
1

Introduction

The development of complex software systems on a large scale is usually a
complicated activity and process. It may involve many developers, possibly
with different backgrounds, who need to work together as a team or teams
in order to ensure the productivity and quality of systems within a required
schedule and budget. Each developer plays a specific role, for example, as an
analyst, designer, programmer, or tester, and is usually required to produce
necessary documents. The documents may need to be provided to other devel-
opers in the team for reading or for assisting them in performing their tasks.
For this reason the documents need to be well presented, with appropriate
languages or notations, so that they can be understood accurately and used
effectively.

In the early days of computing, software was seen as synonym of pro-
gram, but this view was gradually changed after the birth of the field software
engineering in the late 1960s [1, 2]. Software is no longer regarded only as
a program, but as a combination of documentation and program. In other
words, documentation is part of software that represents different aspects of
the software system. For example, the documentation may contain the user’s
requirements, the goal to be achieved by a program, the design of the program,
or the manual for using the program.

The documentation is important for ensuring the quality and for facilitat-
ing maintenance of a program system. If the documentation containing the
user’s requirements or the program design is difficult to understand accurately
by the developers undertaking subsequent development tasks, the risk of pro-
ducing an unsatisfactory program system will run high. The consequence of
this can be serious: the program system either needs more time and effort to
be improved to the level that is deliverable or needs to be completely rebuilt.
In either case, a loss of money and time is unavoidable.

2 1 Introduction

Requirem ents

analysis and

specification

Testing

D esign

Im plem entation

Deliever and

m aintenance

Fig. 1.1. The waterfall model for software development

1.1 Software Life Cycle

Software, like a human being, has a life cycle, composed of several phases.
Each of these phases results in the development of either a part of the system
or something associated with the system, such as a specification or a test
plan [32]. A typical software life cycle, known as waterfall model, is given in
Figure 1.1. Although the real picture of the software life cycle may be much
more complicated than the waterfall model, it depicts primary features of the
software development process. Almost every other model uses the idea of the
waterfall model as its foundation [11, 84, 8, 111, 98].

The typical waterfall life cycle model comprises five phases: requirements
analysis and specification, design, implementation, testing, and delivery and
maintenance.

Requirements analysis and specification is a study aiming to dis-
cover and document the exact requirements for the software system to be
constructed [23][51][52]. To this end, the system in the real world, which is to
be computerized, may need modeling so that all the necessary requirements
can be explored. The result of such a study is usually a document that de-
fines the identified requirements. A requirement in the document can be a
statement, a formal logical expression, a text, a diagram, or their combina-
tions that tell what is to be done by the system. Such a document is usually
called a requirements specification. For example, “build a student information
system” can be an abstract level requirement.

Design is an activity to construct a system, at a high level, to meet the
system requirements. In other words, design is concerned with how to provide
a solution for the problem reflected in the requirements [56]. For this reason,
design is usually carried out on the basis of the requirements specification.

1.1 Software Life Cycle 3

Design can be done in two stages: abstract design and detailed design. Abstract
design is intended to build the architecture of the entire system that defines
the relation between software modules or components. Detailed design usually
focuses on the definition of data structures and the construction of algorithms
[15, 99]. The result of design is a document that represents the abstract design
and detailed design. Such a document is called design or design specification.
To distinguish between the activity of design and the document resulting
from the design activity, we use design to mean the design activity and design
specification to mean the design document in this book.

Implementation is where the design specification is transformed into
a program written in a specific programming language, such as Pascal [37],
C [58], or Java [4]. The implemented program is executable on a computer
where the compiler or interpreter of the programming language is available.
The primary concerns in implementation are the functional correctness of the
program against its design and requirements specifications.

Testing is a way to detect potential faults in the program by running
the program with test cases. As there are many ways to introduce faults
during the software development process, detecting and removing faults are
necessary. Testing usually includes the three steps: (1) test case generation; (2)
the execution of the program with the test cases; and (3) test results analysis
[115, 53].

There are two approaches to program testing: functional testing and struc-
tural testing, which are distinguished by their purposes and the way test cases
are generated. Functional testing, also known as black-box testing, aims to
discover faults leading to the violation of the consistency between the spec-
ification and the program, and test cases are generated based on the func-
tional specification (requirements specification or design specification or both)
[45, 9, 108]. Structural testing, alternatively known as white-box testing, tries
to examine every possible aspect of the program structure to discover the
faults introduced during the implementation, and test cases are therefore gen-
erated based on the program structure [106]. In general, both functional test-
ing and structural testing are necessary for testing a program system because
they are complementary in finding faults.

Deliver and maintenance is where the system is ultimately delivered
to the customer for operation, and is modified either to fix the existing faults
when they occur during operation or to meet new requirements [111]. Main-
tenance of a system usually requires a thorough understanding of the system
by maintenance engineers. To enhance the reliability and efficiency of main-
tenance, well documented requirements specification and design specification
are important and helpful.

In addition to the forward flow from upper level phases to lower level
phases in the software life cycle, we should also pay attention to the backward
flow from lower level phases to upper level phases. Such a backward flow
represents a feedback of information or verification. For example, it is desirable
to check whether the design specification is consistent with the requirements

4 1 Introduction

specification, whether the implementation satisfies the design specification,
and so on.

1.2 The Problem

One of the primary problems in software projects is that the requirements
documented in specifications may not be accurately and easily understood by
the developers carrying out different tasks. The analyst may not understand
correctly and completely the user requirements due to poor communication;
the designer may misunderstand some functional requirements in the specifi-
cation due to their ambiguous definitions; the programmer may make a guess
of the meaning of some graphical symbols in the design specification; and so
on. The major reason for this problem is the use of informal or semi-formal
language or notation, such as natural language (e.g., English) and diagrams
that lack a precise semantics. Let us consider the requirements for a Hotel
Reservation System as an example:

A Hotel Reservation System manages information about rooms, reservations,
customers, and customer billing. The system provides the services for making
reservations, checking in, and checking out. A customer may make reservations,
change, or cancel reservations.

This specification defines necessary resources to be managed and desirable
operations to be provided for the management of the resources. The resources
include rooms, reservations, customers, and customer billing. The operations are
making reservation, checking in, checking out, changing reservations, and cancel-
ing reservations. As all the terms representing either resources or operations
are given in English, they may be interpreted differently by different devel-
opers. For instance, by customers the analyst might mean persons with a full
name, address, telephone, and room reservations, but the programmer may
misunderstand it as persons with only a full name; by checking in the analyst
might mean that the customer has arrived at the hotel, obtained the room
key, and made payment for all his or her room charges in advance, but the
programmer may misunderstand that checking in does not require advanced
payment.

This problem is caused not only by the lack of the detailed and precise
definition of the terms, but also by the free style of the documentation. In-
formal specifications can be written in a manner where every important term
is defined in detail, but the free style of writing may make the specification
tedious and keep important information hidden among irrelevant details. In
fact, a well-organized documentation, even if written in an informal language
or notation, can greatly help improve its readability. However, no matter how
much the organization is improved in an informal documentation, it is usu-
ally impossible to guarantee no misunderstanding occurs because ambiguity

1.3 Formal Methods 5

Formal Methods =

Formal Specification

Formal Verification

+

Set theory, logic,
algebra, etc.

Fig. 1.2. The description of formal methods

is an intrinsic feature of informal languages. Furthermore, in an informal de-
scription it is difficult to show the clear relations among different parts of a
complicated specification.

A specification should be consistent in defining requirements, that is, no
contradiction should exist between different requirements in the specification.
The specification is also expected to document all the possible user require-
ments; such a property is called completeness of specification. Since informal
specifications lack formality in both syntax and semantics, it is usually dif-
ficult, even impossible in most cases, to support automated verification of
their consistency and completeness in depth. Furthermore, informal specifi-
cations offer no firm foundation for design and coding, and for verifying the
correctness of implemented programs in general.

1.3 Formal Methods

One way to improve the quality of documentation and therefore the quality
of software is to provide formalism in documentation. Such a formalized doc-
umentation offers a precise specification of requirements and a firm basis for
design and its verification.

1.3.1 What Are Formal Methods

Formal methods for developing computer systems embrace two techniques:
formal specification and formal verification [55, 3, 38, 116, 43]. Both are es-
tablished based on elementary mathematics, such as set theory, logic, and
algebraic theory, as illustrated in Figure 1.2.

Formal specification is a way to abstract the most important information
away from irrelevant implementation detail and to offer an unambiguous doc-
umentation telling what is to be done by the system. A formal specification is

6 1 Introduction

Specification Implementation

Refinement

Verification

Fig. 1.3. The principle of formal methods

written in a language with formal syntax and semantics. Of course, program-
ming languages are also formal languages, but they are for implementation
of computer systems, not for specifications. In a specification language, there
is usually a mechanism that allows the definition of what to be done by the
system without the need of giving algorithmic solutions, whereas in a program-
ming language all the mechanisms are usually designed for writing algorithmic
solutions (i.e., code). For this reason, formal specifications are more concise
and abstract than programs.

Formal verification is a way to prove the correctness of programs against
their specifications [42][24][36][101]. A program is correct if it does exactly
what the specification requires. The proof of the correctness is usually based on
a logical calculus that provides necessary axioms and inference rules. An axiom
is a statement of a fact without any hypothesis, while a rule is a statement of
a fact under some hypotheses. Program correctness proof aims to establish a
logical consistency between the program and its specification.

A method offers a way to do something. This is true to formal methods
as well. Figure 1.3 shows the principle of formal methods. A specification is
constructed first, and then refined into a program by following appropriate
refinement rules [90][6]. In general, since this refinement may not be done
automatically, the correctness of the program may not be ensured. Therefore,
a formal verification of the program against its specification is needed to ensure
its correctness. Such a verification may sometimes also help detect faults in
the specification.

In principle, the activities of specification, refinement, and verification ad-
vocated by formal methods may not necessarily be completed within a single
cycle; they are usually applied repeatedly to several level specifications. Thus,
an entire software development can be modeled as a successive refinement
and verification process, after the informal requirements are formalized into
the highest level formal specification and the specification is validated against

1.3 Formal Methods 7

Informal requirements

Formal Specification_1

Formal Specification_2

Formal Specification_n

. . .

Formalization

Refinement

Refinement

Refinement

Validation

Verification

Verification

Verification

Fig. 1.4. Software development using formal methods

the informal requirements, as illustrated in Figure 1.4. In this model, each
level document is perceived as a specification of the next lower level docu-
ment, and each refinement takes the current level specification more toward
the final executable program, represented by the lowest level specification
(i.e., formal specification n). Since refinement is a transitive relation between
specifications, the final program must theoretically satisfy the highest level
specification (i.e., formal specification 1).

1.3.2 Some Commonly Used Formal Methods

Many formal methods have been reported in the literature so far, such as
VDM, Z, B-Method, HOL [35], PVS [20], Larch [39], RAISE [38], and OBJ [34,
31], but in accordance with the international survey on industrial applications
of formal methods [19] and the applications described in Hinchey and Bowen’s
edited book [88], the most commonly used formal mthods include VDM, Z,
and B-Method.

VDM (The Vienna Development Method) offers a notation, known as
VDM-SL (VDM-Specification Language), and techniques for modelling and
designing computing systems. It was originally developed based on the work
of the IBM Vienna Laboratory in the middle 1970s. The publication of Jones’s
book titled “Systematic Software Development using VDM” [54, 55] has con-
tributed considerably to the wide spread of VDM technology in education and
application. The most important feature in VDM is the mechanism for defin-
ing operations. An operation can be regarded as abstraction of a procedure

8 1 Introduction

in the programming language Pascal (or similar structure in other program-
ming languages) and defined with a precondition and a postcondition. The
precondition imposes a constraint on the initial state before operation, while
the postcondition presents a constraint on the final state after operation. The
most essential technique in writing an operation specification is definition of
a relation between the initial and final states in the postcondition of the op-
eration. This technique allows the specification to focus on the description
of the function of the operation, and therefore facilitates the clarification of
functional requirements before providing them with a program solution. In or-
der to model complex systems, VDM provides a set of built-in types, such as
set, sequence, map, and composite types. In each type, necessary constructors
and operators are defined, which allow for the formation and manipulation of
objects (or values) of the type. Using those built-in types as well as their con-
structors and operators in specifications, complex functions of operations can
be modeled precisely and concisely. With the progress in software supporting
tools [29], VDM has been gradually adopted in the development of industrial
systems, and has been extended to VDM++ to support object-oriented design
[27].

Z was originally designed as a formal notation based on axiomatic set
theory and first order predicate logic for describing and modeling computing
systems by the Programming Research Group at Oxford University around
1980 [107][100], and later developed to a method by providing rules for refine-
ment and verification [116]. An essential component used in Z specifications
is known as schema. A schema is a structure that can be used to define
either system state or operation. The definition of state includes the decla-
rations of variables and their constraints given as predicate expressions. A
schema defining an operation is usually composed of two parts: declarations
and predicates. The declarations may include declarations of input variables
and/or output variables, as well as the related state schemas. The predicates
impose constraints on the input variables, output variables, and the related
state variables. Complex specifications can be formed by using the schema
calculus available in the Z notation. Although Z uses syntax different from
VDM, they share the similar model-based approach to writing formal specifi-
cations. Based on Z notation, other formal notations have also been developed
to support object-oriented design and concurrency, such as Object-Z [105] and
TCOZ [81].

The B-method has been developed by Jean-Raymond Abrial. It provides
an Abstract Machine Notation for writing system specifications and rules for
refinement of specifications into programs [3, 102]. A specification in B is con-
structed by means of defining a set of related abstract machines. An abstract
machine is similar to a module in VDM, which contains local state variables,
invariants on the state, and necessary operations. Each machine must have a
name in order to allow other machines in a large specification to refer to it.
A machine can extend another machine in order to expand its contents (e.g.,
state and operations) and include another machine in order to allow for calling

1.3 Formal Methods 9

of its operations. Following the refinement rules, an abstract specification can
be transformed step by step into a concrete representation (or implementation
in B termnology) that can then be translated into a program of a specific pro-
gramming language. With the progress of tools development, the B-Method
has been applied in a few industrial projects [44].

1.3.3 Challenges to Formal Methods

In my opinion formal methods have presented the most reasonable, rigorous,
and controllable approach to software development so far, at least theoret-
ically, but their application requires high skills in mathematical abstraction
and proof. The situation seems that if all the suggested steps in formal meth-
ods could be taken in practice, with no compromise, we would have no doubt
in the correctness of the program produced. However, since software engineer-
ing is a human activity (with support of software tools), the effect of formal
methods depends heavily on whether and how they can be applied in practice
by software engineers, usually with many constraints. The major challenges
are:

• Formal specifications for large-scale software systems are usually more dif-
ficult to read than informal specifications, and this would be aggravated
for complex systems. Informal specifications are usually easy to read, but
offer no guarantee of correct understanding because of ambiguity in lan-
guage semantics. Formal methods offer precise specifications, but they are
difficult to read, and there is no guarantee of correct understanding either.
The two cases may result in the similar situation that the reader of the
specification would make a guess about the meaning of some expressions,
but for different reasons. The specification may be too imprecise to be
correctly understood in the first case whereas it may be too difficult to be
correctly understood in the second case.

• Formal verification of program correctness is too expensive to be deployed
in practice. Although it is the most powerful technique for demonstrating
the consistency between programs and their specifications among exist-
ing verification techniques, such as testing, static analysis, animation, and
model checking, but only a small number of experts can apply this tech-
nique, and it may not be cost-effective for complex systems. Except for
safety-critical systems or the safety-critical parts of systems, formal ver-
ification is usually out of reach of most software engineers in industry,
including even many formal methods researchers.

• Another challenge is that the use of formal methods usually costs more
in time and human effort for analysis and design. One of the important
reasons is the constant change of requirements during a software devel-
opment process. When the initial high level specification is written, it is
usually incomplete in terms of recording the user requirements. When it
is refined into a lower level specification, the two specifications may not

10 1 Introduction

satisfy the refinement rules, not necessarily because the lower level speci-
fication has errors, but rather because the high level specification is often
not sufficiently complete. In this case, the high level specification needs to
be modified or extended in order to reflect the user requirements, discov-
ered during its refinement. Such a modification often occurs, not only to
one level specification, but also to almost every level specification. This
imposes a strong challenge to developers, both in psychology and in cost,
especially when the project is under pressure from the market.

Having given the challenges to formal methods above, we should not deny the
positive role of formal methods. In fact, formal methods have two advantages
over informal ones. One is the high potential for automation in processing for-
mal specifications due to their formally defined syntax and semantics. Another
is that formal methods can work effectively for compact specifications. If one
has experience reading research papers in software engineering or other areas,
one will easily understand that reading a paper full of mathematical definitions
and formulas, with less informal explanations, is much harder than reading
a paper with a proper combination of informal explanations and small-scale
formal descriptions (leaving necessary large-scale formal definitions in the ap-
pendix). Using formal notation in specifications has a similar effect on their
readability. This is an important point about formal methods that has made
us realize the importance of integrating formal methods with commonly used
and comprehensible informal or semi-formal notations in software engineering.
Formal notation can be used for the most critical and lower level components
of a complex system, while a comprehensible notation can be adopted to inte-
grate those formal definitions to form the entire specification, without losing
the focus on what to do.

Furthermore, although formal verification may be difficult to be deployed
directly in practice, its principles may be incorporated into existing practical
techniques, such as testing, static analysis, and animation to achieve more
effective verification and validation techniques. It is important to strike a
good balance between rigor and practicality in integrated verification and
validation techniques.

1.4 Formal Engineering Methods

Formal Engineering Methods, FEM for short, are the methods that support
the application of formal methods to the development of large-scale computer
systems. They are a further development of formal methods toward industrial
application. I proposed to use this terminology for the first time in 1997 when
organizing the first International Conference on Formal Engineering Methods
(ICFEM) in Hiroshima [63] and continued to use it in many publications since
then [76, 70, 74, 75, 64, 78, 69].

Formal engineering methods are equivalent neither to application of formal
methods, nor to formal methods themselves. They are intended to serve as

1.4 Formal Engineering Methods 11

Formal Methods Application of
Formal Methods

Formal Engineering Methods

Fig. 1.5. An illustration of formal engineering methods

a bridge between formal methods and their applications, providing methods
and related techniques to incorporate formal methods into the entire software
engineering process, as illustrated in Figure 1.5. Without such a bridge, appli-
cation of formal methods is difficult. The quality of the bridge may affect the
smoothness of the formal methods technology transfer. Some types of bridges
may make the transfer easier than others, so the important point is how to
build the bridge.

Similar to formal methods, formal engineering methods are also aimed at
attacking the problems in specification and verification of computer systems,
but take more practical approaches. In principle, formal engineering methods
should allow the following:

• Adopting specification languages that properly integrate graphical nota-
tion, formal notation, and natural language. The graphical notation is
suitable for describing the overall structure of a specification comprehen-
sibly, while the formal notation can be used to provide precise abstract
definition of the components involved in the graphical representation. The
interpretation of the formal definitions in a natural language helps under-
stand the formal definitions. Many graphical notations have already been
used for requirements analysis and design in practice, such as Data Flow
Diagrams (DFDs) [23, 117], Structure Charts [15], Jackson Structure Dia-
grams [50, 16], and UML (Unified Modeling Language) [30, 18], but most
of them are informal or semi-formal. This is the reality, but not necessarily
a definitive feature of graphical notation. In fact, a graphical notation can
also be treated as formal notation, as long as it is given a precise syntax
and semantics. Compared with textual mathematical notation, a graphi-
cal notation is usually easier to read, but it usually takes more space than
textual notation, and perhaps drawing diagrams is less efficient than typ-
ing in textual notation. Therefore, an appropriate integration can create a
comfortable ground for utilizing the advantages of both graphical notation
and formal notation.

• Employing rigorous but practical techniques for verifying and validating
specifications and programs. Such techniques are usually achieved by in-
tegrating formal proof and commonly used verification techniques, such

12 1 Introduction

as testing [108, 72, 91], reviews [94, 97], and model checking [49, 17]. The
integrated techniques must take a proper approach to make good use of
the strong points of the techniques involved and to avoid their weaknesses.

• Advocating the combination of prototyping and formal methods. A com-
puter system has both dynamic and static features. The dynamic feature is
shown only during the system operation, such as the layout of the graphi-
cal user interface, usability of the interface, and performance. The require-
ments for these aspects of the system are quite difficult to capture without
actually running the system or its prototype. For this reason, prototyping
– the development of an executable model of the system can be effective
in capturing the user requirements for some of the dynamic features in
the early phases of system development. The result of prototyping can
serve as the basis for developing an entire system using formal methods,
focusing on the functional behaviors of the system. Of course, sometimes
prototyping can go along, in parallel, with the development using formal
methods.

• Supporting evolution rather than strict refinement in developing specifi-
cations and programs [57, 109, 82, 73, 7]. Evolution of a specification, at
any level, means a change, and such a change does not necessarily satisfy
the strict refinement rules (of course, it sometimes does). The interesting
point is how to control, support, and verify changes of specification during
software development in a practical manner. Although some of these issues
are still open to be resolved, they have been increasingly paid attention to
by researchers.

• Deploying techniques for constructing, understanding, and modifying spec-
ifications. For example, effective techniques for specification construction
can be achieved by integrating existing requirements engineering tech-
niques with formal specification techniques [77], and techniques in simula-
tion and computer vision can be combined to form visualized simulation
to help specification understanding, and so on.

In summary, formal engineering methods embrace integrated specification,
integrated verification, and all kinds of supporting techniques for specification
construction, transformation, and system verification and validation. They can
be simply described as

FEM = Integrated specification +
Integrated verification +
Supporting techniques

Note that formal engineering methods are a collection of specific methods,
so we should not expect a single formal engineering method to cover all the
features given previously.

1.5 What Is SOFL 13

1.5 What Is SOFL

SOFL, standing for S tructured Object-Oriented Formal Language, is a for-
mal engineering method. It provides a formal but comprehensible language
for both requirements and design specifications, and a practical method for
developing software systems. The language is called SOFL specification lan-
guage, while the method is called SOFL method. Unless there is the need of
clear distinction, SOFL is used to mean either the language or the method or
both throughout this book, depending on the context.

SOFL is designed by integrating different notations and techniques on the
basis that they are all needed to work together effectively in a coherent man-
ner for specification constructions and verifications. The SOFL specification
language has the following features:

• It integrates Data Flow Diagrams [23], Petri nets [12], and VDM-SL (Vi-
enna Development Method - Specification Language) [54, 55, 110]. The
graphical notation Data Flow Diagrams are adopted to describe compre-
hensibly the architecture of specifications; Petri nets are primarily used to
provide an operational semantics for the data flow diagrams; and VDM-SL
is employed, with slight modification and extension, to precisely define the
components occurring in the diagrams. A formalized Data Flow Diagram,
resulting from the integration, is called Condition Data Flow Diagram,
or CDFD for short. It is always associated with a module in which its
components, such as processes (describing an operation), data flows (de-
scribing data in motion), and data stores (describing data at rest), are
formally defined. In semantics, the CDFD associated with a module de-
scribes the behavior of the module, while the module is an encapsulation
of data and processes, with an overall behavior represented by its CDFD.
Furthermore, the use of a natural language, such as English, is facilitated
to provide comments on the formal definitions in order to improve the
readability of formal specifications [76, 41, 26].

• Condition data flow diagrams and their associated modules are organized
in a hierarchy to help reduce complexity and to achieve modularity of
specifications. Such a hierarchy is formed by decomposition of processes. A
process is decomposed into a lower level CDFD and its associated module
when the details of how to transform its input to output needs to be spelled
out.

• Classes are used to model complicated data flows and stores. A store is
like a file or database in many computer systems; it offers data that can be
accessed by processes in a CDFD or by different CDFD in the hierarchy.
The value of a store can be used and changed by processes. If the changes
are made by processes at different levels, it will be difficult to control the
changes. For this reason, a store can be modeled as an instance of a class. A
class is a specification for its instances or objects that contains definitions
of attributes and methods (similar to processes, but with constraints). Any
change of the attributes of an instance must be made by its own methods.

14 1 Introduction

const; type; var; inv;

method Init;

method P1;

method P2;

method P3;

const; type; var; inv;

method Init;

method Q1;

method Q2;

method Q3;

const; type; var; inv;

const; type; var; inv;

A1 A2

B1

B2

B3

class S1;

class S2;

end_class;

end_class;

module SYSTEM;

module A2_Decom;

end_module;

end_module;

process Init;

process A1;

process A2;

process Init;

process B1;

process B2;

process B3;

Fig. 1.6. An outline of a specification in SOFL

Modules and classes are similar in their internal structures, but different
in the way used in specifications. A module represents a decomposition
of a high level process and has an overall behavior. No instance can be
derived from a module; therefore, a module cannot be used as a type to
declare variables. On the other hand, objects may be instantiated from a
class that may offer many individual behaviors, as services, and are used
to model a data flow or store in CDFDs.

Figure 1.6 shows an outline of a specification in SOFL. The hierarchy of
CDFDs and modules contains two CDFDs and associated modules. Each small
rectangle in the CDFDs denotes a process, and each directed line represents a
data flow. The CDFD involving processes A1 and A2 is the top level CDFD,
corresponding to the module SYSTEM. In this module, the functions of A1
and A2 are formally defined. In addition, process Init is provided for the ini-
tialization of the local data stores (which are not given in this abstract figure)
and necessary declarations are given. For some reason process, A2 is decom-
posed into the CDFD containing processes B1, B2, and B3, and its associated
module, named A2 Decom, provides formal definitions of its processes, data
flows, and so on. For the specification of processes in the hierarchy of CDFDs,
classes S1 and S2 are defined; they may be used in both modules, SYSTEM
and A1 Decom.

The SOFL method has the following features:

• It integrates structured methods and object-oriented methods for specifica-
tion construction, in order to utilize their advantages and to avoid their
disadvantages. Structured methods are a top-down approach by which the
construction of a specification starts from the top level module, and then

1.5 What Is SOFL 15

proceeds by decomposing high level operations defined in the modules
into low level modules. The structured methods are usually intuitive for
requirements analysis and design, because their way of documentation is
consistent with the way in which people think in developing and organiz-
ing large-scale projects, such as building a bridge, launching a rocket, or
making an aircraft. On the other hand, object-oriented methods are ba-
sically a bottom-up approach to software development. In this approach
the low level classes are first built, and then they are composed to form
more complicated classes. Furthermore, an object-oriented approach is ef-
fective in achieving system properties, such as encapsulation of data and
operations, inheritance, and polymorphism. These properties are very im-
portant in achieving the qualities of information hiding, software reuse,
and maintainability. However, this approach may be less intuitive than
structured methods for requirements analysis and design. The integration
of these two different but related approaches in SOFL offers a way to ef-
fectively support functional decomposition and object composition. The
specifications are easy to be translated into commercially object-oriented
programming languages, such as C++ [61] and Java [22].

• It supports a three-step approach to developing formal specifications. Such
a development is an evolutionary process, starting from an informal spec-
ification, to a semi-formal one, to finally a formal specification. The in-
formal specification, usually written in a natural language, serves as the
basis for deriving the semi-formal specification in which SOFL syntax, to
a certain extent, is enforced. The formal specification is then derived from
the semi-formal specification by formalization of the informal parts in the
semi-formal specification.
By considering the roles of requirements and design specifications, SOFL
advocates the idea that requirements specifications are written in a semi-
formal manner, while design specifications need to be completely formal.
The obvious reason for this is that requirements specifications are often
used for communication between the user and the developer, which re-
quires the comprehensibility of documentation, while the primary role of
design specification is to provide an unambiguous ground for implementa-
tion. Furthermore, the construction of design specification requires study
of requirements given in the requirements specifications, and formalization
can greatly help in this regard.
An evolution of specification is a change, which can be a refinement, exten-
sion, or modification [66]. The evolution approach is suited to developing
design specifications on the basis of semi-formal requirements specifica-
tions, since it usually results in many changes in the specifications. But
for implementation from a design specification, refinement must be en-
forced, since we must make sure that the implementation does exactly
same thing required by the design. For the details of this approach, see
Chapter 14.

16 1 Introduction

• It adopts rigorous review and testing for specification verification and val-
idation. Specification verification aims to detect faults in specifications.
Rigorous review is a technique resulting from the integration of formal
proof and fault tree analysis, a method for safety analysis. The reviews
must be done on a precise ground, and supported by a rigorous mecha-
nism [67][68]. They are usually less formal than formal proof, but easy to
conduct.
Testing can be applied to both specifications and programs. Since some
formal specifications are not executable, the testing needs a special tech-
nique [72]. The test cases used for specification can be reused for black-box
testing of programs [91]. For the detailed discussions of these techniques,
see Chapters 17 and 18.

When building a specific software system, the techniques supported by
SOFL can be used with flexibility, depending on the application domain. For
critical systems, such as safety- and security-critical systems, a profound use
of formal notation, rigorous testing, and rigorous review are recommended.
But for less critical systems, semi-formal notation and reasonably rigorous
verification may be sufficient.

1.6 A Little History of SOFL

The initial development of SOFL was made at the University of Manchester
in the United Kingdom in 1989, when I was studying for a doctoral degree in
formal methods. The motivation was to integrate the most well-known formal
method, VDM at that time, with traditional DFDs to support the applica-
tion of formal methods in industry. I strongly believed, and still do now, that
software development is not a pure mathematical process, although the rela-
tion between specifications and programs can be interpreted mathematically.
It is, in fact, a highly disciplined human activity featured by creativity and
constant changes, although it is likely supported by software tools. If any pow-
erful method wants to be accepted by practitioners at large, it must provide
a user-friendly interface and effective mechanism to facilitate the structuring
of large-scale systems. On the other hand, informal methods that have been
using in practice offer no guarantee for the quality of software systems. It was
my belief that it is necessary to develop a kind of formal method from the
engineer’s point of view, and a proper combination of formal, semi-formal,
and informal notations can possibly provide a good solution.

I chose VDM and DFDs for three reasons. One is that both are appro-
priate notations to describe “what to do” rather than “how to do it,” but
on different level. In DFDs this feature is reflected by focusing on data flows
among processes (rather than control flows in algorithms), while in VDM it
is featured by using pre- and postconditions for operation specifications. An-
other reason is that VDM lacks an effective and comprehensible structuring

1.7 Comparison with Related Work 17

mechanism to allow a large specification to be formed by integrating differ-
ent operations. Although the notion module is used to organize operations in
specifications, its expressive power and scale-up ability are limited. In addi-
tion to this weakness, the readability of large-scale specifications may not be
satisfactory. However, it became quite clear to me after a period of study that
VDM and DFDs are complementary in providing rigorous and comprehensible
specifications, and that the notation for operation specification in VDM is well
suited to describing specifications for processes used in DFDs. This provided
the third reason for the integration. The language resulting from this research
was called FGSL, standing for Formal Graphical S tructured Language.

FGSL was evolved continuously later on, by combining my experiences
gained from several projects on formal methods and safety-critical systems
at the University of York, RHBNC of London University, Hiroshima City
University, The Queen’s University of Belfast, Oxford University, and Hosei
University. It was an important step when FGSL was developed into SOFL by
integrating the structured method and object-oriented method on the project
titled “Formal Methods and Intelligent Software Engineering Environments”
sponsored by the Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan in 1996. It was an international joint project involving the
researchers from several universities in Japan, USA, UK, and Australia. Since
then, SOFL has been improved after being applied to the modeling or de-
velopment of some critical systems and information systems on national and
international projects [74, 75, 78, 62, 71].

1.7 Comparison with Related Work

It is quite difficult within a section to give a comprehensive comparison of
SOFL with all the existing work on integration of formal methods and informal
or semi-formal methods. To help the reader understand the commonality and
difference between SOFL and other related work, we try to focus on the work
that attempts to integrate model-oriented formal methods (e.g., VDM, Z,
Alloy [48]) and semi-formal methods (e.g., data flow diagrams, UML).

From late 1980s more and more researchers began to realize the impor-
tance of combining formal and informal methods, and proposed several dif-
ferent approaches to integrating formal specification languages with informal
notations (and associated methods). The approach taken by most researchers
for integration is to use the Yourdon or the DeMarco approach to constructing
data flow diagrams and their associated data dictionaries for expressing high
level user requirements, and then to refine the data flow diagrams into formal
specifications by defining data flows, necessary processes, and their integra-
tion with formal notation. The examples of this approach include Semmens
and her colleagues’ work on integrating Yourdon’s data flow diagrams and Z
[103], Bryant’s work on Yourdon’s method and Z [14], Plat and his colleagues’
integration of data flow diagrams and VDM [96], and Fraser’s work on data

18 1 Introduction

flow diagrams and VDM [80]. In contrast to this approach, SOFL is aimed
at achieving both the improvement of structuring mechanism in the VDM
specification language for modularity and the comprehensibility of the ulti-
mate specifications. This target is realized by incorporating classical data flow
diagram notation into a formal specification language to provide a decompo-
sitional method for structuring system specifications and a graphical view for
the system specifications. In this way, data flow diagrams are treated as part
of formal specifications. Although adopting a rather different data flow model
for describing computer systems, Broy and Stolen’s FOCUS formalism [13]
shares the idea of employing visual formal notation in specifications. How-
ever, the major difference between FOCUS and SOFL is that the former tries
to provide a mathematical and logical foundation for the specification and
refinement of interactive systems, while the latter emphasizes the techniques
for incorporating formal specification and verification into the entire software
development process to improve the quality of the software process and to
achieve the practicality of formal methods.

Apart from the integration of formal methods and the structured method
based on the data flow paradigm, much work has also been done in combining
formal notations with the object-oriented paradigm or notation for concur-
rency to improve the rigor of object-oriented development or concurrent de-
velopment. Examples of this approach include VDM++ [27], Object-Oriented
Z [85], TCOZ [81, 25], and OCL [112], the Object Constraint Language of
UML (Unified Modelling Language) [93, 18, 30]. Although SOFL also adopts
object-oriented features, such as class and object, class inheritance, and poly-
morphism, it emphasizes a quite different development paradigm than UML
in that the structured method is mainly used for user requirements analysis
and abstract design specification in order to effectively capture the desired
functions and the overall architecture of the system, while the object-oriented
method is mainly used for detailed design and implementation to achieve
good maintainability and reusability of the system. Another distinct feature of
SOFL is that it emphasizes a balance between and compatibility with graph-
ical notation and formal notation: it advocates the use of both formal and
graphical notations for good readability and efficiency in constructing spec-
ifications, but does not encourage concentration on the use of only one of
them.

Developing practical techniques for verification and validation of software
systems based on formal specification and proof has also been an intensively
researched area. The proposed techniques include specification animation [40,
89], model checking [17, 5], specification-based testing [108, 104, 113, 91, 92],
and software review, inspection, and analysis [94, 87, 79, 21]. Since we take the
view in SOFL that harmony among methods, tools, and human developers is
the key to the success of software projects, we adopt the most practical tech-
niques, software review and testing, for verification and validation, although
the specific methods for review and testing may be different from traditional
approaches. In our methods, we emphasize utilizing formal specification and

1.8 Exercises 19

proof principle to achieve rigor for the practical review and testing techniques,
as well as their supportability using software tools.

1.8 Exercises

1. Answer the following questions:
a) What is the software life cycle?
b) What is the problem with informal approaches to software develop-

ment?
c) What are formal methods?
d) What are the major features of formal engineering methods?
e) What is SOFL?

2. Explain the role of specification in software development.
3. Give an example of using a principle similar to formal methods to build

other kinds of systems rather than software systems.

