
 

1 Introduction to Uncertain Systems 

1.1 Uncertainty and Uncertain Systems 

Uncertainty is one of the main features of complex and intelligent decision making 
systems. Various approaches, methods and techniques in this field have been 
developed for several decades, starting with such concepts and tools as adaptation, 
stochastic optimization and statistical decision theory (see e.g. [2, 3, 68, 79, 80]). 
The first period of this development was devoted to systems described by 
traditional mathematical models with unknown parameters. In the past two decades 
new ideas (such as learning, soft computing, linguistic descriptions and many 
others) have been developed as a part of modern foundations of knowledge-based 
Decision Support Systems (DSS) in which the decisions are based on uncertain 
knowledge. Methods and algorithms of decision making under uncertainty are 
especially important for design of computer control and management systems based 
on incomplete or imperfect knowledge of a decision plant. Consequently, problems 
of analysis and decision making in uncertain systems are related to the following 
fields: 
1. General systems theory and engineering. 
2. Control and management systems. 
3. Information technology (knowledge-based expert systems). 
There exists a great variety of definitions and formal models of uncertainties and 
uncertain systems. The most popular non-probabilistic approaches are based on 
fuzzy sets theory and related formalisms such as evidence and possibility theory, 
rough sets theory and fuzzy measures, including a probability measure as a special 
case (e.g. [4, 7, 9, 64, 65, 67, 69, 71, 74, 75, 78, 81, 83, 84, 96–100, 103, 104]). The 
different formulations of decision making problems and various proposals for 
reasoning under uncertainty are adequate for the different formal models of 
uncertainty. On the other hand, new forms of uncertain knowledge representations 
require new concepts and methods of information processing: from computing with 
numbers to granular computing [5, 72] and computing with words [101]. 
   Special approaches have been presented for multiobjective programming and 
scheduling under uncertainty [91, 92], for uncertain object-oriented databases [63], 
and for uncertainty in expert systems [89]. A lot of works have been concerned with 
specific problems of uncertain control systems, including problems of stability and 
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stabilization of uncertain systems and an idea of robust control (e.g. [31, 61, 62, 77, 
87, 88]). 
   In recent years a concept of so-called uncertain variables and their applications to 
analysis and decision problems for a wide class of uncertain systems has been 
developed [25, 30, 35, 40, 42, 43, 44, 46, 50, 53, 54, 55]. The main aim of this book 
is to present a unified, comprehensive and compact description of analysis and 
decision problems in a class of uncertain systems described by traditional 
mathematical models and by relational knowledge representations. An attempt at a 
uniform theory of uncertain systems including problems and methods based on 
different mathematical formalisms may be useful for further research in this large 
area and for practical applications to the design of knowledge-based decision 
support systems. The book may be characterized by the following features: 
1. The problems and methods are concerned with systems described by traditional 
mathematical models (with number variables) and by knowledge representations 
which are treated as an extension of classical functional models. The considerations 
are then directly related to respective problems and methods in traditional system 
and control theory. 
2. The problems under consideration are formulated for systems with unknown 
parameters in the known form of the description (parametric problems) and for the 
direct non-deterministic input–output description (non-parametric problems). In the 
first case the unknown parameters are assumed to be values of random or uncertain 
variables. In the second case the values of input and output variables are assumed to 
be values of random, uncertain or fuzzy variables. 
3. The book presents three new concepts introduced and developed by the author 
for a wide class of uncertain systems: 

a. Logic-algebraic method for systems with a logical knowledge representation 
[9 – 14]. 

b. Learning process in systems with a relational knowledge representation, 
consisting in step by step knowledge validation and updating (e.g. [18, 22, 25]). 

c. Uncertain variables based on uncertain logics. 
4. Special emphasis is placed on uncertain variables as a convenient tool for 
handling the uncertain systems under consideration. The main part of the book is 
devoted to the basic theory of uncertain variables and their application in different 
cases of uncertain systems. One of the main purposes of the book is to present 
recent developments in this area, a comparison with random and fuzzy variables 
and the generalization in the form of so-called soft variables. 
5. Special problems such as pattern recognition and control of a complex of 
operations under uncertainty are included. Examples concerning the control of 
manufacturing systems, assembly processes and task distributions in computer 
systems indicate the possibilities of practical applications of uncertain variables and 
other approaches to decision making in uncertain systems. 
The analysis and decision problems are formulated for input–output plants and two 
kinds of uncertainty: 
1. The plant is non-deterministic, i.e. the output is not determined by the input. 
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2. The plant is deterministic, but its description (the input–output relationship) is 
not exactly known. 
The different forms of the uncertainty may be used in the description of one plant. 
For example, the non-deterministic plant may be described by a relation such that 
the output is not determined by the input (i.e. is not a function of the input). This 
relation may be considered as a basic description of the uncertainty. If the relation 
contains unknown parameters, their description, e.g. in the form of probability 
distributions, may be defined as an additional description of the uncertainty or the 
second-order uncertainty. 
   In the wide sense of the word an uncertain system is understood in the book as a 
system containing any kind and any form of uncertainty in its description. In a 
narrow sense, an uncertain system is understood as a system with the description 
based on uncertain variables. In this sense, such names as “random, uncertain and 
fuzzy knowledge” or “random, uncertain and fuzzy controllers” will be used. 
Additional remarks will be introduced, if necessary, to avoid misunderstandings. 
Quite often the name “control” is used in the text instead of decision making for a 
particular plant. Consequently, the names “control plant, control system, control 
algorithm, controller” are used instead of  “decision plant, decision system, decision 
algorithm, decision maker”, respectively. 

1.2 Uncertain Variables 

In the traditional case, for a static (memoryless) system described by a function 
),( xuy Φ=  where xyu ,,  are input, output and parameter vectors, respectively, 

the decision problem may be formulated as follows: to find the decision  *u  such 
that *yy =  (the desirable output value). The decision  *u  may be obtained for the 
known function Φ  and the value x . Let us now assume that  x  is unknown. In the 
probabilistic approach  x  is assumed to be a value of a random variable  x~  
described by the probability distribution. In the approach based on uncertain 
variables the unknown parameter  x   is a value of an uncertain variable  x  for 
which an expert gives the certainty distribution  )~()( xxvxh ==  where  v  denotes 
a certainty index of the soft property: “ x  is approximately equal to x ”  or  “ x  is 
the approximate value of x ”. The certainty distribution evaluates the expert’s 
opinion on approximate values of the uncertain variable. The uncertain variables, 
related to random variables and fuzzy numbers, are described by the set of values 
X  and their certainty distributions which correspond to probability distributions for 

the random variables and to membership functions for the fuzzy numbers. To define 
the uncertain variable, it is necessary to give  )(xh  and to determine the certainty 
indexes of the following soft properties: 
1. “ xDx ∈~ ” for XDx ⊂ , which means “the approximate value of x  belongs to 

xD ”  or  “ x  belongs approximately to xD ”.  
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2. “ xDx ∉~ ” = “ )~( xDx ∈¬ ”, which means “ x  does not belong approximately to 

xD ”.  
To determine the certainty indexes for the properties: )~( xDx ∈¬ , 

)~()~( 21 DxDx ∈∨∈  and )~()~( 21 DxDx ∈∧∈  where XDD ⊆21, , it is necessary 
to introduce an uncertain logic, which deals with the soft predicates of the type 
“ xDx ∈~ ”. In Chapter 4 four versions of the uncertain logic have been defined and 
used for the formulation of the respective versions of the uncertain variable. 
   For the proper interpretation (semantics) of these formalisms it is convenient to 
consider )(ωgx =  as a value assigned to an element Ωω ∈  (a universal set). For 
fixed ω  its value x  is determined and xDx ∈  is a crisp property. The property 

xx DxDx ∈=∈~  = “the approximate value of x  belongs to xD ” is a soft 
property because x  is unknown and the evaluation of  “ xDx ∈~ ” is based on the 
evaluation of xx =~  for the different Xx ∈  given by an expert. In the first version 
of the uncertain variable, )~()~( xx DxvDxv ∉≠∈  where xx DXD −=  is the 
complement of xD . In the version called the C-uncertain variable, 

)~()~( xcxc DxvDxv ∈=∉  where cv  is the certainty index in this version 

 )]~()~([
2
1)~( xxxc DxvDxvDxv ∉+∈=∈ .  

The uncertain variable in the first version may be considered as a special case of the 
possibilistic number with a specific interpretation of  )(xh  described above. In our 
approach we use soft properties of the type  “ P  is approximately satisfied” where  
P  is a crisp property, in particular =P “ xDx ∈ ”. It allows us to accept the 

difference between xDx ∈~  and  xDx ∉~  in the first version. More details 
concerning the relations to random variables and fuzzy numbers are given in 
Chapter 6. Now let us pay attention to the following aspects which will be more 
clear after the presentation of the formalisms and semantics in Chapter 4: 
1. To compare the meanings and practical utilities of different formalisms, it is 
necessary to take into account their semantics. It is specially important in our 
approach. The definitions of the uncertain logics and consequently the uncertain 
variables contain not only the formal description but also their interpretation. In 
particular, the uncertain logics may be considered as special cases of multi-valued 
predicate logic with a specific semantics of the predicates. It is worth noting that 
from the formal point of view the probabilistic measure is a special case of the 
fuzzy measure and the probability distribution is a special case of the membership 
function in the formal definition of the fuzzy number when the meaning of the 
membership function is not described. 
2. Even if the uncertain variable in the first version may be formally considered as  
a very special case of the fuzzy number, for simplicity and unification it is better to 
introduce it independently (as has been done in the book) and not as a special case 
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of the much more complicated formalism with different semantics and applications. 
3. Uncertainty is understood here in the narrow sense of the word, and concerns an 
incomplete or imperfect knowledge of something which is necessary to solve the 
problem. In our considerations, it is the knowledge of the parameters in the 
mathematical description of the system or the knowledge of a form of the  
input–output relationships, and is related to a fixed expert who gives the description 
of the uncertainty. 
4. In the majority of interpretations the value of the membership function means a 
degree of truth of a soft property determining the fuzzy set. In our approach, 
“ xDx ∈ ” and “ xDx ∈ ” are crisp properties, the soft property “ xDx ∈~ ” is 
introduced because the value of  x  is unknown and  )(xh  is a  degree of certainty  
(or  )(1 xh−  is a degree of uncertainty). 

1.3 Basic Deterministic Problems 

The problems of analysis and decision making under uncertainty described in the 
book correspond to the respective problems for deterministic (functional) plants 
with the known mathematical models. Let us consider a static plant described by a 
function )(uy Φ=  where pRUu =∈  is the input vector, lRYy =∈  is the output 
vector, U and Y are p-dimensional and l-dimensional real number vector spaces, 
respectively. The function Φ  may be presented as a set of functions 

 liuuuy p
i

i ...,,2,1);,...,,( )()2()1()( == Φ  

where )(iy  is the i-th component of  y  and )( ju  is the j-th component of  u. 

Analysis problem: Given the function Φ  and the value *uu = , find the 
corresponding output )( ** uy Φ= . 

Decision problem: For the given function Φ  and the value *y  required by a user, 

find the decision  *u  such that *yy = . 

   The solution of the problem is reduced to solving the equation )(* uy Φ=  with 
respect to  u. In general, we may obtain a set of decisions 

 })(:{ *yuUuDu =∈= Φ . 

In particular ∅=uD  (an empty set), which means that the solution does not exist. 
For the plant described by a function ),( zuy Φ=  where z is a vector of external 
disturbances, the set of solutions )(zDu  depends on z. In the case of a unique 
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solution we obtain )(∆* zu Ψ= , i.e. the deterministic decision (control) algorithm in 
an open-loop decision system when  z  is measured (Fig. 1.1). For the plant 
described by the function )(uy Φ= , on  the assumption that the equation 

*)( yu =Φ  has a unique solution, the decision *u  may be determined by the 
following recursive algorithm: 

 )]([ *
1 nnn uyKuu Φ−−=+ ;    K,1,0=n  (1.1) 

where nu  denotes the n-th approximation of *u and K is a matrix of coefficients. 

Under some conditions concerning Φ  and K, the sequence nu  converges to *u  for 
any 0u . The algorithm (1.1) may be executed in a closed-loop decision system 
(Fig. 1.2) where the output )( nn uy Φ=  is measured. It is worth noting that to 
assure the convergence, it is not necessary to know exactly the function Φ . Then 
feedback is a way to achieve the proper decision *u  for the uncertain plant, i.e. it is 
one of the possible approaches to decision making under uncertainty. 

PlantΨ

z

z *u y

 
Figure 1.1. Open-loop decision system 

 

Plant

Algorithm (1.1)

ny *y

nn yy −= *ε

nu

 

Figure 1.2. Closed-loop decision system 

If there are additional constraints and/or the solution of the equation *)( yu =Φ  
does not exist, the decision problem may be formulated as an optimization problem 
consisting in finding *u  minimizing a quality index ),( *yyϕ , e.g. 

 )()(),( *T** yyyyyy −−=ϕ  

where vectors are presented as one-column matrices and T denotes transposition of 
a matrix. 
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   The formulations of basic analysis and decision problems may be extended to 
deterministic dynamical plants. Let us consider a plant described by the equation  

 ),(1 nnn usfs =+ ;    K,1,0=n  

where ns  is a state vector. 

Analysis problem: For the given function  f, initial state 0s  and the sequence 

110 ,,, −Nuuu K  one should find the sequence Nsss ,,, 21 K . 
   One of the possible formulations of a decision problem is the following: for the 
given function f, 0s  and *ssN =  required by a user, one should determine the 

sequence of decisions 110 ....,,, −Nuuu  such that *ssN = . The solution exists for 
sufficiently large N if the plant is controllable. The optimization problem 
corresponding to the minimization of ),( *yyϕ  for a static plant may be formulated 
as follows. 

Optimal decision problem: For the given function f, state 0s  and a quality index 

),( *ssϕ , one should determine the sequence 110 ...,,, −Nuuu  minimizing the global 
performance index 

 ∑ ∑
=

−

=
==

N

n

N

n
nnnN susfssQ

1

1

0

** ]),,([),( ϕϕ . 

1.4 Structure of the Book 

The book consists of two informal parts. The first part containing Chapters 2–7 
presents basic analysis and decision problems for static plants. The second part 
containing Chapters 8–14 concerns dynamical systems and special problems 
connected with learning and complex systems, pattern recognition and operation 
systems. The parts are organized as follows. 
   Chapter 2 presents basic analysis and decision problems for static plants described 
by relations. A general concept of so-called determinization, consisting in replacing 
an uncertain description by its deterministic representation, is introduced. Two 
kinds of relational knowledge representation are considered: the knowledge of the 
plant and the knowledge of the decision making. 
   Chapter 3 deals with the application of random variables to the description of the 
uncertainty. In the first part of the chapter, analysis and decision problems are 
considered for the functional and relational plant with random parameters. The 
second part is devoted to the respective problems with a non-parametric description 
of the uncertainty. In this case the knowledge of the plant has a form of conditional 
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probability distribution. In both cases it is shown how the probabilistic knowledge 
of the decision making (i.e. the random decision algorithm in an open-loop decision 
system) may be obtained from the probabilistic knowledge of the plant, and how to 
obtain the deterministic decision algorithm as a result of determinization. 
   Chapters 4 and 5 are devoted to uncertain variables and their applications to 
uncertain systems. The basic definitions and properties of the uncertain logics and 
variables are given in Chapter 4. We consider four versions of the uncertain 
variables with different definitions of the certainty distributions and operations. The 
application of the uncertain variables to the formulation and solving of the analysis 
and decision problems for the functional and relational static plant is the topic of 
Chapter 5. The chapter is completed with considerations for the non-parametric 
case in which the knowledge of the plant has the form of conditional certainty 
distributions. The uncertain decision algorithm is obtained from the uncertain 
knowledge of the plant. 
   In the first part of Chapter 6 the applications of fuzzy numbers (fuzzy variables) 
to non-parametric analysis and decision problems for the static plant are presented. 
In the second part of the chapter the comparison of uncertain variables with random 
and fuzzy variables and analogies between the non-parametric problem statements 
and solutions for the descriptions based on random, uncertain and fuzzy variables 
are discussed. These analogies lead to a generalization in the form of so-called soft 
variables and their application in analysis and decision problems for the static plant. 
   Chapter 7 is concerned with relational static plants described by a logical 
knowledge representation, which may be treated as a special form of the relational 
knowledge representation that consists of relations in the form of logical formulas 
concerning input, output and additional variables. Consequently, to formulate and 
solve the analysis and decision problems, one may apply the so-called logic-
algebraic method. The modification of this method may be applied to a plant with 
random and uncertain parameters. 
   The purpose of Chapter 8 is to show how the approaches and methods presented 
in the first part of the book for static plants (in particular, the considerations based 
on the relational knowledge representation and uncertain variables) may be applied 
to dynamical plants. The application of the presented approach to knowledge-based 
control of an assembly process is described.  
   Chapter 9 has a special character, and is devoted to the general idea of parametric 
optimization and its application to uncertain, random and fuzzy controllers in 
closed-loop decision systems with dynamical plants. The chapter is completed with 
remarks concerning so-called descriptive and prescriptive approaches, and the 
quality of the decisions based on different forms of the knowledge given by an 
expert. 
   The idea and algorithms of learning based on step by step knowledge validation 
and updating are presented in Chapter 11. Two cases are considered. In the first 
case the validation and updating concerns the knowledge of the plant, and in the 
second case – the knowledge of the decision making. The idea of learning is 
illustrated by an example of the application to the assembly system considered in 
Chapter 8. 



Introduction to Uncertain Systems 9

   Chapters 12, 13 and 14 deal with specific problems and systems: the decision 
problems for plants with three-level uncertainty, complex relational systems (with 
an application to a complex manufacturing system), control of a complex of 
operations (with an application to task allocation in a group of parallel processors), 
and knowledge-based pattern recognition under uncertainty. 
 



 

2 Relational Systems 

This chapter is concerned with analysis and decision making problems for a static 
input–output plant described by a relation which is not reduced to the function Φ  
considered in Sect. 1.3. Consequently, for the given relation, the output is not 
determined by the input. The analysis problem consists in finding the output 
property (or the set of possible outputs) for the given input property (or the given 
set of inputs), and the decision problem consists in finding the input property (or 
the set of possible inputs) for the given output property (or the set of acceptable 
outputs, required by a user). For the functional plant presented in Sect. 1.3, the 
input and output properties have the form “ *uu = ” and “ *yy = ”, respectively. For 
the relational plant the respective properties have the form “ uDu ∈ ” and “ yDy ∈ ” 

where uD  and yD  are subsets of U and Y, respectively. 

2.1 Relational Knowledge Representation 

Let us consider a static plant with input vector Uu ∈  and output vector Yy ∈ , 
where U and Y are real number vector spaces. The plant is described by a relation 

 yu ρ ∆= YUyuR ×⊂),(  (2.1) 

which may be called a relational knowledge representation of the plant. It is an 
extension of the traditional functional model )(uy Φ=  considered in Sect. 1.3. The 
relation ),( yuR denotes a set of all possible pairs ),( yu  in the Cartesian product 

YU × , which may appear in the plant. In other words, the plant is described by a 
property (a predicate) concerning ),( yu , and ),( yuR  denotes the set of all pairs 

),( yu  for which this property is satisfied, i.e. 

 )},(:),{(}1)],([:),{(),( ∆ yuYUyuyuwYUyuyuR ϕϕ ×∈==×∈=  

where ]1,0[]),([ ∈yuw ϕ  for the fixed values ),( yu  denotes a logic value of the 
property ),( yuϕ . When the relation ),( yuR  is not a function, the description (2.1) 
given by an expert may have two practical interpretations: 
1. The plant is deterministic, i.e. at every moment n 
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 )( nn uy Φ= , 

but the expert has no full knowledge of the plant and for the given u he/she can 
determine only the set of possible outputs: 

 )},(),(:{:)( yuRyuYyYuDy ∈∈⊂ . 

For example, in a one-dimensional case ucy = , the expert knows that 
0,; 2121 >≤≤ ccccc . Then as a description of the plant he/she gives a relation 

presented in the following form: 

 




≤≤≤

≥≤≤

0for

0for

12

21

uucyuc

uucyuc
. (2.2) 

The situation is illustrated in Fig. 2.1, in which the set of points ),( nn yu  is 
marked. 

uc2

uc1

cu

u

y

 
Figure 2.1. Illustration of a relation – the first case 

2. The plant is not deterministic, which means that at different n we may observe 
different values ny  for the same values nu . Then ),( yuR  is a set of all possible 
points ),( nn yu , marked for the example (2.2) in Fig. 2.2, and )(uDy  is a set of all 
possible values which may be observed at the output for the fixed value u . 
In the first case the relation (which is not a function) is a result of the expert’s 
uncertainty and in the second case – a result of uncertainty in the plant. For 
simplicity, in both cases we shall talk about an uncertain plant, and the plant 
described by a relational knowledge representation will be shortly called a 
relational plant.  
In more complicated cases the relational knowledge representation given by an 
expert may have the form of a set of relations: 

 YWUywuRi ××⊂),,( ,    ki ...,,2,1=  (2.3) 
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where Ww ∈ is a vector of additional auxiliary variables used in the description of 
the knowledge. The set of relations (2.3) may be called a basic knowledge 
representation. It may be reduced to a resulting knowledge representation ),( yuR : 

 )},,(),,(:),{(),( ywuRywuYUyuyuR
Ww

⊂×∈=
∈

 

where 

 I
k

i
i ywuRywuR

1
),,(),,(

=

= . 

 
uc2

uc1

u

y

 
Figure 2.2. Illustration of a relation – the second case 

The relations ),,( ywuRi  may have the form of a set of inequalities and/or 
equalities concerning the components of the vectors u, w, y.  
   In Chapter 7 we shall consider a special form of the relational knowledge 
representation, in which the relations (2.3) are expressed by logical formulas 
concerning ),,( ywu , and in Chapter 8 the extension of the relational knowledge 
representation to a dynamical plant will be presented. 
   The relational knowledge representation has a specific form in a discrete case 
when U and Y are finite sets of vectors. Assume that U  is a finite discrete set  

 },...,,{ 21 αuuuU = . 

Then the relation ),( yuR  is reduced to the family of sets  

 )},(),(:{)( yuRyuYyuD jjy ∈∈= ,    α,...,2,1=j  , 

i.e. the sets of possible outputs for all inputs ju . If },...,,{ 21 βyyyY =  then 

),( yuR  is a set of pairs ),( ij yu  selected from YU ×  and )( jy uD  is a 
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corresponding finite set of the points iy  (a subset of Y ). 
   For the plant with external disturbances, the relational knowledge representation 
has the form of a relation 

 ZYUzyuR ××⊂),,(  

where Zz ∈  is a vector of the disturbances. 

2.2 Analysis and Decision Making for Relational 
Plants 

The formulations of the analysis and decision making problems for a relational 
plant analogous to those for a functional plant described by a function )(uy Φ=  
are adequate for the knowledge of the plant [24]. 

Analysis problem: For the given ),( yuR  and UDu ⊂  find the smallest set 
YDy ⊂  such that the implication 

 yu DyDu ∈→∈   (2.4) 

is satisfied. 
 The information that uDu∈  may be considered as a result of observation. For 
the given uD  one should determine the best estimation of  y in the form of the set 
of possible outputs yD . It is easy to note that  

 )},(),(:{ yuRyuYyD
uDu

y ∈∈=
∈

.  (2.5) 

This is then a set of all such values of  y for which there exists uDu∈  such that 
),( yu  belongs to  R. In particular, if the value  u is known, i.e. }{uDu =   

(a singleton), then 

 )},(),(:{)( yuRyuYyuDy ∈∈=  (2.6) 

where )(uDy  is a set of all possible  y for the given value  u. The analysis problem 
is illustrated in Fig. 2.3 where the shaded area illustrates the relation ),( yuR  and 
the interval yD  denotes the solution for the given interval uD . 

Example 2.1. 
Let us consider the plant with two inputs )1(u and )2(u , described by the inequality 

 )2(
2

)1(
2

)2(
1

)1(
1 uducyuduc +≤≤+ , 

and the set uD  is determined by  
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 α≤+ )2()1( buau   (2.7) 

 )1(
min

)1( uu ≥ ,    )2(
min

)2( uu ≥ .  (2.8) 

u

y

yD

uD  
Figure 2.3. Illustration of analysis problem 

For example,  y may denote the amount of a product in a production process, )1(u  
and )2(u  – amounts of two kinds of raw material, and the value  )2()1( buau +  – the 
cost of the raw material. Assume that 1c , 2c , 1d , 2d , a, b, α  are positive numbers 
and  21 cc < , 21 dd < . It is easy to see that the set (2.5) is described by the 
inequality  

 max
)2(

min1
)1(

min1 yyuduc ≤≤+   (2.9) 

where 

 )(max )2(
2

)1(
2

,
max

)2()1(
uducy

uu
+=  (2.10) 

subject to constraints (2.7) and (2.8). 
 The maximization in (2.10) leads to the following results: 
If 

 
b
a

d
c

≤
2

2  

then 

 )( )1(
min

2)1(
min2max au

b
d

ucy −+= α . (2.11) 

If 
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b
a

d
c

≥
2

2  

then 

 )2(
min2

)2(
min

2
max )( udbu

a
cy +−= α .  (2.12) 

For the numerical data  11 =c , 22 =c , 21 =d , 42 =d , 1=a , 4=b , 3=α , 

1)1(
min =u , 5.0)2(

min =u  

 
2
1

2

2 =
d
c ,     

2

2
4
1

d
c

b
a

<= . 

From (2.12) we obtain 4max =y  and according to (2.9) 

2)2(
min1

)1(
min1min =+= uducy . The set yD  is then determined by inequality 

42 ≤≤ y .            
Now let us consider a decision making problem for the relational  plant described 
by ),( yuR  which is not a function. In this case the requirement *yy =  (where *y  
is a given value) cannot be satisfied and should be replaced by a weaker 
requirement yDy ∈  for a given set yD . As a result we may obtain not one 

particular decision *u , but a set of possible decisions uD . 

Decision problem: For the given ),( yuR  and YDy ⊂  find the largest set UDu ⊂  

such that the implication (2.4) is satisfied. 
The set yD  is given by a user, the property yDy ∈  denotes the user’s requirement 

and uD  denotes the set of all possible decisions for which the requirement 
concerning the output  y  is satisfied. It is easy to note that 

 })(:{ yyu DuDUuD ⊆∈=   (2.13) 

where )(uDy  is the set of all possible  y  for the fixed value  u, determined by (2.6), 

or 

 }),(),(:{ yu DyyuRyuUuD ∈→∈∈= . 

The solution may not exist, i.e. ∅=uD  (empty set). Such a case is illustrated in 
Fig.2.4: for the given interval yD , a set ∅≠uD  satisfying the implication (2.4) 

does not exist. This means that the requirement is too strong, i.e. the interval yD  is 

too small. The requirement may be satisfied for a larger interval yD  (see Fig. 2.3). 

In the example illustrated in Fig. 2.2, if ],[ maxmin yyDy =  and 0, 21 >cc  then 
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 ],[
2

max

1

min
c

y
c

y
Du =  

and the solution exists on the condition 

 
2

max

1

min
c

y
c

y
≤ . 

y

u

yD

 
Figure 2.4. Illustration of the case where the solution does not exist 

 
The analysis and decision problems for the relational plant are the extensions of the 
respective problems for the functional plant, presented in Sect. 1.3. The properties 
“ uDu ∈ ” and “ yDy ∈ ” may be called input and output properties, respectively. 

For the functional plant we considered the input and output properties in the form: 
“ *uu = ” and “ *yy = ” where *u , *y  denote fixed values. For the relational plant 
the analysis problem consists in finding the best output property (the smallest set 

yD ) for the given input property, and the decision problem consists in finding the 

best input property (the largest set uD ) for the given output property required. The 
procedure for determining the effective solution uD  or yD  based on the general 
formulas (2.5) or (2.13) depends on the form of ),( yuR  and may be very 
complicated. If ),( yuR  and the given property (i.e. the given set uD  or yD ) are 

described by a set of equalities and/or inequalities concerning the components of 
the vector  u and  y, then the procedure is reduced to  “solving” this set of equalities 
and/or inequalities. 
Example 2.2. 
Consider a plant with a single output, described by a relation  

 )()( 21 uGyuG ≤≤   (2.14) 

where  1G  and  2G  are the functions 

 +→ R:1 UG ,    +→ R:2 UG ;     ),0[R ∞=+ , 
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and 

 )]()([ 21 uGuG
Uu

≤
∈

. 

For example,  y  is the amount of a product as in Example 2.1, and the components 
of the vector  u  are features of the raw materials. For a user’s requirement 

 maxmin yyy ≤≤ , (2.15) 

i.e. ],[ maxmin yyDy = , we obtain 

 ]})([])([:{ max2min1 yuGyuGUuDu ≤∧≥∈= . 

In particular, if the relation (2.14) has the form 

 uucyuuc T
2

T
1 ≤≤ ,    01 >c , 12 cc >   

where kRu ∈  and 

 2)(2)2(2)1(T )(...)()( kuuuuu +++=  

then uD  is described by the inequality 

 
2

maxT

1

min
c

y
uu

c
y

≤≤  

and the decision  u  satisfying the requirement (2.15) exists if 

 
1

min

2

max
c

y
c

y
≥ .     

2.3 Relational Plant with External Disturbances 

The considerations may by extended to a plant with external disturbances, described 
by a relation ZYUzyuR ××⊂),,(  where Zz ∈  is a vector of the disturbances 
which may be observed. The property zDz ∈  for the given ZDz ⊂  may be 
considered as a result of observations. Our plant has two inputs ),( zu  and the 
analysis problem is formulated in the same way as for the relation ),( yuR , with 

zu DDzu ×∈),(  in place of uDu ∈ .  
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Analysis problem: For the given ),,( zyuR , zD  and uD  find the smallest set 
YD y ⊂  such that the implication 

 yzu DyDzDu ∈→∈∧∈ )()(  (2.16) 

is satisfied. 

The result analogous to (2.5) is 

 )},,(),,(:{ zyuRzyuYyD
zu DzDu

y ∈∈=
∈∈

. 

The decision making is an inverse problem consisting in the determination of the 
set of all decisions u such that for every decision from this set and for every zDz ∈  
the required property yDy ∈  is satisfied. 

Decision problem: For the given ),,( zyuR , yD  (the requirement) and zD  (the 

result of observations), find the largest set uD  such that the implication (2.16) is 
satisfied. The general form of the solution is as follows: 

 ]}),([:{ yy
Dz

u DzuDUuD
z

⊆∈=
∈

 (2.17) 

where 

 )},,(),,(:{),( zyuRzyuYyzuDy ∈∈= .  (2.18) 

It is then the set of all such decisions  u  that for every zDz ∈  the set of possible 
outputs  y  belongs to yD . For the fixed  z  (the result of measurement) the set uD  

is determined by (2.17) with the relation 

 ),,( zyuR ∆= YUzyuR ×⊂);,( . 

In this notation  z  is the parameter in the relation );,( zyuR . Then 

 }),(:{)( yyu DzuDUuzD ⊆∈= ∆= ),( uzR   (2.19) 

where ),( zuDy  is defined by (2.18). The formula (2.19) defines a relation between  

z  and  u  denoted by ),( uzR . The relation ),( uzR  may be called a knowledge 
representation for the decision making (a description of the knowledge of the 
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decision making) or a relational decision algorithm. The block scheme of the  
open-loop decision system (Fig. 2.5) is analogous to that of Fig. 1.1 for a functional 
plant. The knowledge of the decision making  

 >< ),( uzR ∆= KD 

has been obtained for the given knowledge of the plant  

 >< ),,( zyuR ∆= KP 

and the given requirement yDy ∈ . 

),( uzR ),,( zyuR

z

yuz

 

Figure 2.5. Open-loop decision system 

Example 2.3.  
Consider a plant with one output, described by a relation 

 ),(),( 21 zuGyzuG ≤≤  (2.20) 

where 1G  and 2G  are the functions 

 +→× R:1 ZUG ,    +→× R:2 ZUG ;    ),0[R ∞=+ , 

and 

 ]),(),([ 21 zuGzuG
ZzUu

≤
∈∈

. 

For example, y  is the amount of a product (see Example 2.2), the components of 
the vector u are the features of the raw material which may be chosen by a decision 
maker, and the components of  the vector z  are the features of the raw material 
which may be observed. For a user’s requirement  

 maxmin yyy ≤≤  , (2.21) 

i.e. ],[ maxmin yyDy = , we obtain 

 ]})([])([:{: max2min1 yuGyuGUuDu ≤∧≥∈  

where 
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 ),(min)( 11 zuGuG
zDz∈

= ,       ),(max)( 22 zuGuG
zDz∈

= . 

Assume that ][ )2()1(T zzz = , the relation (2.20) has the form 
 

 uuzcyuuzc T)2(
2

T)1(
1 ≤≤ , 

 121 ,0 ccc >> ,    121 ,0 zzz >>  

and zD  is described by the inequality 

 2
max

2)2(2)1(2
min )()( rzzr ≤+≤ . 

Then 

 uuzcuG T)1(
min11 )( = ,    uuzcuG T)1(

max22 )( =  

where 

 
2

min)1(
min

r
z = ,    

2
max)2(

max
r

z = . 

Consequently, the set uD  is described by the inequality 

 
max2

maxT

min1

min 22
rc
y

uu
rc
y

≤≤  

and the decision  u  satisfying the requirement (2.21) exists if 

 
min1

min

max2

max
rc

y
rc

y
≥ .     

Example 2.4. 
A plant with 2,, Rzyu ∈  (two-dimensional vectors) is described by the inequalities 

 )1()1()1()1()1( 2 uzyuz ≤≤  

 )2()2()2()2()2( 2 uzyuz ≤≤ , 

0,,, )2()1()2()1( >uuzz . The requirement concerning the output is the following 

 βα ≤+≤ 2)2(2)1( )()( yy  

for the given 0, >βα . From the description of the plant we have 
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 2)1(2)1(2)1(2)1(2)1( )()(4)()()( uzyuz ≤≤  

 2)2(2)2(2)2(2)2(2)2( )()(4)()()( uzyuz ≤≤ . 

If ],[ )1(
max

)1(
min

)1( zzz ∈  and ],[ )2(
max

)2(
min

)2( zzz ∈ , then the set uD  is determined by  

the inequalities 

 β≤+ ])()()()[(4 2)2(2)2(
max

2)1(2)1(
max uzuz  

 α≥+ 2)2(2)2(
min

2)1(2)1(
min )()()()( uzuz . 

2.4 Determinization 

The deterministic decision algorithm based on the knowledge KD may be obtained 
as a result of determinization (see Sect. 1.4) of the relational decision algorithm 

),( uzR  by using the mean value 

 1

)()(
][)(~ −∫∫ ⋅=

zDzD uu

duduuzu ∆= )(~ zΨ . 

In such a way the relational decision algorithm ),( uzR  is replaced by the 

deterministic decision algorithm )(~ zΨ . 

   For the given desirable value *y  we can consider two cases: in the first case the 
deterministic decision algorithm )(zΨ  is obtained via determinization of the 
knowledge of the plant KP, and in the second case the deterministic decision 
algorithm )(zdΨ  is based on the determinization of the knowledge of the decision 

making KD obtained from KP for the given *y . In the first case we determine the 
mean value 

 1

),(),(
][)(~ −∫∫ ⋅=

zuDzuD yy

dydyyzy ∆= ),( zuΦ   (2.22) 

where ),( zuDy  is described by formula (2.18). Then, by solving the equation 

 *),( yzu =Φ   (2.23) 
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with respect to  u, we obtain the deterministic decision algorithm )(zu Ψ= , on the 
assumption that Equation (2.23) has a unique solution. 
 In the second case we use 

 ),,( * zyuR ∆= ),( uzRd , (2.24) 

i.e. the set of all pairs ),( zu  for which it is possible that *yy = . The relation 
UZuzRd ×⊂),(  may be considered as the knowledge of the decision making KD, 

i.e. the relational decision algorithm obtained for the given KP and the value *y . 
The determinization of the relational decision algorithm dR  gives the deterministic 
decision algorithm 

 1

)()(
][)( −∫∫ ⋅=

zDzD
d

udud

duduuzu ∆= )(zdΨ   (2.25) 

where 

 )},(),(:{)( uzRzuUuzD dud ∈∈= . 

Two cases of the determination of the deterministic decision algorithm are 
illustrated in Figs. 2.6 and 2.7. The results of these two approaches may be 
different, i.e. in general )()( zz dΨΨ ≠  (see Example 2.5). 
Example 2.5. 
Consider a plant with  u, z, y 1R∈  (one-dimensional variables), described by the 
inequality 

 zcuyzcu +≤≤+ 2 ,    0>c . (2.26) 

For ],[ maxmin yyDy =  and the given  z, the set (2.19) is determined by the 

inequality 

 
c

zy
u

c
zy

2
maxmin −

≤≤
− .  

The determinization of the knowledge KP according to (2.22) gives 

 ),(
2
3~ zuzcuy Φ=+= . 

From the equation *),( yzu =Φ  we obtain the decision algorithm 

 
z

cy
zu

3
)(2

)(
* −

==Ψ . 
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Plant

Determinization

Ψ
u

KP
),,( zyuR

Φ

z

z y

*y

 
Figure 2.6. Decision system with determinization – the first case 

Plant

Determinization

du

KD KP
),,( zyuR

dΨ

),( uzRd

z

z y

*y

 

Figure 2.7. Decision system with determinization – the second case 

Substituting *y  into (2.26) we obtain the relational decision algorithm ),( uzRd  in 
the form  

 
c

zy
u

c
zy −

≤≤
− **

2
 

and after the determinization 

 )(
4

)(3
)(

*
z

c
zy

zu dd ΨΨ ≠
−

== .  



Relational Systems 25

2.5 Discrete Case 

Assume that 

 },...,,{ 21 αuuuU = ,     },...,,{ 21 βyyyY = . 

Now the relation ),( yuR is a set of pairs ),( ij yu  selected from YU × , and may 

be described by the zero-one matrix 

 




==∉
∈

=
.,...,1,...,,1,),(if0

),(if1
βα

χ
ijRyu

Ryu

ij

ij
ji  

The sets UDu ⊂ and YD y ⊂  may be determined by the sets of the respective 

indexes  

 uSJ ∆},...,2,1{ =⊂ α ,     ySI ∆}...,,2,1{ =⊂ β , 

i.e. 

 JjDu uj ∈↔∈ ,     IiDy yj ∈↔∈ . 

Analysis problem: For the given matrix  ][ ijχ  and the set J  find the smallest set 

I  such that 

 IiJj ∈→∈ . (2.27) 

According to (2.5) 

 )}1(:{ =∈=
∈

ji
Sj

y
u

SiI χ  (2.28) 

Decision problem: For the given matrix ][ ijχ  and the set I  required by a user, 
find the largest set J  such that the implication (2.27) is satisfied. 
   According to (2.13) 

 })(:{ IjSSjJ yu ⊆∈=  

where 

 }1:{)( =∈= jiyy SijS χ , (2.29) 

or 

 }.1:{ IiSjJ jiu ∈→=∈= χ  (2.30) 

   It is worth noting that the sets (2.28) and (2.29) may be easily generated by a 
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computer containing the matrix ][ ijχ  as a knowledge base. For the plant with 

external disturbances  

 },...,,{ 21 γzzzZz =∈ , 

the relation ),,( zyuR may be described by the three-dimensional zero-one matrix 

 


 ∈

=
,otherwise0

),,(if1 Rzyu kij
jikχ  

α,...,1=j , β,...,1=i , γ,...,1=k . The set zD  may be determined by the set of 
respective indexes },...,2,1{ γ⊂K , i.e. KkDz zk ∈↔∈ . 
   The decision problem consists in finding the largest set J  such that the 
implication 

 IiKkJj ∈→∈∧∈ )()(  

is satisfied. 
The solution is analogous  to (2.17) and (2.18): 

 ( ) },:{ IkjSSjJ y
Kk

u ⊆∈=
∈

 

where  

 }1:{),( =∈= jikyy SikjS χ . 

The form corresponding to (2.30) is as follows: 

 })1(:{ IiSjJ jik
Kk

u ∈→=∈=
∈

χ . 

Remark 2.1. Note that in the discrete case it may be possible to satisfy the 
requirement Yyy ∈= * , i.e. *ii =  for R  which is not a function. The solution has 
the form 

 }),(:{ *ikjSSjJ yu =∈= .     

Example 2.6. 
Let 5=α , 6=β ,  

 























=

101110
001000
101100
011000
100001

χ  
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and the requirement is determined by }5,4,3{=I , which means that 
},,{ 543 yyyDy = . According to (2.29) 

 }6,1{)1( =yS ,   }5,4{)2( =yS ,   }6,4,3{)3( =yS , 

 }4{)4( =yS ,   }6,4,3,2{)5( =yS . 

Then },4,2{=J  which means that the requirement is satisfied for the decisions 2u  
and 4u . It is easy to see that for 

 























=

101110
001001
101100
010010
100001

χ  

the solution does not exist.           




