if the topical crawler
intends to use the HTML document structure in a nontrivial manner. For example, if
6 for an example list of stopwords refer to http://www.dcs.gla.ac.uk/idom/ir
resources/linguistic utils/stop words

7 http://www.dialog.com
8 http://www.w3.org/People/Raggett/tidy/
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the crawler only needs the links within a page, and the text or portions of the text in
the page, one can use simpler HTML parsers. Such parsers are also readily available
in many languages.

<html>
<head>
<title>Projects</title>
</head>
<body>
<h4>Projects</h4>
<ul>
  <li> <a href="blink.html">LAMP</a> Linkage analysis with multiple processors.</li>
  <li> <a href="nice.html">NICE</a> The network infrastructure for combinatorial exploration.</li>
  <li> <a href="amass.html">AMASS</a> A DNA sequence assembly algorithm.</li>
  <li> <a href="dali.html">DALI</a> A distributed, adaptive, first-order logic theorem prover.</li>
</ul>
</body>
</html>

html

bodyhead

h4title

text text

ul

li

a

text

Fig. 2. An HTML page and the corresponding tag tree

2.6 Multithreaded Crawlers

A sequential crawling loop spends a large amount of time in which either the CPU
is idle (during network/disk access) or the network interface is idle (during CPU op-
erations). Multithreading, where each thread follows a crawling loop, can provide
reasonable speed-up and efficient use of available bandwidth. Figure 3 shows a multi-
threaded version of the basic crawler in Fig. 1. Note that each thread starts by locking
the frontier to pick the next URL to crawl. After picking a URL it unlocks the frontier
allowing other threads to access it. The frontier is again locked when new URLs are
added to it. The locking steps are necessary in order to synchronize the use of the
frontier that is now shared among many crawling loops (threads). The model of mul-
tithreaded crawler in Fig. 3 follows a standard parallel computing model [18]. Note
that a typical crawler would also maintain a shared history data structure for a fast
lookup of URLs that have been crawled. Hence, in addition to the frontier it would
also need to synchronize access to the history.

The multithreaded crawler model needs to deal with an empty frontier just like
a sequential crawler. However, the issue is less simple now. If a thread finds the
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frontier empty, it does not automatically mean that the crawler as a whole has reached
a dead end. It is possible that other threads are fetching pages and may add new
URLs in the near future. One way to deal with the situation is by sending a thread
to a sleep state when it sees an empty frontier. When the thread wakes up, it checks
again for URLs. A global monitor keeps track of the number of threads currently
sleeping. Only when all the threads are in the sleep state does the crawling process
stop. More optimizations can be performed on the multithreaded model described
here, as for instance to decrease contentions between the threads and to streamline
network access.
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Fig. 3. A multithreaded crawler model

This section described the general components of a crawler. The common in-
frastructure supports at one extreme a very simple breadth-first crawler and at the
other end crawler algorithms that may involve very complex URL selection mecha-
nisms. Factors such as frontier size, page parsing strategy, crawler history, and page
repository have been identified as interesting and important dimensions to crawler
definitions.
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3 Crawling Algorithms

We now discuss a number of crawling algorithms that are suggested in the literature.
Note that many of these algorithms are variations of the best-first scheme. The differ-
ence is in the heuristics they use to score the unvisited URLs, with some algorithms
adapting and tuning their parameters before or during the crawl.

3.1 Naive Best-First Crawler

A naive best-first was one of the crawlers detailed and evaluated by the authors in an
extensive study of crawler evaluation [22]. This crawler represents a fetched Web page
as a vector of words weighted by occurrence frequency. The crawler then computes
the cosine similarity of the page to the query or description provided by the user, and
scores the unvisited URLs on the page by this similarity value. The URLs are then
added to a frontier that is maintained as a priority queue based on these scores. In
the next iteration each crawler thread picks the best URL in the frontier to crawl, and
returns with new unvisited URLs that are again inserted in the priority queue after
being sco red based on the cosine similarity of the parent page. The cosine similarity
between the page p and a query q is computed by:

sim(q, p) =
vq · vp

‖ vq ‖ · ‖ vp ‖
, (1)

wherevq andvp are term frequency (TF) based vector representations of the query and
the page, respectively; vq ·vp is the dot (inner) product of the two vectors; and ‖ v ‖
is the Euclidean norm of the vector v. More sophisticated vector representation of
pages, such as the TF-IDF [32] weighting scheme often used in information retrieval,
are problematic in crawling applications because there is no a priori knowledge of
the distribution of terms across crawled pages. In a multiple thread implementation
the crawler acts like a best-N-first crawler where N is a function of the number of
simultaneously running threads. Thus best-N-first is a generalized version of the best-
first crawler that picks N best URLs to crawl at a time. In our research we have found
the best-N-first crawler (with N = 256) to be a strong competitor [28, 23], showing
clear superiority on the retrieval of relevant pages. Note that the best-first crawler
keeps the frontier size within its upper bound by retaining only the best URLs based
on the assigned similarity scores.

3.2 SharkSearch

SharkSearch [15] is a version of FishSearch [12] with some improvements. It uses a
similarity measure like the one used in the naive best-first crawler for estimating the
relevance of an unvisited URL. However, SharkSearch has a more refined notion of
potential scores for the links in the crawl frontier. The anchor text, text surrounding
the links or link-context, and inherited score from ancestors influence the potential
scores of links. The ancestors of a URL are the pages that appeared on the crawl path
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to the URL. SharkSearch, like its predecessor FishSearch, maintains a depth bound.
That is, if the crawler finds unimportant pages on a crawl path it stops crawling farther
along that path. To be able to track all the information, each URL in the frontier is
associated with a depth and a potential score. The depth bound d is provided by the
user, while the potential score of an unvisited URL is computed as:

score(url) = γ · inherited(url) + (1− γ) · neighborhood(url), (2)

where γ < 1 is a parameter, the neighborhood score signifies the contextual evidence
found on the page that contains the hyperlink URL, and the inherited score is obtained
from the scores of the ancestors of the URL. More precisely, the inherited score is
computed as:

inherited(url) =
{

δ · sim(q, p); if sim(q, p) > 0;
δ · inherited(p); otherwise; (3)

where δ < 1 is again a parameter, q is the query, and p is the page from which the
URL was extracted.

The neighborhood score uses the anchor text and the text in the “vicinity” of the
anchor in an attempt to refine the overall score of the URL by allowing for differen-
tiation between links found within the same page. For that purpose, the SharkSearch
crawler assigns an anchor score and a context score to each URL. The anchor score
is simply the similarity of the anchor text of the hyperlink containing the URL to the
query q, i.e., sim(q, anchor text). The context score, on the other hand, broadens
the context of the link to include some nearby words. The resulting augmented context
aug context is used for computing the context score as follows:

context(url) =
{

1; if anchor(url) > 0;
sim(q, aug context); otherwise.

(4)

Finally, we derive the neighborhood score from the anchor score and the context
score as:

neighborhood(url) = β · anchor(url) + (1− β) · context(url), (5)

where β < 1 is another parameter. We note that the implementation of SharkSearch
would need to preset four different parameters d, γ, δ and β. Some values for the
same are suggested by [15].

3.3 Focused Crawler

A focused crawler based on a hypertext classifier was developed by Chakrabarti et
al. [9, 6]. The basic idea of the crawler was to classify crawled pages with categories
in a topic taxonomy. To begin, the crawler requires a topic taxonomy such as Yahoo
or the Open Directory Project (ODP).9 In addition, the user provides example URLs
9 http://dmoz.org
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of interest (such as those in a bookmark file). The example URLs get automatically
classified onto various categories of the taxonomy. Through an interactive process,
the user can correct the automatic classification, add new categories to the taxonomy,
and mark some of the categories as “good” (i.e., of interest to the user). The crawler
uses the example URLs to build a Bayesian classifier that can find the probability
(Pr(c|p)) that a crawled page p belongs to a category c in the taxonomy. Note that
by definition Pr(r|p) = 1, where r is the root category of the taxonomy. A relevance
score associated with each crawled page is computed as:

R(p) =
∑

c∈good

Pr(c|p). (6)

When the crawler is in a “soft” focused mode, it uses the relevance score of the
crawled page to score the unvisited URLs extracted from it. The scored URLs are
then added to the frontier. Then in a manner similar to the naive best-first crawler, it
picks the best URL to crawl next. In the “hard” focused mode, for a crawled page p,
the classifier first finds the leaf node c∗ (in the taxonomy) with maximum probability
of including p. If any of the parents (in the taxonomy) of c∗ are marked as ‘ ‘good”
by the user, then the URLs from the crawled page p are extracted and added to the
frontier.

Another interesting element of the focused crawler is the use of a distiller. The
distiller applies a modified version of Kleinberg’s algorithm [17] to find topical hubs.
The hubs provide links to many authoritative sources on the topic. The distiller is
activated at various times during the crawl and some of the top hubs are added to the
frontier.

3.4 Context Focused Crawler

Context focused crawlers [13] use Bayesian classifiers to guide their crawl. However,
unlike the focused crawler described above, these classifiers are trained to estimate
the link distance between a crawled page and the relevant pages. We can appreciate
the value of such an estimation from our own browsing experiences. If we are looking
for papers on “numerical analysis,” we may first go to the home pages of math or
computer science departments and then move to faculty pages, which may then lead to
the relevant papers. A math department Web site may not have the words “numerical
analysis” on its home page. A crawler such as the naive best-first crawler would put
such a page on low priority and might never visit it. However, if the crawler could
estimate that a relevant paper on “numerical analysis” is probably two links away, we
would have a way of giving the home page of the math department higher priority
than the home page of a law school.

The context focused crawler is trained using a context graph of L layers corre-
sponding to each seed page. The seed page forms layer 0 of the graph. The pages
corresponding to the in-links to the seed page are in layer 1. The in-links to the
layer 1 pages make up the layer 2 pages, and so on. We can obtain the in-links to
pages of any layer by using a search engine. Figure 4 depicts a context graph for
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http://www.biz.uiowa.edu/programs/ as seed. Once the context graphs
for all of the seeds are obtained, the pages from the same layer (number) from each
graph are combined into a single layer. This gives a new set of layers of what is
called a merged context graph. This is followed by a feature selection stage where
the seed pages (or possibly even layer 1 pages) are concatenated into a single large
document. Using the TF-IDF [32] scoring scheme, the top few terms are identified
from this document to represent the vocabulary (feature space) that will be used for
classification.

A set of naive Bayes classifiers are built, one for each layer in the merged con-
text graph. All the pages in a layer are used to compute Pr(t|cl), the probability of
occurrence of a term t given the class cl corresponding to layer l. A prior probability,
Pr(cl) = 1/L, is assigned to each class where L is the number of layers. The prob-
ability of a given page p belonging to a class cl can then be computed as Pr(cl|p).
Such probabilities are computed for each class. The class with highest probability is
treated as the winning class (layer). However, if the probability for the winning class
is still less than a threshold, the crawled page is classified into the “other” class. This
“other” class represents pages that do not have a good fit with any of the classes of
the context graph. If the probability of the winning class does exceed the threshold,
the page is classified into the winning class.

The set of classifiers corresponding to the context graph provides us with a mech-
anism to estimate the link distance of a crawled page from relevant pages. If the
mechanism works, the math department home page will get classified into layer 2,
while the law school home page will get classified to “others.” The crawler maintains
a queue for each class, containing the pages that are crawled and classified into that
class. Each queue is sorted by the the probability scores Pr(cl|p). When the crawler
needs a URL to crawl, it picks the top page in the nonempty queue with smallest l.
So it will tend to pick up pages that seem to be closer to the relevant pages first. The
out-links from such pages will get explored before the out-links of pages that seem
to be far away from the relevant portions of the Web.

3.5 InfoSpiders

In InfoSpiders [21, 23], an adaptive population of agents searches for pages relevant
to the topic. Each agent is essentially following the crawling loop (Sect. 2) while using
an adaptive query list and a neural net to decide which links to follow. The algorithm
provides an exclusive frontier for each agent. In a multithreaded implementation of
InfoSpiders (see Sect. 5.1) each agent corresponds to a thread of execution. Hence,
each thread has a noncontentious access to its own frontier. Note that any of the
algorithms described in this chapter may be implemented similarly (one frontier per
thread). In the original algorithm (e.g., [21]) each agent kept its frontier limited to
the links on the page that was last fetched by the agent. As a result of this limited
memory approach the crawler was limited to following the links on the current page,
and it was outperformed by the naive best-first crawler on a number of evaluation
criteria [22]. Since then a number of improvements (inspired by naive best-first)
to the original algorithm have been designed while retaining its capability to learn
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Fig. 4. A context graph

link estimates via neural nets and focus its search toward more promising areas by
selective reproduction. In fact, the redesigned version of the algorithm has been found
to outperform various versions of naive best-first crawlers on specific crawling tasks
with crawls that are longer than ten thousand pages [23].

The adaptive representation of each agent consists of a list of keywords (initialized
with a query or description) and a neural net used to evaluate new links. Each input unit
of the neural net receives a count of the frequency with which the keyword occurs in
the vicinity of each link to be traversed, weighted to give more importance to keywords
occurring near the link (and maximum in the anchor text). There is a single output
unit. The output of the neural net is used as a numerical quality estimate for each
link considered as input. These estimates are then combined with estimates based
on the cosine similarity (Eq. (1)) between the agent’s keyword vector and the page
containing the links. A parameter α, 0 ≤ α ≤ 1, regulates the relative importance
given to the estimates based on the neural net versus the parent page. Based on the
combined score, the agent uses a stochastic selector to pick one of the links in the
frontier with probability

Pr(λ) =
eβσ(λ)

∑

λ′∈φ eβσ(λ′) , (7)

where λ is a URL in the local frontier φ and σ(λ) is its combined score. The β
parameter regulates the greediness of the link selector.

After a new page has been fetched, the agent receives “energy” in proportion to the
similarity between its keyword vector and the new page. The agent’s neural net can
be trained to improve the link estimates by predicting the similarity of the new page,
given the inputs from the page that contained the link leading to it. A back-propagation
algorithm is used for learning. Such a learning technique provides InfoSpiders with
the unique capability to adapt the link-following behaviour in the course of a crawl
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by associating relevance estimates with particular patterns of keyword frequencies
around links.

An agent’s energy level is used to determine whether or not an agent should
reproduce after visiting a page. An agent reproduces when the energy level passes a
constant threshold. The reproduction is meant to bias the search toward areas (agents)
that lead to good pages. At reproduction, the offspring (new agent or thread) receives
half of the parent’s link frontier. The offspring’s keyword vector is also mutated
(expanded) by adding the term that is most frequent in the parent’s current document.
This term addition strategy in a limited way is comparable to the use of classifiers in
Sect. 3.4, since both try to identify lexical cues that appear on pages leading up to the
relevant pages.

In this section we have presented a variety of crawling algorithms, most of which
are variations of the best-first scheme. The readers may pursue Menczer et. al. [23]
for further details on the algorithmic issues related with some of the crawlers.

4 Evaluation of Crawlers

In a general sense, a crawler (especially a topical crawler) may be evaluated on its
ability to retrieve “good” pages. However, a major hurdle is the problem of recognizing
these good pages. In an operational environment real users may judge the relevance
of pages as these are crawled, allowing us to determine if the crawl was successful or
not. Unfortunately, meaningful experiments involving real users for assessing Web
crawls are extremely problematic. For instance, the very scale of the Web suggests
that in order to obtain a reasonable notion of crawl effectiveness one must conduct a
large number of crawls, i.e., involve a large number of users.

Second, crawls against the live Web pose serious time constraints. Therefore
crawls other than short-lived ones will seem overly burdensome to the user. We may
choose to avoid these time loads by showing the user the results of the full crawl but
this again limits the extent of the crawl.

In the not-so-distant future, the majority of the direct consumers of information
is more likely to be Web agents working on behalf of humans and other Web agents
than humans themselves. Thus it is quite reasonable to explore crawlers in a context
where the parameters of crawl time and crawl distance may be beyond the limits of
human acceptance imposed by user-based experimentation.

In general, it is important to compare topical crawlers over a large number of
topics and tasks. This will allow us to ascertain the statistical significance of particular
benefits that we may observe across crawlers. Crawler evaluation research requires
an appropriate set of metrics. Recent research reveals several innovative performance
measures. But first we observe that there are two basic dimensions in the assessment
process, we need a measure of the crawled page’s importance, and second we need a
method to summarize performance across a set of crawled pages.
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4.1 Page Importance

Let us enumerate some of the methods that have been used to measure page impor-
tance.

1. Keywords in document: A page is considered relevant if it contains some or all of
the keywords in the query. Also, the frequency with which the keywords appear
on the page may be considered [10].

2. Similarity to a query: Often a user specifies an information need as a short query. In
some cases a longer description of the need may be available. Similarity between
the short or long description and each crawled page may be used to judge the
page’s relevance [15, 22].

3. Similarity to seed pages: The pages corresponding to the seed URLs are used to
measure the relevance of each page that is crawled [2]. The seed pages are com-
bined together into a single document and the cosine similarity of this document
and a crawled page is used as the page’s relevance score.

4. Classifier score: A classifier may be trained to identify the pages that are relevant
to the information need or task. The training is done using the seed (or prespecified
relevant) pages as positive examples. The trained classifier will then provide
Boolean or continuous relevance scores to each of the crawled pages [9, 13].

5. Retrieval system rank: N different crawlers are started from the same seeds and
allowed to run until each crawler gathers P pages. All of the N ·P pages collected
from the crawlers are ranked against the initiating query or description using a
retrieval system such as SMART. The rank provided by the retrieval system for
a page is used as its relevance score [22].

6. Link-based popularity: One may use algorithms, such as PageRank [5] or
Hyperlink-Induced Topic Search (HITS) [17], that provide popularity estimates
of each of the crawled pages. A simpler method would be to use just the num-
ber of in-links to the crawled page to derive similar information [10, 2]. Many
variations of link-based methods using topical weights are choices for measuring
topical popularity of pages [4, 7].

4.2 Summary Analysis

Given a particular measure of page importance we can summarize the performance of
the crawler with metrics that are analogous to the information retrieval (IR) measures
of precision and recall. Precision is the fraction of retrieved (crawled) pages that are
relevant, while recall is the fraction of relevant pages that are retrieved (crawled). In a
usual IR task the notion of a relevant set for recall is restricted to a given collection or
database. Considering the Web to be one large collection, the relevant set is generally
unknown for most Web IR tasks. Hence, explicit recall is hard to measure. Many
authors provide precision-like measures that are easier to compute in order to evaluate
the crawlers. We will discuss a few such precision-like measures:

1. Acquisition rate: In cases where we have Boolean relevance scores we could
measure the explicit rate at which “good” pages are found. Therefore, if 50
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relevant pages are found in the first 500 pages crawled, then we have an acquisition
rate or harvest rate [1] of 10% at 500 pages.

2. Average relevance: If the relevance scores are continuous they can be averaged
over the crawled pages. This is a more general form of harvest rate [9, 22, 8]. The
scores may be provided through simple cosine similarity or a trained classifier.
Such averages (Fig. 6(a)) may be computed over the progress of the crawl (first
100 pages, first 200 pages, and so on) [22]. Sometimes running averages are
calculated over a window of a few pages (e.g., the last 50 pages from a current
crawl point) [9].

Since measures analogous to recall are hard to compute for the Web, authors resort
to indirect indicators for estimating recall. Some such indicators are:

1. Target recall: A set of known relevant URLs is split into two disjoint sets–targets
and seeds. The crawler is started from the seeds pages and the recall of the targets
is measured. The target recall is computed as

target recall =
| Pt ∩ Pc |
| Pt |

, wherePt is the set of target pages, andPc is the set of crawled pages. The recall
of the target set is used as an estimate of the recall of relevant pages. Figure 5 gives
a schematic justification of the measure. Note that the underlying assumption is
that the targets are a random subset of the relevant pages.

Targets

Relevant

Pc

Pt

Pr

Pt Pc

Pr Pc

Crawled

Fig. 5. The performance metric | Pt ∩ Pc | / | Pt | as an estimate of | Pr ∩ Pc | / | Pr |

2. Robustness: The seed URLs are split into two disjoint sets Sa and Sb. Each set is
used to initialize an instance of the same crawler. The overlap in the pages crawled
starting from the two disjoint sets is measured. A large overlap is interpreted as
robustness of the crawler in covering relevant portions of the Web [9, 6].



Crawling the Web 171

There are other metrics that measure the crawler performance in a manner that
combines both precision and recall. For example, search length [21] measures the
number of pages crawled before a certain percentage of the relevant pages are re-
trieved.

Figure 6 shows an example of performance plots for two different crawlers. The
crawler performance is depicted as a trajectory over time (approximated by crawled
pages). The naive best-first crawler is found to outperform the breadth-first crawler
based on evaluations over 159 topics with 10,000 pages crawled by each crawler on
each topic (hence the evaluation involves millions of pages).

In this section we have outlined methods for assessing page importance and mea-
sures to summarize crawler performance. When conducting a fresh crawl experiment
it is important to select an evaluation approach that provides a reasonably complete
and sufficiently detailed picture of the crawlers being compared.

5 Applications

We now briefly review a few applications that use crawlers. Our intent is not to be
comprehensive but instead to simply highlight their utility.

5.1 MySpiders: Query-Time Crawlers

MySpiders [26] is a Java applet that implements the InfoSpiders and the naive best-
first algorithms. Multithreaded crawlers are started when a user submits a query.
Results are displayed dynamically as the crawler finds “good” pages. The user may
browse the results while the crawling continues in the background. The multithreaded
implementation of the applet deviates from the general model specified in Fig. 3. In
line with the autonomous multiagent nature of the InfoSpiders algorithm (Sect.3.5),
each thread has a separate frontier. This applies to the naive best-first algorithm as well.
Hence, each thread is more independent with noncontentious access to its frontier. The
applet allows the user to specify the crawling algorithm and the maximum number of
pages to fetch. In order to initiate the crawl, the system uses the Google Web API10 to
obtain a few seed pages. The crawler threads are started from each of the seeds, and
the crawling continues until the required number of pages are fetched or the frontier
is empty. Figure 7 shows MySpiders working on a user query using the InfoSpiders
algorithm.

5.2 CORA: Building Topic-Specific Portals

A topical crawler may be used to build topic-specific portals such as sites that index
research papers. One such application developed by McCallum et al. [20] collected
and maintained research papers in Computer Science (CORA). The crawler used
by the application is based on reinforcement learning (RL) that allows for finding
10 http://www.google.com/apis
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Fig. 6. Performance Plots: (a) average precision (similarity to topic description); (b) average
target recall. The averages are calculated over 159 topics and the error bars show ±1 standard
error. One-tailed t-test for the alternative hypothesis that the naive best-first crawler outper-
forms the breadth-first crawler (at 10,000 pages) generates p values that are < 0.01 for both
performance metrics
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a

b

Fig. 7. The user interface of MySpiders during a crawl using the InfoSpiders algorithm. (a) In
the search process, Spider 9 has reproduced and its progeny is visible in the expandable tree
(right). A spider’s details are revealed by clicking on it on the tree (left). (b) At the end of the
crawl, one of the top hits is found by a spider (and it is not one of the seeds). The hit is viewed
by clicking its URL in the results frame

crawling policies that lead to immediate as well as long -term benefits. The benefits
are discounted based on how far away they are from the current page. Hence, a
hyperlink that is expected to immediately lead to a relevant page is preferred over one
that is likely to bear fruit after a few links. The need to consider future benefit along a
crawl path is motivated by the fact that lexical similarity between pages falls rapidly
with increasing link distance. Therefore, as noted earlier, a math department home
page that leads to a numerical analysis paper may provide very little lexical signal
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to a naive best-first crawler that is searching for the paper. Hence, the motivation of
the RL crawling algorithm is similar to that of the context focused crawler. The RL
crawler was trained using known paths to relevant pages. The trained crawler is then
use to estimate the benefit of following a hyperlink.

5.3 Mapuccino: Building Topical Site Maps

One approach to building site maps is to start from a seed URL and crawl in a breadth-
first manner until a certain number of pages have been retrieved or a certain depth
has been reached. The site map may then be displayed as a graph of connected pages.
However, if we are interested in building a site map that focuses on a certain topic,
then the above-mentioned approach will lead a to a large number of unrelated pages
as we crawl to greater depths or fetch more pages. Mapuccino [15] corrects this by
using SharkSearch (Sect. 3.2) to guide the crawler and then build a visual graph that
highlights the relevant pages.

5.4 Letizia: a Browsing Agent

Letizia [19] is an agent that assists a user during browsing. While the user surfs the
Web, Letizia tries to understand user interests based on the pages being browsed. The
agent then follows the hyperlinks starting from the current page being browsed to find
pages that could be of interest to the user. The hyperlinks are crawled automatically
and in a breadth-first manner. The user is not interrupted, but pages of possible interest
are suggested only when she needs recommendations. The agent makes use of topical
locality on the Web [11] to provide context-sensitive results.

5.5 Other Applications

Crawling in general and topical crawling in particular is being applied for various
other applications, many of which do not appear as technical papers. For example,
business intelligence has much to gain from topical crawling. A large number of
companies have Web sites where they often describe their current objectives, future
plans, and product lines. In some areas of business, there are a large number of
start-up companies that have rapidly changing Web sites. All these factors make it
important for various business entities to use sources other than the general-purpose
search engines to keep track of relevant and publicly available information about their
potential competitors or collaborators [27].

Crawlers have also been used for biomedical applications like finding relevant
literature on a gene [33]. On a different note, there are some controversial applications
of crawlers such as extracting e-mail addresses from Web sites for spamming.

6 Conclusion

Because of the dynamism of the Web, crawling forms the backbone of applications
that facilitate Web information retrieval. While the typical use of crawlers has been for
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creating and maintaining indexes for general-purpose search engines, diverse usage
of topical crawlers is emerging both for client and server-based applications. Topical
crawlers are becoming important tools to support applications such as specialized Web
portals, online searching, and competitive intelligence. A number of topical crawling
algorithms have been proposed in the literature. Often the evaluation of these crawlers
is done by comparing a few crawlers on a limited number of queries/tasks without
considerations of statistical significance. Anecdotal results, while important, do not
suffice for thorough performance comparisons. As the Web crawling field matures,
the disparate crawling strategies will have to be evaluated and compared on common
tasks through well-defined performance measures.

In the future, we see more sophisticated usage of hypertext structure and link
analysis by the crawlers. For a current example, Chakrabarti et. al. [8] have suggested
the use of the pages’ HTML tag tree or DOM structure for focusing a crawler. While
they have shown some benefit of using the DOM structure, a thorough study on
the merits of using the structure (in different ways) for crawling is warranted [24].
Topical crawlers depend on various cues from crawled pages to prioritize the fetching
of unvisited URLs. A good understanding of the relative importance of cues such as the
link context, linkage (graph) structure, ancestor pages, and so on is also needed [16].
Another potential area of research is stronger collaboration between search engines
and crawlers [25], and among the crawlers themselves. The scalability benefits of
distributed topical crawling [9, 21] are yet to be fully realized. Can crawlers help a
search engine to focus on user interests? Can a search engine help a crawler to focus
on a topic? Can a crawler on one machine help a crawler on another? Many such
questions will motivate future research and crawler applications.
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