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Balanced Ranked Set Sampling I:
Nonparametric

In a balanced ranked set sampling, the number of measurements made on each
ranked statistic is the same for all the ranks. A balanced ranked set sampling
produces a data set as follows.

X[1]1 X[1]2 · · · X[1]m
X[2]1 X[2]2 · · · X[2]m
· · · · · · · · · · · · ,

X[k]1 X[k]2 · · · X[k]m.

(2.1)

It should be noted that the X[r]i’s in (2.1) are all mutually independent and,
in addition, the X[r]i’s in the same row are identically distributed. We denote
by f[r] and F[r], respectively, the density function and the distribution func-
tion of the common distribution of the X[r]i’s. The density function and the
distribution function of the underlying distribution are denoted, respectively,
by f and F . In this chapter, no assumption on the underlying distribution is
made. We shall first discuss the ranking mechanisms of RSS and then discuss
the properties of various statistical procedures using ranked set samples. In
Section 1, the concept of consistent ranking mechanism is proposed and sev-
eral consistent ranking mechanisms are discussed. In Section 2.2, the estima-
tion of means using RSS sample is considered. The unbiasedness, asymptotic
distribution and relative efficiency of the RSS estimates with respect to the
corresponding SRS estimates are treated in detail. In Section 2.3, the results
on the estimation of means are extended to the estimation of smooth func-
tions of means. In Section 2.4, a special treatment is devoted to the estimation
of variance. A minimum variance unbiased non-negative estimate of variance
based on an RSS sample is proposed and studied. In Section 2.5, tests and
confidence interval procedures for the population mean are discussed. In Sec-
tion 2.6, the estimation of quantiles is tackled. The RSS sample quantiles are
defined and their properties, similar to those of the SRS sample quantiles,
such as strong consistency, Bahadur representation and asymptotic normality
are established. In Section 2.7, the estimation of density function is treated.
A kernel estimate based on an RSS sample is defined similarly as in the case
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of SRS. Its properties and relative efficiency with respect to SRS are inves-
tigated. In Section 2.8, the properties of M -estimates using RSS samples are
discussed. Some technical details on the estimation of variance are given in
Section 2.9. Readers who are not interested in technicalities might skip the
final section.

2.1 Ranking mechanisms

In chapter 1, we introduced the general procedure of RSS. The procedure is
a two-stage scheme. At the first stage, simple random samples are drawn and
a certain ranking mechanism is employed to rank the units in each simple
random sample. At the second stage, actual measurements of the variable
of interest are made on the units selected based on the ranking information
obtained at the first stage. The judgment ranking relating to the latent values
of the variable of interest, as originally considered by McIntyre [96], provides
one ranking mechanism. We mentioned that mechanisms other than this one
can be used as well. In this section, we discuss the ranking mechanisms which
are to be used in various practical situations.

Let us start with McIntyre’s original ranking mechanism, i.e., ranking with
respect to the latent values of the variable of interest. If the ranking is perfect,
that is, the ranks of the units tally with the numerical orders of their latent
values of the variable of interest, the measured values of the variable of interest
are indeed order statistics. In this case, f[r] = f(r), the density function of the
rth order statistic of a simple random sample of size k from distribution F .
We have

f(r)(x) =
k!

(r − 1)!(k − r)!
F r−1(x)[1 − F (x)]k−rf(x).

It is then easy to verify that

f(x) =
1
k

k∑
r=1

f(r)(x),

for all x. This equality plays a very important role in RSS. It is this equality
that gives rise to the merits of RSS. We are going to refer to equalities of this
kind as fundamental equalities.

A ranking mechanism is said to be consistent if the following fundamental
equality holds:

F (x) =
1
k

k∑
r=1

F[r](x), for all x. (2.2)

Obviously, perfect ranking with respect to the latent values of X is consistent.
We discuss other consistent ranking mechanisms in what follows.
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(i) Imperfect ranking with respect to the variable of interest. When there
are ranking errors, the density function of the ranked statistic with rank r is
no longer f(r). However, we can express the corresponding cumulative distri-
bution function F[r] in the form:

F[r](x) =
k∑

s=1

psrF(s)(x),

where psr denotes the probability with which the sth (numerical) order statis-
tic is judged as having rank r. If these error probabilities are the same within
each cycle of a balanced RSS, we have

∑k
s=1 psr =

∑k
r=1 psr = 1. Hence,

1
k

k∑
r=1

F[r](x) =
1
k

k∑
r=1

k∑
s=1

psrF(s)(x)

=
1
k

k∑
s=1

(
k∑

r=1

psr)F(s)(x) = F (x).

(ii) Ranking with respect to a concomitant variable. There are cases in
practical problems where the variable of interest, X, is hard to measure and
difficult to rank as well but a concomitant variable, Y , can be easily measured.
Then the concomitant variable can be used for the ranking of the sampling
units. The RSS scheme is adapted in this situation as follows. At the first
stage of RSS, the concomitant variable is measured on each unit in the simple
random samples, and the units are ranked according to the numerical order of
their values of the concomitant variable. Then the measured X values at the
second stage are induced order statistics by the order of the Y values. Let Y(r)
denote the rth order statistic of the Y ’s and X[r] denote its corresponding X.
Let fX|Y(r)

(x|y) denote the conditional density function of X given Y(r) = y
and g(r)(y) the marginal density function of Y(r). Then we have

f[r](x) =
∫

fX|Y(r)
(x|y)g(r)(y)dy.

It is easy to see that

f(x) =
∫ k∑

r=1

1
k

fX|Y(r)
(x|y)g(r)(y)dy

=
1
k

k∑
r=1

f[r](x).

(iii) Multivariate samples obtained by ranking one of the variables. With-
out loss of generality, let us consider the bivariate case. Suppose that inferences
are to be made on the joint distribution of X and Y . The RSS scheme can
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be similarly adapted in this case. The scheme goes the same as the standard
RSS. The sampling units are ranked according to one of the variables, say
Y . However, for each item to be quantified, both variables are measured. Let
f(x, y) denote the joint density function of X and Y and f[r](x, y) the joint
density function of X[r] and Y[r]. Then

f[r](x, y) = fX|Y[r]
(x|y)g[r](y)

and

f(x, y) =
1
k

k∑
r=1

f[r](x, y).

(iv) Ranking mechanisms based on multiple concomitant variables. If there
is more than one concomitant variable, any function of the concomitant vari-
ables can be used as a ranking criterion and the resultant ranking mechanism
is consistent. Some of the ranking mechanisms based on functions of concomi-
tant variables are discussed in detail in Chapter 6. We also develop a multi-
layer RSS scheme using multiple concomitant variables, which is consistent,
in Chapter 6.

2.2 Estimation of means using ranked set sample

Let h(x) be any function of x. Denote by µh the expectation of h(X), i.e.,
µh = Eh(X). We consider in this section the estimation of µh by using a
ranked set sample. Examples of h(x) include: (a) h(x) = xl, l = 1, 2, · · · ,
corresponding to the estimation of population moments, (b) h(x) = I{x ≤ c}
where I{·} is the usual indicator function, corresponding to the estimation of
distribution function, (c) h(x) = 1

λK( t−x
λ ), where K is a given function and

λ is a given constant, corresponding to the estimation of density function. We
assume that the variance of h(X) exists. Define the moment estimator of µh

based on data (2.1) as follows.

µ̂h·RSS =
1

mk

k∑
r=1

m∑
i=1

h(X[r]i).

We consider first the statistical properties of µ̂h·RSS and then the relative
efficiency of RSS with respect to SRS in the estimation of means.

First, we have the following result.

Theorem 2.1. Suppose that the ranking mechanism in RSS is consistent.
Then,

(i) The estimator µ̂h·RSS is unbiased, i.e., Eµ̂h·RSS = µh.
(ii)Var(µ̂h·RSS) ≤ σ2

h

mk , where σ2
h denotes the variance of h(X), and the in-

equality is strict unless the ranking mechanism is purely random.
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(iii)As m → ∞, √
mk(µ̂h·RSS − µh) → N(0, σ2

h·RSS),

in distribution, where,

σ2
h·RSS =

1
k

k∑
r=1

σ2
h[r].

Here σ2
h[r] denotes the variance of h(X[r]i).

Proof: (i) It follows from the fundamental equality that

Eµ̂h·RSS =
1

mk

k∑
r=1

m∑
i=1

Eh(X[r]i) =
1
k

k∑
r=1

Eh(X[r]1)

=
1
k

k∑
r=1

∫
h(x)dF[r](x) =

∫
h(x)d

1
k

k∑
r=1

F[r](x)

=
∫

h(x)dF (x) = µh.

(ii)

Var(µ̂h·RSS) =
1

(mk)2

k∑
r=1

m∑
i=1

Var(h(X[r]i)) =
1

mk2

k∑
r=1

Var(h(X[r]))

=
1

mk

(
1
k

k∑
r=1

(E[h(X[r])]2 − [Eh(X[r])]2)

)

=
1

mk

(
mh2 − 1

k

k∑
r=1

[Eh(X[r])]2
)

,

where mh2 denotes the second moment of h(X). It follows from the Caushy-
Schwarz inequality that

1
k

k∑
r=1

[Eh(X[r])]2 ≥
(

1
k

k∑
r=1

Eh(X[r])

)2

= µ2
h,

where the equality holds only when Eh(X[1]) = · · · = Eh(X[r]) in which case
the ranking mechanism is purely random.

(iii) By the fundamental equality, µh = 1
k

∑k
r=1 µh[r], where µh[r] is the

expectation of h(X[r]i). Then, we can write

√
mk(µ̂h·RSS − µh) =

1√
k

k∑
r=1

√
m[

1
m

m∑
i=1

h(X[r]i) − µh[r]]

=
1√
k

k∑
r=1

Zmr, say.
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By the multivariate central limit theorem, (Zm1, · · · , Zmk) converges to a mul-
tivariate normal distribution with mean vector zero and covariance matrix
given by Diag(σ2

h[1], · · · , σ2
h[k]). Part (iii) then follows.

This proves the theorem.
We know that σ2

h/(mk) is the variance of the moment estimator of µh based
on a simple random sample of size mk. Theorem 2.1 implies that the moment
estimator of µh based on an RSS sample always has a smaller variance than its
counterpart based on an SRS sample of the same size. In the context of RSS,
we have tacitly assumed that the cost or effort for drawing sampling units
from the population and then ranking them is negligible. When we compare
the efficiency of a statistical procedure based on an RSS sample with that
based on an SRS sample, we assume that the two samples have the same size.
Let µ̂h·SRS denote the sample mean of a simple random sample of size mk. We
define the relative efficiency of RSS with respect to SRS in the estimation of
µh as follows:

RE(µ̂h·RSS, µ̂h·SRS) =
Var(µ̂h·SRS)
Var(µ̂h·RSS)

. (2.3)

Theorem 2.1 implies that RE(µ̂h·RSS, µ̂h·SRS) ≥ 1. In order to investigate the
relative efficiency in more detail, we derive the following:

σ2
h·RSS =

1
k

k∑
r=1

σ2
h[r]

=
1
k

k∑
r=1

(E[h(X[r])]2 − [Eh(X[r])]2)

=
1
k

k∑
r=1

E[h(X[r])]2 − µ2
h + µ2

h − 1
k

k∑
r=1

[Eh(X[r])]2

= σ2
h − 1

k

k∑
r=1

(µh[r] − µh)2. (2.4)

Thus, we can express the relative efficiency as

RE(µ̂h·RSS, µ̂h·SRS) =
σ2

h

σ2
h·RSS

=

[
1 −

1
k

∑k
r=1(µh[r] − µh)2

σ2
h

]−1

.

It is clear from the above expression that, as long as there is at least one
r such that µh[r] �= µh, the relative efficiency is greater than 1. For a given
underlying distribution and a given function h, the relative efficiency can be
computed, at least, in principle.

In the remainder of this section, we discuss the relative efficiency in more
detail for the special case that h(x) = x. Based on the computations on a
number of underlying distributions, McIntyre [96] made the following con-
jecture: the relative efficiency of RSS with respect to SRS, in the estimation
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Table 2.1. µ, σ2, γ, κ and the relative efficiency of RSS with k = 2, 3, 4 for some
distributions

Distribution µ σ2 γ κ 2 3 4
Uniform 0.500 0.083 0.000 1.80 1.500 2.000 2.500
Exponential 1.000 1.000 2.000 9.00 1.333 1.636 1.920
Gamma(0.5) 0.500 0.500 2.828 15.0 1.254 1.483 1.696
Gamma(1.5) 1.500 1.500 1.633 7.00 1.370 1.710 2.030
Gamma(2.0) 2.000 2.000 1.414 6.00 1.391 1.753 2.096
Gamma(3.0) 3.000 3.000 1.155 5.00 1.414 1.801 2.169
Gamma(4.0) 4.000 4.000 1.000 4.50 1.427 1.827 2.210
Gamma(5.0) 5.000 5.000 0.894 4.20 1.434 1.843 2.236
Normal 0.000 1.000 0.000 3.00 1.467 1.914 2.347
Beta (4,4) 0.500 0.028 0.000 2,45 1.484 1.958 2.425
Beta(7,4) 0.636 0.019 -0.302 2.70 1.475 1.936 2.389
Beta(13,4) 0.765 0.010 -0.557 3.14 1.460 1.903 2.333
Weibull(0.5) 2.000 20.00 6.619 87.7 1.127 1.236 1.334
Weibull(1.5) 0.903 0.376 1.072 4.39 1.422 1.822 2.205
Weibull(2.0) 0.886 0.215 0.631 3.24 1.458 1.897 2.325
Weibull(3.0) 0.893 0.105 0.168 2.73 1.476 1.936 2.387
Weibull(4.0) 0.906 0.065 -0.087 2.75 1.474 1.932 2.380
Weibull(5.0) 0.918 0.044 -0.254 2.88 1.469 1.921 2.361
Weibull(6.0) 0.918 0.032 -0.373 3.04 1.464 1.909 2.341
Weibull(7.0) 0.935 0.025 -0.463 3.19 1.459 1.898 2.324
Weibull(8.0) 0.942 0.019 -0.534 3.33 1.456 1.890 2.309
χ2(1) 0.789 0.363 0.995 3.87 1.430 1.841 2.239
Triangular 0.500 0.042 0.000 2.40 1.485 1.961 2.430
Extreme value 0.577 1.645 1.300 5.40 1.413 1.793 2.153

of population mean, is between 1 and (k + 1)/2 where k is the set size; For
symmetric underlying distributions, the relative efficiency is not much less
than (k + 1)/2, however, as the underlying distribution becomes asymmet-
ric, the relative efficiency drops down. Takahasi and Wakimoto [167] showed
that, when ranking is perfect, 1

k

∑k
r=1 σ2

h[r], as a function of k, decreases as
k increases, which implies that the relative efficiency increases as k increases.
A practical implication of this result is that, in the case of judgment ranking
relating to the latent values of the variable of interest, when ranking accuracy
can still be assured or, in other cases, when the cost of drawing sampling units
and ranking by the given mechanism can still be kept at a negligible level, the
set size k should be taken as large as possible. Dell and Clutter [50] computed
the relative efficiency for a number of underlying distributions. They noticed
that the relative efficiency is affected by the underlying distribution, especially
by the skewness and kurtosis. Table 2.1 below is partially reproduced from
Table 1 of Dell and Clutter (1972). The notations µ, σ2, γ and κ in the table
stand, respectively, for the mean, variance, skewness and kurtosis.
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2.3 Estimation of smooth-function-of-means using
ranked set sample

In this section we deal with the properties of RSS for a particular model,
the smooth-function-of-means model, which refers to the situation where we
are interested in the inference on a smooth function of population moments.
Typical examples of smooth-function-of-means are (i) the variance, (ii) the co-
efficient of variation, and (iii) the correlation coefficient, etc. Let m1, . . . , mp

denote p moments of F and g a p-variate smooth function with first deriva-
tives. We consider the method-of-moment estimation of g(m1, . . . , mp).

The following notation will be used in this section. Let Zl, l = 1, . . . , p, be
functions of X(∼ F ) such that E[Zl] = ml. Let n = km. A simple random
sample of size n is represented by {(Z1j , ..., Zpj) : j = 1, . . . , n}. A general
RSS sample of size n is represented by {(Z1(r)i, . . . , Zp(r)i) : r = 1, . . . , k; i =
1, . . . , m}. The simple random and ranked set sample moments are denoted,
respectively, by

Z̄l =
1
n

n∑
j=1

Zlj , l = 1, . . . , p

and

Z̃l =
1

km

k∑
r=1

m∑
i=1

Zl(r)i, l = 1, . . . , p.

Let Z̄SRS = (Z̄1, . . . , Z̄p)T and Z̄RSS = (Z̃1, . . . , Z̃p)T . Denote by ΣSRS and
ΣRSS the variance-covariance matrices of

√
nZ̄SRS and

√
nZ̄RSS, respectively.

Let ∂g denote the vector of the first partial derivatives of g evaluated at
(m1, . . . , mp). Define

η = g(m1, . . . , mp),
η̂SRS = g(Z̄1, . . . , Z̄p),

η̂RSS = g(Z̃1, . . . , Z̃p).

We first state the asymptotic normality of η̂SRS and η̂RSS, and then consider
the asymptotic relative efficiency (ARE) of η̂RSS with respect to η̂SRS.

Theorem 2.2. As m → ∞ (hence n → ∞), we have
√

n(η̂SRS − η) → N(0, ∂gTΣSRS∂g)

in distribution and
√

n(η̂RSS − η) → N(0, ∂gTΣRSS∂g)

in distribution.
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The above result follows from the multivariate central limit theorem. The
proof is omitted. The ARE of η̂RSS with respect to η̂SRS is defined as

ARE(η̂RSS, η̂SRS) =
∂gTΣSRS∂g

∂gTΣRSS∂g
.

The next theorem implies that the ARE of η̂RSS with respect to η̂SRS is
always greater than 1.

Theorem 2.3. Suppose that the ranking mechanism in RSS is consistent.
Then we have that

ΣSRS ≥ ΣRSS,

where ΣSRS ≥ ΣRSS means that ΣSRS − ΣRSS is non-negative definite.

Proof: It suffices to prove that, for any vector of constants a,

aT ΣSRSa − aT ΣRSSa ≥ 0. (2.5)

Define

Y = aT Z =
p∑

j=1

ajZj and µY = aT m =
p∑

j=1

ajmj .

Then we have

µ̂Y ·SRS = aT Z̄SRS and µ̂Y ·RSS = aT Z̄RSS.

It follows from Theorem 2.1 that

Var(µ̂Y ·RSS) ≤ Var(µ̂Y ·SRS),

i.e.,
aT ΣSRSa ≥ aT ΣRSSa.

The theorem is proved.
In fact, it can be proved that, as long as there are at least two ranks, say

r and s, such that F[r] �= F[s], then ΣSRS > ΣRSS.
It should be noted that, unlike in the estimation of means, the estimator

of a smooth-function-of-means is no longer necessarily unbiased. It is only as-
ymptotically unbiased. In this case, the relative efficiency of RSS with respect
to SRS should be defined as the ratio of the mean square errors of the two
estimators. The ARE, which is the limit of the relative efficiency as the sam-
ples size goes to infinity, does not take into account the bias for finite sample
sizes. In general, the ARE can not be achieved when sample size is small.
We consider this issue in more detail for the special case of the estimation of
population variance σ2 in the next section.
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2.4 Estimation of variance using an RSS sample

2.4.1 Naive moment estimates

The natural estimates of σ2 using an SRS sample and an RSS sample are
given, respectively, by

s2
SRS =

1
mk − 1

k∑
r=1

m∑
i=1

(Xri − X̄SRS)2,

where X̄SRS = 1
mk

∑k
r=1

∑m
i=1 Xri, and

s2
RSS =

1
mk − 1

k∑
r=1

m∑
i=1

(X[r]i − X̄RSS)2,

where X̄RSS = 1
mk

∑k
r=1

∑m
i=1 X[r]i.

The properties of s2
RSS were studied by Stokes [159]. Unlike the SRS version

s2
SRS, the RSS version s2

RSS is biased. It can be derived, see Stokes [159], that

Es2
RSS = σ2 +

1
k(mk − 1)

k∑
r=1

(µ[r] − µ)2.

An appropriate measure of the relative efficiency of s2
RSS with respect to s2

SRS

is then given by

RE(s2
RSS, s

2
SRS) =

Var(s2
SRS)

MSE(s2
RSS)

=
Var(s2

SRS)

Var(s2
RSS) +

[
1

k(mk−1)

∑k
r=1(µ[r] − µ)2

]2 .

It can be easily seen that

RE(s2
RSS, s

2
SRS) < ARE(s2

RSS, s
2
SRS).

Since
1
k

k∑
r=1

(µ[r] − µ)2 < σ2,

it is clear that 1
k(mk−1)

∑k
r=1(µ[r] − µ)2 will decrease as either k or m in-

creases. That is, the RE will converge increasingly to the ARE as either k or
m increases. Stokes [159] computed both the RE when m = 1 and the ARE
for a few underlying distributions. Table 2.2 below is reproduced from Table 1
of [159]. In the table, the U -shaped distribution refers to the distribution with
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Table 2.2. Relative efficiency, Var(s2
SRS)/MSE(s2

RSS), for m = 1 and m → ∞.

Distribution k m = 1 m → ∞
(i) U-shaped 2 0.85 1.00

3 1.22 1.10
4 1.28 1.21

(ii) Uniform 2 0.72 1.00
3 0.92 1.11
4 1.09 1.25
5 1.20 1.40

(iii) Normal 2 0.68 1.00
3 0.81 1.08
4 0.93 1.18
5 1.03 1.27

(iv) Gamma 2 0.71 1.02
3 0.81 1.08
4 0.91 1.16
5 1.00 1.23
6 1.09 1.35

(v) Exponential 2 0.78 1.03
3 0.84 1.08
4 0.91 1.12
5 0.97 1.17
6 1.02 1.22

(vi) Lognormal 2 0.93 1.00
3 0.95 1.01
4 0.96 1.01
5 0.97 1.02
6 0.98 1.02
7 0.99 1.03
8 1.00 1.03
9 1.01 1.04

density function f(x) = (3/2)x2I{−1 ≤ x ≤ 1}, and the Gamma distribution
has density function f(x) = x4 exp(−x)/Γ (5)I{x ≥ 0}.

It should be remarked that, in the estimation of variance, RSS is not
necessarily more efficient than SRS when sample size is small, and the relative
efficiency is much smaller than in the estimation of population mean even
when RSS is beneficial. Therefore, if the estimation of variance is the primary
purpose, it is not worthwhile to apply RSS. RSS is most useful when both the
population mean and variance are to be estimated.

It is indeed a natural question whether or not better estimates of σ2 based
on an RSS sample can be found. We take up this question in the next subsec-
tion.
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2.4.2 Minimum variance unbiased non-negative estimate

We demonstrate in this subsection that it is possible to construct a class
of nonnegative unbiased estimates of σ2 based on a balanced RSS sample,
whatever the nature of the underlying distribution. Towards this end, we
need the following basic identity which follows directly from (2.4):

σ2 =
1
k

[
k∑

r=1

σ2
[r] +

k∑
r=1

µ2
[r]] − µ2. (2.6)

Recall that X̄i:RSS = (1/k)
∑k

r=1 X[r]i provides an unbiased estimate of the
mean µ based on the data of the ith cycle of an RSS . Let

Wi =
k∑

r=1

(X[r]i − X̄i:RSS)2, i = 1, · · · , m. (2.7)

From the basic identity (2.6), it is clear that an unbiased estimate of σ2 can
be obtained by plugging in unbiased estimates of σ2

[r] + µ2
[r] and µ2. Since∑m

i=1 X2
[r]i/m is an unbiased estimate of the former term and X̄i:RSSX̄j:RSS for

i �= j is an unbiased estimate of µ2, it follows easily that an unbiased estimate
of σ2 is given by

σ̂2 =
∑k

r=1
∑m

i=1[X[r]i]2

mk
−

∑
i �=j X̄i:RSSX̄j:RSS

m(m − 1)
. (2.8)

The above estimate can be readily simplified as

σ̂2 =
W

mk
+

B

(m − 1)k
(2.9)

where B and W represent, respectively, the between- and within-cycle sum of
squares of the entire balanced data, defined as

B = k

m∑
i=1

(X̄i:RSS − X̄RSS)2, W =
m∑

i=1

Wi. (2.10)

It is obvious that σ̂2 is nonnegative.
Let

X [r] = (X[r]1, · · · , X[r]m)′, r = 1, · · · , k,

X = (X ′
[1], · · · , X ′

[k])
′.

Denote by 1m an m-dimensional vector of elements 1’s and Im an identity
matrix of order m. It can be easily verified that
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σ̂2 =
k∑

r=1

k∑
s=1

[ãrsX
′
[r](Im − 1m1

′
m

m
)X [s] + d̃rsX

′
[r]

1m1
′
m

m
X [s]],

where

ãrs =

{
1

m(m−1)k2 , r �= s,
(m−1)k+1
m(m−1)k2 , r = s,

d̃rs =
{

1 − m, r �= s,
1 − m + 1

mk , r = s.

Furthermore, let
Ã = (ãrs)k×k, D̃ = (d̃rs)k×k.

We can express σ̂2 as follows:

σ̂2 = X
′
[Ã ⊗ (Im − 1m1

′
m

m
) + D̃ ⊗ 1m1

′
m

m
]X,

where ⊗ denotes the operation of Kronecker product.
The form of σ̂2 above motivates us to consider a class of quadratic esti-

mators of σ2. Let

Q = A ⊗ (Im − 1m1
′
m

m
) + D ⊗ 1m1

′
m

m
,

where A = (ars)k×k and D = (drs)k×k are arbitrary k × k symmetric matri-
ces. We consider the class of quadratic estimators X

′
QX with Q given by

the above form. The following theorem provides characterizations of unbiased
estimators of σ2 and of the minimum variance unbiased estimator of σ2 among
estimators in the above class.

Theorem 2.4. (a) σ̂2 = X
′
QX in the above class is unbiased for σ2 if and

only if

arr =
1

k(m − 1)
[1 − k − 1

mk
] =

1
mk

[1 +
1

k(m − 1)
]

for r = 1, 2, . . . , k, and D = (1/mk)[Ik − 1k1
′
k/k].

(b) Among all unbiased estimators of σ2 in the above class, σ̂2 has the
minimum variance if and only if ars = 0, for all r �= s.

The proof of the theorem is given in the appendix at the end of this chapter.

Corollary 1 The minimum variance unbiased nonnegative estimate of σ2 in
the class considered can be simplified as

σ̂2
UMVUE =

k(m − 1) + 1
k2m(m − 1)

W ∗ +
1

mk
B∗,
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where B∗ and W ∗ are the between- and within-rank sum of squares of the RSS
data defined by, respectively,

B∗ = m

k∑
r=1

(X̄[r] − X̄RSS)2,

W ∗ =
k∑

r=1

W ∗
r ,

where X̄[r] = (1/m)
∑m

i=1 X[r]i and W ∗
r =

∑m
i=1(X[r]i − X̄[r])2, r = 1, · · · , k.

Moreover, we have

Var(σ̂2
UMVUE) =

1
mk2

k∑
r=1

κ∗
[r] + 2

(k(m − 1) + 1)2

k4m2(m − 1)

k∑
r=1

σ4
[r]

+
2

k4m2 [
k∑

r=1

σ2
[r]]

2 +
2k(k − 2)

k4m2

k∑
r=1

σ4
[r]

+
4

k2m

k∑
r=1

τ2
[r]σ

2
[r] +

4
k2m

k∑
r=1

τ[r]γ
∗
[r],

where µ[r], σ[r], γ
∗
[r] and κ∗

[r] are, respectively the mean, standard deviation,
third and fourth cumulants of X[r]i, and τ[r] = µ[r] − µ.

Remarks:
(i) It is easy to verify that two other unbiased nonnegative estimates of σ2

with special choices of off-diagonal elements of A are given by

σ̂2
1 =

k(m − 1) + 1
km(m − 1)

B +
1

mk
B∗ and σ̂2

2 =
1

mk
W +

1
k2(m − 1)

W ∗.

(ii) The variance of Stokes’s (1980) estimate of σ2 can be easily obtained
by choosing A = 1

mk−1Im and D = 1
mk−1 [Ik − 1k1

′
k/k].

(iii) The asymptotic relative efficiency (ARE) of σ̂2
UMVUE compared to

Stokes’s estimate, defined as the limit of
Var(σ̂2

Stokes)/Var(σ̂2
UMVUE) as m → ∞, turns out to be unity. However, for

small m, the relative efficiency computed for several distributions shows the
superiority of the UMVUE over Stokes’s estimate. For details, see Perron and
Sinha [132].

2.5 Tests and confidence intervals for population mean

In this section, we present asymptotic testing and confidence interval proce-
dures for the population mean based on a balanced RSS under a nonparamet-
ric set up.
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2.5.1 Asymptotic pivotal method

Assume that the population of concern has finite mean µ and variance σ2. We
discuss procedures for constructing confidence intervals and testing hypothe-
ses for µ based on a pivot. A pivot for µ is a function of µ and the data, whose
distribution or asymptotic distribution does not depend on any unknown pa-
rameters, and usually can be obtained by standardizing an unbiased estimate
of µ. Thus if µ̂RSS is an unbiased estimate of µ based on a balanced ranked set
sample and σ̂µ̂RSS is a consistent estimate of the standard deviation of µ̂RSS,
a pivot for µ can be formed as

Z1 =
µ̂RSS − µ

σ̂µ̂RSS

.

Then an equal tailed 100(1 − α)% confidence interval of µ can be constructed
as

[µ̂RSS − z1−α/2σ̂µ̂RSS , µ̂RSS − zα/2σ̂µ̂RSS ]

where zα/2 denotes the (α/2)th quantile of the asymptotic distribution of Z1.
A hypothesis for µ, either one-sided or two-sided, can be tested based on the
pivot Z1 in a straightforward manner. On the other hand, based on a simple
random sample of size N , a pivot Z2 is given by

Z2 =
X̄ − µ

s/
√

N

where X̄ is the sample mean and s2 is the usual unbiased estimate of σ2. In
what follows, we derive the counterparts of Z2 by choosing Z1 appropriately
under a balanced ranked set sampling scheme.

Obviously, in the case of a balanced RSS, the ranked set sample mean,
X̄RSS = 1/(mk)

∑k
r=1

∑m
i=1 X[r]i, is an unbiased estimate of µ. Therefore, a

pivot for µ can be formed as

Z =
X̄RSS − µ

σ̂X̄RSS

where σ̂X̄RSS
is a consistent estimate of σX̄RSS

, the standard deviation of X̄RSS.
It follows from the central limit theorem that Z follows asymptotically a
standard normal distribution. However, it turns out that there are several
consistent estimates of σX̄RSS

, each of which gives rise to a pivotal statistic.
The question then obviously arises as to which of the estimates of σX̄RSS

should
be used in the pivot. We shall now discuss different consistent estimates of
σX̄RSS

and make a choice in the next section.

2.5.2 Choice of consistent estimates of σX̄RSS

In this section we discuss several consistent estimates of σX̄RSS
and make a

choice for the one to be used in the pivot considered in the previous section.
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First, we give different expressions for X̄RSS that motivate various estimates
of σX̄RSS

. We can write X̄RSS as

X̄RSS =
1
m

m∑
i=1

1
k

k∑
r=1

X[r]i =
1
m

m∑
i=1

X̄iRSS

where X̄iRSS, i = 1, · · · , m, are i.i.d. with mean µ and variance, say, τ2. Then
we have

Var(X̄RSS) =
τ2

m
. (2.11)

Obviously, an unbiased estimate of τ2 is given by

τ̂2
1 =

1
m − 1

m∑
i=1

(X̄iRSS − X̄RSS)2.

On the other hand, we can express X̄RSS as

X̄RSS =
1
k

k∑
r=1

1
m

m∑
i=1

X[r]i =
1
k

k∑
r=1

X̄[r]

where X̄[r], r = 1, · · · , k, are independent with means and variances given by,
respectively, E(X̄[r]) = µ[r] and Var(X̄[r]) = σ2

[r]/m. Thus we have another
expression of Var(X̄RSS) as follows.

Var(X̄RSS) =
1

mk2

k∑
r=1

σ2
[r]. (2.12)

Comparing (2.11) and (2.12), we have

τ2 =
1
k2

k∑
r=1

σ2
[r]. (2.13)

Hence an unbiased estimate of τ2 is obtained through the expression (2.13)
by forming unbiased estimates of σ2

[r]’s. The usual unbiased estimate of σ2
[r] is

given by

σ̂2
[r] =

1
m − 1

m∑
i=1

(X[r]i − X̄[r])2,

since for fixed r, X[r]i, i = 1, · · · , m, are i.i.d. with variance σ2
[r]. Hence, an

unbiased estimate of τ2 is given by

τ̂2
2 =

1
k2

k∑
r=1

σ̂2
[r].
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Since σ̂2
[r] is consistent for σ2

[r], obviously τ̂2
2 is consistent for τ2.

Finally, we can express τ2 as

τ2 =
σ2

k
− 1

k2

k∑
r=1

(µ[r] − µ)2. (2.14)

Thus, if we plug in consistent estimates of σ2, µ[r] and µ into (2.14), we obtain
a third consistent estimate of τ2 as follows.

τ̂2
3 =

σ̂2

k
− 1

k2

k∑
r=1

(µ̂[r] − µ̂)2. (2.15)

We can take

µ̂ = X̄RSS,

µ̂[r] =
1
m

m∑
i=1

X[r]i = X̄[r],

σ̂2 =
1

mk

k∑
r=1

m∑
i=1

(X[r]i − X̄RSS)2.

It can be verified that (see Stokes, 1980)

Eσ̂2 = (1 − 1
mk

)σ2 +
1

mk2

k∑
r=1

(µ[r] − µ)2

= σ2 + O(
1
m

)

and that

E[
1
k2

k∑
r=1

(µ̂[r] − µ̂)2] =
1
k2

k∑
r=1

(µ[r] − µ)2 +
k − 1
mk

τ2

=
1
k2

k∑
r=1

(µ[r] − µ)2 + O(
1
m

).

Some other consistent estimates of τ2 can also be obtained by plugging in
bias-corrected estimators of σ2 and

∑k
r=1(µ[r] − µ)2 into (2.14).

In the remainder of this section, we compare the three estimates of τ2

defined above. After some manipulation, we can obtain

τ̂2
3 =

m − 1
m

τ̂2
2 .

Therefore, τ̂2
3 and τ̂2

2 are asymptotically equivalent. In fact, any estimate of τ2

obtained by bias-correcting σ̂2 and
∑k

r=1(µ̂[r] − µ̂)2 is asymptotically equiva-
lent to τ̂2

2 . Such a bias-corrected estimator takes the form
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a(m, k)τ̂2
2 + b(m, k)

k∑
r=1

(µ̂[r] − µ̂)2.

In order to make it consistent, we must have, as m → ∞,

a(m, k) → 1, b(m, k) → 0.

Hence, the estimate is essentially of the form

τ̂2
2 + o(1).

The term o(1) is of order O(1/m2) or higher with bias-correction.
Therefore, we only need to consider τ̂2

1 and τ̂2
2 . Some straightforward al-

gebra yields that

τ̂2
1 = τ̂2

2 +
m

(m − 1)k2

∑
r �=s

(X̄[rs] − X̄[r]X̄[s]),

where

X̄[rs] =
1
m

m∑
i=1

X[r]iX[s]i.

Note that
E

∑
r �=s

(X̄[rs] − X̄[r]X̄[s]) = 0.

We have the following result.

Lemma 2.5. Among all unbiased estimates of τ2 of the form

τ̂2
2 + λ

∑
r �=s

(X̄[rs] − X̄[r]X̄[s]),

the estimate τ̂2
2 has the smallest variance.

Proof: In order to prove the lemma, we only need to verify that, for any l, r, s
such that r �= s,

Cov(X̄[ll] − X̄2
[l], X̄[rs] − X̄[r]X̄[s]) = 0. (2.16)

If both r and s are not equal to l, (2.16) holds trivially since X[l]i’s are
independent from X[r]i’s and X[s]i’s. In the following, we verify (2.16) for the
case that either r or s equals l. Without loss of generality, let r = l. We have

Cov(X̄[ll] − X̄2
[l], X̄[ls] − X̄[l]X̄[s])

= E[Cov(X̄[ll] − X̄2
[l], X̄[ls] − X̄[l]X̄[s]|X[s]i, i = 1, . . . , m)]

= E[
1
m

m∑
i=1

X[s]iCov(X̄[ll] − X̄2
[l], X[l]i)] − E[X̄[s]Cov(X̄[ll] − X̄2

[l], X̄[l])]

= 0.
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As a special case of Lemma 2.5, we have

Var(τ̂2
2 ) < Var(τ̂2

1 ).

We summarize what we have found so far to conclude this section. We
have investigated possible ways of estimating the variance of a standard RSS
estimate of the population mean. We compared different estimates of this
variance and found the one with the smallest variance. We recommend that the
estimate with the smallest variance be used in the pivot for the construction
of confidence intervals or testing hypotheses for the population mean.

Thus, the pivot recommended is

Z =

√
mk(X̄RSS − µ)

τ̂2
.

2.5.3 Comparison of power between tests based on RSS and SRS

In this section, we make a power comparison between the test using pivot Z
based on RSS and the test using pivot Z2 based on SRS by a simulation study.
In the simulation study, the values of k and m are taken as k = 3, 4, 5, and m =
15, 20, 25. The underlying distribution is taken as normal distributions N(µ, 1)
with a number of µ values. The power of the SRS-based test is computed by
using the standard normal distribution since the sample size N = mk is large.
The power of the RSS based test is simulated. In Table 2.3 below, we report
the power of the two tests for testing H0 : µ = 0 against H1 : µ > 0 at the
significance level α = 0.05. The efficiency of RSS over SRS is obvious from
Table 2.3.

2.6 Estimation of quantiles

This section is devoted to the estimation of population quantiles by using
a balanced ranked set sample. We first give the definition of the ranked set
sample quantiles analogous to the simple random sample quantiles and in-
vestigate their properties. Then we consider inference procedures such as the
construction of confidence intervals and the testing of hypotheses for the quan-
tiles. Finally we make a comparison between RSS quantile estimates and SRS
quantile estimates in terms of their asymptotic variances.

2.6.1 Ranked set sample quantiles and their properties

Let the ranked-set empirical distribution function be defined as

F̂RSS(x) =
1

mk

k∑
r=1

m∑
i=1

I{X[r]i ≤ x}.
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Table 2.3. Power of tests based on Z and Z2

m k Pivot\ µ 0 .01 .02 .05 .1 .2 .3 .4 .5
15 3 Z .05 .07 .08 .12 .25 .59 .97 1 1

Z2 .05 .06 .06 .09 .16 .38 .85 .96 1
4 Z .06 .09 .13 .19 .40 .83 1 1 1

Z2 .05 .06 .07 .10 .19 .46 .93 .99 1
5 Z .06 .07 .09 .19 .46 .90 1 1 1

Z2 .05 .06 .07 .11 .22 .53 .96 1 1
20 3 Z .05 .06 .07 .12 .29 .64 .99 1 1

Z2 .05 .06 .07 .10 .19 .46 .93 .99 1
4 Z .06 .09 .12 .22 .43 .90 1 1 1

Z2 .05 .06 .07 .12 .23 .56 .97 1 1
5 Z .05 .08 .09 .22 .51 .94 1 1 1

Z2 .05 .06 .07 .13 .26 .64 .99 1 1
25 3 Z .05 .06 .07 .16 .33 .78 1 1 1

Z2 .05 .06 .07 .11 .22 .53 .97 .99 1
4 Z .06 .07 .09 .12 .46 .92 1 1 1

Z2 .05 .06 .07 .13 .26 .72 1 1 1
5 Z .04 .06 .11 .22 .58 .98 1 1 1

Z2 .05 .06 .08 .14 .30 .72 1 1 1

Let n = mk. For 0 < p < 1, the pth ranked-set sample quantile, denoted by
x̂n(p), is then defined as the pth quantile of F̂RSS, i.e.,

x̂n(p) = inf{x : F̂RSS(x) ≥ p}.

We also define the ranked-set order statistics as follows. Let the X[r]i’s be
ordered from the smallest to the largest and denote the ordered quantities by

Z(1:n) ≤ · · · ≤ Z(j:n) ≤ · · · ≤ Z(n:n).

The Z(j:n)’s are then referred to as the ranked-set order statistics.
The following results are parallel to those on simple random sample quan-

tiles.
Let the pth quantile of F be denoted by x(p). First, we have that x̂n(p)

converges with probability one to x(p). Indeed, more strongly, we have

Theorem 2.6. Suppose that the ranking mechanism in RSS is consistent.
Then, with probability 1,

|x̂n(p) − x(p)| ≤ 2(log n)2

f(x(p))n1/2 ,

for all sufficiently large n.

Next, we have a Bahadur representation for the ranked-set sample quantile.
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Theorem 2.7. Suppose that the ranking mechanism in RSS is consistent and
that the density function f is continuous at x(p) and positive in a neighborhood
of x(p). Then,

x̂n(p) = x(p) +
p − F̂RSS(x(p))

f(x(p))
+ Rn,

where, with probability one,

Rn = O(n−3/4(log n)3/4),

as n → ∞.

From the Bahadur representation follows immediately the asymptotic nor-
mality of the ranked-set sample quantile.

Theorem 2.8. Suppose that the same conditions as in Theorem 2.7 hold.
Then

√
n(x̂n(p) − x(p)) → N

(
0,

σ2
k,p

f2(x(p))

)
,

in distribution, where,

σ2
k,p =

1
k

k∑
r=1

F[r](x(p))[1 − F[r](x(p))].

In particular, if ranking is perfect, noting that F[r](x(p)) = B(r, k + r − 1, p)
in this case,

σ2
k,p =

1
k

k∑
r=1

B(r, k + r − 1, p)[1 − B(r, k + r − 1, p)],

where B(r, s, x) denotes the distribution function of the beta distribution with
parameters r and s.

Notice that, when ranking is perfect, the quantity σ2
k,p does not depend on

any unknowns, which is practically important as will be seen when the asymp-
totic normality is applied to develop inference procedures for the population
quantile. In general, F[r](x(p)) depends on both the ranking mechanism and
the unknown F , and needs to be estimated from the data.

As another immediate consequence of Theorem 2.7, we have a more general
result as follows.

Theorem 2.9. Let 0 < p1 < · · · < pj · · · < pl < 1 be l probabilities. Let
ξ = (x(p1), . . . , x(pl))T and ξ̂ = (x̂n(p1), . . . , x̂n(pl))T . Then

√
n(ξ̂ − ξ) → Nl(0, Σ)

in distribution where, for i ≤ j, the (i, j)-th entry of Σ is given by

σij =
1
k

k∑
r=1

F[r](x(pi))(1 − F[r](x(pj)))/[f(x(pi))f(x(pj))].



32 2 Balanced Ranked Set Sampling I: Nonparametric

We also derive some properties of the ranked-set order statistics. An order
statistic Z(kn:n) is said to be central if kn

n converges to some p such that
0 < p < 1 as n goes to infinity. For central ranked-set order statistics, we
have the following analogue of the results for simple random sample order
statistics:

Theorem 2.10. (i) If kn

n = p + o(n−1/2) then

Z(kn:n) = x(p) +
kn

n − F̂RSS(x(p))
f(x(p))

+ Rn,

where, with probability 1,

Rn = O(n−3/4(log n)3/4),

as n → ∞.
(ii) If

kn

n
= p +

c

n1/2 + o(n−1/2)

then √
n(Z(kn:n) − x̂n(p)) → c

f(x(p))

with probability 1, and

√
n(Z(kn:n) − x(p)) → N

(
c

f(x(p))
,

σ2
k,p

f2(x(p))

)

in distribution.

The results in this section can be proved in arguments parallel to the proof
of the results on simple random sample quantiles. The details of the proof can
be found in Chen [35].

2.6.2 Inference procedures for population quantiles based on
ranked set sample

The results in Section 2.6.1 are applied in this section for inference procedures
on quantiles such as confidence intervals and hypotheses testing.

(i) Confidence interval based on ranked-set order statistics. To construct
a confidence interval of confidence coefficient 1 − 2α for x(p), we seek two
integers l1 and l2 such that 1 ≤ l1 < l2 ≤ n and that

P (Z(l1:n) < x(p) < Z(l2:n)) = 1 − 2α.

We restrict our attention to the intervals with equal tail probabilities, i.e.,
intervals satisfying
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P (Z(l1:n) ≤ x(p)) = 1 − α, P (Z(l2:n) ≤ x(p)) = α.

Then the integers l1 and l2 can be found as follows. Let Nr denote the number
of X[r]i’s with fixed r which are less than or equal to x(p). Let N =

∑k
r=1 Nr.

We have
P (Z(l1:n) ≤ x(p)) = P (N ≥ l1).

Note that the Nr’s are independent binomial random variables with Nr ∼
Bi(m, pr) where pr = F[r](x(p)). Hence

P (N ≥ l1) =
n∑

j=l1

∑
(j)

k∏
r=1

(
m
ir

)
pir

r (1 − pr)m−ir ,

where the summation
∑

(j) is over all k-tuples of integers (i1, . . . , ik) satis-

fying
∑k

r=1 ir = j. Then l1 can be determined such that the sum on the
right hand of the above equality is equal to or near 1 − α. Similarly l2 can be
determined. Though not impossible, the computation will be extremely cum-
bersome. However, when n is large, l1 and l2 can be determined approximately
as demonstrated below. Note that

EN =
k∑

r=1

mF[r](x(p)) = mkF (x(p)) = np,

V ar(N) =
k∑

r=1

mF[r](x(p))[1 − F[r](x(p))].

By the central limit theorem we have that, approximately,

N − np√∑k
r=1 mF[r](x(p))[1 − F[r](x(p))]

∼ N(0, 1).

Hence

l1 ≈ np − zα

√√√√ k∑
r=1

mF[r](x(p))[1 − F[r](x(p))],

l2 ≈ np + zα

√√√√ k∑
r=1

mF[r](x(p))[1 − F[r](x(p))],

where zα denotes the (1 − α)th quantile of the standard normal distribution.
When ranking is perfect, F[r](x(p)) = B(r, k−r+1, p), and the intervals above
can be completely determined. However, in general, F[r](x(p)) is unknown
and has to be estimated. We can take the estimate to be F̂[r](x̂n(p)), where
F̂[r](x) = (1/m)

∑m
i=1 I{X[r]i ≤ x}.



34 2 Balanced Ranked Set Sampling I: Nonparametric

For later reference, the interval [Z(l1:n), Z(l2:n)] is denoted by ĨSn
.

(ii) Confidence interval based on ranked-set sample quantiles. By making
use of Theorem 2.8, another asymptotic confidence interval of confidence coef-
ficient 1−2α for x(p) based on ranked-set sample quantiles can be constructed
as: [

x̂n(p) − zα√
n

σk,p

f(x(p))
, x̂n(p) +

zα√
n

σk,p

f(x(p))

]
.

This interval is denoted by ĨQn
. Since ĨQn

involves the unknown quantity
f(x(p)), we need to replace it with some consistent estimate in practice. In
the next section, we shall consider the estimation of f by the kernel method
using RSS data. The RSS kernel estimate of f can well serve the purpose
here. Let f̂RSS denote the RSS kernel estimate of f . Then in ĨQn

the unknown
f(x(p)) can be replaced by f̂RSS(x̂n(p)). Note that the intervals ĨSn

and ĨQn
are

equivalent in the sense that the two intervals are approximately overlapping
with each other while the confidence coefficients are the same. It follows from
Theorems 2.7 and 2.10 that, with probability 1,

Z(l1:n) − [x̂n(p) − zα√
n

σk,p

f(x(p))
] = o(n−1/2),

and
Z(l2:n) − [x̂n(p) +

zα√
n

σk,p

f(x(p))
] = o(n−1/2).

Noting that the length of the two intervals has order O(n−1/2), the equivalence
is established. In practice, either of these two intervals could be used.

(iii) Hypothesis testing using ranked-set sample quantiles. The joint as-
ymptotic normality of the ranked-set sample quantiles, as stated in Theorem
2.9, can be used to test hypotheses involving population quantiles. Suppose
the null hypothesis is of the form lT ξ = c, where ξ is a vector of quantiles, say,
ξ = (x(p1), . . . , x(pq))T , and l and c are given vector and scalar of constants,
respectively. The test statistic can then be formed as:

Sn =
√

n[lT ξ̂ − c]√
lT Σ̂l

,

where ξ̂ is the vector of the corresponding ranked-set sample quantiles and Σ̂
is the estimated covariance matrix of ξ̂ with its (i, j)-th (i < j) entry given
by

σ̂ij =
1
k

k∑
r=1

pir(1 − pjr)/[f̂(x̂n(pi))f̂(x̂n(pj))].

By Theorem 2.9, the test statistic follows asymptotically the standard normal
distribution under the null hypothesis. Hence, the decision rule can be made
accordingly.



2.7 Estimation of density function with ranked set sample 35

2.6.3 The relative efficiency of RSS quantile estimate with respect
to SRS quantile estimate

We discuss the ARE of the RSS quantile estimate with respect to the SRS
quantile estimate in this section. The counterpart of x̂n(p) in SRS is the pth
sample quantile, ξ̂np, of a simple random sample of size n. It can be found
from any standard text book that ξ̂np has an asymptotic normal distribution
with mean x(p) and variance p(1−p)

nf2(x(p)) . Hence, the ARE of x̂n(p) with respect

to ξ̂np is given by

ARE(x̂n(p), ξ̂np) =
p(1 − p)

1
k

∑k
r=1 F[r](x(p))[1 − F[r](x(p))]

.

By using the Bahadur representations of x̂n(p) and ξ̂np and applying Theorem
2.1 to the function

h(x) =
p − I{x ≤ x(p)}

f(x(p))
,

we obtain that
ARE(x̂n(p), ξ̂np) > 1,

provided that the ranking mechanism in RSS is consistent.
While ARE(x̂n(p), ξ̂np) is always greater than 1 for any p, the quantity

can differ very much for different values of p. To gain more insight into the
nature of the ARE, let us consider the case of perfect ranking. In this case,
F[r](x(p)) = B(r, k − r + 1, p), and the relative efficiency depends only on
p and k. For convenience, let it be denoted by ARE(k, p). For fixed k, as a
function of p, ARE(k, p) is symmetric about p = 0.5. It achieves its maximum
at p = 0.5 and damps away towards p = 0 and p = 1. For fixed p, ARE(k, p)
increases as k increases. For k = 1, . . . , 10, ARE(k, p) is depicted in Figure
2.1. The curves from the bottom to the top correspond to k from 1 to 10.

We can expect the largest gain in efficiency when we estimate the me-
dian of a population. The gain is quite significant even for small set sizes. For
k = 3, 4, 5, the AREs are, respectively, 1.6, 1.83, 2.03 — but relatively poor
compared with the RE’s for mean for most distributions — see Table 2.1.
In terms of sample sizes, we can reduce the sample size of an SRS by a half
through RSS with set size k = 5 while maintaining the same accuracy. How-
ever, the efficiency gain in the estimation of extreme quantiles is almost negli-
gible. To improve the efficiency for the estimation of extreme quantiles, other
RSS procedures must be sought. We will get back to this point in Chapter 4.

2.7 Estimation of density function with ranked set
sample

In the context of RSS, the need for density estimation arises in certain statis-
tical procedures. For example, the confidence interval and hypothesis testing
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Fig. 2.1. The asymptotic relative efficiency of RSS quantile estimates

procedures based on ranked-set sample quantiles considered in Section 2.6
need to have an estimate of the values of the density function at certain quan-
tiles. On the other hand, density estimation has its own independent interest.
A density estimate can reveal important features such as the skewness and
multimodality of the underlying distribution. A density estimate is an ideal
tool for the presentation of the data back to the clients in order to provide
explanations and illustrations of the conclusions that have been obtained. In
this section, we take up the task for developing methods of density estimation
using RSS data. In Section 2.7.1, the estimate of the density function f is
given and its properties are investigated. In Section 2.7.2, the relative effi-
ciency of the density estimate using RSS data with respect to its counterpart
in SRS is discussed.

2.7.1 RSS density estimate and its properties

There is a vast literature on density estimation in SRS. A variety of methods
have been proposed and developed including the nearest neighbor, the kernel,
the maximum penalized likelihood and the adaptive kernel method, etc.. A
good reference on the general methodology of density estimation is Silverman
[153]. Each of the various methods has its own merits and drawbacks. There is
no universal agreement as to which method should be used. We will focus our
attention on the kernel method of density estimation and its ramifications.
We choose to deal with the kernel method partly because it is a good choice
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in many practical problems and partly because its mathematical properties
are well understood.

To facilitate our discussion that follows, before we deal with the properties
of the RSS estimate, we give the definition of the SRS estimate along with
some of its properties below. Based on a simple random sample X1, . . . , Xn,
the kernel estimate of f is given by

f̂SRS(x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
.

The mean and variance of f̂SRS(x) can be easily derived as

Ef̂SRS(x) =
∫

1
h

K

(
x − t

h

)
f(t)dt, (2.17)

V arf̂SRS(x) =
1
n

{∫
1
h2 K

(
x − t

h

)2

f(t)dt

−
[∫

1
h

K

(
x − t

h

)
f(t)dt

]2
}

. (2.18)

To motivate the definition of the estimate with RSS data, note that, from
the fundamental equality, we have

f =
1
k

k∑
r=1

f[r], (2.19)

where f[r] denotes the density function corresponding to F[r]. The sub-sample,
X[r]i, i = 1, . . . , m, is indeed a simple random sample from the distribution
with pdf f[r]. Hence f[r] can be estimated by the usual kernel method using
the sub-sample. The kernel estimate, f̂[r], of f[r] at x based on the sub-sample
is defined as

f̂[r](x) =
1

mh

m∑
i=1

K

(
x − X[r]i

h

)
,

where K is a kernel function and h is the bandwidth to be determined. Thus
a natural definition of the kernel estimate of f is given by

f̂RSS(x) =
1
k

k∑
r=1

f̂[r](x) =
1

kmh

k∑
r=1

m∑
i=1

K

(
x − X[r]i

h

)
.

It follows from (2.19) that

Ef̂RSS(x) =
1
kh

k∑
r=1

EK

(
x − X[r]i

h

)
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=
1
k

k∑
r=1

∫
K

(
x − t

h

)
f[r](t)dt

=
∫

1
h

K

(
x − t

h

)
f(t)dt = Ef̂SRS(x),

V arf̂RSS(x) =
1

mk2

k∑
r=1

V ar
1
h

K

(
x − X[r]

h

)

=
1

mk2

k∑
r=1

{
E

[
1
h

K

(
x − X[r]

h

)]2

−
[
E

1
h

K

(
x − X[r]

h

)]2
}

=
1

mk

{
E

[
1
h

K

(
x − X

h

)]2

− 1
k

k∑
r=1

[
E

1
h

K

(
x − X[r]

h

)]2
}

= Varf̂SRS(x)

+
1

mk

{[
E

1
h

K

(
x − X

h

)]2

− 1
k

k∑
r=1

[
E

1
h

K

(
x − X[r]

h

)]2
}

.

It follows again from (2.19) that

E
1
h

K

(
x − X

h

)
=

1
k

k∑
r=1

E
1
h

K

(
x − X[r]

h

)
.

By the Cauchy-Schwarz inequality we have

[
E

1
h

K

(
x − X

h

)]2

<
1
k

k∑
r=1

[
E

1
h

K

(
x − X[r]

h

)]2

.

Summarizing the argument above we conclude that f̂RSS(x) has the same
expectation as f̂SRS(x) and a smaller variance than f̂SRS(x). This implies that
the RSS estimate has a smaller mean integrated square error (MISE) than
the SRS estimate. The MISE of an estimate f̂ of f is defined as MISE(f̂) =
E

∫
[f̂(x) − f(x)]2dx. The conclusion holds whether or not ranking is perfect.

In what follows we assume that f has certain derivatives and that K satisfies
the conditions: (i) K is symmetric and (ii)

∫
K(t)dt = 1 and

∫
t2K(t)dt �= 0.

Lemma 2.11. Under the above assumptions about f and K, for fixed k, as
h → 0,

[
E

1
h

K

(
x − X

h

)]2

− 1
k

k∑
r=1

[
E

1
h

K

(
x − X[r]

h

)]2

= [f2(x) − 1
k

k∑
r=1

f2
[r](x)] + O(h2).



2.7 Estimation of density function with ranked set sample 39

Lemma 2.11 can be proved by a straightforward calculation involving Taylor
expansions of f and f[r]’s.

Let

∆(f, k) =
∫

[
1
k

k∑
r=1

f2
[r](x) − f2(x)]dx.

Note that ∆(f, k) is always greater than zero. We have the following result.

Theorem 2.12. Suppose that the same bandwidth is used in both f̂SRS and
f̂RSS. Then, for fixed k and large n,

MISE(f̂RSS) = MISE(f̂SRS) − 1
n

∆(f, k) + O

(
h2

n

)
.

We now consider the special case of perfect ranking and derive some as-
ymptotic results that shed lights on the properties of the RSS density estimate.
When ranking is perfect, f[r] = f(r), the pdf of the rth order statistic. First,
we have

Lemma 2.13. If, for r = 1, . . . , k, f(r) is the density function of the r-th
order statistic of a sample of size k from a distribution with density function
f , then we have the representation

1
k

k∑
r=1

f2
(r)(x) = kf2(x)P (Y = Z),

where Y and Z are independent with the same binomial distribution B(k −
1, F (x)). Furthermore

P (Y = Z) =
1√

4πkF (x)[1 − F (x)]
+ o

(
1
k

)
.

Proof: When ranking is perfect, we have

f(r)(x) =
k!

(r − 1)!(k − r)!
F r−1(x)[1 − F (x)]k−rf(x).

Thus, we can write

1
k

k∑
r=1

f2
(r)(x)

=
1
k

k∑
r=1

[
k!

(r − 1)!(k − r)!
F r−1(x)(1 − F (x))k−rf(x)]2

= kf2(x)
k−1∑
j=0

[(
k − 1

j

)
F j(x)(1 − F (x))k−1−j

]2

.



40 2 Balanced Ranked Set Sampling I: Nonparametric

The first part of the lemma is proved. The second part follows from the Edge-
worth expansion of the probability P (Y = Z).

Remark: Our computation for certain values of F (x) has revealed that
the approximation to the probability P (Y = Z) is quite accurate for large or
moderate k. For small k, P (Y = Z) is slightly bigger than the approximation.
However, the approximation can well serve our theoretical purpose.

In what follows we denote, for any function g, the integral
∫

xlg(x)dx by
il(g). Applying Lemmas 2.11 and 2.13, we have

Lemma 2.14. If ranking is perfect, then, for a fixed large or moderate k, as
n → ∞, we have

MISE(f̂RSS) = MISE(f̂SRS) − 1
n

[
√

kδ(f) − i0(f2)] + O(
h2

n
),

where

δ(f) =
1

2
√

π

∫
f2(x)√

F (x)[1 − F (x)]
dx.

Lemma 2.14 shows that the RSS estimate reduces the MISE of the SRS
estimate at the order O(n−1) by an amount which increases linearly in

√
k.

The results derived in this section can be extended straightforwardly to the
adaptive kernel estimation described in Silverman ([153], p101). The ordinary
kernel estimate usually suffers a slight drawback that it has a tendency of
undersmoothing at the tails of the distribution. The adaptive kernel estimate
overcomes this drawback and provides better estimates at the tails. We do
not discuss the adaptive kernel estimate further. The reader is referred to
Silverman ([153], Chapter 5) for details.

2.7.2 The relative efficiency of the RSS density estimate with
respect to its SRS counterpart

In this section, we investigate the efficiency of the RSS estimate relative to
the SRS estimate in terms of the ratio of the MISE’s.

First, we derive an asymptotic expansion for the MISE of the SRS estimate.
By Taylor expansion of the density function f at x under the integrals in (2.17)
and (2.18) after making the change of variable y = (x − t)/h, we have

bias(f̂SRS(x)) =
1
2
i2(K)f

′′
(x)h2 + O(h4),

Var(f̂SRS(x)) =
1

nh
i0(K2)f(x) − 1

n
f2(x) + O(

h2

n
).

Hence

MISE(f̂SRS) =
∫

[V ar(f̂SRS(x)) + bias2(f̂SRS(x))]dx
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=
1

nh
i0(K2) +

1
4
i22(K)i0(f

′′2
)h4 − 1

n
i0(f2)

+O(
h2

n
) + O(h6). (2.20)

Minimizing the leading terms with respect to h, we have that the minimum
is attained at

hopt = i2(K)−2/5

[
i0(K2)

i0(f
′′2)

]1/5

n−1/5. (2.21)

Substituting (2.21) into (2.20) yields

MISE(f̂SRS) =
5
4
C(K)i0(f

′′2
)1/5n−4/5 − i0(f2)n−1 + O(n−6/5), (2.22)

where C(K) = i2(K)2/5i0(K2)4/5.
Combining (2.22) with Theorem 2.12, we have that the relative efficiency

of the RSS estimate to the SRS estimate is approximated by

MISE(f̂SRS)

MISE(f̂RSS)
≈

[
1 − ∆(f, k)

(5/4)C(K)i0(f ′′2)n1/5 − i0(f2)

]−1

. (2.23)

When ranking is perfect and k is large or moderate, the relative efficiency
has the approximate expression:

MISE(f̂SRS)

MISE(f̂RSS)
≈

[
1 −

√
kδ(f) − i0(f2)

(5/4)C(K)i0(f ′′2)n1/5 − i0(f2)

]−1

. (2.24)

We can conclude qualitatively from the approximation in (2.24) that (i)
the efficiency of the RSS kernel estimate relative to the SRS kernel estimate
increases as k increases at the rate O(k1/2), (ii) the relative efficiency damps
away as n gets large but the speed at which it damps away is very low (of
order O(n−1/5) ). Therefore, we can expect that for small or moderate sample
size n the gain in efficiency by using RSS will be substantial. RSS can only
reduce variance and the order O(n−1) at which the variance is reduced is
common in all the other statistical procedures such as the estimation of mean,
variance and cumulative distribution, etc.. However, while the reduction in
MISE is at order O(n−1), the MISEs have order O(n−4/5). When n is large,
the component of the MISE at order O(n−4/5) dominates. This explains the
fact that the relative efficiency damps away as n goes to infinity.

A major application of the RSS density estimation is for estimating the
density at certain particular points, e.g., certain quantiles. It is desirable to
compare the performance of the RSS estimate and the SRS estimate at partic-
ular values of x. An argument similar to the global comparison leads to the fol-
lowing results. The MSEs of the two estimates at x have the equal components
at order lower than O(n−1). The components of the MSEs at order O(n−1)
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Fig. 2.2. The relative reduction in variance at order O(n−1) of the RSS density
estimate

of the SRS estimate and the RSS estimate are, respectively, −(1/n)f2(x) and
−(1/nk)

∑k
r=1 f2

[r](x). The relative reduction in MSE is then given by

Λf = [
1
k

k∑
r=1

f2
[r](x) − f2(x)]/

1
k

k∑
r=1

f2
[r](x).

If ranking is perfect and x = x(p), the pth quantile of the underlying distrib-
ution, then Λf becomes

Λf (p) = 1 −
{

k

k−1∑
r=0

[(
k − 1

r

)
pr(1 − p)k−1−r

]2
}−1

.

For k = 2, . . . , 8, the relative reduction Λf (p) is plotted against p in Figure
2.2. The curves from bottom to top correspond in turn to k = 2, . . . , 8. It can
be seen from the figure that the relative reduction increases symmetrically as
p goes from 0.5 to 0 and 1. This indicates that the advantage of RSS is greater
for estimating the densities at the tails of the distribution.

To end this section, we present some results of a simulation study. The
following three distributions are used in the simulation: the standard normal
distribution N(0, 1), the gamma distribution with shape parameter β = 3
and the extreme value distribution with location parameter µ = 0 and scale
parameter σ = 1. The following combinations of set size k and cycle number
m are considered: (1) k = 6, m = 4, (2) k = 6, m = 8, (3) k = 8, m = 3 and



2.7 Estimation of density function with ranked set sample 43

Table 2.4. The comparison of the MISE between the RSS and SRS kernel estimates

Distribution k m MISE.SRS MISE.RSS Rel. Eff.
Normal 6 4 0.0182(0.016) 0.0112(0.009) 1.625
(0, 1) 6 8 0.0102(0.008) 0.0067(0.005) 1.522

8 3 0.0182(0.016) 0.0100(0.008) 1.820
8 6 0.0102(0.008) 0.0062(0.004) 1.645

Gamma 6 4 0.0123(0.010) 0.0086(0.006) 1.430
β = 3 6 8 0.0074(0.006) 0.0053(0.003) 1.396

8 3 0.0123(0.010) 0.0078(0.005) 1.577
8 6 0.0074(0.006) 0.0049(0.003) 1.510

Extreme Value 6 4 0.0171(0.015) 0.0113(0.008) 1.513
µ = 0 6 8 0.0098(0.007) 0.0068(0.004) 1.441
σ = 1 8 3 0.0171(0.015) 0.0105(0.007) 1.629

8 6 0.0098(0.007) 0.0065(0.004) 1.508

(4) k = 8, m = 6. For each combination of k and m and each distribution,
5000 SRS samples of size mk and 5000 RSS samples with set size k and
cycle number m are generated using the random number generating functions
in Splus 4.5. For each of these samples, a kernel estimate of the underlying
density function is obtained. The Epanechnikov kernel, which is optimal in
the sense that it minimizes C(K) among certain class of kernels, is used in all
the estimates. The Epanechnikov kernel is given by

K(x) =

{
3

4
√

5
(1 − x2

5 ), −√
5 ≤ x ≤ √

5,

0, otherwise.

The bandwidth h is determined by

h =
5
4
C(K)

[
3

8
√

π

]−1/5

An−1/5,

where A = min{standard deviation of the sample, interquartile range of
the sample /1.34}. Since A differs from sample to sample, the bandwidths
h used in the estimates are not exactly the same. However, they have the
same order O(n−1/5). For each estimate the integrated square error (ISE)∫

[f̂(x) − f(x)]2dx is computed by numerical method. Then the average and
the standard deviation of the ISEs of the 5000 RSS estimates are computed.
The same is done to the 5000 SRS estimates. The averages of the ISEs are
taken as the estimate of the MISEs and are compared between the RSS and
the SRS estimates. The estimated MISEs are given in Table 2.4. The num-
bers in the parentheses are the standard deviations. The improvement on the
MISE by using RSS is quite significant. The assertions we made from (2.24)
manifest in the table. For fixed k, the relative efficiency decreases slowly as the
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sample size increases. On the other hand, for fixed sample size, the increment
in relative efficiency is much faster when k increases.

The other methods of density estimation can also be investigated in a
similar manner as we have done in this section. Because of the fact that a
ranked-set sample indeed contains more information than a simple random
sample of the same size, we expect that for all such methods the RSS version
will provide a better estimate than the SRS version.

2.8 M-estimates with RSS data

The idea of M-estimates arises out of concern on the robustness of statistical
procedures. For example, the usual estimate of the population mean, namely
the sample mean, is not robust if the underlying distribution is heavily tailed.
This problem does not go away in RSS. In this section, we investigate the
properties of the RSS M-estimates including their asymptotic distribution and
their efficiency relative to their counterparts with SRS. The RSS estimates are
defined and their asymptotic properties are dealt with in Section 2.8.1. The
relative efficiency of the RSS M-estimates is discussed in Section 2.8.2.

2.8.1 The RSS M-estimates and their asymptotic properties

Let ψ(x) be an appropriate function. Define the functional T (F ) over all
distribution functions as the solution of λF (t) =

∫
ψ(x − t)dF (x) = 0, if

exists. In generic notation, if F is an unknown distribution function and F̂
is an appropriate estimate of F , then T (F̂ ) is called an M-estimate of T (F ).
Let T̂n = T (F̂RSS), i.e., λF̂RSS

(T̂n) = 0, which defines the RSS M-estimate of
T (F ).

The following lemma is used later.

Lemma 2.15. Suppose that ψ(x) is an odd function and F is a symmetric
location distribution, then the population mean µ is a solution of λF (t) = 0,
i.e., µ = T (F ), and, further, µ satisfies

∫ +∞

−∞
ψ(x − t)dF(r)(x) +

∫ +∞

−∞
ψ(x − t)dF(k−r+1)(x) = 0.

The following theorem gives conditions under which the RSS M-estimate
exists and is also consistent.

Theorem 2.16. Suppose that ψ(x) is odd, continuous and either monotone
or bounded, and that F is a symmetric location distribution. Then there is a
solution sequence {T̂n} of λF̂RSS

(t) = 0 such that {T̂n} converges to µ with
probability 1.
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There are other conditions on ψ so that Theorem 2.16 holds. However,
since the ψ’s in practical applications satisfy the conditions in Theorem 2.16,
we will concentrate on the ψ’s satisfying these conditions. In particular, we
will later consider the following two ψ functions. The first ψ is given by

ψ1 =




−1.5, x < −1.5,
x, |x| ≤ 1.5,
1.5, x > 1.5.

The corresponding M-estimator is a type of Winsorized mean. The other ψ is
a smoothed “Hampel” given by

ψ2 =
{

sin(x/2.1), |x| < 2.1π,
0, |x| ≥ 2.1π.

Let

A(r)(t) =
∫

ψ2(x − t)dF(r)(x) − [
∫

ψ(x − t)dF(r)(x)]2,

λ
′
F (T (F )) =

d
∫

ψ(x − t)dF (x)
dt

∣∣∣∣
t=T (F )

.

In the following, we give three sets of conditions each of which, together with
the conditions on F given in Theorem 2.16, guarantees the asymptotic nor-
mality of the sequence T̂n.

A1 ψ(x) is odd and monotone; λF (t) is differentiable at t = µ, with λ′
F (µ) �= 0;∫

ψ2(x − t)dF (x) is finite for t in a neighborhood of µ and is continuous
at t = µ.

A2 ψ(x) is odd, continuous and satisfies lim
t→µ

‖ ψ(·, t) − ψ(·, µ) ‖V = 0;∫
ψ2(x − t)dF (x) < ∞ and λF (t) is differentiable at t = µ, with λ′

F (µ) �= 0.
A3 ψ(x) is odd and uniformly continuous;

∫
∂ψ(x − t)/∂t|t=µdF (x) is finite

and nonzero;
∫

ψ2(x − µ)dF (x) < ∞.

Theorem 2.17. Assume that F is a symmetric location distribution. Then,
under either (A1), (A2) or (A3),

√
n(T̂n − µ) → N(0, σ2

RSS(F )), (2.25)

in distribution, where under (A1) and (A2),

σ2
RSS(F ) =

1
k

k∑
r=1

A(r)(µ)
/ [

1
k

k∑
r=1

λ′
F(r)

(µ)

]2

,

and under (A3),

σ2
RSS(F ) =

1
k

k∑
r=1

A(r)(µ)
/ [

1
k

k∑
r=1

∫
∂ψ(x − t)/∂t|t=µdF(r)(x)

]2

.
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The results in this section are straightforward extensions of the corre-
sponding results in SRS. A sketch of the proof can be found in Zhao and
Chen [175].

2.8.2 The relative efficiency of the RSS M-estimates

In this section, we deal with the ARE of RSS M-estimates with respect to
SRS M-estimates. The SRS M-estimate of µ is given by T̃n = T (Fn) where
Fn is the empirical distribution of a simple random sample of size n. The
SRS M-estimate has asymptotically a normal distribution with mean µ and
variance σ2

SRS(F ) given, depending on the assumptions on ψ(x), by either∫
ψ2(x − µ)dF (x)/[λ′

F (µ)]2

or ∫
ψ2(x − µ)dF (x)/[

∫
∂ψ(x − t)/∂t|t=µdF (x)]2.

Note that, because of the fundamental equality,

1
k

k∑
r=1

λ′
F(r)

(µ) = λ′
F (µ);

1
k

k∑
r=1

∫
∂ψ(x − t)/∂t|t=µdF(r)(x) =

∫
∂ψ(x − t)/∂t|t=µdF (x);

1
k

k∑
r=1

∫
ψ2(x − t)dF(r)(x) =

∫
ψ2(x − t)dF (x).

Hence the ARE of the RSS M-estimate is given by

ARE(T̂n, T̃n) =
∫

ψ2(x − µ)dF (x)∫
ψ2(x − µ)dF (x) − 1

k

k∑
r=1

[
∫

ψ(x − µ)dF(r)(x)]2
.

It is obvious that the ARE is greater than 1. The ARE’s of the RSS M-
estimates with ψ1 and ψ2 for the Cauchy(0, 1), N(0, 1) and some contami-
nated normal distributions are given, respectively, in Table 2.5 and Table 2.6.
It is evident that, as expected, RSS is much more efficient than SRS.

2.9 Appendix: Technical details for Section 2.4∗

We first state and prove a general result. Let Y1, · · · , Yn be independent
random variables with E(Yi) = νi, Var(Yi) = η2

i , γi = E(Yi − νi)3, and
κi = E(Yi − νi)4 − 3η4

i , i = 1, · · · , n. Denote Y = (Y1, · · · , Yn)′, ∆ =
diag(η2

1 , · · · , η2
n), ν = (ν1, · · · , νn)′. Let Q be an n × n symmetric matrix.
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Table 2.5. The ARE’s of RSS w.r.t. SRS with ψ1 for Cauchy, Normal and some
contaminated Normal distributions

Dist. Cauchy(0, 1) N(0, 1) 0.9N(0, 1) 0.7N(0, 1) 0.5N(0, 1)
+0.1N(0, 9) +0.3N(0, 9) +0.5N(0, 9)

k=2 1.4868 1.4949 1.4958 1.4939 1.4858
k=3 1.9651 1.9866 1.9888 1.9838 1.9625
k=4 2.4364 2.4757 2.4792 2.4700 2.4325
k=5 2.9016 2.9627 2.9673 2.9527 2.8975
k=6 3.3613 3.4481 3.4533 3.4321 3.3582
k=7 3.8162 3.9320 3.9372 3.9085 3.8154
k=8 4.2668 4.4145 4.4193 4.3823 4.2696
k=9 4.7136 4.8959 4.8998 4.8538 4.7212
k=10 5.1570 5.3762 5.3789 5.3232 5.1705

Table 2.6. The ARE’s of RSS w.r.t. SRS with ψ2 for Cauchy, Normal and some
contaminated Normal distributions

Dist. Cauchy(0, 1) N(0, 1) 0.9N(0, 1) 0.7N(0, 1) 0.5N(0, 1)
+0.1N(0, 9) +0.3N(0, 9) +0.5N(0, 9)

k=2 1.3038 1.4878 1.4767 1.4584 1.4380
k=3 1.5374 1.9676 1.9389 1.8922 1.8412
k=4 1.7327 2.4422 2.3886 2.3031 2.2157
k=5 1.9033 2.9131 2.8271 2.6930 2.5658
k=6 2.0570 3.3812 3.2554 3.0639 2.8952
k=7 2.1989 3.8471 3.6740 3.4176 3.2074
k=8 2.3321 4.3113 4.0836 3.7559 3.5051
k=9 2.4589 4.7741 4.4845 4.0805 3.7907
k=10 2.5807 5.2358 4.8772 4.3928 4.0662

Lemma 2.18.

E(Y ′QY ) = tr[Q(∆ + νν
′
] (2.26)

Var((Y ′QY ) =
n∑

i=1

Q2
iiκi + 2tr[(Q∆)2] + 4ν′Q∆Qν

+4
n∑

i=1

Qiiγi(
n∑

l=1

Qilνl). (2.27)

Proof. (2.26) is obvious. To prove (2.27), write

Y ′QY = (Y − ν)′Q(Y − ν) + 2ν′Q(Y − ν) + ν′Qν.

Then

Var(Y ′QY ) = Var[(Y − ν)′Q(Y − ν)] + 4Var[ν′Q(Y − ν)]
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+4Cov[(Y − ν)′Q(Y − ν), ν′Q(Y − ν)].

The first term can be simplified as

Var[(Y − ν)′Q(Y − ν)]

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

QijQklCov[(Yi − νi)(Yj − νj), (Yk − νk)(Yl − νl)]

=
n∑

i=1

Q2
iiVar[(Yi − νi)2] + 2

n∑
i �=j=1

Q2
ijVar[(Yi − νi)(Yj − νj)]

=
n∑

i=1

Q2
ii(κi + 2η4

i ) + 2
n∑

i �=j=1

Q2
ijη

2
i η2

j

=
n∑

i=1

Q2
iiκi + 2

n∑
i=1

n∑
j=1

Q2
ijη

2
i η2

j

=
n∑

i=1

Q2
iiκi + 2tr[(Q∆)2].

The second term simplifies as

4Var[ν′Q(Y − ν)] = 4ν′Q∆Qν.

Finally, the third term can be simplified as

4Cov[(Y − ν)′Q(Y − ν), ν′Q(Y − ν)]

= 4
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

QijQklCov[(Yi − νi)(Yj − νj), (Yk − νk)νl]

= 4
n∑

i=1

n∑
l=1

QiiQilγiνl

= 4
n∑

i=1

Qiiγi[
n∑

l=1

Qilνl].

The lemma then follows.
We now apply the lemma to the special case with Q given by the form

Q = A ⊗ [Im − 1m1
′
m

m
] + D ⊗ 1m1

′
m

m
,

where A and D are arbitrary symmetric matrices. For convenience, let K1 =
1m1

′
m/m and K0 = Im−K1, and, similarly, let J1 = 1k1

′
k/k and J0 = Ik−J1.

Let

µ = (µ[1], µ[2], . . . , µ[k])′, Σ = diag(σ2
[1], σ

2
[2], . . . , σ

2
[k])

ν = µ ⊗ 1m, ∆ = Σ ⊗ Im.

Also, we denote by [Dµ]r the rth element of the vector Dµ. Then we have
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Lemma 2.19.

E(X ′QX) = tr[((m − 1)A + D)Σ + mDµµ′], (2.28)

Var(X
′
QX) =

1
m

k∑
r=1

[(m − 1)arr + drr]2κ∗
[r]

+2[(m − 1)tr(AΣ)2 + tr(DΣ)2] + 4m(Dµ)′ΣDµ

+
4
m

k∑
r=1

[(m − 1)arr + drr]γ∗
[r][Dµ]r. (2.29)

Proof. Using the special structure of ν, Q and ∆, we get

tr[Q(∆ + νν′)]
= tr[(A ⊗ K0 + D ⊗ K1)(Σ ⊗ Im + µ ⊗ 1m(µ ⊗ 1m)′)]

= tr[AΣ ⊗ K0 + DΣ ⊗ K1] + µ′Aµ1
′
mK01m + µ

′
Dµ1

′
mK11m

= (m − 1)tr(AΣ) + tr(DΣ) + mµ
′
Dµ.

since tr(A⊗D) = tr(A)tr(D), 1
′
mK01m = 0 and 1

′
mK11m = m. Hence (2.28)

is proved.
Note that, in view of the special structure of Q and X,

κj = κ∗
[r], γj = γ∗

[r], Qjj =
(m − 1)arr

m
+

drr

m
,

j = (r − 1)m + 1, · · · , rm, r = 1, · · · , k. (2.30)

Hence, we readily obtain

n∑
j=1

Q2
jjκj = m

k∑
r=1

[
(n − 1)arr

m
+

drr

m
]2κ∗

[r], (2.31)

where n = mk. Next, note that in view of idempotence of K0 and K1 and the
fact that K0K1 = 0, we get

tr(Q∆)2 = tr[(A ⊗ K0 + D ⊗ K1)(Σ ⊗ Im)]2

= tr[(AΣ ⊗ K0 + DΣ ⊗ K1)2]
= tr[AΣAΣ ⊗ K0 + DΣDΣ ⊗ K1]
= (m − 1)tr(AΣ)2 + tr(DΣ)2.

Moreover, since

Qν = (A ⊗ K0 + D ⊗ K1)(µ ⊗ 1m) = Dµ ⊗ 1m,

using the special structure of ∆, we get

(Qν)′∆(Qν) = m(Dµ)′Σ(Dµ).
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Finally, using (2.30),

n∑
j=1

Qjjγj [
n∑

l=1

Qjlνl] = m

k∑
r=1

[
(m − 1)arr

m
+

drr

m
]γ∗

[r][Dµ]r.

Hence (2.29) is proved.
We are now in a position to prove Theorem 2.4.

Proof. (a) By (2.28),

E[X ′QX] = tr[[(m − 1)A + D]Σ + mDµµ′].

On the other hand,

σ2 =
1
k

tr[Σ + J0µµ′].

Therefore, σ̂2 is unbiased for σ2 if and only if tr[[(m−1)A+D−(1/k)I]Σ] = 0
for all diagonal Σ and µ′[mD − (1/k)J0]µ = 0 for all possible values of µ.
Hence the proof of (a).

(b) Using the condition of unbiasedness, it is clear that the only term in
Var(X ′QX) which depends on the off-diagonal elements of the matrix A is
given by tr(AΣ)2 =

∑k
r=1

∑k
s=1 a2

rsσ
2
[r]σ

2
[s]. Obviously, arr’s are fixed from

the unbiasedness condition, and the unique choice of ars’s for r �= s which
makes Var(X ′QX) a minimum is given by ars = 0 for all r �= s. Hence the
proof.

2.10 Bibliographic notes

The general framework of consistent ranked set sampling and an unified treat-
ment on the estimation of means and smooth-function-of-means were given in
Bai and Chen [6]. The minimum variance non-negative unbiased estimate of
variance was developed by Perron and Sinha [132]. A similar estimate of vari-
ance was considered by MacEachern et al. [94]. The asymptotic pivot based
on RSS for the tests and confidence intervals of a population mean was dealt
with by Chen and Sinha [43]. The estimation of quantiles was treated in Chen
[35]. Density estimation was considered in Chen [34]. The M-estimates were
studied in full detail by Zhao and Chen [175]. The early research on ranked set
sampling was concentrated on the non-parametric setting. Besides the seminal
paper of McIntyre [96], earlier works include Halls and Dell [58], Takahasi and
Wakimoto [167], Takahasi [163], [164], Dell and Clutter [50], Stokes [156],[157],
[159], [158] etc.. Other aspects of ranked set sampling in the non-parametric
setting were explored in the literature as well. Stokes and Sager [162] gave a
characterization of ranked set sample and considered the estimation of distri-
bution function. Kvam and Samaniego [83] considered the inadmissibility of
empirical averages as estimators in ranked set sampling. Kvam and Samaniego



2.10 Bibliographic notes 51

[85] and Huang [63] considered the nonparametric maximum likelihood esti-
mation based on ranked set samples. Samawi and Muttlak [143] considered
estimation of ratio using ranked set sample. Patil et al. [124] [129] dealt with
ranked set sampling for finite populations. Presnell and Bohn [134] tackled
U-statistics in ranked set sampling.


