
1.1 Introduction

The problem of controlling the output of a system so as to achieve asymp-
totic tracking of prescribed trajectories and/or asymptotic rejection of dis-
turbances is a central problem in control theory. There are essentially three
different possibilities to approach the problem: tracking by dynamic inver-
sion, adaptive tracking, tracking via internal models. Tracking by dynamic
inversion consists in computing a precise initial state and a precise control
input (or equivalently a reference trajectory of the state), such that, if the
system is accordingly initialized and driven, its output exactly reproduces
the reference signal. The computation of such control input, however, re-
quires “perfect knowledge” of the entire trajectory which is to be tracked
as well as “perfect knowledge” of the model of the plant to be controlled.
Thus, this type of approach is not suitable in the presence of large uncertain-
ties on plant parameters as well as on the reference signal. Adaptive tracking
consists in tuning the parameters of a control input computed via dynamic
inversion in such a way as to guarantee asymptotic convergence to zero of a
tracking error. This method can successfully handle parameter uncertainties,
but still presupposes the knowledge of the entire trajectory which is to be
tracked (to be used in the design of the adaptation algorithm) and therefore
an approach of this kind is not suited to the problem of tracking unknown
trajectories. Of course, one might consider the problem of tracking a slowly
varying reference trajectory as a stabilization problem in the presence of a
slowly varying unknown parameter, but this would, in most cases, yield a
very conservative solution. Internal-model-based tracking, on the other hand,
is able to handle simultaneously uncertainties in plant parameters as well as
in the trajectory which is to be tracked. It has been proven that, if the tra-
jectory to be tracked belongs to the set of all trajectories generated by some
fixed dynamical system, a controller which incorporates an internal model of
such a system is able to secure asymptotic decay to zero of the tracking error
for every possible trajectory in this set and does it robustly with respect to
parameter uncertainties. This is in sharp contrast with the two approaches
mentioned above, where in lieu of the assumption that a signal is within a
class of signals generated by an exogenous system, one instead needs to as-
sume complete knowledge of the past, present and future time history of the
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trajectory to be tracked. It is for this reason that the internal-model-based
approach seems to be the best suited to problems of tracking unknown ref-
erence trajectories or rejecting unknown disturbances. The purpose of this
chapter is to present the fundamentals of the so-called internal-model-based
design methods.

1.2 Asymptotic Tracking and Disturbance Attenuation

A central problem in control theory is the design of feedback controllers
so as to have certain outputs of a given plant to track prescribed reference
trajectories. In any realistic scenario, this control goal has to be achieved in
spite of a good number of phenomena which would cause the system to behave
differently from that expected. These phenomena could be endogenous, for
instance parameter variations, or exogenous, such as additional undesired
inputs affecting the behaviour of the plant.

If the plant can be modeled as a linear, finite-dimensional, time-invariant
system, the problem in question can be formally cast as follows. Suppose the
model of the plant is a set of first-order linear differential equations, written
in the form

ẋ = Ax+B1u+B2w
z = C1x+D11u+D12w
y = C2x+D21u+D22w ,

(1.1)

in which x is a vector of state variables, u is a vector of inputs to be used
for control purposes, w is a vector of inputs which cannot be controlled
and thus are viewed as undesired external disturbances, z is the vector of
outputs that need to be controlled and y is a vector of outputs that are
available for measurement, hence used to feed the device that supplies the
control action. Let zref(t) denote the prescribed behavior, in time, that the
controlled output z(t) of (1.1) is required to reproduce. A way to address the
design problem described above is to seek a controller, which receives y(t) as
input and produces u(t) as output, able to guarantee that, in the resulting
closed-loop system, z(t) asymptotically tracks zref(t), i.e.,

lim
t→∞ ‖z(t)− zref(t)‖ = 0 . (1.2)

Of course, as a generally accepted prerequisite to this specific design goal, as
well as to any other design goal, the controller must also be able to secure a
“proper behavior” of all the internal (state) variables which characterize the
closed-loop system, not just the components of the controlled output z. A
way to express this prerequisite is to impose that all these variables remain
bounded when w(t) and zref(t) are bounded, which in turn is automatically
guaranteed (the system being linear) by the property of asymptotic stability.

The ability to successfully address this problem very much depends on
how much the controller is allowed to know about the external stimuli w(t)
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and zref(t) and on their specific shape. In the ideal situation in which w(t)
and zref(t) are exactly known, ahead of time, the design problem indeed
looks much simpler. This is, though, only an extremely optimistic situation
which does not represent, in any circumstance, a realistic scenario. The other
extreme situation is the one in which nothing is known about these stimuli,
but some loose bounds which they are known to satisfy. In this, pessimistic,
scenario the best one could hope for is to guarantee certain ultimate bounds
for the distance between z(t) and zref(t), and not the fulfilment of a sharp
goal such as (1.2). A more comfortable, intermediate, situation is the one in
which w(t) and zref(t) are only known to belong to a fixed family of functions of
time, for instance the family of all solutions obtained from a fixed differential
equation as the corresponding initial conditions are allowed to vary on a
given set. This situation is in fact sufficiently distant from the ideal but
unrealistic case of perfect knowledge of w(t) and zref(t) and from the realistic
but conservative case of almost totally unknown w(t) and zref(t). But, above
all, this way of thinking of the external stimuli covers a number of cases of
major practical relevance, as will be seen in the sequel. Once the components
of w(t) and zref(t) have been thought of in these terms, i.e., as members of
a family of solutions obtained from a fixed differential equation, there is no
reason to keep them separate in the model of the plant. In fact, they can be
viewed as components of a larger vector of exogenous inputs, written

wa =
( w
zref

)
.

Accordingly, in the model (1.1) the controlled output z can be replaced by
the tracking error, i.e., by the difference

e(t) = z(t) − zref(t)
which, as the equations above show, is itself a linear function

e = Ca
1x+Da

11u+Da
12w

a (1.3)

of the state x, of the control input u and of the (augmented) disturbance wa.
To say that the various components of the external stimuli can be viewed
as members of a family of solutions of a fixed differential equation, which
to begin with and to simplify matters is assumed to be a linear differential
equation, is to say that

ẇa = Sawa (1.4)

in which Sa is a fixed matrix. In this context, system (1.4) is referred to as
an exosystem. As a matter of fact, as its initial condition wa(0) ranges on
some prescribed set W , this system provides a model of all possible exogenous
signals to be taken into account in the design problem: reference outputs that
the plant might be required to track, as well as disturbance inputs that might
affect its behavior.



4 1. Fundamentals of Internal-model-based Control Theory

Cast in these terms, the design problem is that of finding a feedback
controller such that, for all initial conditions in the state spaces of the plant
and of the controller (if the latter has an internal dynamics), and for all initial
conditions in a prescribed subset W of the state space of the exosystem, all
trajectories of the resulting closed-loop system are bounded (if also are those
of (1.4)) and

lim
t→∞ e(t) = 0 .

In the above formulation we have not yet explicitly taken into account
another, relevant, source of possible mismatch between the actual behavior of
the controlled output z(t) and its prescribed behavior zref(t): plant parameter
uncertainties. A conventional, somewhat simplified but effective, way to think
of plant parameter uncertainties is to assume that the coefficient matrices of
the model (1.1) depend on a vector of constant, but unknown, parameters
µ, ranging on a prescribed set P . In this way, plant (1.1) can be rewritten,
taking into account (1.3) and dropping the superscript “a”, as

ẋ = A(µ)x +B1(µ)u+B2(µ)w
e = C1(µ)x +D11(µ)u +D12(µ)w
y = C2(µ)x +D21(µ)u +D22(µ)w .

(1.5)

Of course, µ can be regarded as an exogenous input as well, obeying the
trivial dynamics

µ̇ = 0 ,

and thus aggregated to w, but this would destroy the linearity of the model.
For this reason, in dealing with linear systems, this kind of representation
is more convenient (it will be dropped, though, in dealing with nonlinear
systems, when there is no longer any special reason to keep the roles of µ and
w separate, other than for expository purposes).

Again, in these more general terms, the problem in question is that of
finding a feedback controller, independent of µ, such that, for all initial con-
ditions, in the state spaces of the plant and of the controller, for all initial
conditions in a prescribed subset W of the state space of the exosystem and
for all values of µ in a prescribed subset P , the trajectories of the resulting
closed-loop system are bounded, if also are those of (1.4), and e(t) converges
to 0 as t→ ∞.

In the next few sections, we discuss some general results and some con-
structive procedures for the design of a controller which solves this kind of
problem. Then, in the second half of the chapter, we turn our attention to the
case of systems which are modeled by possibly nonlinear differential equa-
tions, i.e., systems which, instead of (1.5), are modeled by equations of the
form

ẋ = f(x, u, w, µ)
e = h(x, u, w, µ)
y = k(x, u, w, µ) ,

(1.6)
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in which f(x, u, w, µ), h(x, u, w, µ) and k(x, u, w, µ) are nonlinear functions of
their arguments, and address similar design problems.

1.3 The Case of Linear Systems

Consider a linear time-invariant system described by equations of the form

ẋ = Ax +Bu+ Pw
y = Cx+Qw
e = Cex+Qew .

(1.7)

In these equations, x ∈ R
n is the state vector, u ∈ R

m is the control input,
w ∈ R

r is a disturbance input, y ∈ R
p is the measured output, and e ∈ R

q

is a tracking error, i.e., the regulated output. The disturbance input w
affecting this system is generated by an autonomous linear time-invariant
system

ẇ = Sw , (1.8)

which, following the terminology introduced in Section 1.2, will be referred
to as the exosystem.

The control of (1.7) is achieved by means of a dynamic feedback controller,
which processes the measured output y and generates the control input u.
This controller is itself a linear time-invariant system, modeled by equations
of the form

ξ̇ = Fξ +Gy
u = Hξ +Ky

(1.9)

with state ξ ∈ R
ν .

The interconnection of (1.7), (1.8) and (1.9), which is an autonomous
linear time-invariant system with output e, modeled by equations of the form

ẇ = Sw

ẋ = (A+BKC)x+BHξ + (P +BKQ)w

ξ̇ = Fξ +GCx+GQw
e = Cex+Qew ,

(1.10)

will be in what follows referred to as the forced closed-loop system. The special
subsystem obtained when the exosystem is disconnected and the output e is
ignored, namely the system

ẋ = (A+BKC)x+BHξ

ξ̇ = Fξ +GCx ,
(1.11)

will be referred to as the unforced closed-loop system.
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In this and in the following sections, we will discuss some general aspects
of the following design problem, which we will refer to as the generalized
tracking problem. Given system (1.7) with exosystem (1.8) find, if possible, a
controller of the form (1.9) such that:

(a) the equilibrium (x, ξ) = (0, 0) of the unforced closed-loop system (1.11)
is asymptotically stable,

(b) in the forced closed-loop system (1.10),

lim
t→∞ e(t) = 0

for every initial condition (w(0), x(0), ξ(0)).

In order to render the discussion as streamlined as possible, it is convenient
to introduce from the very beginning a number of standing assumptions, some
of which are trivially necessary, some of which can be proven to be necessary
if certain additional design goals are to be obtained, and some of which carry
with them the advantage of a sensibly simpler analysis without excessive
compromise in terms of generality.

Assumption 1. The pair (A,B) is stabilizable and the pair (C,A) is detectable.
This is a well-known necessary and sufficient condition for the existence of
matrices F,G,H,K such that the matrix

J =
(

(A+BKC) BH
GC F

)
(1.12)

has all eigenvalues with negative real part. Thus, this is a trivial necessary
condition for the fulfilment of requirement (a) of the problem and need not
be discussed further.

Assumption 2. The exosystem (1.8) is stable, in the sense of Lyapunov, for-
ward and backward in time, i.e., both (1.8) and

ẇ = −Sw
are stable in the sense of Lyapunov. The property in question will be referred
to as neutral stability. This assumption holds if and only if all eigenvalues of S
have zero real part and multiplicity one in the minimal polynomial. Thus, in
suitable coordinates, S can always be expressed as a skew-symmetric matrix.
If this assumption holds, all trajectories of the exosystem (1.8) are bounded
in forward time and none of them decays to zero as t → ∞. Boundedness
in forward time guarantees that, if requirement (a) of the design problem is
fulfilled, then for any x(0), ξ(0), w(0) the trajectory of the forced closed-loop
system (1.10) is bounded. In fact, x(t), ξ(t) can be viewed as the response of an
asymptotically stable linear system to a bounded input. The non-existence of
trajectories of (1.8) which decay to zero as t→ ∞ on the other hand, singles-
out non-interesting trajectories w(t) for which the fulfilment of requirement
(b) would be trivially implied by the fulfilment of requirement (a).
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Assumption 3. There exists a q×p matrix E such that e = Ey. This property
is usually referred to as the property that “e is readable from y” (see [16]).
Note that, if this is the case, there is no loss of generality in considering,
possibly after a change of coordinates in the output space, a regulated output
e of the form

e = C1x+Q1w ,

in which C1 and Q1 are obtained from a partition of C and Q as

C =
(
C1

C2

)
Q =

(
Q1

Q2

)
.

Consistently, we will set y1 = e and

y2 = C2x+Q2w .

This assumption essentially says that the set of variables which are accessible
for measurement includes all the components of the regulated output e plus,
possibly, an extra set of variables consisting of the components of the vector
y2. This assumption can be proven to be necessary, if certain robustness
properties are required to hold (see [15]).

Assumption 4. The number q of components of e is equal to the number
m of components of u. This is a very reasonable assumption to consider,
if the components of e are viewed as components of a tracking error, in a
control problem in which q variables are required to track an equal number of
independent reference trajectories. In this case, in fact, the number of control
inputs should at least be equal to the number of independent variables to be
controlled. This assumption is not indispensable in general, but substantially
simplifies the analysis. Note also that this, in the light of Assumption 3,
trivially implies p ≥ q.

We proceed now with the derivation of some general conditions for the so-
lution of the generalized tracking problem, which will be used later in Section
1.5 for the specific design of appropriate control laws. The point of departure
is the following result, which establishes a straightforward consequence of the
existence of a controller fulfilling requirement (b).

Lemma 1.3.1. Consider the closed-loop system (1.10) and suppose all the
eigenvalues of the matrix (1.12) have negative real part. Then

lim
t→∞ e(t) = 0

for each initial condition (x(0), ξ(0), w(0)) if and only if the unique solution
pair (Π,Σ) of

ΠS = (A+BKC)Π +BHΣ + P +BKQ
ΣS = FΣ +GCΠ +GQ

(1.13)
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is such that
0 = C1Π +Q1 . (1.14)

Proof. Equation (1.13), written in matrix notation, is an equation of the form(
Π
Σ

)
S =

(
(A+BKC) BH

GC F

)(
Π
Σ

)
+
(
P +BKQ
GQ

)
,

i.e., is a Sylvester equation. By Assumption 2 all the eigenvalues of S have
zero real part, while by the hypothesis of the lemma all the eigenvalues of the
matrix (1.12) have negative real part; therefore Equation (1.13) does have a
solution pair (Π,Σ), which is unique.

Consider now the coordinate transformationwx̃
ξ̃

 =

 I 0 0
−Π I 0
−Σ 0 I

wx
ξ

 =

 w
x−Πw
ξ −Σw


and note that, in the new coordinates thus defined, the equations of the
closed-loop system (1.10) assume the form

ẇ = Sw

˙̃x = (A+BKC)(x̃+Πw) +BH(ξ̃ +Σw) + (P +BKQ)w −ΠSw
˙̃
ξ = F (ξ̃ +Σw) +GC(x̃ +Πw) +GQw −ΣSw ,

which in view of (1.13) become

ẇ = Sw( ˙̃x
˙̃
ξ

)
=

(
(A+BKC) BH

GC F

)(
x̃
ξ̃

)
= J

(
x̃
ξ̃

)
.

In the new coordinates, the regulated variable e reads as

e = C1x̃+ (C1Π +Q1)w.

Integrating system (1.10) in the new coordinates yields(
x̃(t)
ξ̃(t)

)
= eJt

(
x̃(0)
ξ̃(0)

)
, w(t) = eStw(0)

and therefore

e(t) = (C1 0 ) eJt

(
x̃(0)
ξ̃(0)

)
+ (C1Π +Q1)eStw(0).

Since J has all eigenvalues with negative real part, the condition
limt→∞ e(t) = 0 holds, for every (w(0), x̃(0), ξ̃(0), ), if and only if
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lim
t→∞(C1Π +Q1)eSt = 0

and this in turn occurs if and only if C1Π +Q1 = 0, because by Assumption
2 all the eigenvalues of S have nonnegative real part. This proves the lemma.
�

Remark 1.3.1. The construction described in the proof of this lemma can be
given a simple and expressive geometric interpretation. Rewrite the equations
of the closed-loop system (1.10) in the form

ẋcl = Aclxcl

with

xcl =

wx
ξ

 , Acl =
(
S 0
Θ J

)
,

where

Θ =
(
P +BKQ
GQ

)
.

The (r+n+ ν)× (r+n+ ν) matrix Acl has r eigenvalues with zero real part
(those of S) and n + ν eigenvalues with negative real part (those of J). Let
V 0 denote the invariant subspace of Acl associated with the eigenvalues with
zero real part, and V s denote the invariant subspace of Acl associated with
the eigenvalues with negative real part.

It is immediate to realize that V s is spanned by the columns of the matrix

T s =
(

0
In+ν

)
.

In fact, the subspace spanned by the columns of T s is invariant under Acl

and the restriction of Acl to this subspace is precisely J .
The subspace V 0, being complementary to V s in R

r+n+ν , will be spanned
by the columns of a matrix T 0 of the form

T 0 =
(
Ir
X

)
,

in which X is a suitable matrix. It is immediate to realize that

X =
(
Π
Σ

)
with (Π,Σ) the unique solution of (1.13). In fact, to impose the condition
that the subspace spanned by the columns of T 0 is invariant under Acl is to
impose that for each w ∈ R

r there exists w̃ ∈ R
r satisfying(

S 0
Θ J

)(
Ir
X

)
w =

(
Ir
X

)
w̃.
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Expanding the calculations, one obtains that necessarily

w̃ = Sw

and
Θ + JX = XS .

The latter is an equation for X which coincides with (1.13). Thus the unique
solution (Π,Σ) of (1.13) is such that the subspace spanned by the columns
of

T 0 =

 IrΠ
Σ

 ,
is invariant under Acl. Moreover, the previous calculation also shows that
the restriction of Acl to this invariant subspace is precisely S. Therefore, the
columns of this matrix span the subspace V 0.

In other words, condition (1.13) expresses the existence of an invariant
subspace, for the closed-loop system (1.10), which has the form

V 0 = {(w, x, ξ) : x = Πw, ξ = Σw}
and on which the restriction of (1.10) reduces to

ẇ = Sw.

Condition (1.14), on the other hand, expresses the fact that the regulated
output e = C1x+Q1w is zero at each point of this invariant subspace.

From this interpretation it is rather easy to deduce why e(t) converges to
0 as t → ∞ if and only if the unique solution of (1.13) satisfies (1.14). The
necessity derives from the fact that if the initial condition (w(0), x(0), ξ(0))
of (1.10) is in V 0, the corresponding trajectory, which remains in V 0 for all
future times and is a copy of a trajectory of the exosystem, cannot converge to
(0, 0, 0) because the exosystem is neutrally stable. Thus, the only possibility
of having e(t) → 0 is that e, as a function of x and w, is zero at any point of
V 0. The sufficiency stems from the fact that all trajectories of (1.10) converge,
as t→ ∞, to V 0 and hence produce an error which asymptotically decays to
zero. �

We give now the condition established in this lemma a slightly differ-
ent version, which is more useful in the sequel. First of all, split G and K
(consistently with the partition of y) as

G = (G1 G2 ) , K = (K1 K2 ) ,

in which case the controller (1.9) is rewritten as

ξ̇ = Fξ +G1e+G2y2

u = Hξ +K1e+K2y2 .
(1.15)

Then, we have the following result.
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Proposition 1.3.2. Suppose the controller (1.15) stabilizes (1.7). Then, if

lim
t→∞ e(t) = 0

there exist matrices Π,Σ,R such that

ΠS = AΠ +BR + P
0 = C1Π +Q1

(1.16)

and
ΣS = FΣ +G2(C2Π +Q2)
R = HΣ +K2(C2Π +Q2) .

(1.17)

Proof. By Lemma 1.3.1, if limt→∞ e(t) = 0, the unique solution (Π,Σ) of
(1.13) satisfies (1.14). The two equations of (1.13), rewritten as

ΠS = AΠ +BK1C1Π +BK2C2Π +BHΣ + P +BK1Q1 +BK2Q2

ΣS = FΣ +G1C1Π +G2C2Π +G1Q1 +G2Q2 ,

in the light of (1.14) reduce to

ΠS = AΠ +BK2C2Π +BHΣ + P +BK2Q2

ΣS = FΣ +G2C2Π +G2Q2 .

Setting
R = HΣ +K2(C2Π +Q2)

proves that (1.16) and (1.17) necessarily hold. �

Remark 1.3.2. Note that the parameters of the controller do not enter into
equations (1.16). Thus, the existence of some solution pair Π,R can be seen
as a necessary condition that a given plant must obey for the existence of
any controller that solves the generalized tracking problem. On the other
hand, Equations (1.17) express the ability, of a specific controller, to secure
asymptotic decay to zero of the error for a given plant. �

Equations (1.16) are often referred to as the regulator equations. The first
one of these expresses the property that the subspace

S = {(x,w) : x = Πw}

is a controlled invariant subspace for the linear system(
ẋ
ẇ

)
=
(
A P
0 S

)(
x
w

)
+
(
B
0

)
u . (1.18)

In fact, S is by construction invariant for
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(
ẋ
ẇ

)
=
[(
A P
0 S

)
+
(
B
0

)
( 0 R )

](
x
w

)
(1.19)

which is the autonomous linear system obtained controlling (1.18) with the
“feedback” law u = Rw. The second one, on the other hand, expresses the
property that the regulated output is zero at each point of the subspace S.

This simple geometric interpretation highlights the roles that Π and R
have in the solution of the generalized problem of tracking. In fact, consider
again system (1.7), pick an initial condition w(0) for the exosystem (1.8), and
suppose the following:
- the initial condition x(0) of (1.7) is equal to x(0) = Πw(0),
- the control input u(t) of (1.7) is equal to u(t) = Rw(t).
Then, it is immediate to conclude that e(t) = 0 for all t ∈ R. To see that this is
the case, it suffices to look at system (1.19) and pick any initial condition on S,
i.e., a condition satisfying x(0) = Πw(0). Since the latter is invariant, we have
x(t) = Πw(t) for all t ∈ R. By construction, the trajectory thus found (which
is a trajectory of a closed-loop system, namely system (1.19)) is such that
x(t) can be interpreted as response of an open-loop system, namely system
(1.7) itself, to the control input u(t) = Rw(t) and to the disturbance input
w(t). Since the regulated output is zero at any point of S and (x(t), w(t))
remains in S for all t ∈ R, it is concluded that e(t) = 0 for all t ∈ R.
In other words, u(t) = Rw(t) can be seen as a feedforward input capable of
keeping e(t) identically at zero if the initial condition of (1.7) is appropriately
set. In essence, all methods for solving the generalized problem of tracking,
which will be discussed in the following, stem from this simple interpretation.
As a matter of fact, the focus of the various design procedures is on how
to asymptotically reproduce the control input Rw(t) (as the latter is not
available in real time) and to asymptotically approach the subspace S.

Equations (1.17), which we like to refer to as the internal model property,
express the fact that the control input Rw(t) in question can be viewed as
generated by the autonomous finite-dimensional linear dynamical system(

ξ̇
ẇ

)
=

(
F G2(C2Π +Q2)
0 S

)(
ξ
w

)
u = (H K2(C2Π +Q2) )

(
ξ
w

)
.

(1.20)

In fact, the first equation of (1.17) expresses nothing else than the property
that the subspace

R = {(ξ, w) : ξ = Σw}
is an invariant subspace for (1.20). Thus, if ξ(0) = Σw(0), then ξ(t) = Σw(t)
for all t ∈ R. As a consequence, for those initial conditions, the output u(t)
of (1.20) becomes

u(t) = HΣw(t) +K2(C2Π +Q2)w(t) = Rw(t)
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as the second equation of (1.17) holds.
Equations (1.17) essentially express the property that, embedded in the

controller (1.15), there is a generator (an internal model) for those control
inputs Rw(t) which are capable of keeping the state of (1.7) – (1.8) evolving on
the subspace S and, accordingly, keeping the regulated output e(t) identically
at zero. Indeed, since the y1 component of the measured output vanishes when
e is zero, system (1.20) only reflects the behavior of the controller when the
latter is driven by the restriction of y2 to S.

Proposition 1.3.2 has a natural converse.

Proposition 1.3.3. Suppose a controller of the form (1.15) stabilizes (1.7)
and, for some triplet of matrices Π,Σ,R, conditions (1.16) and (1.17) hold.
Then this controller solves the generalized tracking problem.

Proof. Consider the closed-loop system, which has the form

ẇ = Sw(
ẋ
ξ̇

)
=

(
A+BK1C1 +BK2C2 BH

G1C1 +G2C2 F

)(
x
ξ

)

+
(
P +BK1Q1 +BK2Q2

G1Q1 +G2Q2

)
w .

By hypothesis, the matrix

J =
(
A+BK1C1 +BK2C2 BH

G1C1 +G2C2 F

)
has all eigenvalues with negative real part. As a consequence, the Sylvester
equation(
Π̂
Σ̂

)
S =

(
A+BK1C1 +BK2C2 BH

G1C1 +G2C2 F

)(
Π̂
Σ̂

)
+
(
P +BK1Q1 +BK2Q2

G1Q1 +G2Q2

)
(1.21)

has a unique solution Π̂, Σ̂. Using (1.16) and (1.17), it is trivial to check that
Π and Σ do provide a solution of this equation. Thus, necessarily

Π̂ = Π , Σ̂ = Σ .

Using again (1.16), we deduce that the unique solution of (1.21) is such that

C1Π̂ +Q1 = 0

and this, in view of Lemma 1.3.1 in its sufficient part, proves that
limt→∞ e(t) = 0, i.e., proves the proposition. �

Propositions 1.3.2 and 1.3.3 together provide a necessary and sufficient
condition for the existence of a controller which solves the generalized tracking
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problem. They are not yet usable for design, though, because they do not
describe how a controller meeting all these conditions can be constructed.
This issue will be dealt with in the following sections. For the time being, we
discuss the particular form to which these conditions reduce in the special
case in which e = y and we discuss the important issue of the robustness.

In the special case in which e = y, the controller (1.15) reduces to a
controller of the form

ξ̇ = Fξ +G1e

u = Hξ +K1e ,
(1.22)

and the two Propositions 1.3.2 and 1.3.3 together yield the following.

Corollary 1.3.4. Suppose a controller of the form (1.22) stabilizes (1.7).
This controller solves the generalized tracking problem if and only if there
exist matrices Π,Σ,R such that

ΠS = AΠ +BR + P
0 = C1Π +Q1

(1.23)

and
ΣS = FΣ

R = HΣ .
(1.24)

Remark 1.3.3. It is worth stressing that the simpler structure assumed in this
case by the internal model property (1.17), namely form (1.24), may occur
also in cases in which the measured output y does not consist only of e, but
contains a nontrivial set of extra variables y2. For the special form (1.24) to
hold, in fact, it suffices that the solution Π of the regulator equations (1.23)
is such that C2Π +Q2 = 0. �

1.4 The Issue of Robustness

As observed at the end of Section 1.2, a good design should also take into
account the fact that the model of the controlled plant is subject to (at
least parametric) uncertainties. That is, the design has to take into account
the fact that the quintuplet of matrices A,B, P,C,Q which characterize the
model (1.7) (matrices Ce and Qe are submatrices of C and Q, in the light of
Assumption 3) depend on a vector µ of uncertain parameters, ranging on a
given set P . On the other hand, the controller has to be independent of µ,
whose actual value is unknown, and this entails some relevant consequences
on the analysis presented in the previous section.

In what follows, we consider a µ-dependent plant

ẋ = A(µ)x+ B(µ)u+ P (µ)w
e = C1(µ)x +Q1(µ)w
y2 = C2(µ)x +Q2(µ)w .

(1.25)
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and say that the (µ-independent) controller (1.9) is robust if it is able to
solve the generalized tracking problem for any value of µ ∈ P . Note that in
this formulation we have implicitly assumed that the exosystem (1.8) is not
subject to parameter uncertainties. The presence of parametric uncertainties
in the exosystem is a delicate problem, which requires a separate analysis
and will be dealt with in Section 1.6.

Since a controller that solves a generalized tracking problem in particular
asymptotically stabilizes the plant, a trivial necessary condition for the exis-
tence of a robust controller is the existence of a robust stabilizer. We postulate
this as an additional standing assumption, which strengthens Assumption 1
in a obvious way.

Assumption 1′. There exist matrices F,G,H,K such that, for all µ ∈ P , all
the eigenvalues of the matrix

J =
(

(A(µ) +B(µ)KC(µ)) B(µ)H
GC(µ) F

)
(1.26)

have negative real part.

We do not pursue here the subject of determining the existence and pro-
viding the construction of a robust stabilizer, which are topics addressed in
many other works, and extend beyond the scope of this book. We limit our-
selves to record the necessity of the existence of one such robust stabilizer,
and proceed with the analysis of the consequence of robustness of the various
developments presented in Section 1.3. Indeed, the results of Propositions
1.3.2 and 1.3.3 provide the following immediate consequence.

Proposition 1.4.1. Suppose a controller of the form (1.15) robustly stabi-
lizes (1.25). This controller is robust if and only if, for every value µ ∈ P,
there exist matrices Π,Σ,R such that

ΠS = A(µ)Π +B(µ)R + P (µ)
0 = C1(µ)Π +Q1(µ)

(1.27)

and
ΣS = FΣ +G2(C2(µ)Π +Q2(µ))
R = HΣ +K2(C2(µ)Π +Q2(µ)) .

(1.28)

It is worth observing that the three matrices Π,Σ,R, which are requested
to solve Equations (1.27) and (1.28), need not be independent of µ. To
stress this we may, occasionally, use the more explicit (but heavier) nota-
tion Π(µ), Σ(µ), R(µ).

The existence, for each µ, of a solution pair Π,R of the first set of Equa-
tions (1.27), namely the regulator equations, can be given a very simple, and
expressive, characterization if it is assumed that all entries of the various co-
efficient matrices in this equation are susceptible to independent variations,
i.e., if the uncertain parameter µ is identified with the quintuplet
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{A,B, P,C1, Q1} ∈ R
n×n × R

n×m × R
n×r × R

m×n × R
m×r ,

and P is a set having nonempty interior (in the topology of the vector space
where this quintuplet is defined). In this case, in fact, to say that Equations
(1.27) have solution for all µ ∈ P is to say that equations of the form

ΠS = AΠ +BR + P
0 = C1Π +Q1

(1.29)

have solutions for all {A,B, P,C1, Q1} in a set having nonempty interior. For
this to be the case, there is a simple condition available.

Lemma 1.4.2. Equations (1.29) have solution for all {A,B, P,C1, Q1} in
an open set if and only if

det
(
A− λI B
C1 0

)
�= 0

for all λ which are eigenvalues of S. If this is the case, the solution is unique.

Proof. Let A,B,C1, S be fixed matrices and consider the map

R : R
n×r × R

m×r → R
n×r × R

m×r

defined as follows:

R(Π,R) = (ΠS −AΠ −BR,−CΠ) .

To say that Π,R is a solution of (1.29) is to say that

R(Π,R) = (P,Q1) . (1.30)

The map R is a linear map and it is known that this map is invertible if and
only if the condition of the lemma holds (see [21] and [39]). Invertibility means
that for any pair (P,Q1) there is one and only one pair (Π,R) such that (1.30)
holds and this indeed proves that the condition in question is sufficient. To
show that the condition is necessary, pick any quintuplet {A,B, P,C1, Q1}
in the open set Q where these quintuplets are suppose to range. Given any
pair (P̄ , Q̄1) ∈ R

n×r × R
m×r, if ε is sufficiently small,

{A,B, P + εP̄ , C1, Q1 + εQ̄1} ∈ Q ,
because Q is open. Equations (1.29) must be solved for all those ε and, as a
simple calculation shows, the corresponding solution can be put in the form

Π = Π0 + εΠ̄
R = R0 + εR̄

in which Π̄, R̄ are such that
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R(Π̄, R̄) = (P̄ , Q̄1) . (1.31)

The pair (P̄ , Q̄1) being arbitrary, this proves that the linear map R is onto its
range and, since domain and range of the map have the same dimension, the
map is invertible. Hence, the condition in the lemma, a necessary condition
for R to be invertible, follows. �

Motivated by this, it is natural to add the following new assumption.

Assumption 5. For any µ ∈ P , the matrix(
A(µ) − λI B(µ)
C1(µ) 0

)
(1.32)

is nonsingular for all λ which are eigenvalues of S. This assumption will be
referred to as nonresonance condition.

It follows trivially from the previous discussion that if this assumption
holds then Equations (1.27) do have a solution for every µ ∈ P , as required.
However, it should be also clear that the assumption in question, strictly
speaking, is not necessary, unless the entries of the various coefficient matri-
ces are free to independently vary, which may not be the case in a specific
situation. It does, indeed, simplify the discussion and it is for this reason that
it is convenient to take it as an explicit standing assumption.

Remark 1.4.1. It is also important to stress that the roots of the determinant
of (1.32) coincide with the so-called transmission zeros of the system

ẋ = A(µ)x +B(µ)u
e = C1(µ)x ,

(1.33)

if the latter is controllable and observable. Thus, Assumption 5 is simply the
assumption that, for any µ ∈ P , none of the eigenvalues of the exosystem
(1.8) is a transmission zero of (1.33). �

If the regulator Equations (1.27) are known to have a solution for every
µ (which is indeed the case, as shown above, if Assumption 5 holds), it is
not difficult to construct a controller such that the second set of equations
in Proposition 1.4.1 is also solved, i.e., such that the internal model property
holds. To this end, let

m(λ) = λs + as−1λ
s−1 + · · · + a1λ+ a0

denote the minimal polynomial of the matrix S. It is well known that

Ss + as−1S
s−1 + · · · + a1S + a0I = 0

and, hence, for any m× s matrix V ,
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V Ss = −(a1V S
s−1 + · · · + a1V S + a0V ) . (1.34)

Consider now the pair of matrices

Φ =


0 I 0 · · · 0 0
0 0 I · · · 0 0
· · · · · · · ·
0 0 0 · · · 0 I

−a0I −a1I −a2I · · · −as−2I −as−1I


Γ = ( I 0 0 · · · 0 0 ) .

(1.35)

Using (1.34), it is immediate to check that the matrix

TS(V ) =


V
V S
· · ·

V Ss−2

V Ss−1

 (1.36)

satisfies
TS(V )S = ΦTS(V )

V = ΓTS(V ) .

Note that Φ, Γ depend only on the coefficients of the minimal polynomial
of S and not on the parameter µ, while TS(V ) may depend on this parameter
if V does. Using these matrices, it is not difficult to construct a controller
such that the internal model property (1.28) holds.

Proposition 1.4.3. Let Π(µ), R(µ) be a solution of (1.27). Suppose the ma-
trices F,G1, G2, H in (1.15) have the form

F =
(
Φ 0
0 L

)
, G1 =

(
Θ1

M1

)
, G2 =

(
Θ2

M2

)
, H = (Γ N )

with Φ, Γ as in (1.35). Suppose also that none of the eigenvalues of L is an
eigenvalue of S and that

Θ2(C2(µ)Π(µ) +Q2(µ)) = 0 (1.37)

for all µ ∈ P. Then, there exists a matrix Σ(µ) such that Π(µ), Σ(µ), R(µ)
is a solution of (1.28).

Proof. Set

Σ =
(
TS(V )
W

)
.

Then, it is easily seen that for a controller of the above structure, equations
(1.28) reduce to (we drop, for convenience, the dependence on µ)
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TS(V )S = ΦTS(V ) +Θ2(C2Π +Q2)
WS = LW +M2(C2Π +Q2)
R = ΓTS(V ) +NW +K2(C2Π +Q2) .

The second of these is a Sylvester equation in W which, as none of the
eigenvalues of S is an eigenvalue of L, has indeed a unique solutionW (which
may depend on µ, as C2Π+Q2 does). Define now the (possibly µ-dependent)
matrix

V = R−NW −K2(C2Π +Q2) .

In this case, the last equation becomes

V = ΓTS(V ) ,

while the first one, since by hypothesis Θ2(C2Π +Q2) = 0, reduces to

TS(V )S = ΦTS(V ) .

Thus, the matrix Σ solves (1.28). �

This result essentially states that, if the regulator Equations (1.27) have
a solution for all µ (which is anyway a necessary condition the plant must
fulfil for the existence of a controller that solves the generalized problem of
tracking), any controller in which F,G1, G2, H have the form indicated, under
the only hypotheses that none of the eigenvalues of S is an eigenvalue of L
and that condition (1.37) holds, is such that both sets of Equations (1.27)
and (1.28) of Proposition 1.4.1 have a solution. Thus, as this proposition says,
if the degrees of freedom left in the design, namely the matrices

L,M1,M2, N,K1,K2, Θ1, Θ2

can be chosen so as to robustly stabilize the plant (1.25), this controller is
a robust controller, i.e., it solves the generalized tracking problem for every
value of µ ∈ P . Various options for the choice of these matrices will be
discussed in the next section. For the time being, we give a result which
shows that the structure of the controller suggested in Proposition 1.4.1 is, to
some extent, a mandated choice for fulfilment of the conditions of Proposition
1.4.3.

As a matter of fact, consider the same scenario in which Assumption 5 is
necessary for the existence of a robust controller, namely the case in which the
uncertain parameter µ can be identified with the quintuplet {A,B, P,C1, Q1}
and P is a set having nonempty interior. Then, it is possible to prove that
the second set of equations in Proposition 1.4.1, namely the internal model
property, entails an important consequence on the structure of any robust
controller.
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Proposition 1.4.4. A controller is robust only if, for every m × r matrix
V , there exists a ν × r matrix T such that

TS = FT

V = HT .
(1.38)

Proof. Pick, as in the proof of Lemma 1.4.2, a quintuplet of the form

{A,B, P + εP̄ , C1, Q1 + εQ̄1} .
with {A,B, P,C1, Q1} in the interior of P . Equations (1.16) and (1.17) must
have a solution Π,Σ, Γ for all small ε and a simple calculation shows that
these solutions can be put in the form

Π = Π0 + εΠ̄
Σ = Σ0 + εΣ̄
R = R0 + εR̄

in which Π̄, R̄ are such that (1.31) holds and

Σ̄S = FΣ̄ +G2C2Π̄

R̄ = HΣ̄ +K2C2Π̄ .
(1.39)

Since the map R is invertible, as shown in the proof of Lemma 1.4.2, it is
always possible to find (P̄ , Q̄1) such that the unique pair (Π̄, R̄) which solves
(1.31) is such that Π̄ satisfies C2Π̄ = 0, while R̄ coincides with any arbitrary
matrix V . In this case, Equations (1.39) reduce to

Σ̄S = FΣ̄ , V = HΣ̄ ,

and this proves the proposition. �

We conclude the section with an obvious corollary of Proposition 1.4.3,
which considers the case in which the matrix F in (1.15) has the form

F =
(
Φ ∆
0 L

)
.

In this case, if none of the eigenvalues of L is an eigenvalue of S, the Sylvester
equation

ZL = ΦZ +∆ (1.40)

has a (unique) solution Z. In fact, by construction, the characteristic poly-
nomial of Φ is m-times the minimal polynomial of S, hence none of the
eigenvalues of L is an eigenvalue of Φ. The matrix Z can be used to construct
a change of coordinates, in the state space of (1.15), that brings F to the
form considered in Proposition 1.4.3.
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Corollary 1.4.5. Let Π(µ), R(µ) be a solution of (1.27). Suppose the ma-
trices F,G1, G2, H in (1.15) have the form

F =
(
Φ ∆
0 L

)
, G1 =

(
Θ1

M1

)
, G2 =

(
Θ2

M2

)
, H = (Γ N )

with Φ, Γ as in (1.35). Suppose also that none of the eigenvalues of L is an
eigenvalue of S and that

(Θ2 − ZM2) (C2(µ)Π(µ) +Q2(µ)) = 0 (1.41)

for all µ ∈ P. Then, there exists a matrix Σ(µ) such that Π(µ), Σ(µ), R(µ)
is a solution of (1.28).

1.5 Design Methods for Linear Systems

The discussion in the previous section has identified a potential structure of
a controller that solves the generalized tracking problem, and appropriate
conditions under which this controller is robust. To summarize this discus-
sion, suppose (see Assumption 5) that for every µ ∈ P the matrix (1.32) is
nonsingular for all λ which are eigenvalues of S and observe that, if this is
the case, for every µ ∈ P the regulator Equations (1.27) have a unique solu-
tion Π(µ), R(µ). Then, the results of the previous section yield the following
conclusion.

Proposition 1.5.1. Consider system (1.25). Suppose that, for all µ ∈ P,

det
(
A(µ) − λI B(µ)
C1(µ) 0

)
�= 0 (1.42)

for all λ which are eigenvalues of S. Let Π(µ), R(µ) be the unique solution
of (1.27) and suppose Θ is a matrix satisfying

Θ(C(µ)Π(µ) +Q(µ)) = 0 , (1.43)

for all µ ∈ P. Suppose L,M,N,K is a quadruplet of matrices, in which none
of the eigenvalues of L is an eigenvalue of S, such that, for all µ ∈ P, all the
eigenvalues of the matrix A(µ) +B(µ)KC(µ) B(µ)Γ B(µ)N

ΘC(µ) Φ 0
MC(µ) 0 L

 (1.44)

have negative real part. Then, the controller

ξ̇′ = Φξ′ +Θy

ξ̇′′ = Lξ′′ +My
u = Γξ′ +Nξ′′ +Ky .

(1.45)

is a robust controller.
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Proof. By hypothesis, controller (1.45) stabilizes (1.25) for all µ ∈ P . Since
the hypotheses of Proposition 1.4.3 hold, there is a matrix Σ(µ) solving also
the set of Equations (1.28) for all µ ∈ P . Thus, in view of Proposition 1.4.1,
this controller solves the generalized tracking problem for all µ ∈ P . �

Remark 1.5.1. Of course, in view of Corollary 1.4.5, a similar result holds if,
instead of (1.45), a controller of the form

ξ̇′ = Φξ′ +∆ξ′′ +Θy

ξ̇′′ = Lξ′′ +My
u = Γξ′ +Nξ′′ +Ky ,

(1.46)

is considered. In fact, as the matrices Φ and L have no eigenvalues in common,
the latter is equivalent to a controller of the form (1.45). To express the
conditions of Proposition 1.5.1 directly in terms of the parameters of (1.46),
the hypothesis (1.43) must be replaced by the hypothesis

(Θ − ZM)(C(µ)Π(µ) +Q(µ)) = 0 , (1.47)

with Z unique solution of (1.40). The resulting controller is robust if
L,M,N,K are such that all eigenvalues of A(µ) +B(µ)KC(µ) B(µ)Γ B(µ)N

ΘC(µ) Φ ∆

MC(µ) 0 L

 (1.48)

have negative real part for all µ ∈ P . �

This results essentially shows that the design of a robust controller can
be achieved, using a structure of the form (1.45), if a robust stabilizer can be
found for a system of the form(

ẋ
ξ̇′

)
=

(
A(µ) B(µ)Γ
ΘC(µ) Φ

)(
x
ξ′

)
+
(
B(µ)

0

)
u

y = (C(µ) 0 )
(
x
ξ′

)
.

(1.49)

Controller (1.45) has a simple structure. In fact, it consists of the parallel
interconnection (see Figure 1.1) of two subsystems, one of which is modeled
by equations of the form

ξ̇′ = Φξ′ +Θ1e+Θ2y2

u′ = Γξ′ ,
(1.50)

while the other one is modeled by equations of the form

ξ̇′′ = Lξ′′ +M1e+M2y2

u′′ = Nξ′′ +K1e+K2y2 .
(1.51)
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In what follows, we will sometime refer to (1.50) as the internal model unit,
or servocompensator, while we will refer to (1.51) as the stabilizer. We show
in this section how the degrees of freedom still left in the design of these
two subsystems can be chosen in such a way as to meet the conditions of
Proposition 1.5.1 and to obtain robust stability.

�

�

��

�

�y u

ξ̇′ = Φξ′ +Θ1e+Θ2y2

u′ = Γξ′

ξ̇′′ = Lξ′′ +M1e+M2y2

u′′ = Nξ′′ +K1e+K2y2

Figure 1.1. Controller (1.45).

We describe, to begin with, the design of a controller able to achieve the
desired goal for all values of the parameter µ in some open neighborhood of
given (and known) nominal value µ̄. Let, for convenience,

ẋ = Ax+Bu+ Pw
e = C1x+Q1w

y2 = C2x+Q2w

(1.52)

describe the controlled plant when µ = µ̄. Since by definition C1Π +Q1 = 0,
a trivial way to meet the condition Θ2(C2Π +Q2) = 0 of Proposition 1.5.1
is to set Θ2 = 0. Setting also, for simplicity, K1 = 0 and K2 = 0 yields a
controller modeled by equations of the form

ξ̇′ = Φξ′ +Θ1e

ξ̇′′ = Lξ′′ +M1e+M2y2

u = Γξ′ +Nξ′′ .

(1.53)

The corresponding unforced closed-loop system is ẋ
ξ̇′

ξ̇′′

 =

 A BΓ BN

Θ1C1 Φ 0
MC 0 L


 x
ξ′

ξ′′

 , (1.54)

in which, for convenience, we have set

M = (M1 M2 ) , C =
(
C1

C2

)
.
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Observe now that the pair (Γ, Φ) in (1.35) is by construction observable, and
that it is always possible to find Θ1 such that the pair (Φ,Θ1) is controllable.
For this choice of Θ1, the following holds.

Lemma 1.5.2. Suppose the pair (A,B) is stabilizable and the pair (C,A) is
detectable. Suppose

det
(
A− λI B
C1 0

)
�= 0 (1.55)

for all λ which are eigenvalues of S. Let Φ and Γ be as in (1.35), and Θ1

such that the pair (Φ,Θ1) is controllable. Then, the pair

(C 0 ) ,
(
A BΓ
0 Φ

)
(1.56)

is detectable and the pair(
A 0

Θ1C1 Φ

)
,

(
B
0

)
(1.57)

is stabilizable.

Proof. Suppose, without loss of generality, that the pair (C1, A) is decom-
posed as

( 0 C1d ) ,
(
Auu Aud

0 Add

)
with (C1d, Add) a detectable pair. Split B and C2 accordingly, as

B =
(
Bu

Bd

)
, C2 = (C2u C2d ) .

Suppose that the pair (1.56) is not detectable. Then, there exist a number λ
with nonnegative real part and a nonzero vector col(xu, xd, ξ) such that

(Auu − λI)xu +Audxd +BuΓξ = 0
(Add − λI)xd +BdΓξ = 0

(Φ− λI)ξ = 0
C1dxd = 0

C2uxu + C2dxd = 0 .

The vector ξ cannot be zero. Otherwise, (xu, xd) �= (0, 0) and the remaining
equations would contradict the detectability of the pair (C,A). Therefore,
from the third equation, it is seen that λ is an eigenvalue of Φ and hence an
eigenvalue of S. Note now that also Γξ cannot be zero because, otherwise,
the identity (

(Φ− λI)
Γ

)
ξ =

(
0
0

)
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would contradict the observability of (Γ, Φ). We have found in this way a
nonzero vector col(xu, xd, Γ ξ) satisfying (Auu − λI) Aud Bu

0 (Add − λI) Bd

0 C1d 0

 xu

xd

Γξ

 =

 0
0
0


with λ an eigenvalue of S, and this contradicts the hypothesis (1.55). Thus,
the pair (1.56) is detectable. The proof that the pair (1.57) is stabilizable is
identical. �

Corollary 1.5.3. Suppose the hypotheses of Lemma 1.5.2 hold. Then, there
exists a triplet L,M,N , in which none of the eigenvalues of L is an eigenvalue
of S, such that system (1.54) is asymptotically stable.

Proof. Since detectability and stabilizability are invariant under output in-
jection and, respectively, state feedback, it is immediate to see that the pair

(C 0 ) ,
(

A BΓ
Θ1C1 Φ

)
is detectable and the pair(

A BΓ
Θ1C1 Φ

)
,

(
B
0

)
is stabilizable. Thus, looking at the structure of (1.54), the existence of a
triplet L,M,N which makes this system asymptotically stable follows from
standard results. Small variations on L do not destroy asymptotic stability
and therefore L can always be chosen so that none of its eigenvalues is an
eigenvalue of S. �

It is seen from this result that if the pair (A,B) is stabilizable, if the pair
(C,A) is detectable and condition (1.55) holds, it is always possible to choose
Θ1 and L,M,N,K such that controller (1.45) meets all the requirements
indicated in Proposition 1.5.1. Therefore, this controller solves the generalized
tracking problem for (1.52). This controller is also robust, by construction,
in the presence of plant parameter variations, so long as these variations are
such that condition (1.42) continues to hold and all the eigenvalues of (1.44)
remain with negative real part. In this respect, it may be worth observing
that if those conditions hold for one value of µ̄, they continue to hold for all µ
in some open neighborhood of µ̄. Thus, the controller in question solves the
generalized tracking problem for all values of µ in some open neighborhood
of µ̄. However, it must be stressed that, in the previous design procedure,
there is no a priori guarantee that the second condition (the stability of the
closed-loop system) continues to hold if µ is free to range on a given set P .
For this to be the case, a more refined design of L,M,N,K, and perhaps Θ,
is required.
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Motivated by this observation, we describe now a design method by means
of which, under appropriate hypotheses, robust stability for all values of µ
within a prescribed set P can be achieved. For the sake of simplicity, the
analysis will be limited to the case of a system for which m = 1, as the
discussion of this case is sufficient to present the basic design ideas. The
extension to systems having m > 1 is not terribly more difficult, but requires
a nonnegligible additional notational burden. Consider a system of the form

ẋ = A(µ)x +B(µ)u + P (µ)w
e = C1(µ)x +Q1(µ)w

(1.58)

in which A(µ), B(µ), C1(µ) are continuous functions of µ, a vector of un-
certain parameters ranging over a compact set P , and suppose that, for all
values of µ ∈ P , this system has the same relative degree between the input
u and the output e. This is to say that for some integer r ≥ 1

C1(µ)B(µ) = C1(µ)A(µ)B(µ) = · · · = C1(µ)Ar−2(µ)B(µ) = 0
C1(µ)Ar−1(µ)B(µ) �= 0 .

It is well known that, by means of a suitable µ-dependent change of coordi-
nates, this system can be written in the form

ẋ1 = A11(µ)x1 +A12(µ)x2 + P1(µ)w
ẋ2 = Āx2 + B̄ (A21(µ)x1 +A22(µ)x2 + b(µ)u) + P2(µ)w
e = C̄x2 +Q1(µ)w

in which dim(x1) = n− r, dim(x2) = r,

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

 , B̄ =


0
0
·
0
1

 , C̄ = ( 1 0 0 · · · 0 ) ,

and
b(µ) = C1(µ)Ar−1(µ)B(µ) .

An additional change of coordinates

x̃2 = x2 + Z(µ)w ,

in which

Z(µ) =


Q1(µ)

C̄P2(µ) +Q1(µ)S
· · ·

C̄Ār−2P2(µ) + C̄Ār−3P2(µ)S + . . .+Q1(µ)Sr−1

 ,
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yields a system of the form

ẋ1 = A11(µ)x1 +A12(µ)x̃2 + P̄1(µ)w
˙̃x2 = Āx̃2 + B̄ (A21(µ)x1 +A22(µ)x̃2 + b(µ)u+ p̄2(µ)w)
e = C̄x̃2

(1.59)

whose peculiar structure will be exploited in the sequel.

Remark 1.5.2. Note that the ith element of the vector x̃2(t) coincides with
the (i−1)th derivative of the function e(t) with respect to time. This property
will be used later, for the construction of a robust stabilizer driven by e. �

A simple calculation, which is left to the reader, shows that the matrix
in (1.42) is singular if and only if λ is an eigenvalue of A11(µ). Thus, the
basic condition (1.42) holds if and only if none of the eigenvalues of S is
an eigenvalue of A11(µ). In particular, this is the case if all eigenvalues of
A11(µ) have negative real part. Alternatively, one may wish to check that
the regulator Equations (1.27) have solutions for every µ. To this end, split
Π(µ) in two blocks, as

Π(µ) =
(
Π1(µ)
Π2(µ)

)
,

consistently with the partition on the state vector in (1.59). If none of the
eigenvalues of S is an eigenvalue of A11(µ), the Sylvester equation

Π1(µ)S = A11(µ)Π1(µ) + P̄1(µ) (1.60)

has a unique solution Π1(µ). Now, set Π2(µ) = 0 and

R(µ) =
1
b(µ)

[−A21(µ)Π1(µ) − p̄2(µ)] . (1.61)

A straightforward check shows that the pair Π(µ), R(µ) thus constructed is
a solution of (1.27). Thus, if none of the eigenvalues of S is an eigenvalue of
A11(µ), one of the basic conditions indicated in Proposition 1.5.1 is fulfilled.

Even though not strictly necessary, it may be convenient to use the solu-
tion Π1(µ) of (1.60) to change the coordinate x1 as

x̃1 = x1 −Π1(µ)w ,

and this, in view of (1.61), transforms system (1.59) into

˙̃x1 = A11(µ)x̃1 +A12(µ)x̃2

˙̃x2 = Āx̃2 + B̄(A21(µ)x̃1 +A22(µ)x̃2) + B̄b(µ)(u−R(µ)w)
e = C̄x̃2 .

(1.62)

The fulfilment of the other basic condition of Proposition 1.5.1, namely
robust stabilization of system (1.49), can be achieved as follows. We begin by
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observing that a system of the form (1.59) can be robustly stabilized if the
matrix A11(µ) and the coefficient b(µ) meet certain conditions. As a matter
of fact, the following well-known result holds.

Lemma 1.5.4. Let P be a compact set. Suppose there is a number b̄ > 0
such that b(µ) ≥ b̄ and suppose that the eigenvalues of A11(µ) have negative
real part, for all µ ∈ P. Then, there is an r-dimensional row vector N ,
independent of µ, such that, for all µ ∈ P, the eigenvalues of(

A11(µ) A12(µ)
B̄A21(µ) Ā+ B̄A22(µ)

)
+

(
0

B̄b(µ)

)
( 0 N ) (1.63)

have negative real part.

Proof. Consider system (1.59) and set w = 0 (in fact, the role of w is irrele-
vant in the stability analysis). Let

d(λ) = λr−1 + dr−2λ
r−2 + · · · + d1λ+ d0

be a polynomial having all roots with negative real part and set

D = ( d0 d1 · · · dr−2 ) , N̄ = (D 1 ) .

Let x̃22 denote the last entry of x̃2, split x̃2 as

x̃2 =
(
x̃21

x̃22

)
,

and define a set of new coordinates as

θ1 =
(
x1

x̃21

)
, θ2 = x̃22 +Dx̃21 = N̄ x̃2 .

This yields a system of the form(
θ̇1
θ̇2

)
=
(
F11(µ) F12(µ)
F21(µ) F22(µ)

)(
θ1
θ2

)
+
(

0
b(µ)

)
u (1.64)

in which F11(µ) is a matrix having the following structure

F11(µ) =
(
A11(µ) ∗

0 F̄

)
with

F̄ =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1

−d0 −d1 −d2 · · · −dr−2

 .
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By assumption (and by definition of D) this matrix F11(µ) has eigenvalues
with negative real part for all µ ∈ P . Thus, given any number α > 0, there
exists a positive definite symmetric matrix Z(µ) such that

Z(µ)F11(µ) + FT
11(µ)Z(µ) = −αI .

Since the entries of F11(µ) are continuous functions of µ, so are the entries
of Z(µ). Consider now the positive definite quadratic form

V (θ1, θ2) = θT1 Z(µ)θ1 + θT2 θ2 . (1.65)

The derivative of this function along the trajectories of (1.64) with control
u = −kθ2 is the quadratic form(

θ1
θ2

)T
(

−αI Z(µ)F12(µ) + FT
21(µ)

FT
12(µ)Z(µ) + F21(µ) 2F22(µ) − 2b(µ)k

)(
θ1
θ2

)
.

As µ ranges on a compact set, the off-diagonal blocks are continuous functions
of µ and b(µ) ≥ b̄ > 0, standard arguments show that there is a number k∗

such that, if k ≥ k∗, this form is negative definite and hence the (1.64) with
control u = −kθ2 is (robustly) asymptotically stable. Reverting back to the
coordinates of (1.59) yields a control

u = −kN̄x̃2

and this proves the lemma. �

Remark 1.5.3. Note that, to say that b(µ) ≥ b̄ is to say that the so-called
high-frequency gain of the system is positive, while to say that all eigenvalues
of A11(µ) have negative real part is to say that all zeros of the transfer
function of (1.59) between the input u and output e have negative real part.
In the lemma above, these properties are required to hold for all µ ∈ P . Note
also that the matrix N determined in the proof of the lemma is a matrix of
the form N = −kN̄ in which N̄ is fixed and k is a number required to satisfy
k ≥ k∗ for some k∗ > 0. �

In other words, this lemma says that if the two hypotheses on A11(µ) and
b(µ) hold, there is a memoryless state-feedback law

u = Nx̃2

that stabilizes system (1.59). It is important to stress that the feedback law
thus defined, expressed in the original coordinates in which system (1.58) is
given, is not µ-independent and not even w-independent. In fact, the changes
of variables needed to obtain x̃2 from x depend on µ and on w. There might
be cases, though, in which the vector x̃2 can be regarded as part of a vector
y of measured variables, and in these cases, indeed, the feedback law thus
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found does provide robust stability. If the vector x̃2 is not directly accessible
for measurement, a dynamic state feedback, driven by the measured variable
e, can be constructed instead. This is made possible by the fact that the
various components of the vector x̃2(t) coincide with the derivatives of e(t)
with respect to time and that these derivatives can be approximated by means
of a suitable estimator driven by e(t). To this end, consider a system modeled
by

ξ̇′′ = Lξ′′ +M1e

in which ξ′′ ∈ R
r,

L =


−gcr−1 1 0 · · · 0
−g2cr−2 0 1 · · · 0

· · · · · · ·
−gr−1c1 0 0 · · · 1
−grc0 0 0 · · · 0

 , M1 =


gcr−1

g2cr−2

·
gr−1c1
grc0

 , (1.66)

where c0, c1, . . . , cr−1 are the coefficients of a fixed polynomial

c(λ) = λr + cr−1λ
r−1 + · · · + c1λ+ c0

having all roots with negative real part, and g > 0 is a parameter to be
determined. It is well known that, if g is large enough, the dynamic feedback
law

ξ̇′′ = Lξ′′ +M1e

u = Nξ′′
(1.67)

robustly stabilizes (1.59).

Lemma 1.5.5. Let P be a compact set. Suppose there is a number b̄ > 0
such that b(µ) ≥ b̄ and suppose that the eigenvalues of A11(µ) have negative
real part, for all µ ∈ P. Let N be as in Lemma 1.5.4. Then, there is a number
g∗ such that, if g > g∗, the eigenvalues of

(
A11(µ) A12(µ)
B̄A21(µ) Ā+ B̄A22(µ)

) (
0

B̄b(µ)

)
N

M1 ( 0 C̄ ) L

 (1.68)

have negative real part for all µ ∈ P.

Proof. Change the matrix (1.68), by similarity, using a transformation

T =

 I 0 0
0 I 0
0 Dg −Dg


in which Dg is the matrix
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Dg =


gr−1 · · · 0 0
· · · · · ·
0 · · · g 0
0 · · · 0 1

 .

In this way, matrix (1.68) becomes A11(µ) A12(µ) 0
B̄A21(µ) Ā+ B̄[A22(µ) + b(µ)N ] −B̄b(µ)ND−1

g

B̄A21(µ) B̄[A22(µ) + b(µ)N ] −B̄b(µ)ND−1
g + gL̄

 (1.69)

with

L̄ =


−cr−1 1 0 · · · 0
−cr−2 0 1 · · · 0

· · · · · · ·
−c1 0 0 · · · 1
−c0 0 0 · · · 0


a matrix having all eigenvalues with negative real part.

The submatrix consisting of the four blocks in the upper-left corner of
(1.69) is precisely the matrix (1.63) which, if N is chosen as in Lemma 1.5.4,
has all eigenvalues with negative real part, for all µ ∈ P . Moreover, if g ≥ 1,
the matrix D−1

g is bounded, in norm, by 1. Thus, arguments identical to those
used in the proof of Lemma 1.5.4 prove the claim. �

With this result in mind, we revert now to the problem of designing a
robust regulator for (1.49). The idea is to choose the matrix Θ in such a way
that system (1.49) becomes a system which fulfils the hypotheses of Lemma
1.5.5, so that the robust stabilizer described in the previous lemma can be
used. This is actually possible, in the light of the following simple but very
important result.

Lemma 1.5.6. Let F0 be any s× s Hurwitz matrix and let G0 be any s× 1
vector such that the pair (F0, G0) is controllable. Let Φ be any s × s matrix
whose eigenvalues have nonnegative real part, and let Γ be any 1 × s vector
such that the pair (Γ, Φ) is observable. Then, there exist a 1× s vector Ψ and
a nonsingular s× s matrix T such that

(F0 +G0Ψ)T = TΦ

ΨT = Γ .

Proof. Observe, first of all, that the Sylvester equation

TΦ = F0T +G0Γ

has a unique solution T , because Φ and F0 have no eigenvalues in common.
We prove that T is nonsingular. Suppose, by contradiction, that the kernel
of T is nonzero. Let {v1, . . . , vk} be a basis for ker(T ). Then
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TΦvj = G0Γvj , for j = 1, . . . , k. (1.70)

As T is square, there exists also a set of independent row vectors {w1, . . . , wk}
such that wiT = 0 for i = 1, . . . , k. Then

wiG0Γvj = 0 , for i, j = 1, . . . , k.

Suppose Γvj = 0 for all j. In this case, (1.70) yields TΦvj = 0, i.e.,

Φvj ∈ ker(T ) , for j = 1, . . . , k. (1.71)

We find, in this way, that ker(T ) is invariant under Φ and contained in ker(Γ ),
and this contradicts observability of (Γ, Φ). If Γvj �= 0 for at least one value
of j, then wiG0 must be zero for all i and, with a dual argument, we can
prove that this contradicts controllability of (F0, G0). Having shown that T
is nonsingular, to complete the proof it suffices to set Ψ = ΓT−1. �

Remark 1.5.4. Note that the matrix Ψ is the unique row vector which assigns
to F0 +G0Ψ a set of eigenvalues which coincide with the eigenvalues of Φ. �

Remark 1.5.5. Note that, if Φ and Γ are matrices of the form (1.35), written
for m = 1, the matrix

TS(R(µ)) =


R(µ)
R(µ)S
· · ·

R(µ)Ss−1


satisfies

TS(R(µ))S = ΦTS(R(µ))
R(µ) = ΓTS(R(µ)) .

Hence, the matrix T (µ) = TTS(R(µ)) satisfies

T (µ)S = (F0 +G0Ψ)T (µ)
R(µ) = ΨT (µ) . �

With this result in mind, consider now for (1.62) a controller of the form

ξ̇′ = F0ξ
′ +G0u

u = Ψξ′ + v ,
(1.72)

in which v is viewed as an additional input, to be used later for robust
stabilization. This controller will be referred to as the canonical internal
model, in view of some relevant features that will be highlighted in the sequel.

The composition of (1.62) with the controller (1.72) yields the system

ξ̇′ = (F0 +G0Ψ)ξ′ +G0v

˙̃x1 = A11(µ)x̃1 +A12(µ)x̃2

˙̃x2 = Āx̃2 + B̄(A21(µ)x̃1 + A22(µ)x̃2) + B̄b(µ)(Ψξ′ + v −R(µ)w) .
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The latter, changing ξ′ into

ξ̃′ = ξ′ − T (µ)w

and using the properties of T (µ) indicated in Remark 1.5.5, becomes

˙̃ξ′ = (F0 +G0Ψ)ξ̃′ +G0v

˙̃x1 = A11(µ)x̃1 +A12(µ)x̃2

˙̃x2 = Āx̃2 + B̄(A21(µ)x̃1 +A22(µ)x̃2) + B̄b(µ)(Ψξ̃′ + v) .

(1.73)

Remark 1.5.6. Note that, if v is set equal to the output of a system of the
form

ξ̇′′ = Lξ′′ +My
v = Nξ′′ +Ky ,

the resulting controller is a controller of the form

ξ̇′ = (F0 +G0Ψ)ξ′ +G0Nξ
′′ +G0Ky

ξ̇′′ = Lξ′′ +My
u = Ψξ′ +Nξ′′ +Ky ,

i.e., a special case of the controller considered in Remark 1.5.1. �

The advantage in using the canonical internal model (1.72) is that the
composite system (1.73), with v viewed as input and e viewed as output, still
meets the conditions, indicated in Lemma 1.5.5, for the existence of a robust
stabilizer. To see that this is the case, consider the change of state variables

χ = ξ̃′ − 1
b(µ)

G0C̄Ā
r−1x̃2 ,

which yields (recall that C̄Ār−1B̄ = 1 and that Ār = 0)

χ̇ = (F0 +G0Ψ)ξ̃′ +G0v

− 1
b(µ)

G0

(
A21(µ)x̃1 +A22(µ)x̃2 + b(µ)(Ψξ̃′ + v)

)
,

in which the terms G0(Ψξ̃′ + v) and −G0(Ψξ̃′ + v) cancel out. In the new
variables, system (1.73) reduces to a system of the form(

χ̇
˙̃x1

)
=

(
F0 F01(µ)
0 A11(µ)

)(
χ
x̃1

)
+
(
F02(µ)
A12(µ)

)
x̃2

˙̃x2 = Āx̃2 + B̄
(
(Ψb(µ) A21(µ) )

(
χ
x̃1

)
+ F22(µ)x̃2 + b(µ)v

)
(1.74)
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in which F01(µ), F02(µ), F22(µ) are suitable matrices. This system has exactly
the same structure as system (1.59), the place of the matrix A11(µ) being
taken by the matrix (

F0 F01(µ)
0 A11(µ)

)
. (1.75)

As F0 is by hypothesis a Hurwitz matrix, if the eigenvalues of A11(µ) have
negative real part for all µ ∈ P , so have the eigenvalues of (1.75). Hence, the
results of Lemma 1.5.4 and 1.5.5 can be invoked. In particular, it is possible
to claim the existence of matrices L,M1, N such that the eigenvalues of the
matrix F0 F01(µ) F02(µ)

0 A11(µ) A12(µ)
B̄Ψb(µ) B̄A21(µ) Ā+ B̄F22(µ)

+

 0
0

B̄b(µ)

 ( 0 0 N ) (1.76)

and those of the matrix

 F0 F01(µ) F02(µ)
0 A11(µ) A12(µ)

B̄Ψb(µ) B̄A21(µ) Ā+ B̄F22(µ)


 0

0
B̄b(µ)

N
M1 ( 0 0 C̄ ) L

 (1.77)

have negative real part for all µ ∈ P .
These matrices L,M1, N can be directly used for the design of a robust

controller. For the convenience of the reader, we summarize the conclusion
in a formal statement, where all relevant assumptions are indicated.

Proposition 1.5.7. Consider system (1.59). Suppose there is a number b̄ >
0 such that b(µ) ≥ b̄ and suppose that the eigenvalues of A11(µ) have negative
real part, for all µ in a compact set P. Let s denote the dimension of the
minimal polynomial of S. Let F0 be any s× s Hurwitz matrix and let G0 be
any s×1 vector such that the pair (F0, G0) is controllable. Let Ψ be the unique
row vector which assigns to F0+G0Ψ a set of eigenvalues which coincide with
the eigenvalues of Φ. Let L,M1, N be such that all eigenvalues of (1.77) have
negative real part for all µ ∈ P. The controller

ξ̇′ = (F0 +G0Ψ)ξ′ +G0Nξ
′′

ξ̇′′ = Lξ′′ +M1e

u = Ψξ′ +Nξ′′
(1.78)

is a robust controller for (1.59).

Proof. Controlling (1.59) by means of (1.78) yields a system which, in suitable
coordinates, appears as (1.74) controlled by
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ξ̇′′ = Lξ′′ +M1e

v = Nξ′′ .

For all µ ∈ P , the system obtained in this way is asymptotically stable and,
in particular, limt→∞ e(t) = 0. Thus, the controller is a robust controller. �

Remark 1.5.7. There might be cases in which not only the first component of
x̃2, which is equal to e, but also all other components of this vector are avail-
able for measurement. In this case, the controller described in the previous
proposition can be simplified. In fact, set y = x̃2 and consider the controller

ξ̇′ = (F0 +G0Ψ)ξ′ +G0Ny

u = Ψξ′ +Ny .
(1.79)

If N is such that the eigenvalues of matrix (1.76) have negative real part for
all µ ∈ P , this controller is a robust controller. �

Remark 1.5.8. Controller (1.78) and controller (1.79) have by construction
the internal model property (1.28), because they are special cases of the
controller (1.46) and, respectively, (1.45). It may be convenient, for the sake of
completeness, to determine the explicit expression of the matrix Σ(µ) which
renders condition (1.28) fulfilled. Consider, for instance, the case of controller
(1.79). In this case, y = x̃2 and we have shown above that Π2(µ) = 0. Thus,
(1.28) reduce to

Σ(µ)S = (F0 +G0Ψ)Σ(µ)
R(µ) = ΨΣ(µ) .

Comparing with the observations in Remark 1.5.5, it is concluded that
Σ(µ) = T (µ). In the case of controller (1.78), the internal model property
(1.28) reduces to

Σ(µ)S =
(

(F0 +G0Ψ) G0N
0 L

)
Σ(µ)

R(µ) = (Ψ N )Σ(µ) .

Thus, again comparing with the observations in Remark 1.5.5, it is concluded
that

Σ(µ) =
(
T (µ)

0

)
. �

1.6 Internal Model Adaptation

The remarkable feature of a robust controller is the ability to secure asymp-
totic decay of the regulated output e(t) in spite of parameter uncertainties.
As a matter of fact, so long as the controller is such that the internal model
property (1.28) holds, the subspace
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V0(µ) = {(x, ξ, w) : x = Π(µ)w, ξ = Σ(µ)w}

is invariant in the closed-loop system

ẇ = Sw

ẋ = [A(µ) +B(µ)KC(µ)]x +B(µ)Hξ + [P (µ) +B(µ)KQ(µ)]w

ξ̇ = Fξ +GC(µ)x +GQ(µ)w ,

and attractive if the unforced closed-loop system is robustly stable. Thus,
all trajectories of the forced closed-loop system asymptotically converge to
V0(µ) and, since the map

e = C1(µ)x+Q1(µ)w

is zero on V0(µ), the regulation goal limt→∞ e(t) = 0 is achieved.
Of course, the subspace V0(µ) depends on the uncertain parameter µ, but

the remarkable feature of the special structure of the controller considered in
Proposition 1.4.3, or in the subsequent Corollary 1.4.5, is to have the internal
model property secured by means of a controller which is independent of µ.
As a matter of fact, the controller in question is able to generate, regardless of
the specific value of µ, the feedforward control input R(µ)w(t) which would
force the state x(t) of the controlled plant to remain on the subspace

S(µ) = {(x,w) : x = Π(µ)w} .

In fact, for every w(0) there is a initial state ξ(0) (that is, ξ(0) = Σ(µ)w(0))
from which the controller, driven by the measured output

y(t) = [C(µ)Π(µ) +Q(µ)]w(t) ,

which is precisely the measured output occurring when x(t) = Π(µ)w(t),
produces a control input which coincides with R(µ)w(t).

Thus, control schemes incorporating a robust controller efficiently address
the problem of rejecting all disturbance inputs generated by the exosystem
(1.8). In this sense, they generalize the classical way in which integral-control-
based schemes cope with constant but unknown disturbances. There still is a
limitation, though, in these schemes: the necessity for a precise model of the
exosystem. As a matter of fact, the controller considered in Proposition 1.4.3
(or in Corollary 1.4.5) contains a pair of matrices (Φ, Γ ) whose construction
(see (1.35)) requires the knowledge of the precise values of the coefficients of
the minimal polynomial of S. The reader will have no difficulty in checkings
that, in general, the internal model property will be lost if inaccurate values
of these coefficients are used to construct the matrix Φ. This limitation is
not sensed in a problem of set point control, where the uncertain exogenous
input is constant and thus obeys a trivial, parameter independent, differential
equation, but becomes immediately evident in the problem of rejecting, for
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example, a sinusoidal disturbance of unknown amplitude and phase. A robust
controller is able to cope with uncertainties on amplitude and phase of the
exogenous sinusoidal signal, but the frequency at which the internal model
oscillates must exactly match the frequency of the exogenous signal: any
mismatch in such frequencies results in a nonzero steady-state error.

In what follows we show how this limitation can be removed, by automat-
ically tuning the “natural frequencies” of the robust controller. For the sake
of simplicity, we limit ourselves to sketch here the main philosophy of the
design method; further details and proofs will be provided later in specific
applications.

Consider again system (1.58), for which we have learned how to design
a robust controller but suppose, now, that the model of exosystem which
generates the disturbance w depends on a vector � of uncertain parameters,
ranging on a prescribed set Q, as in

ẇ = S(�)w . (1.80)

We retain the assumption that the exosystem is neutrally stable, in which
case S(�) can only have eigenvalues on the imaginary axis (with simple mul-
tiplicity in the minimal polynomial). Therefore, uncertainty in the value of �
is reflected in uncertainty in the value of the imaginary part of these eigen-
values.

Let
m�(λ) = λs + as−1(�)λs−1 + · · · + a1(�)λ + a0(�)

denote the minimal polynomial of S(�) and assume that the coefficients
as−1(�), . . . , a1(�), a0(�) are continuous functions of �. Define a pair of ma-
trices Φ�, Γ as (1.35), the former of which is a continuous function of �.
Appealing to Lemma 1.5.6, it can be asserted that, if (F0, G0) is a control-
lable pair in which F0 is a Hurwitz matrix, there exists a vector Ψ� and a
nonsingular matrix T� such that

(F0 +G0Ψ�)T� = T�Φ�

Ψ�T� = Γ .

In particular, Ψ� and T� depend continuously on �, as Φ� does.
If � were known, the controller considered in Proposition 1.5.7, with

Ψ = Ψ� would be a robust controller (having assumed, of course, that the
assumptions of the proposition are fulfilled). In case � is not known, one may
wish to replace the vector Ψ in (1.78) with an estimate Ψ̂ of Ψ�, to be tuned by
means of an appropriate adaptation law. We illustrate how this works in the
simpler situation in which the entire vector x̃2 is available for measurement,
in which case the simpler control law (1.79) can be taken as a paradigm.

Consider a control law of the form

ξ̇′ = (F0 +G0Ψ̂)ξ′ +G0Ny

u = Ψ̂ξ′ +Ny ,
(1.81)
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in which Ψ̂ is a 1× s vector to be tuned, and choose for Ψ̂ an adaptation law
of the form

˙̂
Ψ = −γ(N̄y)(ξ′)T (1.82)

in which γ > 0 is an arbitrary design parameter. The row vector N̄ is a vector
of the form

N̄ = ( d0 d1 · · · dr−2 1 )

in which d0, d1, . . . , dr−2 are coefficients of a Hurwitz polynomial

d(λ) = λr−1 + dr−2λ
r−2 + · · · + d1λ+ d0

and N = −kN̄ . Then, the following result holds.

Proposition 1.6.1. Consider system (1.59), with exosystem (1.80), in
which � is a vector of uncertain parameters ranging on a compact set Q.
Suppose there is a number b̄ > 0 such that b(µ) ≥ b̄ and suppose that the
eigenvalues of A11(µ) have negative real part, for all µ in a compact set P.
Let s denote the dimension of the minimal polynomial of S. Let F0 be any
s×s Hurwitz matrix, and let G0 be any s×1 vector such that the pair (F0, G0)
is controllable. Then, there is a number k∗ such that, for all k ≥ k∗, the con-
trol law (1.81) with adaptation law (1.82), driven by the measured output
y = x̃2, is such that, in the corresponding closed-loop system, all trajectories
are bounded and limt→∞ e(t) = 0.

Proof. Define an estimation error Ψ̃ = Ψ̂ − Ψ�, and consider the aggregate
of (1.59) and (1.81), with Ψ̂ replaced by Ψ� + Ψ̃ and y = x̃2 ,

ξ̇′ = (F0 +G0Ψ�)ξ′ +G0Nx̃2 +G0Ψ̃ξ
′

ẋ1 = A11(µ)x̃1 +A12(µ)x̃2 + P̄1(µ)w
˙̃x2 = Āx̃2 + B̄ (A21(µ)x1 +A22(µ)x̃2 + b(µ)Ψ�ξ

′ + b(µ)Nx̃2 + p̄2(µ)w)

+ B̄b(µ)Ψ̃ξ′ .

Recall (see Remark 1.5.5) that the matrix

Σ�(µ) = T�TS(R(µ))

satisfies

Σ�(µ)S(�) = (F0 +G0Ψ�)Σ�(µ), R(µ) = Ψ�Σ�(µ) .

Hence, changing variables as

x̃1 = x1 −Π1(µ)w
ξ̃′ = ξ′ −Σ�(µ)w

yields, in view of (1.60) and (1.61),
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˙̃
ξ′ = (F0 +G0Ψ�)ξ̃′ +G0Nx̃2 +G0Ψ̃ξ

′

˙̃x1 = A11(µ)x̃1 +A12(µ)x̃2

˙̃x2 = Āx̃2 + B̄
(
A21(µ)x̃1 +A22(µ)x̃2 + b(µ)Ψ�ξ̃

′ + b(µ)Nx̃2

)
+ B̄b(µ)Ψ̃ ξ′

(we have not changed the coordinate ξ′ in the term multiplied by Ψ̃ for reasons
that will become clear in a moment). The additional change of variables

χ = ξ̃′ − 1
b(µ)

G0C̄Ā
r−1x̃2 ,

(already used in the discussion preceding Proposition 1.5.7) yields a system
of the form

χ̇ = F0χ+ F01(µ)x̃1 + F02(µ)x̃2

˙̃x1 = A11(µ)x̃1 +A12(µ)x̃2

˙̃x2 = Āx̃2 + B̄ (A21(µ)x̃1 + [F22(µ) + b(µ)N ]x̃2 + b(µ)Ψ�χ)

+ B̄b(µ)Ψ̃ξ′

in which the matrices F01(µ), F02(µ), F22(µ) are precisely the same matrices
found in (1.76). Setting

x =

 χ
x̃1

x̃2

 , b =

 0
0
B̄


the system thus obtained can be simply written as

ẋ = A(µ, �)x + b b(µ)Ψ̃ξ′

in which A(µ, �) is precisely the matrix (1.76), written for Ψ = Ψ�.
From the proof of Lemma 1.5.4 it is known that there exists Z(µ) such

that, if k is large enough,

Z(µ)A(µ, �) + AT(µ, �)Z(µ) < 0 .

Moreover, an easy calculation shows that this matrix Z(µ) is such that

bTZ(µ)x = N̄ x̃2 . (1.83)

Observing that Ψ� is constant and using (1.83), it is seen that

˙̃Ψ
T

= ˙̂
Ψ

T

= −γξ′N̄ x̃2 = −γξ′xTZ(µ)b .

Compute now the derivative along the trajectories of the closed-loop system
of the positive definite quadratic form
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U(x, Ψ̃ ) = xTZ(µ)x +
b(µ)
γ
Ψ̃ Ψ̃T .

This yields

U̇ = xT[Z(µ)A(µ, �) + AT(µ, �)Z(µ)]x + 2xTZ(µ)b b(µ)Ψ̃ ξ′ + 2
b(µ)
γ
Ψ̃ ˙̃Ψ

T

≤ 2xTZ(µ)b b(µ)Ψ̃ ξ′ − 2b(µ)Ψ̃ξ′xTZ(µ)b = 0 .

Thus, since U(x, Ψ̃ ) is positive definite, the trajectories of the closed-loop
system are bounded. Moreover, the classical arguments of La Salle’s invari-
ance principle show that limt→∞ x(t) = 0. In particular, this implies that
limt→∞ e(t) = 0, proving the Proposition. �

1.7 The Case of Nonlinear Systems

We proceed now with the description of how the methods presented in the
previous section can be extended to nonlinear systems. Of course, we cannot
expect to obtain results as sharp and complete as those obtained for lin-
ear systems, essentially for two main reasons: (i) the derivation of necessary
conditions cannot count on a nonlinear equivalent of the Sylvester equation
(1.13) on which the various necessary conditions presented in Section 1.3
were based, (ii) the design of robust stabilizers cannot count on methods as
general as those presented in the first part of Section 1.5. If the problem is
to be solved locally about a prescribed equilibrium, the available theory is
pretty satisfactory because the Sylvester equation (1.13) can be replaced by
a nonlinear analogue which characterizes the existence of a center manifold,
while local stability can be guaranteed by linear methods exactly as in the
first part of Section 1.5. The interested reader is referred to [29, Chapter 8].
The scope of the applications presented later in this book, though, is that
of seeking solutions with global or arbitrarily fixed domain of validity, and
in this case the analysis based on a local theory is insufficient. Because of
this limitation, the analysis which follows will be essentially focused on the
presentation of certain nonlinear versions of conditions and constructions de-
rived in the previous sections, rather than on a systematic motivation of the
necessity of certain hypotheses. This is actually possible mainly because the
geometric interpretation of the two key conditions (1.16) and (1.17) has an
appealing nonlinear counterpart.

To begin with, we consider, as a nonlinear correspondent of system (1.7),
a system modeled by equations of the form

ẋ = f(x, u, w)
e = h(x,w)
y = k(x,w) ,

(1.84)
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in which the various variables x, u, w, y, e have the same meaning (and di-
mensions) as in (1.7). In particular it is assumed that f(x, u, w), h(x,w) and
k(x,w) are smooth functions of their arguments, and that f(0, 0, 0) = 0,
h(0, 0) = 0 and k(0, 0) = 0. The disturbance w affecting the system is gener-
ated by a possibly nonlinear autonomous system

ẇ = s(w) , (1.85)

even though, in essentially all known design methods, the case of a linear
exosystem of the form (1.8) is considered. Again, here it is assumed that
s(w) is a smooth function and that s(0) = 0. There is an important novelty,
though, in dealing with nonlinear models: the role of the exogenous input w
and that of a possibly unknown parameter µ in the model (1.84) no longer
need to be kept separate. The reason why they have been kept separate in the
case of a linear model was to take advantage of the linearity in w. However,
so long as the right-hand sides of the Equations (1.84) are nonlinear functions
of w, it is natural – and convenient – to regard the various components of
µ as components of w, obeying the trivial autonomous differential equation
µ̇ = 0.

In general, one may expect that system (1.84) is controlled by a fully
nonlinear version of (1.9), such as a system modeled by equations of the form

ξ̇ = φ(ξ, y)
u = θ(ξ, y) ,

(1.86)

in which φ(ξ, y) and θ(ξ, y) are smooth functions of their arguments, satisfying
φ(0, 0) = 0 and θ(0, 0) = 0. However, as will be seen soon, in most cases in
which a design is successful, sensibly simpler structures are used. As in Section
1.3, we consider the forced closed-loop system

ẇ = s(w)
ẋ = f(x, θ(ξ, k(x,w)), w)

ξ̇ = φ(ξ, k(x,w))
e = h(x,w)

(1.87)

and we define the nonlinear generalized tracking problem as follows. Given
system (1.84) with exosystem (1.85), and two sets X ⊂ R

n and W ⊂ R
r,

find, if possible, a controller of the form (1.86) and a set Ξ ⊂ R
ν , such that,

in the closed-loop system:

(a) the trajectory (x(t), ξ(t), w(t)) is bounded,

(b) lim
t→∞ e(t) = 0,

for every initial condition (x(0), ξ(0), w(0)) ∈ X ×Ξ ×W .
Note that, since X and W are a priori fixed sets, a local analysis is in

general insufficient to provide a meaningful insight. Note also that the re-
quirement of asymptotic stability of the unforced closed-loop system, which
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in the case of linear systems was instrumental in determining certain sharp
necessary conditions such as those of Lemma 1.3.1, has been traded with the
weaker, but still very reasonable, requirement of boundedness of all trajecto-
ries. We also assume that all trajectories of the exosystem (1.85) are bounded
forward and backward in time, and that the equilibrium w = 0 of (1.85) is
stable in the sense of Lyapunov, again forward and backward in time.

The point of departure of the analysis is a nonlinear analogue of the
geometric interpretation, given in Remark 1.3.1, of the conditions in Lemma
1.3.1. Let

π : R
r → R

n

σ : R
r → R

ν

be two smooth mappings, and suppose that the smooth manifold

M0 = {(x, ξ, w) : x = π(w), ξ = σ(w)}
is invariant for the forced closed-loop system (1.87). To say that M0 is in-
variant for (1.87) is to say that π(w) and σ(w) are solutions of the pair of
partial differential equations

∂π

∂w
s(w) = f(π(w), θ(σ(w), k(π(w), w)), w)

∂σ

∂w
s(w) = φ(σ(w), k(π(w), w)) .

(1.88)

These equations are the nonlinear counterparts of the linear Equations (1.13).
In fact, if the mappings π(w) and σ(w) were linear functions, like x = Πw
and ξ = Σw, and if (1.87) were a linear system like (1.10), these equations
would reduce exactly to Equations (1.13), and the manifold M0 would reduce
to the subspace V0.

Suppose now that in system (1.87) all trajectories with initial conditions
in a set X × Ξ × W are bounded and attracted by the manifold M0 (as
happens in the case of linear systems, if the unforced closed-loop system is
asymptotically stable) and that the regulated output e is zero at each point
of M0, i.e., that

0 = h(π(w), w) . (1.89)

Then, obviously, limt→∞ e(t) = 0. Indeed, condition (1.89) is the nonlinear
counterpart of condition (1.14).

We can in this way assert that, if there are mappings π(w) and σ(w)
such that (1.88) and (1.89) hold and, in the forced closed-loop system (1.87),
all trajectories with initial conditions in a set X × Ξ ×W are bounded and
attracted by the manifold M0, the controller (1.86) solves the generalized
tracking problem.

As in Section 1.3, the equations which π(w) and σ(w) are expected to solve
can be rewritten as two separate sets of equations, the nonlinear counterparts
of (1.16) and (1.17), which can be given similar interpretations. As a matter
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of fact, it is clear that conditions (1.88) and (1.89) hold if and only if there
exists a triplet of mappings π(w), σ(w), c(w) such that

∂π

∂w
s(w) = f(π(w), c(w), w)

0 = h(π(w), w)
(1.90)

and
∂σ

∂w
s(w) = φ(σ(w), k(π(w), w))
c(w) = θ(σ(w), k(π(w), w)) .

(1.91)

Equations (1.90) are referred to as the nonlinear regulator equations. The
first one of these expresses the property that the submanifold

S = {(x,w) : x = π(w)}
is a controlled invariant submanifold for the nonlinear system

ẋ = f(x, u, w)
ẇ = s(w) .

(1.92)

In fact, S is by construction invariant for

ẋ = f(x, c(w), w)
ẇ = s(w)

(1.93)

which is the autonomous nonlinear system obtained controlling (1.92) with
“feedback” law u = c(w). The second one, on the other hand, expresses the
property that the regulated output is zero at each point of the submanifold
S.

As in Section 1.3, it is clear that, for any initial condition w(0) of the
exosystem (1.85), if:
- the initial condition x(0) of (1.84) is equal to x(0) = π(w(0)),
- the control input u(t) of (1.84) is equal to u(t) = c(w(t)),
then e(t) = 0 for all t ∈ R. In fact, any trajectory of system (1.93) with
x(0) = π(w(0)) satisfies x(t) = π(w(t)) for all t ∈ R, because S is invariant.
But this trajectory is such that x(t) can be interpreted as the response of
the open-loop system (1.84) to the control input u(t) = c(w(t)) and to the
disturbance input w(t). Since the regulated output is zero at any point of S
and (x(t), w(t)) remains in S for all t ∈ R, it is concluded that e(t) = 0 for all
t ∈ R. In other words, u(t) = c(w(t)) is a feedforward input capable of keeping
e(t) identically at zero, if the initial condition of (1.84) is appropriately set.

Equations (1.91), which will be referred to as the nonlinear internal model
property, express the fact the control input c(w(t)) in question can be viewed
to be generated by the autonomous finite-dimensional nonlinear dynamical
system
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ξ̇ = φ(ξ, k(π(w), w))
ẇ = s(w)
u = θ(ξ, k(π(w), w)) .

(1.94)

In fact, the first one expresses the property that the submanifold

R = {(ξ, w) : ξ = σ(w)}
is invariant for (1.94). Thus, if ξ(0) = σ(w(0)), then ξ(t) = σ(w(t)) for all
t ∈ R. As a consequence, for those initial conditions, the output u(t) of (1.94)
becomes

u(t) = θ(σ(w(t)), k(π(w(t)), w(t))) = c(w(t))

since the second one of (1.91) holds.
As for Equations (1.17) in the case of linear systems, Equations (1.91)

essentially express the property that, embedded in the controller, there is a
generator for those control inputs c(w(t)) which are capable of keeping the
regulated output e(t) identically at zero.

We summarize this discussion in a form which provides a nonlinear ana-
logue of Proposition 1.3.3.

Proposition 1.7.1. Suppose a controller of the form (1.86) is such that con-
ditions (1.90) and (1.91) hold, for some triplet of mappings π(w), σ(w), c(w).
Suppose that all trajectories of the forced closed-loop system, with initial con-
ditions in a set X ×Ξ ×W, are bounded and attracted by the manifold M0.
Then, the controller solves the generalized tracking problem.

Note that if the measured output y and regulated output e coincide,
condition (1.91) simplifies. In fact, if k(x,w) = h(x,w), since the mapping
π(w) by hypothesis satisfies h(π(w), w) = 0, condition (1.91) reduces to

∂σ

∂w
s(w) = φ(σ(w), 0)

c(w) = θ(σ(w), 0) .
(1.95)

The same kind of simplification occurs, of course, if k(x,w) is zero at any
point of the manifold S.

1.8 Design Methods for Nonlinear Systems

The existence of a solution pair π(w), c(w) for the regulator Equations (1.90)
is a condition that does not depend on the specific controller used. On the
other hand, the existence of a mapping σ(w) which, along with that particular
pair π(w), c(w), satisfies (1.91) is a property of the specific controller. As
seen in Section 1.4, it is important to look at controllers whose structure
automatically guarantees the existence of such σ(w). To simplify matters, we
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assume, in what follows, that the map k(x,w) which defines the measured
output satisfies

k(π(w), w) = 0 , (1.96)

so that the simplified version (1.95) of the internal model property applies.
With a view to the design procedure illustrated in Section 1.5, which we plan
to extend to the case of nonlinear systems, we consider controllers of the form

ξ̇′ = ϕ(ξ′) +∆(ξ′′, y)

ξ̇′′ = L(ξ′′, y)
u = γ(ξ′) +N(ξ′′, y) ,

(1.97)

in which ϕ(ξ′), γ(ξ′) and, respectively, ∆(ξ′′, y), L(ξ′′, y), N(ξ′′, y) are smooth
functions vanishing at (ξ′, ξ′′, y) = (0, 0, 0). This being the case, it is imme-
diately realized that the internal model property (1.95) holds if there exists
a mapping σ′(w) such that

∂σ′

∂w
s(w) = ϕ(σ′(w))

c(w) = γ(σ′(w)) .
(1.98)

In fact, it is trivial to check that, if σ′(w) satisfies (1.98), the mapping

σ(w) =
(
σ′(w)
σ′′(w)

)
=
(
σ′(w)

0

)
satisfies (1.95).

Remark 1.8.1. Equations (1.98) can be interpreted in these terms. Consider
the pair of autonomous systems with output

ẇ = s(w) , u = c(w) (1.99)

and
ξ̇′ = ϕ(ξ′) , u = γ(ξ′) . (1.100)

These systems are defined on two different state spaces, as w ∈ R
r and

ξ′ ∈ R
ν′

, but have a common output space, as u ∈ R
m. Suppose a mapping

σ′(w) fulfilling (1.98) exists, pick any initial condition w(0) ∈ R
r, and choose,

as initial condition ξ′(0) ∈ R
ν′

the value ξ′(0) = σ′(w(0)). Then, it is easily
checked that, for all t ∈ R,

ξ′(t) = σ′(w(t)) .

In fact, fulfilment of the first condition (1.98) guarantees that σ′(w(t)) is a
solution of the differential equation ξ̇′ = ϕ(ξ′), the unique solution satisfying
ξ′(0) = σ′(w(0)). If the second condition in (1.98) also holds, the trajectory
w(t) of (1.99) and the trajectory ξ′(t) of (1.100) satisfy
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c(w(t)) = γ(ξ′(t)) .

Thus, for any w(0) ∈ R
r there is a state ξ′(0) ∈ R

ν′
such that the output

generated by (1.100) from ξ′(0) ∈ R
ν′

reproduces exactly the output gener-
ated by (1.99) from w(0) ∈ R

r . In other words, system (1.100) is a system
able to generate all possible outputs generated by system (1.99) and it is for
this reason that it is customary to say that, if condition (1.98) holds, system
(1.99) is immersed into system (1.100). �

Thus, a structure of the form (1.97) guarantees the fulfilment of the in-
ternal model property so long as the functions ϕ(ξ′) and γ(ξ′) are such that
(1.98) holds for some σ′(w). Since the condition in question is indeed trivially
satisfied if (1.100) coincides with (1.99), being σ′(w) the identity map, one
may be tempted to use a controller of the form

ξ̇′ = s(ξ′) +∆(ξ′′, y)

ξ̇′′ = L(ξ′′, y)
u = c(ξ′) +N(ξ′′, y) .

However, this solution usually doesn’t work, because it might result in a
closed-loop system for which it is impossible to obtain the desired asymp-
totic properties. For instance, it may be impossible to choose the remaining
functions ∆(ξ′′, y), L(ξ′′, y), N(ξ′′, y) so as to make the manifold M0 attrac-
tive. To better understand this point a comparison with the (robust) linear
case is helpful. In the case of a µ-dependent linear system (having assumed
that the simplifying assumption (1.96) continues to hold) system (1.99) is a
system of the form (

ẇ
µ̇

)
=
(
Sw
0

)
, u = R(µ)w .

Embedding an identical copy of this system in (1.97), and choosing linear
functions ∆(ξ′′, y), L(ξ′′, y), N(ξ′′, y), would yield a controller of the form

ξ̇′1 = Sξ′1 +∆1ξ
′′ +Θ1y

ξ̇′2 = ∆2ξ
′′ +Θ2y

ξ̇′′ = Lξ′′ +My
u = R(ξ′2)ξ

′
1 +Nξ′′ +Ky .

The controller thus obtained, which – as expected – is nonlinear, has a linear
approximation which is not detectable, as a simple verification shows. Thus, if
this controller is used, obtaining even local stability for the forced closed-loop
system would be a difficult, if not impossible, task. This obstruction did not
appear in the analysis described before because, in (1.53), the observable pair

ϕ(ξ′) = Φξ′ , γ(ξ′) = Γξ′ . (1.101)
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was used instead.
This observation suggests the opportunity of looking for a pair ϕ(ξ′), γ(ξ′)

having similar properties. As a matter of fact, such a pair exists, under appro-
priate – but not terribly restrictive – hypotheses. One of these hypotheses is
that the exosystem is a linear system. Since in this case the exogenous input
w may contain constant uncertain parameters, it is convenient – without loss
of generality – to change coordinates in the state space of the exosystem so
as to separate the constant modes from the oscillatory ones and obtain

ẇ1 = Sw1

ẇ2 = 0 ,
(1.102)

in which S has only nonzero purely imaginary eigenvalues, with simple mul-
tiplicity in the minimal polynomial (recall that the system in question was
assumed to be neutrally stable). The other hypothesis is that the map c(w)
is a polynomial, in the various components of w1, with coefficients which are
arbitrary smooth functions of w2. In this case, the condition (1.98) can be
fulfilled by means of a pair of functions ϕ(ξ′), γ(ξ′) of the form (1.101).

To show that this is the case, it is convenient to recall a standard dif-
ferential operation which, given a map c : R

r → R
m, defines a new map

Lsc : R
r → R

m as

Ls(w)c(w) =
∂c

∂w
s(w) .

This operation will be used repeatedly, with

Lk
s(w)c(w) = Ls(w)L

k−1
s(w)c(w) , L0

s(w)c(w) = c(w) .

Then, we have the following interesting result.

Lemma 1.8.1. Suppose the exosystem (1.85) is a linear system. Suppose
that the map c(w) is a polynomial in the components of w1, with w2-dependent
coefficients. Then, there exist an integer s and real numbers a0, a1, . . . , as−1

such that

Ls
s(w)c(w) + as−1L

s−1
s(w)c(w) + · · · + a1Ls(w)c(w) + a0c(w) = 0 . (1.103)

As a consequence, the map

σ′(w) =


c(w)

Ls(w)c(w)
· · ·

Ls−1
s(w)c(w)

 (1.104)

is such that
∂σ′

∂w
s(w) = Φσ′(w)

c(w) = Γσ′(w) ,
(1.105)

with Φ and Γ as in (1.35).



48 1. Fundamentals of Internal-model-based Control Theory

Proof. Consider, for simplicity, the case m = 1, and note that, if the exosys-
tem is written in the form (1.102), we have

Ls(w)c(w) =
∂c

∂w1
Sw1 . (1.106)

Now, if c(w) is a polynomial in the components of w1, of degree less than or
equal to k, then also the right-hand side of (1.106) is a polynomial in w1 of
degree less than or equal to k. In other words, the set Pk of all polynomials
in w1 of degree less than or equal to k with real coefficients, is a finite-
dimensional vector space which is closed under the action of the mapping

LSw1 : Pk → Pk

p(w1) 
→ ∂p

∂w1
Sw1 .

(1.107)

Since LSw1 is a linear mapping of the finite-dimensional vector space Pk into
itself, its minimal polynomial

m(λ) = λs + as−1λ
s−1 + · · · + a1λ+ a0

is such that

Ls
Sw1
p(w1) + as−1L

s−1
Sw1
p(w1) + · · · + a1LSw1p(w1) + a0c(w) = 0 ,

for any polynomial p(w1) in Pk. This, in view of (1.106), proves (1.103). The
map σ′(w) indicated in the lemma indeed satisfies

∂σ′

∂w
s(w) =


Ls(w)c(w)
L2

s(w)c(w)
· · ·

Ls
s(w)c(w)


and this, in view of (1.103) and of the definition (1.35) of Φ and Γ , proves
the lemma. The proof in the case m > 1 is a trivial extension. �

The hypotheses that the exosystem is a linear system and that c(w) is
a polynomial in the (nontrivial) components of w make it possible to have
the internal model property fulfilled by means of a linear, and observable,
pair of functions ϕ(ξ′), γ(ξ′). This fact indeed simplifies the subsequent stage
of the design, in which stabilization has to be achieved. For convenience, we
summarize the discussion up to this point in a way that, to some extent,
provides a nonlinear counterpart of Proposition 1.5.1.

Proposition 1.8.2. Consider system (1.84). Suppose the exosystem is lin-
ear, as in (1.102). Suppose there exist mappings π(w) and c(w) satisfying
(1.90) for all w ∈ R

r. Suppose, in particular, that c(w) is a polynomial in
the components of w1, with w2-dependent coefficients. Let σ′(w) be the map
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defined in (1.104) and Φ and Γ the matrices defined in (1.35). Consider a
controller of the form

ξ̇′ = Φξ′ +∆(ξ′′, y)

ξ̇′′ = L(ξ′′, y)
u = Γξ′ +N(ξ′′, y) .

(1.108)

Suppose ∆(ξ′′, y), L(ξ′′, y), N(ξ′′, y) are such that, in the corresponding forced
closed-loop system, all trajectories with initial conditions in a set X ×Ξ×W
are bounded and attracted by the manifold

M0 = {(x, ξ′, ξ′′, w) : x = π(w), ξ′ = σ′(w), ξ′′ = 0} .
Then, this controller solves the generalized tracking problem.

As in the case of linear systems, this kind of result reduces a generalized
problem of tracking to a stabilization problem. Note, in this respect, that if
in the closed-loop system one changes coordinates as

x̃ = x− π(w)

ξ̃′ = ξ′ − σ′(w) ,
(1.109)

the manifold M0 becomes the set

M0 = {(x̃, ξ̃′, ξ′′, w) : x̃ = 0, ξ̃′ = 0, ξ′′ = 0} .
We describe in what follows two examples of how the design of the con-

troller can be completed. The first of these illustrates a controller in which
convergence of the trajectories to M0 is achieved only for initial conditions in
some neighborhood of the equilibrium point (w, x, ξ) = (0, 0, 0). Suppose the
various assumptions of Proposition 1.8.2 are fulfilled, i.e., that the exosystem
is linear and that there exist mappings π(w) and c(w) satisfying (1.90), with
c(w) a polynomial in the components of w1, with w2-dependent coefficients.
Choose a controller of the form

ξ̇′ = Φξ′ +Θ1e

ξ̇′′ = Lξ′′ +My
u = Γξ′ +Nξ′′ ,

(1.110)

that is, a controller identical to (1.53). The corresponding forced closed-loop
system has the form

ẇ = s(w)
ẋ = f(x, Γξ′ +Nξ′′, w)

ξ̇′ = Φξ′ +Θ1h(x,w)

ξ̇′′ = Lξ′′ +Mk(x,w) .

(1.111)
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Changing variables as in (1.109) and using (1.90) and (1.105) yields

ẇ = s(w)
˙̃x = f(x̃+ π(w), Γ ξ̃′ +Nξ′′ + c(w), w) − f(π(w), c(w), w)
˙̃
ξ′ = Φξ̃′ +Θ1h(x̃+ π(w), w)

ξ̇′′ = Lξ′′ +Mk(x̃+ π(w), w) .

(1.112)

This system will be referred to as the error system. The subsystem con-
sisting of the three bottom equations has by construction an equilibrium at
(x̃, ξ̃′, ξ′′) = (0, 0, 0) which corresponds, as observed before, to the manifold
M0. Thus, if this equilibrium can be rendered asymptotically stable, the
tracking problem is solved.

Now, consider the linear approximation of the three bottom equations of
(1.112) at the point

(x̃, ξ̃′, ξ′′, w) = (0, 0, 0, 0) . (1.113)

Elementary manipulations show that this approximation is a system of the
form (for convenience we retain, for the state variables, the same notation as
in (1.112))

˙̃x = Ax̃+BΓ ξ̃′ +BNξ′′

˙̃ξ′ = Φξ̃′ +Θ1C1x̃

ξ̇′′ = Lξ′′ +MCx̃ ,

(1.114)

in which

A =
[
∂f

∂x

]
(0,0,0)

B =
[
∂f

∂u

]
(0,0,0)

C1 =
[
∂h

∂x

]
(0,0)

C =
[
∂k

∂x

]
(0,0)

.

The linear system (1.114) is identical to system (1.54) and therefore the re-
sult of Corollary 1.5.3 applies. In other words, if A,B,C,C1 are such that the
hypotheses of Lemma 1.5.2 hold, there exist L,M,N such that this system is
asymptotically stable. By the principle of stability of the first approximation,
the equilibrium (x̃, ξ̃′, ξ′′) = (0, 0, 0) of the three bottom equations of (1.112)
is locally asymptotically stable. Hence, there exist open neighborhoods X ,
Ξ ′ × Ξ ′′ and W of the point (1.113) such that, for all initial conditions in
these sets, trajectories are bounded and converge to the set M0. The con-
troller in question solves the generalized tracking problem for these sets of
initial data.

The second example of design considers a nonlinear system whose prop-
erties are similar to those assumed for system (1.58) in Section 1.5. In this
case, it is possible to design a controller that solves the generalized tracking
problem for any arbitrarily large, but compact, set of initial data. For con-
venience, we limit the analysis to the case of a system in which m = 1, and
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assume first of all that the right-hand side of (1.84) is an affine function of
u, i.e., that the system in question is modeled by equations of the form

ẇ = s(w)
ẋ = f(x, 0, w) + g(x,w)u
e = h(x,w)
y = k(x,w) .

Under appropriate hypotheses, which are discussed in detail, for example in
[29, Chapter 9], there exists a change of coordinates that transforms the last
three equations of this system into equations of the form

ẋ1 = f1(x1, C̄x̃2, w)
˙̃x2 = Āx̃2 + B̄(f2(x1, x̃2, w) + b(x1, x̃2, w)u)
e = C̄x̃2

y = x̃2

(1.115)

in which dim(x1) = n − r, dim(x̃2) = r, b(x1, x̃2, w) �= 0, and Ā, B̄ are the
matrices introduced in Section 1.5. The first three equations in (1.115) are the
nonlinear counterpart of Equations (1.59). The last equation, on the other
hand, reflects the simplifying assumption that all components of the vector
x̃2 are available for measurement (see Remark 1.5.7).

Remark 1.8.2. Note that while in (1.59) the full vector x̃2 is allowed in the
right-hand side of ẋ1, in (1.115) only C̄x̃2, i.e. only the first component of x̃2

(which coincides with e), is present. For a linear system, this does not make
any special difference, and in fact it is possible to show that Equations (1.59)
can always be transformed into equations in which only C̄x̃2 is present in
the right-hand side of ẋ1. For a nonlinear system, though, the existence of
the “normal” form (1.115) is something more restrictive than the existence
of a form in which full vector x̃2 is allowed in the right-hand side of ẋ1. The
special structure of (1.115), on the other hand, substantially eases the design
of stabilizing control. �

System (1.115) is supposed to satisfy a number of additional assumptions,
which in the case of a linear system are either automatically satisfied or con-
sequences of assumptions considered in Proposition 1.5.7. These assumptions
are the following ones:

(i) There exists a smooth mapping ζ(w) satisfying

∂ζ

∂w
s(w) = f1(ζ(w), 0, w) .

If this is the case, the regulator Equations (1.90) have a solution. In fact,
splitting π(w) in two blocks π1(w), π2(w) consistently with the partition of
the state vector in (1.115), it is easy to check that the mappings defined as
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π(w) =
(
π1(w)
π2(w)

)
=
(
ζ(w)

0

)
and

c(w) = −f2(ζ(w), 0, w)
b(ζ(w), 0, w)

solve the regulator equations.

(ii) The exosystem is linear, as in (1.102), and the map c(w) is a polynomial,
in the various components of w1, with coefficients which are arbitrary smooth
functions of w2.

(iii) The coefficient b(x1, x̃2, w) only depends on the component w2 of w, and
is bounded from below by a positive number b̄.

If these assumptions hold, the dynamics of (1.115) can be conveniently
transformed, by means of the change of variable

x̃1 = x1 − ζ(w) ,

into a set of equations of the form (compare with (1.62))

˙̃x1 = f̃1(x̃1, C̄x̃2, w)
˙̃x2 = Āx̃2 + B̄f̃2(x̃1, x̃2, w) + B̄b̃(w2)(u− c(w)) ,

(1.116)

in which we have written b̃(w2) for b(x1, x̃2, w), and in which

f̃1(x̃1, C̄x̃2, w) = f1(x̃1 + ζ(w), C̄ x̃2, w) − f1(ζ(w), 0, w)

f̃2(x̃1, x2, w) = f2(x1 + ζ(w), x̃2, w) − f2(ζ(w), 0, w) .

Note, in this respect, that

f̃1(0, 0, w) = 0

f̃2(0, 0, w) = 0 .

Moreover, the result of Lemma 1.8.1 applies, i.e. there exists a mapping σ′(w)
such that (1.105) hold, for a pair of matrices Φ and Γ of the form (1.35) in
which Φ has only eigenvalues on the imaginary axis and Γ is such that the
pair (Γ, Φ) is observable.

Appealing to Lemma 1.5.6, let F0 be an s×s Hurwitz matrix (with s equal
to the dimension of Φ) and G0 an s× 1 vector such that the pair (F0, G0) is
controllable, let T and Ψ be such that

T−1(F0 +G0Ψ)T = Φ , ΨT = Γ , (1.117)

and consider again the controller (1.72), namely the controller
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ξ̇′ = F0ξ
′ +G0u

u = Ψξ′ + v ,
(1.118)

in which v is an additional input, to be used for stabilization. Note, in this
respect, that a result similar to that indicated in Remark 1.5.5 holds. In fact,
composing (1.105) with (1.117), it is seen that the mapping

τ(w) = Tσ′(w)

satisfies
∂τ

∂w
s(w) = (F0 +G0Ψ)τ(w)

c(w) = Ψτ(w) .
(1.119)

Controlling (1.116) by means of (1.118) yields the system

ξ̇′ = (F0 +G0Ψ)ξ′ +G0v

˙̃x1 = f̃1(x̃1, C̄x̃2, w)
˙̃x2 = Āx̃2 + B̄f̃2(x̃1, x̃2, w) + B̄b̃(w2)(Ψξ′ + v − c(w)) .

Changing the state variable ξ′ in

ξ̃′ = ξ′ − τ(w) ,

using (1.119) and adding the dynamics of the exosystem, a system of the
form

ẇ = s(w)
˙̃
ξ′ = (F0 +G0Ψ)ξ̃′ +G0v

˙̃x1 = f̃1(x̃1, C̄x̃2, w)
˙̃x2 = Āx̃2 + B̄f̃2(x̃1, x̃2, w) + B̄b̃(w2)(Ψξ̃′ + v)

(1.120)

is obtained (compare with system (1.73), in which there was no need to add
the exosystem, as the equations were independent of w and µ was a constant
parameter).

This system plays a role identical to that of the error system (1.112) of
the previous example. In fact, the point (ξ̃′, x̃1, x̃2) = (0, 0, 0), which is an
equilibrium for v = 0, corresponds to the manifold

M0 = {(ξ′, x1, x̃2) : ξ′ = τ(w), x1 = ζ1(w), x̃2 = 0} .
On this manifold, the regulated output e is zero. Thus, if a control

v = v(x̃2)

can be found, with v(0) = 0, such that all trajectories are bounded and
the manifold M0 is attractive, the controller (1.118) solves the generalized
tracking problem.
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As a matter of fact, under an assumption which corresponds to the hy-
pothesis, in Proposition 1.5.7, that the eigenvalues of A11(µ) have negative
real part, such a control v exists, as shown in the following result.

Proposition 1.8.3. Consider system (1.115). Suppose the assumptions (i),
(ii), (iii) above hold. Suppose also that there exist a smooth function V :
R

n−r → R, class K∞ functions α(·), α(·), α(·) and real numbers δ > 0,
a > 0, b > 0 such that

α(‖x̃1‖) ≤ V (x̃1) ≤ α(‖x̃1‖)
∂V

∂x̃1
f̃1(x̃1, 0, w) ≤ −α(‖x̃1‖)

for all x̃1 ∈ R
n−r and for all w, and

α(s) = as2, α(s) = bs2

for all s ∈ [0, δ]. Then, for every choice of compact sets X , Ξ, W, there is an
r-dimensional row vector N such that all trajectories of system (1.120), with
control v = Nx̃2, for any initial condition in the set X ×Ξ ×W are bounded
and attracted by the set M0. As a consequence, the controller

ξ̇′ = (F0 +G0Ψ)ξ′ +G0Ny

u = Ψξ′ +Ny ,

solves the generalized tracking problem for the given set of initial data.

Sketch of the proof. Changing, in (1.120), coordinates as

χ = ξ̃′ − 1
b(w2)

G0C̄Ā
r−1x̃2 ,

yields a system of the following structure (compare with (1.74))

ẇ = s(w)
χ̇ = F0χ+ ϕ0(x̃1, x̃2, w)
˙̃x1 = f̃1(x̃1, C̄x̃2, w)
˙̃x2 = Āx̃2 + B̄ϕ2(x̃1, x̃2, χ, w) + B̄b̃(w2)v ,

in which ϕ0(x̃1, x̃2, w) and ϕ2(x̃1, x̃2, χ, w) are such that

ϕ0(0, 0, w) = 0 , ϕ2(0, 0, 0, w) = 0 .

From this, standard arguments prove that, since F0 is a Hurwitz matrix and
since the system

˙̃x1 = f̃1(x̃1, 0, w)
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has the properties indicated in the proposition, a matrix N with the required
the properties exists.1 �

We conclude the chapter with the discussion of an example of a class
of nonlinear systems in which the conditions of this proposition are easily
verifiable and the design procedure can be implemented.

Example 1.8.3. Consider a nonlinear system described by equations of the
form

ż = A11(w2)z + p0(ξ1, w1, w2)

ξ̇1 = ξ2 + p1(z, ξ1, w1, w2)
· · ·

ξ̇r−1 = ξr + pr−1(z, ξ1, . . . , ξr−1, w1, w2)

ξ̇r = pr(z, ξ1, . . . , ξr, w1, w2) + b(w2)u
e = ξ1 + q(w1, w2) ,

(1.121)

in which z is a �-dimensional vector and ξ1, . . . , ξr, e, u are scalar variables.
The exogenous inputs w1 and w2 are generated by a linear exosystem as in
(1.102), with (w1, w2) ranging over a compact set W1 × W2. If this is the
case, in the equations above w2 is a constant, possibly uncertain, parameter.
Assume that:

(a) there is a positive definite symmetric matrix P and a number a0 > 0 such
that, for every w2 ∈ W2,

PA11(w2) +AT
11(w2)P ≤ −a0I ,

(b) there is a number b̄ > 0 such that, for every w2 ∈ W2, b(w2) ≥ b̄,
(c) the functions p0(ξ1, w1, w2), p1(z, ξ1, w1, w2), . . . , pr(z, ξ1, . . . , ξr, w1, w2)
and q(w1, w2) are polynomials in z, ξ1, . . . , ξr, w1, with coefficients which are
smooth functions of w2.

This system can be transformed, by means of a simple recursive calcula-
tion, into a system of the form (1.115). In fact, set φ1(w1, w2) = q(w1, w2),
define

e1 = ξ1 + φ1(w1, w2)

and observe that

ė1 = ξ̇1 +
∂φ1

∂w1
Sw1 = ξ2 + p1(z, ξ1, w1, w2) +

∂φ1

∂w1
Sw1 .

Thus, ė1 can be expressed as

1 The details of how N is determined are not as simple as those indicated in the
proof of Lemma 1.5.4. The interested reader can find a detailed presentation of
this subject, for instance, in [30, Chapter 12].



56 1. Fundamentals of Internal-model-based Control Theory

ė1 = ξ2 + φ2(z, ξ1, w1, w2)

in which φ2(z, ξ1, w1, w2), as a consequence of the hypotheses on the system,
is a polynomial in z, ξ1, w1, with coefficients which are smooth functions of
w2. Set

e2 = ξ2 + φ2(z, ξ1, w1, w2)

so that
ė1 = e2 .

In the same way we can give ė2 a similar expression. In fact,

ė2 = ξ̇2 +
∂φ2

∂z
ż +

∂φ2

∂ξ1
ξ̇1 +

∂φ2

∂w1
Sw1 ,

and, using the expressions of ż, ξ̇1, ξ̇2, it is possible to write

ė2 = ξ3 + φ3(z, ξ1, ξ2, w1, w2)

in which φ3(z, ξ1, ξ2, w1, w2), as a consequence of the hypotheses on the sys-
tem, is a polynomial in z, ξ1, ξ2, w1, with coefficients which are smooth func-
tions of w2. Set now

e3 = ξ3 + φ3(z, ξ1, ξ2, w1, w2)

and proceed recursively.
In this way one defines a (partial) set x̃2 of new state variables as

x̃2 =


e1

e2

· · ·
er

 =


ξ1 + φ1(w1, w2)
ξ2 + φ2(z, ξ1, w1, w2)
· · ·
ξr + φr(z, ξ1, . . . , ξr−1, w1, w2)

 . (1.122)

Since the dependence of the various components of x̃2 on the ξi is triangular,
the map

(ξ1, . . . , ξr) → x̃2

defined by (1.122) is globally invertible and the ξi are polynomials in z, x̃2, w1,
with coefficients which are smooth functions of w2.

In the new variables, system (1.121) reads as

ż = A11(w2)z + p0(e1 − q(w1, w2), w1, w2)
ė1 = e2

· · ·
ėr−1 = er

ėr = ψ(z, e1, . . . , er, w1, w2) + b(w2)u
e = e1

(1.123)
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in which p0(e1 − q(w1, w2), w1, w2) and ψ(z, e1, . . . , er, w1, w2) are polyno-
mials in z, e1, . . . , er, w1, with coefficients which are smooth functions of
w2. This system is clearly a system of the form (1.115), with x1 = z,
x̃2 = col(e1, . . . , er), and

f1(x1, C̄x̃2, w) = A11(w2)z + p0(e1 − q(w1, w2), w1, w2)
f2(x1, x̃2, w) = ψ(z, e1, . . . , er, w1, w2)
b(x1, x̃2, w) = b(w2) .

In particular, ψ(z, e1, . . . , er, w1, w2) is a polynomial in z, e1, . . . , er, w1.
We show now that hypotheses (i) and (ii) hold (hypothesis (iii) is identical

to hypothesis (b) above). To this end, observe that f1(x1, 0, w) is a function
of the form

f1(x1, 0, w) = A11(w2)z + p(w1, w2)

in which p(w1, w2) is a polynomial in w1. To say that hypothesis (i) holds is
to say that there exist a map ζ(w1, w2) such that

∂ζ

∂w1
Sw1 = A11(w2)ζ(w1, w2) + p(w1, w2) , (1.124)

which, using the notation introduced in the proof of Lemma 1.8.1, can be
written also as

LSw1ζ(w1, w2) = A11(w2)ζ(w1, w2) + p(w1, w2) .

Now, let k be an integer such that, for every w2 ∈ W2, the � entries of
p(w1, w2) are polynomials of degree not exceeding k in w1. If the � entries
of ζ(w1, w2) are polynomials of degree not exceeding k in w1, the entries of
LSw1ζ(w1, w2) can be interpreted as values at ζ(w1, w2) of a linear mapping
of the form (1.107). As a consequence, the equation above is an identity
between the value of a linear map of a finite-dimensional vector space (the
�-fold Cartesian product of Pk) into itself, and the value of an affine map
(the one on the right-hand side) of this vector space into itself. In other
words, the equation above can be seen as a Sylvester equation. Hypothesis
(a) implies that the eigenvalues of A11(w2) have negative real parts. Since
the eigenvalues of S have zero real part, the eigenvalues of the map (1.107)
have zero real part (see [39, Lemma 1.2]). Then, for every fixed w2, the
Sylvester equation in question does have a (unique) solution ζ(w1, w2), whose
entries are polynomials in w1. Moreover, since the equation is linear and the
coefficients of p(w1, w2), viewed as polynomial in w1, are smooth functions
of w2, it follows that also the coefficients of ζ(w1, w2), viewed as polynomial
in w1, are smooth functions of w2. We conclude in this way that hypothesis
(i) holds.

To verify hypothesis (ii), it suffices to observe that in this case

c(w) = −ψ(ζ(w1, w2), 0, . . . , 0, w1, w2)
b(w2)

.
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As ψ(z, 0, . . . , 0, w1, w2) is a polynomial in z, w1, and ζ(w1, w2) is a polyno-
mial in w1, the hypothesis in question indeed holds.

Finally, we check that also the main hypothesis of Proposition 1.8.3 holds.
To this end, note that the change of variables x̃1 = z − ζ(w1, w2) yields

f̃1(x̃1, 0, w) = A11(w2)x̃1 .

Hence, the function V (x̃1) = x̃T
1 P x̃1 has the desired properties. �


