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CHAPTER 1

Leading-Edge Software
Development

Modern software development requires modern ways of working.

The only constant in the information technology (IT) industry is change.
To remain employable, let alone effective, software developers must contin-
ually take the time to identify and then understand the latest development
approaches. The goal of this chapter is to introduce you to leading-edge tech-
nologies and techniques that enable you to succeed at developing modern
business systems. I will try to steer you through the marketing hype sur-
rounding these approaches, and in one case try to dissuade you from adopting
it—just because something is new and well hyped does not mean that it has
much of a future. In short, this chapter provides you with a foundation for
reading the rest of this book.

This chapter discusses

� Modern development technologies;
� Modern development techniques;
� How this book is organized; and
� The case studies.

1
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2 LEADING-EDGE SOFTWARE DEVELOPMENT

1.1 MODERN DEVELOPMENT TECHNOLOGIES

Effective developers understand the fundamentals of the technologies that
they have available to them. The good news is that we have many technologies
available to us; the bad news is that we have many technologies available to
us.

Figure 1.1, which depicts a high-level architecture detailing how these
technologies are used together, shows how some applications may be n-
tiered—an approach where application logic is implemented on several (n)
categories of computing devices (tiers)—whereas others fall into the “fat
client” approach where most business logic is implemented on the client.
Object technology is used to implement all types of logic, including both
business and system logic. XML is used to share data between tiers, and
Web services are used to access logic that resides on different tiers. Most
business data are stored in relational databases, which are accessed either
via structured query language (SQL) or persistence frameworks (see Chap-
ter 14). Data are returned from the database as a collection of zero or more
records and then marshaled either into objects or into XML documents. In the
case of a browser-based application the XML structures are in turn converted
into HTML documents, often through XSL-T (extensible stylesheet language
transformations).

Although the focus of this book is the development of business systems,
much of the advice is also applicable to the development of other types of
software. My specialty is business software so that is what I will stick to in
this book. My experience is that when it comes to building modern business
systems, you are very likely to use a combination of the following:

� Object technology;
� Extensible markup language (XML);
� Relational database (RDB); and
� Web services.

1.1.1 Object Technology

The object-oriented (OO) paradigm (pronounced “para-dime”) is a devel-
opment strategy based on the concept that systems should be built from a
collection of reusable parts called objects. Examples of OO languages and
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1.1 Modern Development Technologies 3

FIGURE 1.1. High-level application architecture.

technologies include the Java, C#, and C++ programming languages and the
Enterprise JavaBeans (EJB) framework. The original motivation of the object
paradigm was that objects were meant to be abstractions of real-world con-
cepts, such as students in a university, seminars that students attend, and
transcripts that they receive. This was absolutely true of business objects,
but as you will see throughout this book, business objects are only one part
of the picture—you also need user interface objects to enable your users to
work with your system, process objects that implement logic that works with
several business concepts, system objects that provide technical features such
as security and messaging, and potentially some form of data objects that
persists your business objects.

The use of object technology can be in fact quite robust. In fat client applica-
tions object technology is typically used on client machines, such as personal
computers or personal digital assistants (PDAs), to implement both user in-
terface code and complex business logic. In thin-client or n-tier applications
object technology is often used to implement business logic on application



P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521540186c01 CB700-Ambler-v1 February 3, 2004 14:11

4 LEADING-EDGE SOFTWARE DEVELOPMENT

TABLE 1.1. Evaluating Object Technology

Advantages Disadvantages

� Enables development of
complex software

� Wide industry acceptance
� Mature, proven technology
� Wide range of development

languages and tools to
choose from

� Very easy to find people with
object experience

� Significant skillset is required
� No single language dominates

the landscape (although Java, C#,
C++, and arguably Visual Basic are
clearly popular and here to stay)

� Not all IT professionals, in
particular some within the data
community, accept it

� Technical “impedance mismatch”
with structured technologies
and RDBs

servers and sometimes even on other nodes such as database servers, security
servers, or business rule servers. Table 1.1 summarizes the strengths and
weaknesses of object technology for business system development.

It is useful to contrast these concepts with the structured paradigm and
structured technology. The structured paradigm is a development strategy
based on the concept that a system should be separated into two parts:
data (modeled using a data model) and functionality (modeled using a pro-
cess model). Following the structured approach, you develop applications in
which data are separate from behavior both in the design model and in the
system implementation (that is, the program). Examples of structured tech-
nologies include the COBOL and FORTRAN programming languages. The
main concept behind the object-oriented paradigm is that instead of defin-
ing systems as two separate parts (data and functionality), you now define
systems as a collection of interacting objects. Objects do things (that is, they
have functionality) and they know things (they have data). While this sounds
similar to the structured paradigm, in practice it actually is quite different.

However, it is equally important to recognize that structured techniques
and technologies still have their place. As you will see later in Section 1.1.4, it is
quite common to transform legacy systems, typically implemented with struc-
tured technologies, and then wrap them with Web services to reuse their func-
tionality. Furthermore, in coming chapters you will discover that structured
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1.1 Modern Development Technologies 5

<office>

<name>Ronin International, Inc. HQ</office:name>

<state>

<name>Colorado</state:name>

<area>North West</state:area>

</state>

<country>United States of America</country>

</office>

FIGURE 1.2. An example of an XML document.

modeling techniques such as data flow diagrams (DFDs) and data models are
still critical to your success.

1.1.2 Extensible Markup Language (XML)

XML is a subset of standard generalized markup language (SGML), the
same parent of hypertext markup language (HTML). The critical stan-
dards are described in detail at the World Wide Web Consortium Web site
(http://www.w3c.org). XML is simply a standardized approach to representing
text-based data in a hierarchical manner and for defining metadata about the
data. From a programmer’s point of view XML is a data representation, backed
by metadata, plus a collection of standardized technologies for parsing that
data. The data are stored in structures called XML documents and the meta-
data are contained in document-type definitions (DTDs) and XML schema
definitions. Figure 1.2 provides an example of a simple XML document and
Table 1.2 overviews the advantages and disadvantages of XML.

XML is often used to transfer data within an application when that appli-
cation has been deployed across several physical servers. It is also used in
enterprise application integration (EAI) as a primary means of sharing data
between applications. You will also see XML used for permanent storage in
data files; it is quite common to use XML for configuration files in both J2EE
and .NET applications, and sometimes even in databases. Chapter 14 dis-
cusses database issues in more detail, and you will see at that point that it is
often better to “shred” an XML document into individual columns instead of
saving it as a single column when storing data in a relational database.
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6 LEADING-EDGE SOFTWARE DEVELOPMENT

TABLE 1.2. Evaluating XML Technology

Advantages Disadvantages

� XML is widely accepted
� XML is cross platform
� (Small) XML documents are

potentially human readable
� XML is standards based; the

World Wide Web
Consortium defines and
promotes technical
standards for XML and
XML.org
(http://www.xml.org)
promotes vertical XML
standards within specific
industries

� XML separates content
from presentation

� XML documents are very bulky,
causing performance problems

� XML requires marshaling
(conversion of XML to objects and
vice versa), causing performance
problems

� XML standards are still evolving
� XML is overhyped, resulting in

unrealistic expectations
� XML business standards will prove

elusive because most businesses
compete and do not collaborate
with their industry peers

1.1.3 Relational Database (RDB) Technology

A relational database is a persistent storage mechanism that stores data as
rows in tables. Most relational databases enable you to implement functional-
ity in them as stored procedures, triggers, and even full-fledged Java objects.
Although other alternatives to RDBs exist—object-oriented database man-
agement systems (OODBMSs), XML databases (XDBs), and object-relational
databases (ORDBs)—the fact is that RDBs are the database technology of
choice for the vast majority of organizations. Table 1.3 summarizes the pros
and cons of using RDBs for modern business applications.

It is important to understand that there is a technical impedance mismatch
between RDBs and other common implementation technologies. When it
comes to RDBs and objects, RDBs are based on mathematical principles,
whereas objects are based on software engineering principles (Ambler 2003a).
The end result is that you need to learn how to map your objects into RDBs as
well as how to use the two technologies together, the topic of Chapter 14.
Similarly, there is a difference between XML and RDBs—XML structures
are hierarchical trees, whereas RDB table structures are “bushier” in nature.
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1.1 Modern Development Technologies 7

TABLE 1.3. Evaluating RDB Technology

Advantages Disadvantages

� Wide industry acceptance
� Very easy to find RDB expertise
� Mature industry dominated

by several strong vendors (Oracle,
IBM, Sybase, Microsoft)

� Open source databases, for
example, MySQL, are available

� Wide range of development tools
� Sophisticated and flexible data

processing are supported

� Impedance mismatch with
other common technologies, in
particular objects and XML

This requires you either to write marshaling code that maps individual XML
elements to table columns, degrading performance, or to simply store XML
documents in a single column, negating many of the benefits of RDBs.

1.1.4 Web Services

According to the World Wide Web Consortium, a Web service is “a software
application identified by a Uniform Resource Identifier (URI), whose inter-
face and bindings are capable of being identified, described, and discovered
by XML artifacts and supports direct interactions with other software ap-
plications using XML-based messages via Internet-based protocols.” Whew!
An easier definition is that a Web service is a function that is accessible us-
ing standard Web technologies in accordance to standards (McGovern et al.
2003). The Web Services Interoperability Organization (WS-I, http://www.ws-
i.org) is a consortium of mostly vendor companies that focus on Web services
standards.

Web services are being used to implement functionality that is accessible via
Internet technologies, often following an approach referred to as utility com-
puting where the use of a computing service is charged for by the vendor on a
usage basis much as electricity or water is charged for. It is far more common
to use Web services “behind the firewall” to implement reusable functionality
or to wrap legacy systems, including both programs and databases, so that
they may be reused by other applications. Internal Web services such as this
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8 LEADING-EDGE SOFTWARE DEVELOPMENT

TABLE 1.4. Evaluating Web Service Technology

Advantages Disadvantages

� Promotes reusability through a
standardized approach

� Supports location transparency
through a UDDI server

� Contains scaleable architecture
� Enables you to reduce

dependency on vendors

� Searching for services via UDDI
is time consuming

� Overhead of XML detracts from
performance

� Does not yet support
transaction
control (this is coming)

� Does not yet support security
(this is coming)

are often managed within an internal UDDI (universal description, discovery,
and integration) registry or better yet a reuse repository such as Flashline
(http://www.flashline.com). A system built from a collection of cohesive ser-
vices has a service-oriented architecture (SOA). Table 1.4 summarizes the
advantages and disadvantages of Web services.

1.2 MODERN DEVELOPMENT TECHNIQUES

Now that we understand the fundamentals of modern technologies, we should
now consider modern development techniques. The IT industry is currently
undergoing what I consider to be a significant shift—a move from prescriptive
development techniques to agile techniques. Until just recently management
often bemoaned the fact that developers did not want to follow a process,
not understanding what was wrong with the 3,000 pages of procedures they
expected everyone to follow. Along came agile software processes such as
extreme programming (XP) (Beck 2000), feature-driven development (FDD)
(Palmer and Felsing 2002), and agile modeling (Ambler 2002) and develop-
ers embraced them. Unfortunately many managers are still leery of agile tech-
niques and fight adoption of them. This is a truly ironic situation—developers
are now demanding to follow proven software processes yet are not being al-
lowed to do so. Sigh.

In this section I briefly explore four important development techniques
that all developers should be familiar with:
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� Agile software development;
� Unified modeling language (UML);
� The unified process; and
� Model-driven architecture (MDA).

1.2.1 Agile Software Development

Over the years several challenges have been discovered with prescriptive soft-
ware development processes, such as the waterfall lifecycle characterized by
the ISO 12207 standard (http://www.ieee.org), the Object-Oriented Software
Process (OOSP) (Ambler 1998b, 1999), and the Rational Unified Process
(RUP) (Kruchten 2000). First, the Chaos report published by the Standish
Group (http://www.standishgroup.com) still shows a significant failure rate
within the industry, indicating that prescriptive processes simply are not ful-
filling their promise. Second, most developers do not want to adopt prescrip-
tive processes and will find ways to undermine any efforts to adopt them, either
consciously or subconsciously. Third, the “big design up front” (BDUF) ap-
proaches to software development, particularly those followed by ISO 12207,
are incredibly risky due to the fact that they do not easily support change or
feedback. This risk is often ignored, if it is recognized at all, by the people
promoting these approaches. Fourth, most prescriptive processes promote ac-
tivities only slightly related to the actual development of software. In short,
the bureaucrats have taken over.

To address these challenges a group of 17 methodologists formed the Agile
Software Development Alliance (http://www.agilealliance.org), often referred
to simply as the Agile Alliance, in February 2001. An interesting thing about
this group is that they all came from different backgrounds, and yet they were
able to come to an agreement on issues that methodologists typically do not
agree upon. They concluded that to succeed at software development you need
to focus on people-oriented issues and follow development techniques that
readily support change. In fact, they wrote a manifesto (Agile Alliance 2001a)
defining four values for encouraging better ways of developing software:

1. Individuals and interactions over processes and tools. The most important
factors that you need to consider are the people and how they work together
because if you do not get that right the best tools and processes will not be
of any use.


