
P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

THE OBJECT PRIMER

THIRD EDITION

AGILE MODEL–DRIVEN DEVELOPMENT
WITH UML 2.0

SCOTT W. AMBLER
Ronin International, Inc.

iii



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Cambridge University Press 2004

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typefaces ITC Berkeley Oldstyle 11/13.5 pt. and ITC Franklin Gothic System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data available

ISBN 0 521 54018 6 paperback

iv



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

Contents

Acknowledgments page xvii

Foreword xix

Preface xxi

About the Author xxv

Chapter 1
Leading-Edge Software Development 1

1.1 Modern Development Technologies 2
1.1.1 Object Technology 2
1.1.2 Extensible Markup Language (XML) 5
1.1.3 Relational Database (RDB) Technology 6
1.1.4 Web Services 7

1.2 Modern Development Techniques 8
1.2.1 Agile Software Development 9
1.2.2 Unified Modeling Language (UML) 11
1.2.3 The Unified Process (UP) 13
1.2.4 Model-Driven Architecture (MDA) 14
1.2.5 Using Them Together 15

1.3 The Organization of This Book 16
1.4 The Case Studies 19

1.4.1 The Bank Case Study 20
1.5 What You Have Learned 22

vii



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

viii CONTENTS

Chapter 2
Understanding the Basics–Object-Oriented Concepts 23

2.1 A Brief Overview of OO Concepts 24
2.2 OO Concepts from a Structured Point of

View 27
2.3 The Diagrams of UML 2 28
2.4 Objects and Classes 28
2.5 Attributes and Operations/Methods 32
2.6 Abstraction, Encapsulation, and Information

Hiding 34
2.6.1 Abstraction 34
2.6.2 Encapsulation 34
2.6.3 Information Hiding 35
2.6.4 An Example 35

2.7 Inheritance 37
2.7.1 Modeling Inheritance 38
2.7.2 Inheritance Tips and Techniques 39
2.7.3 Single and Multiple Inheritance 40
2.7.4 Abstract and Concrete Classes 43

2.8 Persistence 43
2.9 Relationships 44

2.9.1 Associations 45
2.9.2 Modeling the Unknown 48
2.9.3 How Associations Are Implemented 49
2.9.4 Properties 50
2.9.5 Aggregation and Composition 50
2.9.6 Dependencies 52

2.10 Collaboration 54
2.11 Coupling 57
2.12 Cohesion 58
2.13 Polymorphism 59

2.13.1 An Example: The Poker Game 59
2.13.2 Polymorphism at the University 60

2.14 Interfaces 62
2.15 Components 63
2.16 Patterns 65
2.17 What You Have Learned 66
2.18 Review Questions 67



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

CONTENTS ix

Chapter 3
Full Lifecycle Object-Oriented Testing (FLOOT) 68

3.1 The Cost of Change 69
3.2 Testing Philosophies 74
3.3 Full Lifecycle Object-Oriented Testing (FLOOT) 75
3.4 Regression Testing 78
3.5 Quality Assurance 79
3.6 Testing Your Models 80

3.6.1 Proving It with Code 80
3.6.2 Usage Scenario Testing 81
3.6.3 Prototype Reviews/Walkthroughs 84
3.6.4 User-Interface Testing 85
3.6.5 Model Reviews 85
3.6.6 When to Use Each Technique 87

3.7 Testing Your Code 88
3.7.1 Testing Terminology 88
3.7.2 Testing Tools 89
3.7.3 Traditional Code Testing Concepts 89
3.7.4 Object-Oriented Testing Techniques 92
3.7.5 Code Inspections 94

3.8 Testing Your System in Its Entirety 95
3.9 Testing by Users 96

3.10 Test-Driven Development (TDD) 97
3.11 What You Have Learned 99
3.12 Review Questions 99

Chapter 4
Agile Model–Driven Development (AMDD) 101

4.1 Modeling Philosophies 102
4.2 Project Stakeholders 106
4.3 What Is Agile Modeling (AM)? 107
4.4 The Values of AM 108
4.5 The Principles of AM 109
4.6 The Practices of AM 109
4.7 Easing into Agile Modeling 109
4.8 Agile Model–Driven Development (AMDD) 118

4.8.1 How is AMDD Different? 120



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

x CONTENTS

4.9 Fundamental Information Gathering Skills 121
4.9.1 Interviewing 121
4.9.2 Observation 123
4.9.3 Brainstorming 123

4.10 Agile Documentation 124
4.11 Making Whiteboards Work for Software

Development 125
4.12 AMDD and Other Agile Methodologies 129
4.13 Agile Modeling and Test-Driven Development

(TDD) 129
4.14 What You Have Learned 132
4.15 Review Questions 132

Chapter 5
Usage Modeling 134

5.1 Use Case Modeling 134
5.1.1 Starting Agile 136
5.1.2 Essential Use Case Diagrams 139
5.1.3 Identifying Actors 146
5.1.4 Writing an Essential Use Case 149
5.1.5 Identifying Use Cases 151
5.1.6 System Use Case Diagrams 153
5.1.7 System Use Cases 153
5.1.8 Writing Alternate Courses of Action 160
5.1.9 Other Use Case Styles 163
5.1.10 Comparing Essential and System Use

Cases 164
5.1.11 Reuse in Use Case Models: <<extend>>,

<<include>>, and Inheritance 167
5.1.12 Packages 172
5.1.13 Use Case Modeling Tips 173
5.1.14 Remaining Agile 176

5.2 User Stories 177
5.2.1 What About System User Stories? 180

5.3 Features 180
5.4 What You Have Learned 182
5.5 Review Questions 183



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

CONTENTS xi

Chapter 6
User-Interface Development 184

6.1 Essential User-Interface Prototyping 185
6.2 Traditional User-Interface Prototyping 191
6.3 User-Interface Flow Diagramming 197
6.4 Usability 199
6.5 User-Interface Design Strategies 200
6.6 Agile Stakeholder Documentation 205
6.7 What You Have Learned 207
6.8 Review Questions 207

Chapter 7
Supplementary Requirements 209

7.1 Business Rules 210
7.2 Technical Requirements 214
7.3 Constraints 215
7.4 Object Constraint Language (OCL) 216
7.5 Glossaries 217
7.6 Supplementary Specifications 218
7.7 What You Have Learned 218
7.8 Review Questions 219

Chapter 8
Conceptual Domain Modeling 220

8.1 Robustness Diagrams 221
8.2 Object Role Model (ORM) Diagrams 227
8.3 Class Responsibility Collaborator (CRC) Cards 231
8.4 Analysis Class Diagrams 237

8.4.1 Modeling Classes and Responsibilities 241
8.4.2 Modeling Associations 245
8.4.3 Introducing Reuse between Classes via Inheritance 247
8.4.4 Modeling Composition and Associations 249
8.4.5 Modeling Vocabularies 250

8.5 Logical Data Models (LDMs) 251
8.6 Applying Analysis Patterns Effectively 254



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

xii CONTENTS

8.7 UML Object Diagram 256
8.8 Keeping Conceptual Domain Modeling Agile 258
8.9 What You Have Learned 259

8.10 Review Questions 260

Chapter 9
Business Process Modeling 262

9.1 Data Flow Diagrams (DFDs) 263
9.2 Flowcharts 268
9.3 UML Activity Diagrams 270
9.4 What You Have Learned 277
9.5 Review Questions 277

Chapter 10
Agile Architecture 278

10.1 Architecture Techniques and Concepts 280
10.1.1 Put Architectural Decisions Off as Long as

Possible 280
10.1.2 Accept That Some Architectural Decisions Are

Already Made 281
10.1.3 Prove It with Code 281
10.1.4 Set an Architectural Change Strategy 282
10.1.5 Consider Reuse 283
10.1.6 Roll Up Your Sleeves 284
10.1.7 Be Prepared to Make Trade-offs 285
10.1.8 Consider Adopting the Zachman Framework 285
10.1.9 Apply Architectural Patterns Gently 289

10.2 Looking to the Future with Change Cases 289
10.3 UML Package Diagrams 291

10.3.1 Class Package Diagrams 292
10.3.2 Data Package Diagrams 294
10.3.3 Use Case Package Diagrams 294

10.4 UML Component Diagrams 296
10.4.1 Interfaces and Ports 298
10.4.2 Designing Components 300
10.4.3 Creating Component Models 302
10.4.4 Remaining Agile 306



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

CONTENTS xiii

10.5 Free-Form Diagrams 306
10.6 UML Deployment Diagrams 308
10.7 Network Diagrams 313
10.8 Layering Your Architecture 314
10.9 What You Have Learned 317
10.10 Review Questions 317

Chapter 11
Dynamic Object Modeling 319

11.1 UML Sequence Diagrams 321
11.1.1 Visual Coding Via Sequence Diagrams 332
11.1.2 How to Draw Sequence Diagrams 333
11.1.3 Keeping It Agile 334

11.2 UML Communication Diagrams 334
11.3 UML State Machine Diagrams 337
11.4 UML Timing Diagrams 344
11.5 UML Interaction Overview Diagrams 346
11.6 UML Composite Structure Diagrams 348
11.7 What You Have Learned 350
11.8 Review Questions 350

Chapter 12
Structural Design Modeling 351

12.1 UML Class Diagrams 351
12.1.1 Modeling Methods during Design 352
12.1.2 Modeling Attributes during Design 360
12.1.3 Inheritance Techniques 366
12.1.4 Association and Dependency Techniques 368
12.1.5 Composition Techniques 372
12.1.6 Introducing Interfaces into Your Model 373
12.1.7 Class Modeling Design Tips 376

12.2 Applying Design Patterns Effectively 380
12.2.1 The Singleton Design Pattern 380
12.2.2 The Façade Design Pattern 381
12.2.3 Tips for Applying Patterns Effectively 382

12.3 Physical Data Modeling with the UML 383
12.4 What You Have Learned 390



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

xiv CONTENTS

12.5 Review Questions 390
12.5.1 The Bank Case Study Six Months Later 391

Chapter 13
Object-Oriented Programming 393

13.1 Philosophies for Effective Programming 394
13.2 Programming Tips and Techniques for Writing

High-Quality Code 397
13.3 Test-Driven Development (TDD) 400

13.3.1 TDD and AMDD 402
13.3.2 Why TDD? 403

13.4 From Object Design to Java Code 404
13.4.1 From UML Sequence Diagrams to Code 404
13.4.2 From UML Class Diagrams to Code 406
13.4.3 Implementing a Class in Java 408
13.4.4 Declaring Instance Attributes in Java 409
13.4.5 Implementing Instance Methods in Java 410
13.4.6 Implementing Static Methods and Attributes in

Java 412
13.4.7 Documenting Methods 417
13.4.8 Implementing Constructors 419
13.4.9 Encapsulating Attributes with Accessors 420
13.4.10 Implementing Inheritance in Java 426
13.4.11 Implementing Interfaces in Java 426
13.4.12 Implementing Relationships in Java 429
13.4.13 Implementing Dependencies 438
13.4.14 Implementing Collaborations in Java 439
13.4.15 Implementing Business Rules 439
13.4.16 Iterate, Iterate, Iterate 440

13.5 What You Have Learned 440
13.6 Review Questions 440

Chapter 14
Agile Database Development 442

14.1 Philosophies for Effective Data Development 444
14.2 Mapping Objects to Relational Databases 445



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB700-FM CB700-Ambler-v1 February 6, 2004 12:31

CONTENTS xv

14.2.1 Shadow Information 446
14.2.2 Mapping Inheritance Structures 447
14.2.3 Mapping Relationships 451

14.3 Strategies for Implementing Persistence Code 453
14.4 From Design to Database Code 455

14.4.1 Defining and Modifying Your Persistence Schema 455
14.4.2 Creating, Retrieving, Updating, and Deleting Data 456
14.4.3 Interacting with a Database from Java 458
14.4.4 Implementing Your Mappings 460

14.5 Data-Oriented Implementation Strategies 460
14.5.1 Concurrency Control 462
14.5.2 Transaction Control 464
14.5.3 Shared Logic and Referential Integrity 466
14.5.4 Security Access Control 471
14.5.5 Searching for Objects 473
14.5.6 Reports 476

14.6 Database Refactoring 477
14.7 Legacy Analysis 481

14.7.1 Formalizing Contract Models 482
14.7.2 Common Legacy Challenges 483
14.7.3 Creating Contract Models 484

14.8 What You Have Learned 485
14.9 Review Questions 486

Chapter 15
Where to Go from Here 487

15.1 Become a Generalizing Specialist 487
15.2 Continuing Your Learning Process 490
15.3 Parting Words 492

Glossary 493

References and Recommended Reading 525

Index 533



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

CHAPTER 1

Leading-Edge Software
Development

Modern software development requires modern ways of working.

The only constant in the information technology (IT) industry is change.
To remain employable, let alone effective, software developers must contin-
ually take the time to identify and then understand the latest development
approaches. The goal of this chapter is to introduce you to leading-edge tech-
nologies and techniques that enable you to succeed at developing modern
business systems. I will try to steer you through the marketing hype sur-
rounding these approaches, and in one case try to dissuade you from adopting
it—just because something is new and well hyped does not mean that it has
much of a future. In short, this chapter provides you with a foundation for
reading the rest of this book.

This chapter discusses

� Modern development technologies;
� Modern development techniques;
� How this book is organized; and
� The case studies.

1



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

2 LEADING-EDGE SOFTWARE DEVELOPMENT

1.1 MODERN DEVELOPMENT TECHNOLOGIES

Effective developers understand the fundamentals of the technologies that
they have available to them. The good news is that we have many technologies
available to us; the bad news is that we have many technologies available to
us.

Figure 1.1, which depicts a high-level architecture detailing how these
technologies are used together, shows how some applications may be n-
tiered—an approach where application logic is implemented on several (n)
categories of computing devices (tiers)—whereas others fall into the “fat
client” approach where most business logic is implemented on the client.
Object technology is used to implement all types of logic, including both
business and system logic. XML is used to share data between tiers, and
Web services are used to access logic that resides on different tiers. Most
business data are stored in relational databases, which are accessed either
via structured query language (SQL) or persistence frameworks (see Chap-
ter 14). Data are returned from the database as a collection of zero or more
records and then marshaled either into objects or into XML documents. In the
case of a browser-based application the XML structures are in turn converted
into HTML documents, often through XSL-T (extensible stylesheet language
transformations).

Although the focus of this book is the development of business systems,
much of the advice is also applicable to the development of other types of
software. My specialty is business software so that is what I will stick to in
this book. My experience is that when it comes to building modern business
systems, you are very likely to use a combination of the following:

� Object technology;
� Extensible markup language (XML);
� Relational database (RDB); and
� Web services.

1.1.1 Object Technology

The object-oriented (OO) paradigm (pronounced “para-dime”) is a devel-
opment strategy based on the concept that systems should be built from a
collection of reusable parts called objects. Examples of OO languages and



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

1.1 Modern Development Technologies 3

FIGURE 1.1. High-level application architecture.

technologies include the Java, C#, and C++ programming languages and the
Enterprise JavaBeans (EJB) framework. The original motivation of the object
paradigm was that objects were meant to be abstractions of real-world con-
cepts, such as students in a university, seminars that students attend, and
transcripts that they receive. This was absolutely true of business objects,
but as you will see throughout this book, business objects are only one part
of the picture—you also need user interface objects to enable your users to
work with your system, process objects that implement logic that works with
several business concepts, system objects that provide technical features such
as security and messaging, and potentially some form of data objects that
persists your business objects.

The use of object technology can be in fact quite robust. In fat client applica-
tions object technology is typically used on client machines, such as personal
computers or personal digital assistants (PDAs), to implement both user in-
terface code and complex business logic. In thin-client or n-tier applications
object technology is often used to implement business logic on application



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

4 LEADING-EDGE SOFTWARE DEVELOPMENT

TABLE 1.1. Evaluating Object Technology

Advantages Disadvantages

� Enables development of
complex software

� Wide industry acceptance
� Mature, proven technology
� Wide range of development

languages and tools to
choose from

� Very easy to find people with
object experience

� Significant skillset is required
� No single language dominates

the landscape (although Java, C#,
C++, and arguably Visual Basic are
clearly popular and here to stay)

� Not all IT professionals, in
particular some within the data
community, accept it

� Technical “impedance mismatch”
with structured technologies
and RDBs

servers and sometimes even on other nodes such as database servers, security
servers, or business rule servers. Table 1.1 summarizes the strengths and
weaknesses of object technology for business system development.

It is useful to contrast these concepts with the structured paradigm and
structured technology. The structured paradigm is a development strategy
based on the concept that a system should be separated into two parts:
data (modeled using a data model) and functionality (modeled using a pro-
cess model). Following the structured approach, you develop applications in
which data are separate from behavior both in the design model and in the
system implementation (that is, the program). Examples of structured tech-
nologies include the COBOL and FORTRAN programming languages. The
main concept behind the object-oriented paradigm is that instead of defin-
ing systems as two separate parts (data and functionality), you now define
systems as a collection of interacting objects. Objects do things (that is, they
have functionality) and they know things (they have data). While this sounds
similar to the structured paradigm, in practice it actually is quite different.

However, it is equally important to recognize that structured techniques
and technologies still have their place. As you will see later in Section 1.1.4, it is
quite common to transform legacy systems, typically implemented with struc-
tured technologies, and then wrap them with Web services to reuse their func-
tionality. Furthermore, in coming chapters you will discover that structured



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

1.1 Modern Development Technologies 5

<office>

<name>Ronin International, Inc. HQ</office:name>

<state>

<name>Colorado</state:name>

<area>North West</state:area>

</state>

<country>United States of America</country>

</office>

FIGURE 1.2. An example of an XML document.

modeling techniques such as data flow diagrams (DFDs) and data models are
still critical to your success.

1.1.2 Extensible Markup Language (XML)

XML is a subset of standard generalized markup language (SGML), the
same parent of hypertext markup language (HTML). The critical stan-
dards are described in detail at the World Wide Web Consortium Web site
(http://www.w3c.org). XML is simply a standardized approach to representing
text-based data in a hierarchical manner and for defining metadata about the
data. From a programmer’s point of view XML is a data representation, backed
by metadata, plus a collection of standardized technologies for parsing that
data. The data are stored in structures called XML documents and the meta-
data are contained in document-type definitions (DTDs) and XML schema
definitions. Figure 1.2 provides an example of a simple XML document and
Table 1.2 overviews the advantages and disadvantages of XML.

XML is often used to transfer data within an application when that appli-
cation has been deployed across several physical servers. It is also used in
enterprise application integration (EAI) as a primary means of sharing data
between applications. You will also see XML used for permanent storage in
data files; it is quite common to use XML for configuration files in both J2EE
and .NET applications, and sometimes even in databases. Chapter 14 dis-
cusses database issues in more detail, and you will see at that point that it is
often better to “shred” an XML document into individual columns instead of
saving it as a single column when storing data in a relational database.



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

6 LEADING-EDGE SOFTWARE DEVELOPMENT

TABLE 1.2. Evaluating XML Technology

Advantages Disadvantages

� XML is widely accepted
� XML is cross platform
� (Small) XML documents are

potentially human readable
� XML is standards based; the

World Wide Web
Consortium defines and
promotes technical
standards for XML and
XML.org
(http://www.xml.org)
promotes vertical XML
standards within specific
industries

� XML separates content
from presentation

� XML documents are very bulky,
causing performance problems

� XML requires marshaling
(conversion of XML to objects and
vice versa), causing performance
problems

� XML standards are still evolving
� XML is overhyped, resulting in

unrealistic expectations
� XML business standards will prove

elusive because most businesses
compete and do not collaborate
with their industry peers

1.1.3 Relational Database (RDB) Technology

A relational database is a persistent storage mechanism that stores data as
rows in tables. Most relational databases enable you to implement functional-
ity in them as stored procedures, triggers, and even full-fledged Java objects.
Although other alternatives to RDBs exist—object-oriented database man-
agement systems (OODBMSs), XML databases (XDBs), and object-relational
databases (ORDBs)—the fact is that RDBs are the database technology of
choice for the vast majority of organizations. Table 1.3 summarizes the pros
and cons of using RDBs for modern business applications.

It is important to understand that there is a technical impedance mismatch
between RDBs and other common implementation technologies. When it
comes to RDBs and objects, RDBs are based on mathematical principles,
whereas objects are based on software engineering principles (Ambler 2003a).
The end result is that you need to learn how to map your objects into RDBs as
well as how to use the two technologies together, the topic of Chapter 14.
Similarly, there is a difference between XML and RDBs—XML structures
are hierarchical trees, whereas RDB table structures are “bushier” in nature.



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

1.1 Modern Development Technologies 7

TABLE 1.3. Evaluating RDB Technology

Advantages Disadvantages

� Wide industry acceptance
� Very easy to find RDB expertise
� Mature industry dominated

by several strong vendors (Oracle,
IBM, Sybase, Microsoft)

� Open source databases, for
example, MySQL, are available

� Wide range of development tools
� Sophisticated and flexible data

processing are supported

� Impedance mismatch with
other common technologies, in
particular objects and XML

This requires you either to write marshaling code that maps individual XML
elements to table columns, degrading performance, or to simply store XML
documents in a single column, negating many of the benefits of RDBs.

1.1.4 Web Services

According to the World Wide Web Consortium, a Web service is “a software
application identified by a Uniform Resource Identifier (URI), whose inter-
face and bindings are capable of being identified, described, and discovered
by XML artifacts and supports direct interactions with other software ap-
plications using XML-based messages via Internet-based protocols.” Whew!
An easier definition is that a Web service is a function that is accessible us-
ing standard Web technologies in accordance to standards (McGovern et al.
2003). The Web Services Interoperability Organization (WS-I, http://www.ws-
i.org) is a consortium of mostly vendor companies that focus on Web services
standards.

Web services are being used to implement functionality that is accessible via
Internet technologies, often following an approach referred to as utility com-
puting where the use of a computing service is charged for by the vendor on a
usage basis much as electricity or water is charged for. It is far more common
to use Web services “behind the firewall” to implement reusable functionality
or to wrap legacy systems, including both programs and databases, so that
they may be reused by other applications. Internal Web services such as this



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

8 LEADING-EDGE SOFTWARE DEVELOPMENT

TABLE 1.4. Evaluating Web Service Technology

Advantages Disadvantages

� Promotes reusability through a
standardized approach

� Supports location transparency
through a UDDI server

� Contains scaleable architecture
� Enables you to reduce

dependency on vendors

� Searching for services via UDDI
is time consuming

� Overhead of XML detracts from
performance

� Does not yet support
transaction
control (this is coming)

� Does not yet support security
(this is coming)

are often managed within an internal UDDI (universal description, discovery,
and integration) registry or better yet a reuse repository such as Flashline
(http://www.flashline.com). A system built from a collection of cohesive ser-
vices has a service-oriented architecture (SOA). Table 1.4 summarizes the
advantages and disadvantages of Web services.

1.2 MODERN DEVELOPMENT TECHNIQUES

Now that we understand the fundamentals of modern technologies, we should
now consider modern development techniques. The IT industry is currently
undergoing what I consider to be a significant shift—a move from prescriptive
development techniques to agile techniques. Until just recently management
often bemoaned the fact that developers did not want to follow a process,
not understanding what was wrong with the 3,000 pages of procedures they
expected everyone to follow. Along came agile software processes such as
extreme programming (XP) (Beck 2000), feature-driven development (FDD)
(Palmer and Felsing 2002), and agile modeling (Ambler 2002) and develop-
ers embraced them. Unfortunately many managers are still leery of agile tech-
niques and fight adoption of them. This is a truly ironic situation—developers
are now demanding to follow proven software processes yet are not being al-
lowed to do so. Sigh.

In this section I briefly explore four important development techniques
that all developers should be familiar with:



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

1.2 Modern Development Techniques 9

� Agile software development;
� Unified modeling language (UML);
� The unified process; and
� Model-driven architecture (MDA).

1.2.1 Agile Software Development

Over the years several challenges have been discovered with prescriptive soft-
ware development processes, such as the waterfall lifecycle characterized by
the ISO 12207 standard (http://www.ieee.org), the Object-Oriented Software
Process (OOSP) (Ambler 1998b, 1999), and the Rational Unified Process
(RUP) (Kruchten 2000). First, the Chaos report published by the Standish
Group (http://www.standishgroup.com) still shows a significant failure rate
within the industry, indicating that prescriptive processes simply are not ful-
filling their promise. Second, most developers do not want to adopt prescrip-
tive processes and will find ways to undermine any efforts to adopt them, either
consciously or subconsciously. Third, the “big design up front” (BDUF) ap-
proaches to software development, particularly those followed by ISO 12207,
are incredibly risky due to the fact that they do not easily support change or
feedback. This risk is often ignored, if it is recognized at all, by the people
promoting these approaches. Fourth, most prescriptive processes promote ac-
tivities only slightly related to the actual development of software. In short,
the bureaucrats have taken over.

To address these challenges a group of 17 methodologists formed the Agile
Software Development Alliance (http://www.agilealliance.org), often referred
to simply as the Agile Alliance, in February 2001. An interesting thing about
this group is that they all came from different backgrounds, and yet they were
able to come to an agreement on issues that methodologists typically do not
agree upon. They concluded that to succeed at software development you need
to focus on people-oriented issues and follow development techniques that
readily support change. In fact, they wrote a manifesto (Agile Alliance 2001a)
defining four values for encouraging better ways of developing software:

1. Individuals and interactions over processes and tools. The most important
factors that you need to consider are the people and how they work together
because if you do not get that right the best tools and processes will not be
of any use.


