1 Introduction

Constraints are a natural means of knowledge representation in many dis-
parate fields. A constraint often takes the form of an equation or inequality,
but in the most abstract sense is simply a logical relation among several vari-
ables expressing a set of admissible value combinations. The following are
simple examples: the sum of two variables must equal 30; no two adjacent
countries on the map may be coloured the same; the helicopter is designed
to carry only one passenger, although a second can be carried in an emer-
gency; the maths class must be scheduled between 9 and 11am, but it may be
moved to the afternoon later in the term. It is this generality and simplicity of
structure which underly the ubiquity of the constraint-based representation
in Artificial Intelligence.

The process of identifying a solution to a problem which satisfies all spec-
ified constraints is termed constraint satisfaction. It has emerged as a funda-
mental technique for inference. Many years of research effort have been spent
on developing constraint satisfaction and interest is still growing in these
methods as they become increasingly widely applied. The unique structure
and properties of constraint satisfaction problems are considered to be de-
serving of detailed examination in order that they can be exploited in the
search for solutions.

Constraint-based reasoning is declarative, allowing the formulation of
knowledge without specifying how the constraints should be satisfied. This
decoupling of problem and solution technique has allowed the constraint satis-
faction problem to be tackled from a number of different perspectives. Hence,
a variety of techniques have been developed for finding partial/complete so-
lutions of different kinds.

Despite its inherent simplicity, a constraint-based representation can be
used very naturally to express real, difficult problems. For example, the prob-
lems of interpreting an image, scheduling a collection of tasks, planning an
evacuation procedure, or diagnosing a fault in an electrical circuit can all be
viewed as instances of the constraint satisfaction problem. The importance
of constraint satisfaction to such an array of different fields has led to the
development of new programming languages to support it.

There are, however, some problems that cannot easily be modelled via
standard constraint-based techniques. For example, the classical formulation



2 1 Introduction

offers no means to deal with over-constrained problems that admit no “per-
fect” solution. Consider, for instance, the opening example involving the ca-
pacity of the helicopter. In reality, if no other solution could be found a
“compromise” solution would be constructed whereby the helicopter would
carry a second passenger.

Furthermore, classical constraint satisfaction cannot efficiently support
problems whose structure is subject to change. In the opening example con-
cerning the scheduling of the maths class it is noted that the constraint may
change. If this situation occurs, the natural approach is to attempt to repair
the old solution, disturbing it as little as possible. This, however, is beyond
the scope of the standard constraint satisfaction definition.

This book identifies and examines existing extended constraint-based
methods which address these limitations, and shows how they can be fur-
ther combined to solve still more complex problems.

1.1 Solving Classical CSPs

The classical Constraint Satisfaction Problem (CSP) [31, 100, 112, 162] in-
volves a fixed, finite set of problem variables, each with an associated finite
domain of potential values. A set of constraints range over the variables,
specifying the allowed combinations of assignments of values to variables. In
order to solve a classical CSP, it is necessary to find one or all assignments
to all the variables such that all constraints are simultaneously satisfied. A
constraint satisfaction solution procedure must find one/all such assignments
or prove that no such solution exists.

It has been shown that the classical CSP is NP-complete [104]. Therefore,
solution techniques for classical CSP, although many and varied, generally
employ some form of search to explore the space of possible variable as-
signments (see Figure 1.1a). A number of such search procedures have been
developed, the most basic being the well known Backtrack search [13]. Effi-
ciency is crucial in solving the complex combinatorial problems to which CSP
methods are typically applied. Therefore, constraint satisfaction algorithms
have become increasingly sophisticated in their attempts to minimise search
effort. The standard measures of search effort by which CSP algorithms are
judged are the size of the space explored and the number of constraint checks,
the latter being an examination of a constraint to see whether a particular
combination of assignments is allowable.

Given the difficulty of solving classical CSPs, much of the research into
constraint satisfaction has gone into finding ways to reduce the effort re-
quired. For example, a class of pre-processing algorithms [12, 98, 116] has
been developed which simplify the problem prior to search. A process known
as enforcing consistency [98] is used which examines the problem structure,
making explicit constraints implied by, but not actually present in, the origi-
nal problem formulation (see Figure 1.1b). The new constraints may manifest



1.2 Applications of Classical CSP 3

in terms of the removal of elements (which have been shown not to form part
of any solution to the problem) from certain domains, the removal of some
tuples in existing constraints, or the creation of entirely new constraints.
Identifying such “hidden” constraints saves time during subsequent search
by restricting the size of the search space which must be explored.

However, a “once only” pre-processing phase can have only a limited effect
on search effort. The most successful CSP algorithms combine sophisticated
tree search with a certain amount of of consistency enforcing at each search
node to form hybrids [121, 127] . Hybrid tree search/consistency enforcing
algorithms take advantage of the fact that as search progresses, parts of the
problem become “fixed” as variable assignments are made. Hence, simpler
sub-problems are formed which may be examined by a consistency enforcing
technique in exactly the same way as in a pre-processing phase (see Figure
1.1¢). This method quickly uncovers “dead ends” in the search where the
remaining sub-problem is shown to be insoluble. Much search effort is there-
fore saved as the algorithm can immediately try a different path towards a
solution. ,

Heuristics also play an important role in reducing search effort, as pre-
sented in Figure 1.1. Ordering the three basic operations of a constraint sat-
isfaction algorithm: variable selection, value selection and the order in which
constraint checks are made, can have a substantial impact on efficiency. The
guiding principle on which most CSP heuristics are based is to focus on the
most constrained area of the problem, minimizing the branching factor of the
search [136]. Heuristics have also evolved from early attempts which simply
examine the size of each variable’s domain to more sophisticated techniques
which consider a range of factors such as the structure of the problem and the
tightness of the constraints. The tightness of a constraint is the proportion
of possible assignment combinations to the constrained variables disallowed
by the constraint.

1.2 Applications of Classical CSP

The inherent simplicity of a constraint-based representation is the foundation
for its potentially extremely wide applicability. A variety of different problems
(see Figure 1.2) can, when formulated appropriately, be seen as instances of
the classical CSP which can then be solved using the techniques described
briefly in the previous section and in greater detail in chapter 2.

An early application of constraint satisfaction techniques appears, for ex-
ample, in the field of machine vision. Waltz presents a method for producing
semantic descriptions given a line drawing of a scene, leading to the Waltz
algorithm [173). In this case, variables are picture junctions which have po-
tential values consisting of possible interpretations as corners, and constraints
specify that each edge in the drawing must have the same interpretation at



4 1 Introduction

| Input: Problem

b)Problem
Simplification
+ Search

Pre-processing:
Enforce Consistency

Enforce
Consistency,

Output: Solution

Fig. 1.1. Increasing Sophistication of Classical Constraint Satisfaction Algorithms.

both of its ends. Other examples of constraint satisfaction in machine vision
can be found in [18, 87, 99, 117, 135, 147].

Another area that involves extensive use of constraint satisfaction is that
of AI planning. Graphplan [14] reduces classical domain-independent plan-
ning [175] to the solution of a CSP. By this method, large efficiency gains were
made as compared to previous state-of-the-art planning algorithms. A related
approach [83] converts a planning problem into the solution of a propositional
satisfiability (SAT) problem [70, 178]. SAT is the problem of deciding if there
is an assignment to the variables in a propositional formula that make the
formula true, and is a restriction of classical CSP. Several specialised search
techniques for this type of problem have been developed [27, 146] which can
then be used indirectly to solve the planning problem. Further applications
to planning are to be found in [81, 154]. Chapter 5 contains more detail on
this topic.

The field of scheduling also directly employs constraint satisfaction tech-
niques. Fox presented the ISIS system for the scheduling of factory job-shops
[52]. It is capable of representing a variety of constraint types, including or-
ganisational goals and physical constraints. Techniques have been developed
to support both the cumulative [7] and disjunctive cases [6], where tasks can
and cannot share resources respectively. Other CSP applications to schedul-
ing are presented in [24, 126, 134].



1.2 Applications of Classical CSP 5

Machine

Belief
Maintenance

Graph
Problems

Classical
CSp

Scheduling

Temporal
Reasoning

Fig. 1.2. Some Applications of Classical Constraint Satisfaction.

Classical CSP also plays a central role in the field of systems simulation
[89, 107, 148]. This application requires the construction of a tree of possible
system behaviours given an initial system state and some constraints. Starting
from a particular system state and given rules specifying how individual
variables’ states may change, CSP techniques are used to construct efficiently
all potential next system states, thus growing the required behaviour tree.

Embedding constraint satisfaction techniques into programming languages
has proven to be very successful [169]. Constraint logic programming (CLP)
enhances traditional declarative programming languages such as Prolog [78]
to harness the power of CSP techniques. While searching a database of facts,
a CLP program makes use of constraints to prune a significant proportion of
the search tree. This results in large efficiency gains to the extent that CLP
programs can rival custom solutions developed using imperative program-
ming languages such as C. Other examples are to be found in [17, 165, 166].

The list of applications of CSP is as broad as it is deep. Further examples
include belief maintenance [28, 32, 39, 102], puzzles [121], timetabling [48],
temporal reasoning [1, 133, 155, 161}, graph problems [21, 51, 103, 164],
structural design [74], assigning system components to tasks [163], and circuit
analysis [153]. Further discussion of the applications of classical CSP may be
found in [169].



6 1 Introduction

1.3 Limitations of Classical CSP

Classical CSP has a long and successful history of practical application. As
the techniques of classical constraint satisfaction have been applied to more
complex real problems, however, it has become increasingly clear that the
classical formulation is insufficient. There are two main areas of weakness:
firstly, the inability to deal with flezibility in the problem description in case
no “perfect” solution exists, and secondly the ability to deal gracefully with
changes to the problem structure.

In the case of both limitations identified above, a requirement is exhibited
for an extension to classical CSP in order to cope gracefully with the demands
made by more realistic problems. Such extensions do exist, albeit separately,
and are discussed briefly in the following sections, and in more detail in
Chapter 2.

1.3.1 Flexible CSP

Classical constraint satisfaction techniques support only hard constraints
specifying exactly the allowed variable assignment combinations. Hard con-
straints are imperative (a valid solution must satisfy all of the constraints)
and inflezible (constraints are either wholly satisfied or wholly violated). In
reality, of course, problems rarely exhibit this rigidity of structure. It is com-
mon for there to be- flexibility inherent which can be used to overcome over-
constrainedness (i.e. a problem that admits no solution) by indicating where
a sensible compromise can be made.

In order to address this weakness, classical constraint satisfaction tech-
niques have been extended to incorporate different types of flexible con-
straints. The flexible constraints used attempt to model the “soft” constraints
often found in real problems. The different methods of extending classical
CSP to model flexibility are known under the umbrella term of flexible CSP
(FCSP) [42, 58].

One common example is the use of priorities or weights attached to each
constraint indicating its relative importance. In the over-constrained case,
where a compromise-free solution does not exist, if only the constraints with
the lowest importance are relazed (i.e. removed from the problem) the like-
lihood of finding a soluble problem with a useful solution is maximised. For
example, the GARI system [37] provides weighted pieces of advice in the
process of producing plans for machining parts given their drawings. If there
is no “perfect” solution, then the least important pieces of advice can be
ignored.

Further applications of flexible CSP include: flexible job-shop scheduling
[41], management of over-constrained resource scheduling problems 8], and
control in the wine industry {137].



1.4 Dynamic Flexible CSP 7

1.3.2 Dynamic CSP

A further limitation of classical CSP is in its assumption of a static problem.
That is, once the sets of variables, domains and constraints have been defined,
they are fixed for the duration of the solution process. In reality, of course,
problems can be subject to change either as a solution is being constructed,
or while a constructed solution is in use. Consider a large scale scheduling
problem, such as scheduling astronomical observations on the Hubble Space
Telescope [114]. Not only is the initial problem extremely difficult to solve
(e.g. tens of thousands of observations must be scheduled each year, subject
to a great variety of constraints), but it also changes continually: new ob-
servations may be submitted at any time for scheduling. Classical constraint
satisfaction can deal at best only clumsily with this situation, considering
the changed problem as an entirely new problem which must be solved from
scratch.

A special case also exists in which the problem structure changes not
due to external factors, but as a result of choices made in partially solving
the problem. Consider a simple example involving configuring a new car for
a customer. If the customer wants a sun-roof, further choices must be made
concerning its type (glass or metal?) and operation (manual or electric?). The
sub-choices are meaningless without the selection of a sun-roof in the first
place. Classical CSP can only be coerced into solving this type of problem
by explicating all ways in which the problem structure can change based on
tentative sub-solutions.

To address these types of problem, the techniques of dynamic constraint
satisfaction (DCSP) have also been developed. In order to model problems
which change over time, constraints are added to and removed from the
current problem description as necessary [32]. Specialised techniques are then
employed to re-use as much of the solution or partial solution obtained for
a problem before it changed with respect to the new problem state [166,
114, 167]. In order to model problems whose state changes based on the
assignments of one or more variables, special constraints are introduced which

serve to activate sub-parts of the problem structure given certain assignments
[115]. :

1.4 Dynamic Flexible CSP

The two types of extension to classical CSP briefly described above: flexible
CSP and dynamic CSP respectively, separately offer significant advances in
the range of problems that CSP techniques can solve. Unfortunately, current
dynamic constraint satisfaction research is founded almost exclusively on
classical CSP, unable to take advantage of flexible constraints in a dynamic
environment, and flexible CSP research is limited to static problems. Little
has been done to combine dynamic and flexible constraint satisfaction in



8 1 Introduction

order to maintain the benefits of both individual approaches to solve more
complex problems.

The principal contribution of this book is in presenting the combination
of these two previously disparate extensions, exploring techniques for coping
with dynamic flexible CSPs (DFCSPs [110]). Based on a systematic review of
classical, dynamic, and flexible CSP techniques, a matrix of possible instances
of DFCSP is identified. Each instance combines particular individual methods
for dynamic and flexible CSP and is suitable for modelling a different type
of problem.

One such instance, combining restriction/relaxation-based dynamic CSP
[32] and fuzzy flexible CSP [42] is investigated in detail, both in terms of
solution techniques and the structure of the problems produced. The indi-
vidual dynamic and flexible components are powerful and have already been
successful in their own right. Hence, this particular instance of DFCSP is
chosen as being sufficiently general to find a range of uses and as an indicator
of the utility of DFCSP.

In this book, two techniques are developed to solve this type of DFCSP.
The first is a novel integrated algorithm, Flexible Local Changes. The sound-
ness and completeness of this algorithm is established, and an analysis of
its time and space complexity is performed. The second is a heuristic en-
hancement of a standard branch and bound [93] approach to solving flexible
CSP. In addition, an extensive empirical analysis is made of the structure and
properties of this type of DFCSP and the performance of the two solution
techniques. '

1.5 Flexible Planning: a DFCSP Application

The second principal contribution of this book is in the application of DFCSP
techniques to the field of Al Planning [175]. This field is an active and long-
established research area with a wide applicability to such tasks as automat-
ing data-processing procedures [23], game-playing [152], and large-scale lo-
gistics problems [177]. Solving these types of problems demands a highly
efficient approach due to their size and complexity. However, as per classi-
cal CSP, classical Al planning is unable to support flexibility in the problem
description. Providing such an ability is an important step forward for the
real-world utility of planning research.

Preparatory to the development of the flexible planner, a novel approach
to classical plan synthesis in the Graphplan framework [14] is defined using
dynamic CSP techniques [113]. It is based on the hierarchical decomposition
of the initial problem into sequences of sub-problems. A dynamic CSP algo-
rithm is then employed to efficiently solve these sequences. Empirical tests on
benchmark problems show that this algorithm performs competitively against
the current state-of-the-art solvers, and in some cases shows a performance
gain.



1.6 Structure 9

Using the above non-flexible planner as a basis, a flexible planning sys-
tem is developed. Firstly, the classical AI Planning problem description is
extended to incorporate flexible constraints. For flexible plan synthesis, a
hierarchical decomposition of the problem is made, similar to that used in
the classical case. Hence, plan synthesis is reduced to the solution of a hi-
erarchy of DFCSPs. Flexible Graphplan (FGP), a new flexible planner, is
developed to solve such flexible planning problems. A test suite of flexible
problems engineered to exhibit different structural properties is created, as
well as a more complex benchmark flexible problem. FGP’s performance on
these flexible problems is analysed in the book.

1.6 Structure

The remainder of this book is structured as itemised below:

— Chapter 2: The Constraint Satisfaction Problem. This chapter contains a
detailed review of the current state of the art of constraint satisfaction
techniques. It begins with a formal description of classical constraint sat-
isfaction problems and the methods for representing and reasoning with
such problems. The wide variety of solution techniques for solving clas-
sical CSPs are then discussed in detail. The limitations of classical CSP
are addressed, concentrating in particular on the need to support flexible
constraints and an evdlving problem structure. A review of existing ex-
tensions to the classical framework to support the former or the latter is
then presented.

— Chapter 3: Dynamic Flexible Constraint Satisfaction. This chapter dis-
cusses the further evolution of constraint satisfaction techniques to sup-
port simultaneously flexible constraints and dynamic changes to the prob-
lem structure: dynamic flexible CSP (DFCSP). A matrix of possible
DFCSP instances is defined via the combination of the different available
dynamic and flexible extensions to classical CSP. A specific representative
instance, fuzzy rrDFCSP, combining fuzzy constraint satisfaction and re-
striction/relaxation based dynamic CSP is considered in detail and two
basic solution algorithms, one based on branch and bound [93] techniques
and the other, Flexible Local Changes, on an existing dynamic CSP al-
gorithm [167] are developed for this type of problem. A small worked
example illustrates the utility of both algorithms.

— Chapter 4: An Empirical Study of fuzzy rr DFCSPs. This chapter con-
tains an extensive empirical analysis of the structure and properties of
fuzzy rrDFCSPs. A large set of random problem sequences are gener-
ated, varying five different parameters to alter their composition. Hybrid
variants of the algorithms developed in Chapter 3 are then tested on the
random problems, as well as the utility of various heuristics and efficiency-
improving techniques. In particular, the results show the utility of using



10

1 Introduction

dynamic flexible CSP algorithms as opposed to coercing algorithms capa-
ble of supporting flexibility only into solving the dynamic sequences.
Chapter 5: Dynamic CSP in Domain-independent AI Planning. Domain-
independent AI Planning is introduced in this chapter as an application
domain for both dynamic and dynamic flexible CSP. The recent trend of
reducing the planning problem to a CSP in order to make efficiency gains
is continued. A novel solution technique, GP-rrDCSP, based on apply-
ing restriction/relaxation-based dynamic CSP techniques to the standard
Graphplan [14] framework is developed and described in detail.

Chapter 6: GP-rrDCSP: Ezperimental Results. An investigation is pre-
sented in this chapter into the utility of the GP-rrDCSP Al planner, as
compared with state of the art planners on benchmark problems. Both
basic and enhanced versions of GP-rrDCSP are tested over five different
planning domains. The enhanced version performs particularly well, with
both versions being competitive across the problem set. The results there-
fore establish GP-rrDCSP as a solid foundation upon which to build a
flexible planning system in the following chapters.

Chapter 7: The Flezible Planning Problem and Flexible Graphplan. This
chapter defines the novel flexible planning problem, which extends classi-
cal domain-independent planning to support soft constraints. Fuzzy con-
straint satisfaction underlies this definition, allowing the association of
subjective truth degrees with propositions and satisfaction degrees with
plan operators and goals. Flexible plan synthesis is then supported via
fuzzy rrDFCSP, generalising the dynamic CSP methods used for plan
synthesis (as developed in Chapter 5) to create Flexible Graphplan (FGP).
Chapter 8: FGP: Ezperimental Results. An evaluation of Flexible Graph-
plan is presented in this chapter. Initially, a specially constructed test
suite of problems is used in order to examine the relationship between
the structure of flexible planning problems and their expected solution
difficulty. This test suite is also used to evaluate the utility of various
enhancements to the basic FGP algorithm. Secondly, the novel flexible
benchmark Rescue problem is introduced and used to evaluate FGP’s
performance on a more complex example.

Chapter 9: Conclusions. This chapter contains conclusional remarks and
details of important future work. Examples of future work include the
exploration of other instances of DFCSP, leading to the eventual devel-
opment of a generalised framework capable of supporting many such in-
stances.

Appendices: The four appendices respectively contain companion pseudo-
code, proofs of the soundness and completeness of the new algorithms
developed in this book, full results for the empirical study performed in
Chapter 4, and the details of the test suite and Rescue problem used in
Chapter 8.



1.7 Contributions and their Significance 11
1.7 Contributions and their Significance

The main contributions of this book and their significance are as follows:

— Literature review: A systematic review of the constraint satisfaction lit-
erature is made, encompassing classical, flexible and dynamic techniques.
To the best of the author’s knowledge, this is the first systematic review
of the CSP literature for several years.

.— Identification of a matrix of dynamic flexible constraint satisfaction prob-
lems (DFCSPs): these problem types enable the modelling of complex
problems, combining flexible constraints with a dynamic problem specifi-
cation, previously beyond the reach of constraint satisfaction techniques.

— Development of DFCSP Solution methods: Principally, this involves the
creation of a novel algorithm, Flexible Local Changes (FLC), to solve
fuzzy rrDFCSPs, a particular representative instance of DFCSP. This
is the first algorithm to address such problems. Furthermore, a heuris-
tic enhancement of branch and bound is developed also to solve fuzzy
rrDFCSPs. It is claimed that these algorithms are easily adaptable to
solving other instances of DFCSP.

~ Empirical analysis of fuzzy rtDFCSPs: Almost 40,000 random problem
instances were generated, varying five parameters to alter their composi-
tion. This is the first such study of the structure and properties of this
type of problem and also the first evaluation of the performance of variants
of FL.C and the branch and bound algorithm.

— Development of GP-rrDCSP, a new classical domain-independent plan-
ner: within the popular Graphplan framework, it hierarchically decom-
poses the original problem and uses rrDCSP techniques to solve the re-
sultant sequences of sub-problems. This algorithm offers a new perspective
on the solution of classical planning problems and is found to be compet-
itive with the state of the art via experimental analysis.

— Creation of the Flexible Planning Problem: This is an extension of the
classical planning problem using fuzzy sets. Through the association of
satisfaction degrees with operators and truth degrees with propositions,
this type of problem allows a tradeoff between making compromises to
satisfy the plan goals to a certain extent in a short number of steps, versus
reducing the number of compromises made but extending the length of
the plan. This is the first specification of a planning problem which allows
such a tradeoff to take place.

— Development of Flexible Graphplan (FGP): This is a novel algorithm to
solve flexible planning problems. Based on the GP-rrDCSP algorithm, it
too relies on the hierarchical decomposition of the initial problem into
dynamic sequences of sub-problems. These flexible sub-problems are then
solved using the FLC algorithm. FGP is the first algorithm to be able to
solve flexible planning problems, and contains the first practical use of
the FLC algorithm.



