
Preface

We are drowning in information,
but starved of knowledge.
– John Naisbitt, Megatrends

The turn of the millennium has been described as the dawn of a new scientific
revolution, which will have as great an impact on society as the industrial and
computer revolutions before. This revolution was heralded by a large-scale
DNA sequencing effort in July 1995, when the entire 1.8 million base pairs
of the genome of the bacterium Haemophilus influenzae was published – the
first of a free-living organism. Since then, the amount of DNA sequence data
in publicly accessible data bases has been growing exponentially, including a
working draft of the complete 3.3 billion base-pair DNA sequence of the entire
human genome, as pre-released by an international consortium of 16 institutes
on June 26, 2000.

Besides genomic sequences, new experimental technologies in molecu-
lar biology, like microarrays, have resulted in a rich abundance of further
data, related to the transcriptome, the spliceosome, the proteome, and the
metabolome. This explosion of the “omes” has led to a paradigm shift in
molecular biology. While pre-genomic biology followed a hypothesis-driven
reductionist approach, applying mainly qualitative methods to small, isolated
systems, modern post-genomic molecular biology takes a holistic, systems-
based approach, which is data-driven and increasingly relies on quantitative
methods. Consequently, in the last decade, the new scientific discipline of
bioinformatics has emerged in an attempt to interpret the increasing amount
of molecular biological data. The problems faced are essentially statistical,
due to the inherent complexity and stochasticity of biological systems, the
random processes intrinsic to evolution, and the unavoidable error-proneness
and variability of measurements in large-scale experimental procedures.

vi Preface

Since we lack a comprehensive theory of life’s organization at the molecular
level, our task is to learn the theory by induction, that is, to extract patterns
from large amounts of noisy data through a process of statistical inference
based on model fitting and learning from examples.

Medical informatics is the study, development, and implementation of al-
gorithms and systems to improve communication, understanding, and man-
agement of medical knowledge and data. It is a multi-disciplinary science
at the junction of medicine, mathematics, logic, and information technology,
which exists to improve the quality of health care.

In the 1970s, only a few computer-based systems were integrated with hos-
pital information. Today, computerized medical-record systems are the norm
within the developed countries. These systems enable fast retrieval of patient
data; however, for many years, there has been interest in providing additional
decision support through the introduction of knowledge-based systems and
statistical systems.

A problem with most of the early clinically-oriented knowledge-based sys-
tems was the adoption of ad hoc rules of inference, such as the use of certainty
factors by MYCIN. Another problem was the so-called knowledge-acquisition
bottleneck, which referred to the time-consuming process of eliciting knowl-
edge from domain experts. The renaissance in neural computation in the
1980s provided a purely data-based approach to probabilistic decision sup-
port, which circumvented the need for knowledge acquisition and augmented
the repertoire of traditional statistical techniques for creating probabilistic
models.

The 1990s saw the maturity of Bayesian networks. These networks pro-
vide a sound probabilistic framework for the development of medical decision-
support systems from knowledge, from data, or from a combination of the two;
consequently, they have become the focal point for many research groups con-
cerned with medical informatics.

As far as the methodology is concerned, the focus in this book is on proba-
bilistic graphical models and Bayesian networks. Many of the earlier methods
of data analysis, both in bioinformatics and in medical informatics, were quite
ad hoc. In recent years, however, substantial progress has been made in our
understanding of and experience with probabilistic modelling. Inference, de-
cision making, and hypothesis testing can all be achieved if we have access to
conditional probabilities. In real-world scenarios, however, it may not be clear
what the conditional relationships are between variables that are connected in
some way. Bayesian networks are a mixture of graph theory and probability
theory and offer an elegant formalism in which problems can be portrayed
and conditional relationships evaluated. Graph theory provides a framework
to represent complex structures of highly-interacting sets of variables. Proba-
bility theory provides a method to infer these structures from observations or
measurements in the presence of noise and uncertainty. This method allows
a system of interacting quantities to be visualized as being composed of sim-

Preface vii

pler subsystems, which improves model transparency and facilitates system
interpretation and comprehension.

Many problems in computational molecular biology, bioinformatics, and
medical informatics can be treated as particular instances of the general prob-
lem of learning Bayesian networks from data, including such diverse problems
as DNA sequence alignment, phylogenetic analysis, reverse engineering of ge-
netic networks, respiration analysis, Brain-Computer Interfacing and human
sleep-stage classification as well as drug discovery.

Organization of This Book

The first part of this book provides a brief yet self-contained introduction to
the methodology of Bayesian networks. The following parts demonstrate how
these methods are applied in bioinformatics and medical informatics.

This book is by no means comprehensive. All three fields – the methodol-
ogy of probabilistic modeling, bioinformatics, and medical informatics – are
evolving very quickly. The text should therefore be seen as an introduction,
offering both elementary tutorials as well as more advanced applications and
case studies.

The first part introduces the methodology of statistical inference and prob-
abilistic modelling. Chapter 1 compares the two principle paradigms of statis-
tical inference: the frequentist versus the Bayesian approach. Chapter 2 pro-
vides a brief introduction to learning Bayesian networks from data. Chapter 3
interprets the methodology of feed-forward neural networks in a probabilistic
framework.

The second part describes how probabilistic modelling is applied to bioin-
formatics. Chapter 4 provides a self-contained introduction to molecular phy-
logenetic analysis, based on DNA sequence alignments, and it discusses the
advantages of a probabilistic approach over earlier algorithmic methods. Chap-
ter 5 describes how the probabilistic phylogenetic methods of Chapter 4 can
be applied to detect interspecific recombination between bacteria and viruses
from DNA sequence alignments. Chapter 6 generalizes and extends the stan-
dard phylogenetic methods for DNA so as to apply them to RNA sequence
alignments. Chapter 7 introduces the reader to microarrays and gene expres-
sion data and provides an overview of standard statistical pre-processing pro-
cedures for image processing and data normalization. Chapters 8 and 9 address
the challenging task of reverse-engineering genetic networks from microarray
gene expression data using dynamical Bayesian networks and state-space mod-
els.

The third part provides examples of how probabilistic models are applied
in medical informatics.

Chapter 10 illustrates the wide range of techniques that can be used to
develop probabilistic models for medical informatics, which include logistic
regression, neural networks, Bayesian networks, and class-probability trees.

viii Preface

The examples are supported with relevant theory, and the chapter emphasizes
the Bayesian approach to probabilistic modeling.

Chapter 11 discusses Bayesian models of groups of individuals who may
have taken several drug doses at various times throughout the course of a
clinical trial. The Bayesian approach helps the derivation of predictive distri-
butions that contribute to the optimization of treatments for different target
populations.

Variable selection is a common problem in regression, including neural-
network development. Chapter 12 demonstrates how Automatic Relevance
Determination, a Bayesian technique, successfully dealt with this problem for
the diagnosis of heart arrhythmia and the prognosis of lupus.

The development of a classifier is usually preceded by some form of data
preprocessing. In the Bayesian framework, the preprocessing stage and the
classifier-development stage are handled separately; however, Chapter 13 in-
troduces an approach that combines the two in a Bayesian setting. The ap-
proach is applied to the classification of electroencephalogram data.

There is growing interest in the application of the variational method to
model development, and Chapter 14 discusses the application of this emerging
technique to the development of hidden Markov models for biosignal analysis.

Chapter 15 describes the Treat decision-support system for the selection
of appropriate antibiotic therapy, a common problem in clinical microbiol-
ogy. Bayesian networks proved to be particularly effective at modelling this
problem task.

The medical-informatics part of the book ends with Chapter 16, a descrip-
tion of several software packages for model development. The chapter includes
example codes to illustrate how some of these packages can be used.

Finally, an appendix explains the conventions and notation used through-
out the book.

Intended Audience

The book has been written for researchers and students in statistics, machine
learning, and the biological sciences. While the chapters in Parts II and III
describe applications at the level of current cutting-edge research, the chapters
in Part I provide a more general introduction to the methodology for the
benefit of students and researchers from the biological sciences.

Chapters 1, 2, 4, 5, and 8 are based on a series of lectures given at the
Statistics Department of Dortmund University (Germany) between 2001 and
2003, at Indiana University School of Medicine (USA) in July 2002, and at
the “International School on Computational Biology”, in Le Havre (France)
in October 2002.

Preface ix

Website

The website

http://robots.ox.ac.uk/∼parg/pmbmi.html

complements this book. The site contains links to relevant software, data,
discussion groups, and other useful sites. It also contains colored versions of
some of the figures within this book.

Acknowledgments

This book was put together with the generous support of many people.
Stephen Roberts would like to thank Peter Sykacek, Iead Rezek and

Richard Everson for their help towards this book. Particular thanks, with
much love, go to Clare Waterstone.

Richard Dybowski expresses his thanks to his parents, Victoria and Henry,
for their unfailing support of his endeavors, and to Wray Buntine, Paulo Lis-
boa, Ian Nabney, and Peter Weller for critical feedback on Chapters 3, 10,
and 16.

Dirk Husmeier is most grateful to David Allcroft, Lynn Broadfoot, Thorsten
Forster, Vivek Gowri-Shankar, Isabelle Grimmenstein, Marco Grzegorczyk,
Anja von Heydebreck, Florian Markowetz, Jochen Maydt, Magnus Rattray,
Jill Sales, Philip Smith, Wolfgang Urfer, and Joanna Wood for critical feed-
back on and proofreading of Chapters 1, 2, 4, 5, and 8. He would also like to
express his gratitude to his parents, Gerhild and Dieter; if it had not been for
their support in earlier years, this book would never have been written. His
special thanks, with love, go to Ulli for her support and tolerance of the extra
workload involved with the preparation of this book.

Edinburgh, London, Oxford Dirk Husmeier
UK Richard Dybowski
July 2003 Stephen Roberts

2

Introduction to Learning Bayesian Networks
from Data

Dirk Husmeier

Biomathematics and Statistics Scotland (BioSS)
JCMB, The King’s Buildings, Edinburgh EH9 3JZ, UK
dirk@bioss.ac.uk

Summary. Bayesian networks are a combination of probability theory and graph
theory. Graph theory provides a framework to represent complex structures of
highly-interacting sets of variables. Probability theory provides a method to in-
fer these structures from observations or measurements in the presence of noise and
uncertainty. Many problems in computational molecular biology and bioinformatics,
like sequence alignment, molecular evolution, and genetic networks, can be treated
as particular instances of the general problem of learning Bayesian networks from
data. This chapter provides a brief introduction, in preparation for later chapters of
this book.

2.1 Introduction to Bayesian Networks

Bayesian networks (BNs) are interpretable and flexible models for represent-
ing probabilistic relationships between multiple interacting entities. At a qual-
itative level, the structure of a Bayesian network describes the relationships
between these entities in the form of conditional independence relations. At a
quantitative level, (local) relationships between the interacting entities are de-
scribed by (conditional) probability distributions. Formally, a BN is defined by
a graphical structure, M, a family of (conditional) probability distributions,
F , and their parameters, q, which together specify a joint distribution over a
set of random variables of interest. These three components are discussed in
the following two subsections.

2.1.1 The Structure of a Bayesian Network

The graphical structure M of a BN consists of a set of nodes or vertices,
V, and a set of directed edges or arcs, E : M = (V, E). The nodes represent
random variables, while the edges indicate conditional dependence relations.
If we have a directed edge from node A to node B, then A is called the parent
of B, and B is called the child of A. Take, as an example, Figure 2.1, where

18 Dirk Husmeier

B C

A

D

E

Fig. 2.1. Example of a Bayesian network. Nodes represent
random variables, edges indicate conditional dependence relations.
The joint probability P (A, B, C, D, E) factorizes into the product
P (A)P (B|A)P (C|A)P (D|B, C)P (E|D). Reprinted from [23], by permission of
Cambridge University Press.

we have the set of vertices V = {A, B, C, D, E}, and the set of edges E =
{(A, B), (A, C), (B, D), (C, D), (D, E)}. Node A does not have any parents.
Nodes B and C are the children of node A, and the parents of node D. Node
D itself has one child: node E. The graphical structure has to take the form
of a directed acyclic graph or DAG, which is characterized by the absence of
directed cycles, that is, cycles where all the arcs point in the same direction.
A BN is characterized by a simple and unique rule for expanding the joint
probability in terms of simpler conditional probabilities. Let X1, X2, . . . , Xn

be a set of random variables represented by the nodes i ∈ {1, . . . , n} in the
graph, define pa[i] to be the parents of node i, and let Xpa[i] represent the set
of random variables associated with pa[i]. Then

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Xpa[i]) (2.1)

2 Introduction to Bayesian Networks 19

A

C

B A

C

B A

C

B

Fig. 2.2. Three elementary BNs. The BNs on the left and in the middle have
equivalent structures: A and B are conditionally independent given C. The BN on
the right belongs to a different equivalence class in that conditioning on C causes,
in general, a dependence between A and B.

As an example, applying (2.1) to the BN of Figure 2.1, we obtain the factor-
ization

P (A, B, C, D, E) = P (A)P (B|A)P (C|A)P (D|B, C)P (E|D) (2.2)

An equivalent way of expressing these independence relations is based on
the concept of the Markov blanket, which is the set of children, parents, and
coparents (that is, other parents of the children) of a given node. This set
shields the selected node from the remaining nodes in the graph. So, if MB[i]
is the Markov blanket of node i, and XMB[i] is the set of random variables
associated with MB[i], then

P (Xk|X1, . . . , Xk−1, Xk+1, . . . , Xn) = P (Xk|XMB[i]) (2.3)

Applying (2.3) to Figure 2.1 gives:

P (A|B, C, D, E) = P (A|B, C) (2.4)
P (B|A, C, D, E) = P (B|A, C, D) (2.5)
P (C|A, B, D, E) = P (C|A, B, D) (2.6)
P (D|A, B, C, E) = P (D|B, C, E) (2.7)
P (E|A, B, C, D) = P (E|D) (2.8)

To illustrate the equivalence of the factorization rule (2.1) and the notion of
the Markov blanket (2.3), let us derive, for instance, (2.6) from (2.2):

P (C|A, B, D, E) =
P (A, B, C, D, E)
P (A, B, D, E)

=
P (A)P (B|A)P (C|A)P (D|B, C)P (E|D)∑
C P (A)P (B|A)P (C|A)P (D|B, C)P (E|D)

=
P (A)P (E|D)P (B|A)P (C|A)P (D|B, C)

P (A)P (E|D)P (B|A)
∑

C P (C|A)P (D|B, C)

=
P (C|A)P (D|B, C)∑
C P (C|A)P (D|B, C)

20 Dirk Husmeier

StorksBabies

Environment

Fig. 2.3. Storks and babies. The numbers of stork sightings and new-born babies
depend on common environmental factors. Without the knowledge of these environ-
mental factors, the number of new-born babies seems to depend on the number
of stork sightings, but conditional on the environmental factors, both events are
independent.

where we have applied (2.2) for the factorization of the joint probability
P (A, B, C, D, E). Note that the last term does not depend on E, which proves
(2.6) true. For a general proof of the equivalence of (2.1) and (2.3), see [24]
and [34].

Consider the BN on the left of Figure 2.2. Expanding the joint probability
according to (2.1) gives

P (A, B, C) = P (A|C)P (B|C)P (C) (2.9)

For the conditional probability P (A, B|C) we thus obtain:

P (A, B|C) =
P (A, B, C)

P (C)
= P (A|C)P (B|C) (2.10)

Hence, A and B are conditionally independent given C. Note, however, that
this independence does not carry over to the marginal probabilities, and that
in general

P (A, B) �= P (A)P (B) (2.11)

As an example, consider the BN in Figure 2.3. The number of new-born ba-
bies has been found to depend on the number of stork sightings [39], which, in
former times, even led to the erroneous conclusion that storks deliver babies.
In fact, both events depend on several environmental factors. In an urban
environment, families tend to be smaller as a consequence of changed liv-
ing conditions, while storks are rarer due to the destruction of their natural
habitat. The introduction of contraceptives has led to a decrease of the num-
ber of new-born babies, but their release into the environment also adversely
affected the fecundity of storks. So while, without the knowledge of these en-
vironmental factors, the number of new-born babies depends on the number
of stork sightings, conditionally on the environmental factors both events are
independent.

The situation is similar for the BN in the middle of Figure 2.2. Expanding
the joint probability by application of the factorization rule (2.1) gives:

2 Introduction to Bayesian Networks 21

Cloudy Grass wetRain

Fig. 2.4. Clouds and rain. When no information on the rain is available, the
wetness of the grass depends on the clouds: the more clouds are in the sky, the
more likely the grass is found to be wet. When information on the rain is available,
information on the clouds is no longer relevant for predicting the state of wetness
of the grass: conditional on the rain, the wetness of the grass is independent of the
clouds.

P (A, B, C) = P (B|C)P (C|A)P (A) (2.12)

For the conditional probability we thus obtain:

P (A, B|C) =
P (A, B, C)

P (C)
= P (B|C)

P (C|A)P (A)
P (C)

= P (B|C)P (A|C)

(2.13)
where we have used Bayes’ rule, (1.4). So again we find that A and B are
conditionally independent given C, while, in general, this does not hold for
the marginal probabilities; see (2.11).

An example is shown in Figure 2.4. Clouds may cause rain, and rain makes
grass wet. So if information on precipitation is unavailable, that is, if the node
“rain” in Figure 2.4 is hidden, the state of wetness of the grass depends on the
clouds: an increased cloudiness, obviously, increases the likelihood for the grass
to be wet. However, if information on precipitation is available, meaning that
the node “rain” in Figure 2.4 is observed, the wetness of the grass becomes
independent of the clouds. If it rains, the grass gets wet no matter how cloudy
it is. Conversely, if it does not rain, the grass stays dry irrespective of the
state of cloudiness.

The situation is different for the BN on the right of Figure 2.2. Expanding
the joint probability P (A, B, C) according to (2.1) gives:

P (A, B, C) = P (C|A, B)P (A)P (B) (2.14)

Marginalizing over C leads to

P (A, B) =
∑
C

P (A, B, C) = P (A)P (B) (2.15)

where we have used the fact that a probability function is normalized:∑
C P (C|A, B) = 1. We thus see that, as opposed to the previous two ex-

amples, A and B are marginally independent. However, it can not be shown,
in general, that the same holds for the conditional probabilities, that is, dif-
ferent from the previous examples we have

P (A, B|C) �= P (A|C)P (B|C) (2.16)

22 Dirk Husmeier

Engine

FuelBattery

Fig. 2.5. Fuel and battery. Nationwide, the unfortunate events of having a flat
car battery and running out of fuel are independent. This independence no longer
holds when an engine failure is observed in a particular car, since establishing one
event as the cause of this failure explains away the other alternative.

An illustration is given in Figure 2.5. Suppose you cannot start your car
engine in the morning. Two possible reasons for this failure are: (1) a flat
battery, B, or (2) an empty fuel tank, F . Nationwide, these two unfortunate
events can be assumed to be independent: P (B, F) = P (B)P (F). However,
this independence no longer holds when you observe an engine failure, E, in
your particular car: P (B, F |E) �= P (B|E)P (F |E). Obviously, on finding the
fuel tank empty, there is little need to check the voltage of the battery: the
empty tank already accounts for the engine failure and thus explains away
any problems associated with the battery.

Figure 2.6 gives an overview of the independence relations we have en-
countered in the previous examples. The power of Bayesian networks is that
we can deduce, in much more complicated situations, these independence rela-
tions between random variables from the network structure without having to
resort to algebraic computations. This is based on the concept of d-separation,
which is formally defined as follows (see [34], and references in [23]):

• Let A and B be two nodes, and let Z be a set of nodes.
• A path from A to B is blocked with respect to Z

– if there is a node C ∈ Z without converging edges, that is, which is
head-to-tail or tail-to-tail with respect to the path, or

– if two edges on the path converge on a node C, that is, the configuration
of edges is head-to-head, and neither C nor any of its descendents are
in Z.

• A and B are d-separated by Z if and only if all possible paths between
them are blocked.

• If A and B are d-separated by Z, then A is conditionally independent of
B given Z, symbolically written as A⊥B|Z.

An illustration is given in Figure 2.7. As a first example, consider the
elementary BNs of Figure 2.8. Similar to the preceding examples, we want
to decide whether A is independent of B conditional on those other nodes

2 Introduction to Bayesian Networks 23

A B C

A B

CCC

C C C

A B A B A B

BABABA

Fig. 2.6. Overview of elementary BN independence relations. A⊥B means
that A and B are marginally independent: P (A, B) = P (A)P (B). A⊥B|C means
that A and B are conditionally independent: P (A, B|C) = P (A|C)P (B|C). The
figure summarizes the independence relations of Figures 2.3–2.5, which can easily
be derived with the method of d-separation, illustrated in Figure 2.7. A tick indicates
that an independence relation holds true, whereas a cross indicates that it is violated.

Unobserved node Observed node

Blocked paths

Open paths

Fig. 2.7. Illustration of d-separation when the separating set Z is the set
of observed nodes. Filled circles represent observed nodes, empty circles indicate
hidden states (for which no data are available).

24 Dirk Husmeier

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

Fig. 2.8. Illustration of d-separation in elementary BN structures. Filled
circles represent observed nodes, empty circles represent hidden nodes (for which
no data are available). The column on the right of each subfigure indicates whether
A and B are independent given Z, where Z is the set of observed nodes. Compare
with Figure 2.6.

A B A B

No

A B A B

Yes

A B A B

No

Fig. 2.9. Illustration of d-separation in a Bayesian network. Filled circles
represent observed nodes, empty circles represent hidden nodes (for which no data
are available). The legend on the right of each network indicates whether nodes A
and B are independent given Z, where Z is the set of observed nodes. Adapted from
[23], by permission of Cambridge University Press.

in the graph that have been observed. It can easily be seen that testing for
d-separation leads to the same results as before, but without having to go
through the (albeit very simple) algebra of equations (2.10), (2.13), and (2.15).
This is useful in more complex networks, where the algebra is more involved.

Take, as a second example, Figure 2.9. Again, we are interested in whether
A is independent of B given the set of observed nodes, Z. There are two paths
connecting nodes A and B. If no other node is observed (Figure 2.9, left),
the upper path is not blocked, because the edges do not converge and the
separating node is not observed (that is, it is not in Z). Consequently, A and
B are not d-separated, and A and B are not conditionally independent given
Z, symbolically written as A �⊥B|Z. On observing the top node (Figure 2.9,
middle), the upper path gets blocked. The lower path is also blocked, because
the edges converge on the separating node, and neither the separating node
itself nor its descendant is observed. Consequently, A and B are d-separated,
and A⊥B|Z. This changes when the descendant of the separating node is

2 Introduction to Bayesian Networks 25

observed (Figure 2.9, right), which opens the lower path and thus destroys
the d-separation between A and B, implying that A�⊥B|Z.

Here, we have used the observation of nodes as an obvious criterion for
membership in the separating set Z. However, other membership criteria can
also be employed. For instance, when trying to infer genetic networks from
microarray experiments, described in Chapters 8 and 9, we are particularly
interested in the up- and down-regulation of gene expression levels. So rather
than asking whether two genes A and B are independent given a set Z of
measured mediating genes, we could ask whether A and B are independent
conditional on a set Z ′ of up- or down-regulated genes. We will return to this
issue later, in Chapter 8.

2.1.2 The Parameters of a Bayesian Network

Recall that a BN is defined by a graphical structure, M, a family of (condi-
tional) probability distributions, F , and their parameters, q. The structure M
defines the independence relations between the interacting random variables,
as discussed in the previous subsection and expressed in the factorization rule
(2.1). The family F defines the functional form of the (conditional) probabili-
ties in the expansion (2.1) and defines, for instance, whether these probabilities
are Gaussian, multinomial, etc. To fully specify the conditional probabilities
associated with the edges we need certain parameters, for instance, the mean
and variance of a Gaussian, etc. In what follows, the function family F will be
assumed to be fixed and known, chosen according to some criteria discussed
in Section 8.2. Consequently, the probability distribution (2.1) is completely
defined by the network structure, M, henceforth also referred to as the model,
and the vector of network parameters, q. An illustration is given in Figure 2.10.
Note that a parameter vector q is associated with its respective network struc-
ture M, with structures of different degrees of connectivity having associated
parameter vectors of different dimension. Consequently, it would be more ac-
curate to write qM instead of q. For the sake of simplicity of the notation,
however, the subscript is dropped.

2.2 Learning Bayesian Networks from Complete Data

2.2.1 The Basic Learning Paradigm

Our next goal is to learn a Bayesian network from a set of training data,
D. These data are assumed to be complete, meaning that observations or
measurements are available on all nodes in the network. The case of incomplete
data will be treated later, in Section 2.3.

Recall from the discussion in Sections 1.2 and 1.3 that there are two prin-
cipled inference paradigms in machine learning and statistics. Bayesian net-
works are not necessarily related to the concept of Bayesian learning, and

26 Dirk Husmeier

Fig. 2.10. Structure and parameters of a Bayesian network. Top left: A
set of random variables for which we want to learn the Bayesian network, which
is defined by its structure and its parameters. Top right: The structure M defines
the set of edges between the nodes, which indicate the interactions between the
entities of interest. Bottom left: The parameters q specify the functional form of
the conditional probabilities associated with the edges, that is, they determine the
nature of the interactions between the objects and indicate, for instance, whether an
influence is strong (thick arrow) or weak (thin arrow) and whether an interaction is of
an activating (solid line) or inhibitory (dashed line) nature. Note that the structure
of the graph must satisfy the acyclicity constraint. A network with feedback loops,
as shown in the bottom right, is not a Bayesian network.

learning Bayesian networks from data can, in fact, follow either of the two
approaches discussed in Chapter 1. However, as pointed out in Section 1.3,
and discussed in more detail in Section 4.4.7, a proper frequentist approach
is often prohibitively computationally expensive. This chapter will therefore
focus on the Bayesian approach.

Note from the discussion in the previous subsection that learning is a two-
stage process, as illustrated in Figure 2.10. Given the data, we first want to find
the posterior distribution of network structures M and, from this distribution,
the structure M∗ that is most supported by the data:

M∗ = argmaxM
{

P (M|D)
}

(2.17)

Then, given the best structure M∗ and the data, we want to find the posterior
distribution of the parameters q, and the best parameters:

2 Introduction to Bayesian Networks 27

post
q∆q prior

q

P

∆

Posterior: P(q|D,M)

Prior:
P(q|M)

Fig. 2.11. Marginal likelihood and Occam factor. The figure shows a one-
dimensional illustration of equation (2.20) to demonstrate the regularization effect
of integrating out the network parameters. See text for details. Adapted from [3],
by permission of Oxford University Press.

q∗ = argmaxq

{
P (q|M∗,D)

}
(2.18)

Applying Bayes’ rule (1.4) to (2.17) gives:

P (M|D) ∝ P (D|M)P (M) (2.19)

where the marginal likelihood P (D|M) implies an integration over the whole
parameter space:

P (D|M) =
∫

P (D|q, M)P (q|M)dq (2.20)

Note that this marginal likelihood includes an inherent penalty for unnec-
essary complexity. To see this simply, consider the one-dimensional case of
Figure 2.11. Assume that the posterior probability P (q|D,M) is unimodal
and peaked around its mode, q̂, with width �qpost. Also, assume that the
prior can be approximated by a distribution that is uniform over some large
interval �qprior. With this approximation, (2.20) becomes:

P (D|M) = P (D|q̂,M)
�qpost

�qprior
(2.21)

The first term on the right-hand side, P (D|q̂,M), is the likelihood, evaluated
at the maximum likelihood parameters (note that for a uniform prior P (q|M),
the MAP estimate q̂ is equal to the maximum likelihood estimate). Obviously,
the likelihood is maximized for a complex structure with many edges, which
is bound to over-fit to the observed data D. The second term on the right-
hand side, �qpost/ � qprior, referred to as the Occam factor in [3] and [26],
measures the ratio of the posterior and prior accessible volumes in parameter
space. For an over-complex model, this ratio will be small. The structure
M with the largest marginal likelihood P (D|M) will be determined by the

28 Dirk Husmeier

Number of nodes 2 4 6 8 10
Number of topologies 3 543 3.7 × 106 7.8 × 1011 4.2 × 1018

Table 2.1. Number of Bayesian network topologies as a function of the number of
nodes in the graph. From [32].

trade-off between having to fit the data well, so as to get a large likelihood
P (D|q̂,M), and the need to do so with a low model complexity, so as to get
a large Occam factor. Consequently, even for a flat prior P (M), the posterior
probability (2.19) includes a penalty for unnecessary complexity, which guards
against over-fitting.

This chapter will not discuss the choice of prior. It is just noted that under
certain regularity conditions, the parameter priors P (q|M) for all structures
M can be specified using a single prior network, together with a “virtual”
data count that describes the confidence in that prior [17].

Now, it can be shown that when certain regularity conditions for the prior
P (q|M) and the likelihood P (D|q, M) are satisfied and when the data are
complete, then the integral in (2.20) becomes analytically tractable [16]. Un-
fortunately, this closed-form solution to (2.20) does not imply a straightfor-
ward solution to (2.17): the number of network structures increases super-
exponentially with the number of nodes, as demonstrated in Table 2.1, and
the optimization problem is known to be NP-hard [6]. We therefore have to
resort to heuristic optimization methods, like hill-climbing or simulated an-
nealing [22]. A heuristic acceleration of these procedures, which restricts the
search in structure space to the most “relevant” regions, is discussed in [12].

2.2.2 Markov Chain Monte Carlo (MCMC)

In many situations, there is reason to question the appropriateness of the
learning paradigm based on (2.17) altogether. For example, when inferring
genetic network from microarray data, as discussed in Chapters 8 and 9, the
data D are usually sparse, which implies that the posterior distribution over
structures, P (M|D), is likely to be diffuse. Consequently, P (M|D) will not be
adequately represented by a single structure M∗, as illustrated in Figure 8.5
on page 245, and it is more appropriate to sample networks from the posterior
probability

P (M|D) =
P (D|M)P (M)

P (D)
=

P (D|M)P (M)∑
M′ P (D|M′)P (M′)

(2.22)

so as to obtain a representative sample of high-scoring network structures,
that is, structures that offer a good explanation of the data. Again, a direct
approach is impossible due to the denominator in (2.22), which in itself is a
sum over the whole model space and, consequently, intractable. A solution to
this problem, proposed by Metropolis et al. [30] and Hastings [15], reviewed,

2 Introduction to Bayesian Networks 29

θ i

θ k

T()|θ i θ k

n+1

n

P ()iθ

P (θk)
n

n+1

Fig. 2.12. Illustration of a Markov chain. Pn(θk) is the probability distribution
in the nth step of the algorithm, where θk, in general, can be a structure, Mk, a
parameter vector, qk, or a combination of both, (Mk,qk). In the current application,
we are only interested in the former, but applications of the other two cases will be
discussed in later chapters of this book. The probability Pn(θk) evolves in time
by application of the Markov transition matrix T, which, in a single application,
transforms Pn(θk) into Pn+1(θk). If the Markov chain is ergodic, Pn(θk) will converge
to the equilibrium distribution P∞(θk), which is unique and independent of the
initial conditions.

for instance, in [4], [13] and [28], and first applied to Bayesian networks by
Madigan and York [29], is to devise a Markov chain

Pn+1(Mi) =
∑

k

T (Mi|Mk)Pn(Mk) (2.23)

that converges in distribution to the posterior probability P (M|D) of (2.22):

Pn(M) n→∞−→ P (M|D) (2.24)

The Markov matrix T in (2.23) is a matrix of transition probabilities, with
T (Mi|Mk) denoting the probability of a transition from model Mk into
model Mi: Mk → Mi. An illustration of (2.23) is given in Figure 2.12.

The important feature of a Markov chain is that, under the fairly weak
condition of ergodicity,1 the distribution Pn(Mk) converges to a stationary
distribution P∞(Mk):

Pn(Mk) n→∞−→ P∞(Mk) (2.25)

This stationary distribution is independent of the initialization of the Markov
chain and uniquely determined by the Markov transition matrix T:
1 A Markov chain is called ergodic if it is aperiodic and irreducible. An irreducible

Markov chain is one in which all states are reachable from all other states. A
sufficient test for aperiodicity is that each state has a “self-loop,” meaning that
the probability that the next state is the same as the current state is non-zero. In
general it is difficult to prove that a Markov chain is ergodic. However, ergodicity
can be assumed to hold in most real-world applications.

30 Dirk Husmeier

P∞(Mi) =
∑

k

T (Mi|Mk)P∞(Mk) (2.26)

The idea, therefore, is to construct the transition matrix T in such a way that
the resulting Markov chain has the desired posterior probability P (M|D) of
(2.22) as its stationary distribution: P (M|D) = P∞(M). A sufficient condi-
tion for this to hold is the equation of detailed balance:

T (Mk|Mi)
T (Mi|Mk)

=
P (Mk|D)
P (Mi|D)

=
P (D|Mk)P (Mk)
P (D|Mi)P (Mi)

(2.27)

To prove that this holds true, we have to show that for a transition matrix T
satisfying (2.27), the posterior probability P (M|D) of (2.22) is the stationary
distribution and therefore obeys (2.26):∑

k

T (Mi|Mk)P (Mk|D) = P (Mi|D) (2.28)

Now, from (2.27) we have

T (Mk|Mi)P (Mi|D) = T (Mi|Mk)P (Mk|D) (2.29)

and consequently∑
k

T (Mi|Mk)P (Mk|D) =
∑

k

T (Mk|Mi)P (Mi|D)

= P (Mi|D)
∑

k

T (Mk|Mi)

= P (Mi|D) (2.30)

which is identical to (2.28) and thus completes the proof. Note that the last
step in (2.30) follows from the fact that T (Mk|Mi) is a conditional probabil-
ity, which is normalized.

In practically setting up a Markov chain, note that a transition into an-
other structure, Mk → Mi, consists of two parts. First, given Mk, a new
structure is proposed with a proposal probability Q(Mi|Mk). In a second
step, this new structure is then accepted with an acceptance probability
A(Mi|Mk). A transition probability is therefore given by the product of a
proposal and an acceptance probability and can be written as

T (Mk|Mi) = Q(Mk|Mi)A(Mk|Mi) (2.31)

The proposal probabilities Q(Mk|Mi) are defined by the way we design our
moves in the model space (see, for instance, Figure 2.15). From (2.27) and
(2.31), we then obtain the following condition for the acceptance probabilities:

A(Mk|Mi)
A(Mi|Mk)

=
P (D|Mk)P (Mk)Q(Mi|Mk)
P (D|Mi)P (Mi)Q(Mk|Mi)

(2.32)

2 Introduction to Bayesian Networks 31

for which a sufficient condition is

A(Mk|Mi) = min
{

P (D|Mk)P (Mk)Q(Mi|Mk)
P (D|Mi)P (Mi)Q(Mk|Mi)

, 1
}

(2.33)

To summarize: Accepting new configurations Mk with the probability (2.33)
is a sufficient condition for satisfying the equation of detailed balance (2.27)
which itself (assuming ergodicity) is a sufficient condition for the convergence
of the Markov chain to the desired posterior distribution (2.22). While a
direct computation of the posterior probability (2.22) is intractable due to
the sum in the denominator, the equation of detailed balance (2.27) and
the acceptance criterion (2.33) only depend on the ratio of the posterior
probabilities. Consequently, the intractable denominator cancels out. The
algorithm, thus, can be summarized as follows:

Metropolis–Hastings algorithm

• Start from an initial structure M(0)

• Iterate for n = 1 . . . N
1. Obtain a new structure M(n) from the proposal distribution

Q(M(n)|M(n−1))
2. Accept the new model with probability A(M(n)|M(n−1)), given by

(2.33), otherwise leave the model unchanged: M(n) = M(n−1)

• Discard an initial equilibration or burn-in period to allow the Markov chain
to reach stationarity. For example, discard M1, . . . ,MN/2

• Compute expectation values from the MCMC sample
{MN/2+1, . . . ,MN}:

〈f〉 =
∑
M

f(M)P (M|D) 	 2
N

N∑
n=N/2+1

f(Mn)

An illustration is given in Figure 2.13. Note that this algorithm is not re-
stricted to discrete (cardinal) entities, like topologies M, but that it can
equally be applied to continuous entities, like network parameters q. In
this case expectation values are typically given by integrals of the form
〈f〉 =

∫
f(q)P (q|D)dq, which are approximated by discrete sums over the

parameters {q1, . . . ,qN} sampled along the MCMC trajectory:

〈f〉 =
∫

f(q)P (q|D)dq 	 2
N

N∑
n=N/2+1

f(qn)

The MCMC approximation is exact in the limit of an infinitely long Markov
chain. In theory, the initialization of the Markov chain and the details of the
proposal distribution are unimportant: if the condition of detailed balance
(2.27) is satisfied, an ergodic Markov chain will converge to its stationary
distribution (2.28) irrespective of these details. In practice, however, extreme
starting values and unskillfully chosen proposal distributions may slow down

32 Dirk Husmeier

Smoking Sex

Lung cancer

Smoking Sex

Lung cancer

Smoking Sex

Lung cancer

Smoking Sex

Lung cancer

Smoking Sex

Lung cancer

Smoking

Lung cancer

Sex

Propose

Propose

Reject

Propose
Accept

Fig. 2.13. Illustration of MCMC. Starting from the initial network shown in the
top left, a new network is proposed (top middle) and accepted with a probability
given by (2.33). In this example, the proposed network is rejected (top right). A
new network is proposed (bottom left) and again accepted with a probability given
by (2.33), which in this example leads to an acceptance of the proposed structure
(bottom middle). This structure is now taken as the initial configuration, from which
a new network is proposed in the next move (bottom right).

Step size λ 0.5 2.0 10.0
Relative error 79% 17% 58%

Table 2.2. Dependence of the relative prediction error on the steps size of the
proposal scheme for the MCMC simulation of Figure 2.14.

the mixing and convergence of the chain and result in a very long burn-in, in
which case the MCMC sampler may fail to converge towards the main support
of the stationary distribution in the available simulation time. An example is
given in Figure 2.14, where we want to infer the mean of a univariate Normal
distribution from an MCMC sample of size 200, discarding a burn-in phase of
the first 100 MCMC steps. (This is just an illustration. In practice we would
not resort to an MCMC simulation to solve this simple problem.) Our entity
of interest, in this case, is a single continuous random variable q, and we
choose the proposal distribution Q(q(n+1)|q(n)) to be a uniform distribution
over an interval of length λ (the step size), centred on the current value in
the Markov chain, q(n). Figure 2.14 shows a trace plot of q(n) for three values
of the step size λ. In the left subfigure, λ has been chosen too small, and
the convergence of the Markov chain is slow. This is indicated by a high
acceptance ratio of about 80% of the moves, which suggests that the step
size should be increased. In the right subfigure, λ has been chosen too large,
leading to a Markov chain that is too sticky and has a very low acceptance
ratio of only 17%, wasting a lot of computer time by rejecting most of the
moves. The subfigure in the middle shows an appropriate choice of λ, where
the acceptance ratio is about 50%. This optimal choice results in the fastest
convergence of the Markov chain and is reflected by the smallest prediction

2 Introduction to Bayesian Networks 33

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 50 100 150 200
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 2.14. Dependence of the MCMC convergence on the proposal dis-
tribution. The figures show MCMC trace plots of a univariate continuous ran-
dom variable q with a (known) normal N(0, 1) distribution; hence the true mean is
〈q〉 = 0. The proposal distribution Q(q(n+1)|q(n)) was chosen to be a uniform dis-
tribution over an interval of length λ, centred on the current value q(n). The figures
were obtained for three different values of the step size λ. Left: λ = 0.5; middle:
λ = 2.0; right: λ = 10.0.

error, as seen from Table 2.2. In this particular example, the choice of the
proposal distribution (determined by λ) is not particularly critical because
one can easily continue the MCMC simulation over about 10,000 or 100,000
steps, in which case all three alternatives give practically identical results.
For more complex problems, however, where computer time is a critical issue,
the optimization of the proposal distribution can become most important.
The previous example suggests that, starting from a random choice of λ,
one should adjust this parameter until an acceptance ratio of about 50% is
reached. In general, the parameters of more complex proposal distributions
should be tuned in a similar way. Note, however, that this tuning has to be
restricted to the burn-in phase of the algorithm, and it must not be continued
in the sampling phase. The reason is that optimizing the parameters of the
proposal distribution on the basis of a history of past configurations violates
the condition of detailed balance (2.27) and may therefore lead to a biased
distribution that may not be representative of the true stationary distribution
(2.28).

When the proposal distribution is symmetric, Q(Mk|Mi) = Q(Mi|Mk),
it cancels out in (2.33), and the algorithm reduces to the Metropolis algo-
rithm [30]. For asymmetric proposal distributions, the scheme is called the
Metropolis–Hastings algorithm [15], and the ratio of the proposal probabilities
is usually referred to as the Hastings ratio. While in some cases the asymmetry
of the proposal distribution is introduced deliberately as a means of acceler-
ating the convergence of the Markov chain, it is often inherent in the nature
of the proposal mechanism and needs to be considered carefully by the user
in order to avoid biased results. Take, for example, the proposal mechanism
for generating new DAGs, as illustrated in Figure 2.15. One might, naively,
assume that the proposal distribution is symmetric. After all, there are only
three elementary operations – edge creation, edge reversal, and edge deletion
– all of which can be chosen with the same probability for the forward and the

34 Dirk Husmeier

Smoking Sex

Lung cancer

Smoking Sex

Lung cancer

Smoking Sex

Lung cancer

Smoking

Lung cancer

Sex

Fig. 2.15. Elementary MCMC moves for DAGs. The figure shows three
typical elementary proposal moves: (1) deletion of an edge (left), (2) reversal of
an edge (middle), and (3) creation of a new edge (right). Note that the last two
operations may lead to graphs that violate the acyclicity constraint and therefore
have to be discarded. An example is shown on the right.

backward move and, therefore, should cancel out when computing the Hast-
ings ratio. A more careful consideration, however, reveals that this assumption
is false. The reason for this fallacy is that, as a consequence of the acyclicity
constraint, certain proposal moves will lead to invalid DAGs that have to be
discarded (as illustrated in Figure 2.15). Figure 2.16 demonstrates how the
Hastings ratio is computed properly. The figure shows the neighbourhoods of
two DAGs, where the neighbourhood is the set of all valid DAGs that can be
reached from the given DAG with one of the elementary operations of Fig-
ure 2.15. As a consequence of the acyclicity constraint, the neighbourhoods
of two neighbouring DAGs are not necessarily of the same size. Consequently,
the proposal probability of an MCMC move, which is given by the inverse
of the neighborhood size, is not equal to that of the opposite move, leading
to a Hastings ratio that is different from 1. For complex networks with large
neighbourhoods, the computation of the Hastings ratio is therefore not trivial
and requires the determination of the number of all valid (acyclic) graphs in
the neighbourhoods of the two DAGs involved in the proposal move.

Recall that in theory an ergodic Markov chain converges to the true poste-
rior distribution irrespective of the choice of the proposal distribution and the
initialization. In practice, however, it is difficult to decide whether an MCMC
simulation has sufficiently converged. A simple heuristic convergence test is
shown in Figure 2.17. Note, however, that passing the indicated test is only
a necessary rather than a sufficient condition for convergence as it may not
distinguish between meta-stable disequilibrium and true equilibrium.

2 Introduction to Bayesian Networks 35

Neighbourhood Neighbourhood

Proposal probability = 1/5

Proposal probability = 1/6

Fig. 2.16. DAG neighbourhoods and Hastings ratio. The figure shows the
neighbourhoods of two DAGs, where the neighbourhood of a DAG is the set of all
valid DAGs that can be reached from the specified DAG with one of the elementary
operations of Figure 2.15. The neighbourhoods of two neighbouring DAGs are not
necessarily of the same size: while the DAG on the right has six neighbours, the DAG
on the left has only five because one of the graphs in its neighbourhood violates the
acyclicity constraint. The Hastings ratio is given by the ratio of the neighbourhood
sizes of the two networks involved in the proposal move. The Hastings ratio for an
MCMC proposal move from the left to the right DAG is thus given by 5/6, while
the Hastings ratio for the opposite move is 6/5.

2.2.3 Equivalence Classes

Figure 2.18 shows the four elementary Bayesian networks we have already en-
countered several times in this chapter. All networks have the same skeleton,
which is the configuration of edges without their direction, but they differ
with respect to the edge directions. However, expanding the joint probabil-
ity P (A, B, C) according to (2.1) gives the same factorization for three of
the networks irrespective of the edge directions. These networks are therefore
equivalent, that is, they show alternative ways of describing the same set of
independence relations. In general, it can be shown that networks are equiv-
alent if and only if they have the same skeleton and the same v-structure,
where the latter denotes a configuration of two directed edges converging on
the same node without an edge between the parents [5]. An equivalence class
can be represented by a partially directed acyclic graph (PDAG), which is a
graph that contains both directed and undirected edges. An example is given
in the bottom of Figure 2.18, and in Figure 2.19, where the subfigure on the
right shows the equivalence class that corresponds to the Bayesian network on

36 Dirk Husmeier

MCMC simulation 1 MCMC simulation 2

MCMC 1

MCMC 2

MCMC 2

MCMC 1

MCMC 2

MCMC 1

MCMC 2

MCMC 1

T infinite T long enoughT too short

Fig. 2.17. Convergence test for MCMC simulations. Top: MCMC simu-
lations are started from different initializations and/or different random number
generator seeds. Corresponding posterior probabilities of the edges, obtained from
different simulations, are plotted against each other. Bottom left: Infinite simula-
tion time T . For an infinitely long simulation time, all MCMC simulations give the
same results: the estimated posterior probabilities of the edges are equal to the true
posterior probabilities irrespective of the initialization of the Markov chain, and
the scatter plot has the form of a straight line. Bottom middle: Simulation time T
too short. Insufficient convergence or mixing of the Markov chain is indicated by a
scatter plot that strongly deviates from the straight line. This deviation indicates
a strong dependence of the results on the initialization, resulting from insufficient
convergence or mixing. Bottom right: Simulation time T long enough. A necessary
condition for sufficient convergence and mixing is a scatter plot that does not deviate
markedly from the diagonal line.

2 Introduction to Bayesian Networks 37

A B A B

C C

A B

C

A B

C

P(A,B,C) =

P(B|C) P(C|A) P(A) P(A|C) P(C|B) P(B)P(A|C) P(B|C) P(C) P(C|A,B) P(A) P(B)

P(A|C) P(C) P(B|C) P(C)

A B A B

C C

A B

C

A B

C

A B

C

Fig. 2.18. Equivalent Bayesian networks. The top subfigure shows four BNs
with their respective expansion of the joint probability distribution. The three BNs
on the left are equivalent and lead to the same expansion. These BNs thus belong
to the same equivalence class, which can be represented by the undirected graph at
the bottom.

the left. Note that an undirected edge indicates that its direction is not un-
equivocal among the DAGs in the equivalence class represented by the PDAG.
Conversely, a directed edge indicates that all DAGs in the equivalence class
concur about its direction.

Under fairly general conditions, equivalent BNs have the same likelihood
score [16].2 Unless this symmetry is broken by the prior,3 the posterior prob-
abilities are the same, that is, equivalent BNs can not be distinguished on
the basis of the data. This implies that, in general, we can only learn PDAGs
2 Heckerman [16] distinguishes between structure equivalence, identical to the no-

tion of equivalence used in the present chapter, and distribution equivalence. The
latter equivalence concept is defined with respect to a distribution family F and
implies invariance with respect to the likelihood.

3 Heckerman et al. [17] discuss the choice of priors that do not break the symmetry
of equivalence classes.

38 Dirk Husmeier

Fig. 2.19. DAG and PDAG. The left figure shows a DAG. The right figure
shows the corresponding PDAG, which represents the equivalence class to which the
DAG on the left belongs. Note that the skeleton and the v-structure, that is, the
set of converging edge pairs, remain unchanged. Information about the directions of
the remaining edges, however, gets lost.

rather than DAGs from the data. The consequence is that for a given network
structure M learned from the data, or sampled from the posterior distribution
P (M|D), one has to identify the whole equivalence class C(M) to which M
belongs and then discard all those edge directions that are not unequivocal
among all M′ ∈ C(M). For further details and references, see [5] and [16].

2.2.4 Causality

A Bayesian network conveys information about conditional dependence re-
lations between interacting random variables: given its parents, a node is
independent of its nondescendants. Ultimately, we might be more interested
in the flow of causality and in finding a causal network as a model of the
causal processes of the system of interest. In fact, we can interpret a DAG as
a causal graph if we assign a stricter interpretation to the edges, whereby the
parents of a variable are its immediate causes. Take, as an example, the DAG
in Figure 2.4. Interpreting this DAG as a Bayesian network implies that given
information about the rain the probability of finding the grass to be wet is
independent of the clouds. Interpreted as a causal graph, the edges indicate
that clouds are the immediate cause for rain, and that rain is the immediate
cause for the wetness of the grass. Obviously, there is a relation between these
two interpretations. Given information on the rain, the state of the wetness of
the grass is completely determined and no longer depends on the clouds: if it
rains, the grass gets wet irrespective of the cloud formation. This causal graph
thus satisfies what is called the causal Markov assumption: given the values of
a variable’s immediate causes, this variable is independent of its earlier causes.
When the causal Markov assumption holds, the causal network satisfies the
Markov independence relations of the corresponding Bayesian network.

An important question is whether we can learn a causal network from the
data. Obviously, a first difficulty in trying to achieve this objective is the exis-

2 Introduction to Bayesian Networks 39

B

B

A

A B

BA

A

Fig. 2.20. Effect of intervention. The two DAGs on the left are in the same
equivalence class, and the edge direction can not be inferred from observations alone.
To infer the causal direction, the value for A has to be set externally. If A is a causal
ancestor of B, this intervention is likely to lead to a changed value of B (top right).
If, however, B is a causal ancestor of A, this intervention will have no effect on B
(bottom right).

tence of equivalence classes. Recall from the discussion of the previous section
that we can only learn equivalence classes of DAGs (represented by PDAGs)
rather than DAGs themselves. This implies that effectively a lot of edge di-
rections get lost, obstructing the inference of causality. In what follows we
have to distinguish between observations and interventions. An observation is
a passive measurement of variables in the domain of interest, for instance, the
simultaneous measurement of gene expression levels in a standard microarray
experiment.4 In an intervention, the values of some variables are set from
outside the system, for instance, by knocking out or over-expressing a par-
ticular gene. An example is given in Figure 2.20. More formally, recall that
the likelihood scores of two BNs with equivalent DAGs, M and M′, are the
same, where the likelihood is computed from (2.1). When setting the value
of node k externally to some value x∗

k, then P (Xk = x∗
k|Xpa[k]) = 1. This

is because setting a value by external force means that the respective node
takes on this particular value with probability 1 irrespective of the values of
the other nodes in the network. Consequently, the contributions of all those
nodes that are subject to intervention effectively disappear from (2.1):

P (X1, X2, . . . , Xn) =
∏
i�∈I

P (Xi|Xpa[i]) (2.34)

where I is the set of intervened nodes. This modification can destroy the
symmetry within an equivalence class, that is, the likelihood scores for M
and M′ might no longer be the same, which may resolve the ambiguity about
certain edge directions.

A second and potentially more serious difficulty in trying to learn causal
structures from data is the possible presence of hidden, unobserved variables.
Figure 2.20, for instance, shows two possible DAG structures that explain
4 See Chapter 7 for an introduction to microarray experiments.

40 Dirk Husmeier

C YX

A B A C B

Fig. 2.21. Equivalence of networks with hidden variables. The network on
the left without hidden variables is equivalent to the network on the right, which
contains two additional hidden variables. Filled circles represent observed, empty
circles represent hidden nodes.

a conditional dependence between two random variables. However, a third
possibility is that both observed random variables depend on a third, hidden
variable, as in Figure 2.3. Another example is given in Figure 2.21, where the
network on the left, which only includes observed nodes, is equivalent to the
network on the right, which contains two extra hidden nodes. This equivalence
can easily be shown. Applying the factorization rule (2.1) to the graph on the
right gives:

P (A, B, C, X, Y) = P (A|X)P (X)P (C|X, Y)P (B|Y)P (Y)
= P (X|A)P (A)P (C|X, Y)P (Y |B)P (B)

where in the second step (1.3) has been used. Then, marginalizing over the
unobserved variables X and Y yields

P (A, B, C) =
∑
X

∑
Y

P (A, B, C, X, Y)

= P (A)P (B)
∑
X

∑
Y

P (C|X, Y)P (X|A)P (Y |B)

= P (A)P (B)P (C|A, B)

This result is identical to the factorization one obtains from the structure
on the left of Figure 2.21. Consequently, the two network structures in Fig-
ure 2.21 are equivalent, and we can not decide whether A and B are causal
ancestors of C, or whether all three variables are controlled by some hidden
causal ancestors. A more complex analysis [40] reveals that it is possible to
characterize all networks with latent variables that can result in the same
set of independence relations over the observed variables. However, it is not
clear how to score such an equivalence class, which consists of many models
with different numbers of latent variables, and this lack of a score defies any
inference procedure.

2 Introduction to Bayesian Networks 41

2.3 Learning Bayesian Networks from Incomplete Data

2.3.1 Introduction

The previous section was based on the assumption that we can find a closed-
form solution to the integral in (2.20). This is only possible if we have complete
observation without any missing or hidden variables. In many applications this
cannot be assumed, since observations may be missing either systematically
or at random. Take, for example, a microarray experiment, where we measure
the expression levels of hundreds or thousands of genes simultaneously. As
described in Chapter 7, some genes get occasionally flagged, meaning that
the data quality is so poor that these measurements are at best ignored. It
is also known that certain interactions in genetic regulatory networks are
mediated by transcription factors, whose activation is often undetectable at
the level of gene expression. In phylogenetics, covered in Chapters 4–6, DNA
or RNA sequences are only available for contemporary or extant species, while
those for extinct species are systematically missing. Further examples will be
given in later chapters of this book. In all these applications, the assumption
of complete observation is violated, and the integration in (2.20) becomes
intractable.

2.3.2 Evidence Approximation and Bayesian Information Criterion

A simple approximation to (2.20) is as follows. First, consider a focused model
in which P (q|D, M) is assumed to be dominated by the likelihood, either
because of assuming a uniform prior on the parameters, or by increasing the
sample size. That is, we set (assuming prior parameter independence)

P (q|M) =
ν∏

i=1

P (qi|M) = cν (2.35)

where ν = dim(q) is the dimension of the parameter space, and c is a constant.
Next, define

E(q) = − log P (D|q,M) (2.36)
q̂ = argminqE(q) = argmaxqP (D|q, M) (2.37)

H =
[
∇q∇†

qE(q)
]
q=q̂

= −∇q∇†
q

[
log P (D|q, M)

]
q=q̂

(2.38)

where q̂ is the vector of maximum likelihood parameters, and H is the Hessian
or empirical Fisher information matrix. Inserting (2.36) and (2.35) into (2.20)
gives

P (D|M) =
∫

P (D|q, M)P (q|M)dq = cν

∫
exp

[
− E(q)

]
dq (2.39)

42 Dirk Husmeier

Approximating the negative log-likelihood by a second-order Taylor series
expansion, the so-called Laplace approximation,

E(q) ≈ E(q̂) +
1
2
(q − q̂)†H(q − q̂) (2.40)

where the superscript † denotes matrix transposition, and inserting (2.40) into
(2.39), we get

P (D|M) ≈ cν exp
[

− E(q̂)
] ∫

exp
[

− 1
2
(q − q̂)†H(q − q̂)

]
dq (2.41)

= P (D|q̂,M)cν

√
(2π)ν

detH
(2.42)

Taking logs, this gives:

log P (D|M) = log P (D|q̂,M) − 1
2

log detH +
ν

2
log(2πc2) (2.43)

Equation (2.43), which in the neural network literature is referred to as the
evidence approximation [26], [27], decomposes log P (D|M) into two terms: the
maximum log likelihood score, log P (D|q̂,M), and a penalty or regularization
term that depends on the Hessian H. The integration (2.20) is thus reduced
to an optimization, to obtain log P (D|q̂,M), and the computation of the
Hessian. For complex models, this computation of the Hessian can be quite
involved [18], [19]. Therefore, a further approximation is often applied. Note
that the Hessian H is symmetric and positive semi-definite, as seen from
(2.38), and it thus has ν real nonnegative eigenvalues, {εi}, i = 1, . . . , ν. The
determinant of a matrix is given by the product of its eigenvalues, which allows
(2.43) to be rewritten as follows:

log P (D|M) = log P (D|q̂,M) − 1
2

ν∑
i=1

log
(εi

2πc2

)
(2.44)

The eigenvalues εi determine the curvature of the log-likelihood surface along
the eigendirections at the maximum likelihood parameters q̂. This curvature
increases with the sample size N , so the eigenvalues can be assumed to be
proportional to N : εi ∝ N . Now, introducing the further approximation of
isotropy, that is, assuming the same curvature along all eigendirections:

εi ≈ 2πc2N ∀i (2.45)

we get (recall that ν = dim(q)):

log P (D|M) ≈ log P (D|q̂,M) − ν

2
log N (2.46)

This simple formula, which is a variant of the minimum description length in
information theory [37], is known as the BIC (Bayesian information criterion)

2 Introduction to Bayesian Networks 43

approximation, introduced by Schwarz [38]. The first term is the maximum
likelihood estimate for model M. The second term is a regularization term,
which penalizes model complexity and results from the integration; compare
with the discussion in Section 2.2.1. However, for sparse data D, neither the
Laplace approximation nor the assumption of isotropy, (2.45), are reasonable.
In particular, both approximations assume that the likelihood function is uni-
modal, which does not hold for many models. In fact, this deviation from
unimodality becomes particularly noticeable for small data sets, which may
render both the evidence and BIC approximations unreliable. A different,
simulation-based approach that overcomes this shortcoming will be discussed
in Section 2.3.7.

2.3.3 The EM Algorithm

The previous section has demonstrated that under certain approximations
the integration (2.20) reduces to an optimization problem, namely, to find the
maximum likelihood parameters q̂ for a given model M. This optimization,
however, may not be trivial due to the presence of hidden variables. Denote
by D the data corresponding to observed nodes in the graph. Denote by S =
{S1, . . . , SM} the set of hidden nodes and their associated random variables.
The log likelihood is given by

L(q,M) = log P (D|q, M) = log
∑
S

P (D, S|q, M) (2.47)

which involves a marginalization over all possible configurations of hidden
states. If each hidden state Si, i = 1, . . . , M , has K discrete values, we have to
sum over KM different terms, which for large values of M becomes intractable.
To proceed, let Q(S) denote some arbitrary distribution over the set of hidden
states, and define

F (q,M) =
∑
S

Q(S) log
P (D,S|q,M)

Q(S)
(2.48)

KL[Q, P] =
∑
S

Q(S) log
Q(S)

P (S|D,q,M)
(2.49)

KL in (2.49) is the Kullback–Leibler divergence between the distributions Q
and P , which is always non-negative and zero if and only if Q = P . The proof
is based on the concavity of the log function and the normalization condition
for probabilities:

∑
S Q(S) = 1:

log x ≤ x − 1 =⇒ log
P (S)
Q(S)

≤ P (S)
Q(S)

− 1

=⇒ Q(S) log
P (S)
Q(S)

≤ P (S) − Q(S) =⇒
∑
S

Q(S) log
P (S)
Q(S)

≤ 0

=⇒ KL[Q, P] ≥ 0

44 Dirk Husmeier

F
KL

F=L F

L

L

E−step M−step

Fig. 2.22. Illustration of the EM algorithm. L, F , and KL are defined in
equations (2.47)–(2.49). The algorithm is explained in the text.

From (2.47)–(2.49) we get:

L(q,M) = F (q,M) + KL[Q, P] (2.50)

This is the fundamental equation of the Expectation Maximization (EM) al-
gorithm [8], [33]. An illustration is given in Figure 2.22. F is a lower bound
on the log-likelihood L, with a difference given by KL. The E-step holds the
parameters q fixed and sets Q(S) = P (S|D,q,M); hence KL(Q, P) = 0 and
F = L. The M-step holds the distribution Q(S) fixed and computes the pa-
rameters q that maximize F . Since F = L at the beginning of the M-step,
and since the E-step does not affect the model parameters, each EM cycle is
guaranteed to increase the likelihood unless the system has already converged
to a (local) maximum (or, less likely, a saddle point). The power of the EM
algorithm results from the fact that F is usually considerably easier to maxi-
mize with respect to the model parameters q than L. An example is given in
Section 2.3.5.

2.3.4 Hidden Markov Models

A hidden Markov model (HMM) is a particular example of a Bayesian net-
work with hidden nodes. In fact, the structure of an HMM is comparatively
simple, which makes it an appropriate example for illustrating the concepts
of the preceding subsection. Also, HMMs have been extensively applied in
bioinformatics, and they will play an important role in later chapters of this
book; see Section 5.10, Section 10.11.4, and Chapter 14. An illustrative ex-
ample is given in Figure 2.23. Assume you are in a casino and take part in a
gambling game that involves a die. You are playing against two croupiers: a
fair croupier, who uses a fair die, and a corrupt croupier, who uses a loaded
die. Unfortunately, the croupiers are hidden behind a wall, and all you observe
is a sequence of die faces. The task is to predict which croupier is rolling the

2 Introduction to Bayesian Networks 45

���
���
���

���
���
���

��
��
��

��
��
��

P P

��
��
��

��
��
��

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

Fig. 2.23. The occasional corrupt casino. Left: Two croupiers are in a casino:
a fair croupier, who uses a fair die, and a corrupt croupier, who uses a biased die.
Right: The player only sees a sequence of die faces, but not the croupier, from whom
he is separated by a wall. The task is to infer, from the sequence of observed die
faces, which croupier has been rolling the die and to predict the breakpoint when
the corrupt croupier is taking over. The idea for this illustration is taken from [9].

A C G T T A T A
A G T C A T A −→ A C G T T A T A

A − G T C A T A

Fig. 2.24. Pairwise DNA sequence alignment. The figure shows two hypo-
thetical DNA sequences, each composed of the four nucleotides adenine (A), cytosine
(C), guanine (G), and thymine (T). The sequences on the left are unaligned and seem
to differ in all but one position. The sequences on the right have been aligned, and
they differ only in two positions. Note that this alignment makes use of an extra
symbol, the horizontal bar “−”, which indicates an indel (an insertion or a deletion,
depending on the reference sequence).

TGGAGACCAC CGTGAACGCC CATCA - - - GG TCC T GCCCAA
TGGAGACCAC CGTGAACGCC CACCA - - - AT TCT T GCCCAA
TGGAGACCAC CGTGAACGCC GCCCA TCT AT TCT T GCCCAA
TGGAGACCAC CGTGAACGCC CATCA - - A AG TCT - GCCCAA
TGGAGACCAC CGTGAACGCC CACCA - - - GG TCT T GCCCAA

Fig. 2.25. Multiple DNA sequence alignment. The figure shows a small
section of a DNA sequence alignment of five strains of Hepatitis-B virus. Rows
represent strains, and columns represent sequence positions. The letters represent
the four nucleotides adenine (A), cytosine (C), guanine (G), and thymine (T), while
the horizontal bars indicate gaps.

die at a given time and to predict the breakpoint where the corrupt croupier
is taking over (in order to nab him).

As a second example, consider the problem of aligning DNA sequences. Re-
call that DNA is composed of an alphabet of four nucleotides: adenine (A), cy-
tosine (C), guanine (G), and thymine (T). After obtaining the DNA sequences
of the taxa of interest, we would like to compare homologous nucleotides, that
is, nucleotides that have been acquired from the same common ancestor. The
problem is complicated due to the possibility of insertions and deletions of nu-
cleotides in the genome (referred to as indels). Take, for instance, Figure 2.24.
A direct comparison of the two sequences on the left gives the erroneously
small count of only a single site with identical nucleotides. This is due to the

46 Dirk Husmeier

-

-

C

G

T

T

T

- -

C

C

T

A

-

G

T

T

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

Insert
x

y

Delete
y

Match
x

ε

ε

δ

1−ε

1−ε

1−2δ

δ

A

Fig. 2.26. Hidden states for pairwise DNA sequence alignment. The
hidden states are represented by ellipses, and edges between these ellipses indicate
possible transitions between the states. Active transitions are shown as thick lines.
There are three different hidden states. (1) A match state emits a pair of nucleotides.
(2) An insert state emits a nucleotide for the first sequence, and a gap for the second –
so it “inserts” a nucleotide in the first sequence. (3) A delete state emits a nucleotide
for the second sequence, and a gap for the first – hence it “deletes” a nucleotide in
the first sequence.

insertion of a C in the second position of the first strand, or, equivalently,
the deletion of a nucleotide at the second position of the second strand (the
insertion of a so-called gap). A correct comparison leads to the alignment on
the right of Figure 2.24, which suggests that the sequences differ in only two
positions. The process of correcting for insertions and deletions is called DNA
sequence alignment. Figure 2.25 shows a small subregion of a multiple DNA
sequence alignment of five strains of Hepatitis-B virus.

The two examples given here have three important features in common.
First, we can describe both processes in terms of a hidden state that has gen-
erated the observations. For the casino, this hidden state corresponds to the
unknown croupier who is rolling the die. For the DNA sequence alignment,
we can introduce conceptually a hidden state that indicates whether we have,
at a given position, a nucleotide match, an insertion, or a deletion. An il-
lustration is given in Figure 2.26. Second, the problem of finding the correct
hidden states corresponding to a given sequence of observations is intrinsi-
cally stochastic. Observing, say, that the die face six occurs three times in a
row gives some indication that the die may be biased. However, due to the
inherent stochasticity of rolling a die this observation can also be obtained

2 Introduction to Bayesian Networks 47

y_1 y_2

s_2

...

s_1
...

s_t

y_t

s_(t+1)

y_(t+1)

s_N

y_N

Fig. 2.27. Hidden Markov model. Black nodes represent observed random
variables, white nodes represent hidden states, and arrows represent conditional de-
pendencies. The joint probability factorizes into a product of emission probabilities
(vertical arrows), transition probabilities (horizontal arrows), and the initial proba-
bility, that is, the probability of the initial state. The prediction task is to find the
most likely sequence of hidden states given the observations.

from a fair die. Similarly, several mismatches between the nucleotides in cor-
responding DNA sequence positions may indicate that the sequences are mis-
aligned. However, such mismatches can also occur in homologous sequences
as a result of mutations during evolution. Consequently, we need probabilistic
methods that allow robust inference in the presence of inherent stochasticity,
and Bayesian networks are the ideal tools for this task. Third, and possibly
most notably, both problems suffer from an explosion of the computational
complexity. Given a sequence of observations – a sequence of die faces in the
first example, or a sequence of nucleotide pairs in the second – we would
like to find the best sequence of hidden states describing the observations.
Given the intrinsic stochasticity mentioned above, “best” should be defined
probabilistically as the mode of the posterior probability P (S|D), where S
represents a sequence of hidden states, and D is the set of observations (the
“data”). However, given K different hidden states (K = 2 for the casino, and
K = 3 for the pairwise sequence alignment) and N sequence positions, there
are KN different hidden state sequences. Consequently, the number of hidden
state sequences increases exponentially with the sequence length, which, in
the most general scenario, prohibits an exhaustive search in sequence space.

To proceed, consider the Bayesian network in Figure 2.27, which contains
two types of nodes. Filled circles represent observed random variables, yt

(which, in general, can be vectors). Empty circles represent hidden states, St.
The index t can refer to time, as in the casino example, or to location, as in
the alignment problem. Applying the expansion rule for Bayesian networks
(2.1) to the network in Figure 2.27 gives:

P (y1, . . . ,yN , S1, . . . , SN) =
N∏

t=1

P (yt|St)
N∏

t=2

P (St|St−1)P (S1) (2.51)

48 Dirk Husmeier

We refer to the set of P (yt|St) as the emission probabilities (associated with
the vertical edges), to P (St|St−1) as the transition probabilities (which are
associated with the horizontal edges), and to P (S1) as the initial probability.

Since the dependence structure between the hidden states is obviously
Markovian, the Bayesian network in Figure 2.27 is called a hidden Markov
model. A consequence of this simplification is that the complexity of an ex-
haustive search in the space of hidden state sequences is no longer exponential
in the sequence length. From (2.51) we obtain the recursion:

γn(Sn) = max
S1,...,Sn−1

log P (y1, . . . ,yn, S1, . . . , Sn)

= max
S1,...,Sn−1

[n∑
t=1

log P (yt|St) +
n∑

t=2

log P (St|St−1) + log P (S1)
]

= log P (yn|Sn) + max
Sn−1

[
log P (Sn|Sn−1) + max

S1,...,Sn−2

[n−1∑
t=1

log P (yt|St)

+
n−1∑
t=2

log P (St|St−1) + log P (S1)
]]

= log P (yn|Sn) + max
Sn−1

[
log P (Sn|Sn−1) + γn−1(Sn−1)

]
(2.52)

Obviously:

max
S1,...,SN

P (S1, . . . , SN |y1, . . . ,yN) = max
S1,...,SN

log P (y1, . . . ,yN , S1, . . . , SN)

= max
SN

γN (SN) (2.53)

and the mode, P (Ŝ|D) = P (Ŝ1, . . . , ŜN |y1, . . . ,yN), is obtained by recursive
backtracking, starting from the initialization ŜN = argmaxSN

γN (SN), and
continuing with the following iteration:

Ŝn−1 = argmaxSn−1

[
log P (Ŝn|Sn−1) + γn−1(Sn−1)

]
(2.54)

This recursive iteration is called the Viterbi algorithm [36], which is a variant
of dynamic programming. The computational complexity of a single step of
the recursions (2.52) and (2.54) is O(K2), that is, it only depends on the num-
ber of different states K, but is independent of the sequence length N . The
total computational complexity of the algorithm is thus linear in N – rather
than exponential in N – which enables us to carry out an exhaustive search
even for long sequences. Note, again, that the hidden Markov assumption is
at the heart of this reduction in computational complexity. This approxima-
tion corresponds to a casino where the decision about changing croupiers is
made instantaneously, without considering earlier events in the past. In a pair-
wise DNA sequence alignment, the hidden Markov assumption restricts the

2 Introduction to Bayesian Networks 49

explicit modelling of the dependence structure between nucleotides to inter-
actions between neighbouring sites. Finally, note that the log transformation
in the previous equations is not required for a derivation of the algorithm.
It is, however, important in practical implementations in order to prevent a
numerical underflow for long sequences.

2.3.5 Application of the EM Algorithm to HMMs

Recall from Section 2.1 that a Bayesian network is defined by a triplet
(M,F ,q). M represents the network structure, given by Figure 2.27. F rep-
resents the family of transition, emission, and initial probabilities, which are
assumed to be known and fixed. The probabilities are thus completely specified
by the parameter vector q = (w, ν, π), where w determines the emission prob-
abilities, P (yt|St,w), ν determines the transition probabilities, P (St|St−1,ν),
and π determines the initial probabilities, P (S1|π).5 For a sequence of obser-
vations D = (y1, . . .yN) and a state sequence S = (S1, . . . , SN) we have the
joint probability (from (2.51)):

P (D, S|q) = P (y1, . . . ,yN , S1, . . . , SN |q)

=
N∏

t=1

P (yt|St,w)
N∏

t=2

P (St|St−1,ν)P (S1|π) (2.55)

Assume we want to optimize the parameters in a maximum likelihood sense,
that is, we want to maximize

L(q) = log P (D|q) = log
∑
S

P (D, S|q) (2.56)

with respect to the parameter vector q. The computation of L requires a
summation over all hidden state sequences S = (S1, . . . , SN), that is, over
KN terms. For all but very short sequence lengths N , this direct approach is
intractable. A viable alternative, however, is given by the expectation max-
imization (EM) algorithm, discussed in Section 2.3.3. Let Q(S) denote an
arbitrary probability distribution over the hidden state sequences, and F the
function defined in (2.48). Inserting (2.55) into (2.48) gives:

F (q) = A(w) + B(ν) + C(π) + H (2.57)

where H = −
∑

S Q(S) log Q(S) is a constant independent of the parameters
q, and
5 Recall the convention that for different arguments, P denotes different functions.

Also, note that the three probabilities stated here do not explicitly depend on t,
that is, the Markov chain is assumed to be homogeneous. For example, if St ∈
{a1, . . . , aK}, then P (St = ai|St−1 = ak) = P (St′ = ai|St′−1 = ak) ∀ t, t′.

50 Dirk Husmeier

A(w) =
∑
S

N∑
t=1

Q(S) log P (yt|St,w) =
N∑

t=1

∑
St

Q(St) log P (yt|St,w) (2.58)

B(ν) =
∑
S

N∑
t=2

Q(S) log P (St|St−1, ν)

=
N∑

t=2

∑
St

∑
St−1

Q(St, St−1) log P (St|St−1,ν) (2.59)

C(π) =
∑
S

Q(S) log P (S1|π) =
∑
S1

Q(S1) log P (S1|π) (2.60)

Note that these expressions depend only on the marginal univariate and bi-
variate distributions Q(St) and Q(St, St−1), but no longer on the multivariate
joint distribution Q(S). This marginalization outside the argument of the log
function is at the heart of the reduction in computational complexity inher-
ent in the EM algorithm. Having derived an expression for the function F in
(2.48), we are set for the application of the EM algorithm, as described in
Section 2.3.3.

The probabilities Q(St) and Q(St, St−1) are updated in the E-step, where
we set:

Q(St) −→ P (St|D,w, ν,π) (2.61)
Q(St, St−1) −→ P (St, St−1|D,w, ν, π) (2.62)

These computations are carried out with the forward–backward algorithm for
HMMs [36], which is a dynamic programming method that reduces the com-
putational complexity from O(KN) to O(NK2), that is, from exponential
to linear complexity in N . The underlying principle is similar to that of the
Viterbi algorithm, discussed after equation (2.54), and is based on the sparse-
ness of the connectivity in the HMM structure. Since the forward–backward
algorithm has been discussed several times in the literature before, it will not
be described in this chapter again. Details can be found in the tutorial article
by Rabiner [36], or textbooks like [1] and [9], which also discuss implementa-
tion issues.

Now, all that remains to be done is to derive update equations for the
parameters q = (w, ν, π) so as to maximize the function F in the M-step of the
algorithm. From (2.57) we see that this optimization problem breaks up into
three separate optimization problems for w, ν, and π. As an example, consider
the optimization of C(π) in (2.60) with respect to π. Assume the hidden state
St is taken from a discrete letter alphabet, St ∈ {a1, . . . , aK}. For the casino
example, we have K = 2 “letters”, corresponding to the two croupiers. For the
pairwise sequence alignment, we have K =

(6
2

)
−1 = 14 letters, corresponding

to all 2-element combinations from {A, C, G, T, −} except for the concurrence
of two gaps. Define π = (Π1, . . . , ΠK) and P (S1 = ak|π) = Πk for positive,
normalized scalars Πk ∈ [0, 1], that is, Πk can be interpreted as a probability

2 Introduction to Bayesian Networks 51

distribution over the alphabet {a1, . . . , aK}. We can now rewrite (2.60) as
follows:

C(π) =
K∑

k=1

Q(k) log Πk =
K∑

k=1

Q(k) log Q(k) −
K∑

k=1

Q(k) log
Q(k)
Πk

The first term,
∑K

k=1 Q(k) log Q(k), does not depend on the parameters. The
second term,

∑K
k=1 Q(k) log Q(k)

Πk
, is the Kullback–Leibler divergence between

the distributions Q(k) and Πk. In order to maximize C(π), this term should
be as small as possible. Now, recall from the discussion after equation (2.49)
that the Kullback–Leibler divergence is always non-negative, and zero if and
only if the two distributions are the same. Consequently, C(π) is maximized
for Πk = Q(S1 = k).

The optimization of the other parameters, w and ν, is, in principle, similar.
For multinomial distributions, complete update equations have been derived
in [1], [9], and [36], and these derivations will not be repeated here. Instead,
let us consider the maximization of B(ν) in (2.59) for a special case that
will be needed later, in Section 5.10. Assume that we have only two different
transition probabilities between the hidden states. Let ν ∈ [0, 1] denote the
probability that a state will not change as we move from position t − 1 to
position t. The probability for a state transition is given by the complement,
1 − ν. If a state transition occurs, we assume that all the transitions into the
remaining K − 1 states are equally likely. An illustrative application is shown
in Figure 5.20. We can then write the transition probabilities in the following
form:

P (St|St−1, ν) = νδSt,St−1

(
1 − ν

K − 1

)1−δSt,St−1

(2.63)

where δSt,St−1 denotes the Kronecker delta symbol, which is 1 when St = St−1,
and 0 otherwise. It is easily checked that (2.63) satisfies the normalization
constraint

∑
St

P (St|St−1) = 1. Note that the vector of transition parameters,
ν, has been replaced by a scalar, ν. Now, define

Ψ =
N∑

t=2

∑
St

∑
St−1

Q(St, St−1)δSt,St−1 =
N∑

t=2

∑
St

Q(St, St−1 = St) (2.64)

and note that

N∑
t=2

∑
St

∑
St−1

Q(St, St−1)[1 − δSt,St−1] = N − 1 − Ψ (2.65)

Inserting (2.63) into (2.59) and making use of definitions (2.64) and (2.65)
gives

52 Dirk Husmeier

B(ν) = Ψ log ν + (N − 1 − Ψ) log
(

1 − ν

K − 1

)
(2.66)

Setting the derivative of B(ν) with respect to ν to zero,

dB

dν
=

Ψ

ν
+

N − 1 − Ψ

ν − 1
= 0 (2.67)

we obtain for the optimal parameter ν:

ν =
Ψ

N − 1
(2.68)

This estimation is straightforward because, as seen from (2.64), Ψ depends
only on Q(St−1, St), which is obtained by application of the forward–backward
algorithm in the E-step (see above). An example for optimizing w in (2.58)
will be given in Section 5.10. Note that the three parameter optimizations for
w, π, and ν (or ν) constitute the M-step, which has to be applied repeatedly,
in each loop of the EM algorithm.

2.3.6 Applying the EM Algorithm to More Complex Bayesian
Networks with Hidden States

HMMs are a special class of Bayesian networks with hidden nodes. Their struc-
ture, M, is particularly simple and known. The general scenario of learning
arbitrary Bayesian networks with hidden states is more involved, but draws
on the principles discussed in the previous sections. This section will provide
a brief, not comprehensive, overview.

Let D denote the set of observations associated with the observable nodes,
and denote by S the set of hidden states with their associated random vari-
ables. To optimize the network parameters q in a maximum likelihood sense,
we would like to apply the EM algorithm of Section 2.3.3. The E-step requires
us to compute the posterior probability of the hidden states, P (S|D,q,M).
For HMMs, this computation is effected with the forward–backward algo-
rithm, as discussed in Section 2.3.5. The update equations in the M-step de-
pend only on the univariate and bivariate marginal posterior distributions,
P (St|D,q,M) and P (St, St−1|D,q, M), as seen from (2.57)–(2.62), which
leads to the considerable reduction in the computational complexity, from
O(KN) to O(NK2).

Section 4.4.3 will describe the application of a similar algorithm, Pearl’s
message-passing algorithm [34], to tree-structured Bayesian networks. The
most general algorithm for computing the posterior probability of the hidden
states is the junction-tree algorithm [25], [7]. This algorithm is based on a
transformation of the DAG structure into a certain type of undirected graph,
the so-called junction tree. The computational complexity of the EM algo-
rithm is exponential in the size of the largest clique in this graph [21]. Here,
a clique denotes a maximal complete subgraph, where a complete graph is

2 Introduction to Bayesian Networks 53

a graph with an edge between any pair of nodes, and a complete graph is
maximal if it is not itself a proper subgraph of another complete graph. For
HMMs, the size of the largest clique is two, hence we need to compute only
univariate and bivariate posterior probabilities; see (2.61)–(2.62). The compu-
tational complexity is thus O(K2N), as stated before. If the size of the largest
clique in the junction tree is m, the expressions in the M-step depend on m-
variate posterior probabilities, and the computational complexity increases to
O(KmN). For large values of m the computational costs thus become pro-
hibitively large, which has motivated the exploration of faster, approximate
techniques. Rather than set Q equal to the posterior probability P (S|D,q, M)
in the E-step, which corresponds to an unrestricted free-form minimization of
(2.49), one can define Q to be a member of a sufficiently simple function family,
and then minimize (2.49) subject to this functional constraint. The simplest
approach is to set Q equal to the product of its marginals, Q(S) =

∏
k Q(Sk),

which corresponds to the mean field approximation in statistical physics (see,
for instance, [2], Chapter 4). An application to inference in Bayesian network-
like models can be found, for example, in [35]. An improved approach is to
use a mixture of mean field approximators [20]. For a more comprehensive
overview of these so-called variational methods, see [21]. Note, however, that
by minimizing the Kullback–Leibler divergence in (2.49) – rather than setting
it to zero – the likelihood is no longer guaranteed to increase after an EM
step. In fact, this variational variant of the EM algorithm can only be shown
to maximize a lower bound on the log-likelihood, rather than the log-likelihood
itself [21].

Recall from the discussion in Sections 2.2.1 and 2.2.2 that the objective of
inference is either to sample models from the posterior distribution P (M|D)
or, if there is reason to assume that this distribution is peaked, to find the
mode of P (M|D) ∝ P (D|M)P (M), the maximum a posteriori (MAP) model
(where due to the NP-hardness of the inference problem this mode, in prac-
tice, is usually a local maximum). Also, recall from Section 2.3.2 that un-
der the BIC approximation, log P (D|M) = log P (D|M,q) − R(q), where
R(q) = 1

2 dim(q) log N is a regularization term; see (2.46). Now, it is straight-
forward to modify the EM algorithm such that it (locally) maximizes, for a
given model M, the penalized log-likelihood log P (D|M,q) − R(q). Instead
of maximizing F , defined in (2.48), in the M-step, we have to maximize the
modified function F̃ = F − R(q). Then we repeat this procedure for different
models M, using heuristic hill-climbing techniques to find a high-scoring M.
However, each parameter optimization requires several EM cycles to be car-
ried out. As discussed above, the E-step can be computationally expensive,
and several E-steps are needed before a single change to the network struc-
ture M can be made. To overcome this shortcoming, Friedman suggested a
variant of the EM algorithm, the structural EM algorithm [10], where both
the parameters q and the model M are optimized simultaneously in the M-
step. This modification reduces the total number of E-steps that have to be
carried out, although at the price of increased computational costs for those

54 Dirk Husmeier

E-steps that are carried out. Friedman also suggested combining the EM al-
gorithm with the integration (2.20) in what he called the Bayesian structural
EM algorithm (BSEM) [11]. Formally, BSEM is based on a modification of
equations (2.48)–(2.49), where the dependence on q is dropped so as to per-
form an optimization in model rather than parameter space. Recall that when
certain regularity conditions are satisfied, the integral in (2.20) can be solved
analytically. The idea in [11] is to carry out this integration within the E-step
after imputing the missing values with their expectation values, where expec-
tation values are taken with respect to the distribution obtained in the E-step.
This approach is based on approximating the expectation value of a nonlin-
ear function by the value of this function at the expectation value. Also, the
expectation value has to be taken with respect to the posterior distribution
P (S|D,M) – as a result of the aforementioned modification of (2.48)–(2.49).
Computing this expectation value is usually intractable. Hence, P (S|D,M)
is approximated by P (S|D, M, q̂), where q̂ is the MAP parameter estimate
for model M; see [11] for details.

2.3.7 Reversible Jump MCMC

The EM algorithm, discussed in the previous subsections, is an optimization
algorithm. Its application is motivated by the BIC score (2.46), according to
which an integration over the parameters q can be replaced by an optimiza-
tion. However, as discussed in Section 2.3.2, the BIC approximation becomes
unreliable for sparse data. Also, for sparse data, the posterior distribution over
structures, P (M|D), becomes diffuse and is not appropriately summarized by
its mode, M∗ = argmaxP (M|D). Consequently, the optimization approach
should be replaced by a sampling approach when the training data are sparse.

Now, recall from page 31 that the MCMC scheme is not restricted to a
space of cardinal entities (model structures), but can readily be extended to
continuous entities (model parameters). So rather than perform the sampling
in the structure space {M}, which is impossible due to the intractability of
(2.20), we can sample in the product space of structures and parameters,
{M,q}, and then marginalize over the parameters q. Examples for this will
be given in Chapters 4–6. However, care has to be taken when the dimen-
sion of the model M changes. In modelling genetic networks, for instance,
the model dimension may vary, changing every time we introduce or remove
a hypothetical hidden agent (like a transcription factor6). In this case the
probability distribution over the parameters q becomes singular when the
model dimension increases, and this has to be taken care of in the formula-
tion of the algorithm. A generalization of the classical Metropolis–Hastings
algorithm that allows for these dimension changes has been given by Green
[14] and is usually referred to as the reversible jump MCMC or Metropolis–
Hastings–Green algorithm. The details are beyond the scope of this chapter.
6 A transcription factor is a protein that initiates or modulates the transcription

of a gene; see Figure 8.14.

2 Introduction to Bayesian Networks 55

2.4 Summary

This chapter has given a brief introduction to the problem of learning Bayesian
networks from complete and incomplete data. The methods described here will
reoccur several times in the remaining chapters of this book. For example,
methods of phylogenetic inference from DNA or RNA sequence alignments,
covered in Chapters 4 and 6, the detection of recombination between differ-
ent strains of bacteria and viruses, discussed in Chapter 5, as well as the
attempt to infer genetic regulatory interactions from microarray experiments,
described in Chapters 8 and 9, are all based on the concepts and ideas out-
lined in the present chapter. The detailed procedures and methods for the
particular applications will be discussed in the respective chapters.

Acknowledgments

Several ideas for this chapter have been taken from the tutorials by David
Heckermann [16], Paul Krause [23], and Kevin Murphy [31], as well as a
lecture given by Christopher Bishop at the 9th International Conference on
Artificial Neural Networks in Edinburgh, 1999. I would like to thank Anja
von Heydebreck, Marco Grzegorczyk, David Allcroft and Thorsten Forster for
critical feedback on a first draft of this chapter, as well as Philip Smith for
proofreading the final version.

References

[1] P. Baldi and P. Brunak. Bioinformatics – The Machine Learning Ap-
proach. MIT Press, Cambridge, MA, 1998.

[2] R. Balian. From Microphysics to Macrophysics. Methods and Applica-
tions of Statistical Physics., volume 1. Springer-Verlag, 1982.

[3] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, New York, 1995. ISBN 0-19-853864-2.

[4] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algo-
rithm. The American Statistician, 49(4):327–335, 1995.

[5] D. M. Chickering. A transformational characterization of equivalent
Bayesian network structures. International Conference on Uncertainty
in Artificial Intelligence (UAI), 11:87–98, 1995.

[6] D. M. Chickering. Learning Bayesian networks is NP-complete. In
D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelli-
gence and Statistics, volume 5, pages 121–130, New York, 1996. Springer.

[7] A. P. Dawid. Applications of general propagation algorithm for proba-
bilistic expert systems. Statistics and Computing, 2:25–36, 1992.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, B39(1):1–38, 1977.

56 Dirk Husmeier

[9] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence
analysis. Probabilistic models of proteins and nucleic acids. Cambridge
University Press, Cambridge, UK, 1998.

[10] N. Friedman. Learning belief networks in the presence of missing values
and hidden variables. In D. H. Fisher, editor, Proceedings of the Four-
teenth International Conference on Machine Learning (ICML), pages
125–133, Nashville, TN, 1997. Morgan Kaufmann.

[11] N. Friedman. The Bayesian structural EM algorithm. In G. F. Cooper
and S. Moral, editors, Proceedings of the Fourteenth Conference on Un-
certainty in Artificial Intelligence (UAI), pages 129–138, Madison, WI,
1998. Morgan Kaufmann.

[12] N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network
structure from massive datasets: The “sparse candidate” algorithm. In
Proceedings of the Fifteenth Annual Conference on Uncertainty in Artifi-
cial Intelligence, pages 196–205, San Francisco, CA, 1999. Morgan Kauf-
mann Publishers.

[13] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Introducing Markov
chain Monte Carlo. In W. R. Gilks, S. Richardson, and D. J. Spieglehal-
ter, editors, Markov Chain Monte Carlo in Practice, pages 1–19, Suffolk,
1996. Chapman & Hall. ISBN 0-412-05551-1.

[14] P. Green. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82:711–732, 1995.

[15] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57:97–109, 1970.

[16] D. Heckerman. A tutorial on learning with Bayesian networks. In M. I.
Jordan, editor, Learning in Graphical Models, Adaptive Computation and
Machine Learning, pages 301–354, The Netherlands, 1998. Kluwer Aca-
demic Publishers.

[17] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data. Machine
Learning, 20:245–274, 1995.

[18] D. Husmeier. Neural Networks for Conditional Probability Estimation:
Forecasting Beyond Point Predictions. Perspectives in Neural Comput-
ing. Springer, London, 1999. ISBN 1-85233-095-3.

[19] D. Husmeier. The Bayesian evidence scheme for regularising probability-
density estimating neural networks. Neural Computation, 12(11):2685–
2717, 2000.

[20] T. S. Jaakola and M. I. Jordan. Improving the mean field approximation
via the use of mixture distributions. In M. I. Jordan, editor, Learning in
Graphical Models, Adaptive Computation and Machine Learning, pages
163–173, The Netherlands, 1998. Kluwer Academic Publishers.

[21] M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K. Saul. An intro-
duction to variational methods for graphical models. In M. I. Jordan,
editor, Learning in Graphical Models, pages 105–161, The Netherlands,
1998. Kluwer Academic Publishers.

2 Introduction to Bayesian Networks 57

[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[23] P. J. Krause. Learning probabilistic networks. Knowledge Engineering
Review, 13:321–351, 1998.

[24] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. Leimer. Indepen-
dence properties of directed Markov fields. Networks, 20:491–505, 1990.

[25] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with proba-
bilities on graphical structures and their applications to expert systems.
Journal of the Royal Statistical Society, Series B, 50:157–224, 1988.

[26] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415–
447, 1992.

[27] D. J. C. MacKay. A practical Bayesian framework for backpropagation
networks. Neural Computation, 4:448–472, 1992.

[28] D. J. C. MacKay. Introduction to Monte Carlo methods. In M. I. Jordan,
editor, Learning in Graphical Models, pages 301–354, The Netherlands,
1998. Kluwer Academic Publishers.

[29] D. Madigan and J. York. Bayesian graphical models for discrete data.
International Statistical Review, 63:215–232, 1995.

[30] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21:1087–1092, 1953.

[31] K. P. Murphy. An introduction to graphical models. Tech-
nical report, MIT Artificial Intelligence Laboratory, 2001.
http://www.ai.mit.edu/∼murphyk/Papers/intro gm.pdf.

[32] K. P. Murphy. Bayes net toolbox. Technical report, MIT Artificial Intel-
ligence Laboratory, 2002. http://www.ai.mit.edu/∼murphyk/.

[33] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. I. Jordan, editor, Learn-
ing in Graphical Models, pages 355–368, The Netherlands, 1998. Kluwer
Academic Publishers.

[34] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, CA, 1988.

[35] C. Petersen and J. R. Anderson. A mean field theory learning algorithm
for neural networks. Complex Systems, 1:995–1019, 1987.

[36] L. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[37] J. J. Rissanen. Modeling by shortest data description. Automatica,
14:465–471, 1978.

[38] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461–464, 1978.

[39] H. Sies. A new parameter for sex-education. Nature, 332:495, 1988.
[40] P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference

in the presence of latent variables and selection bias. In G. Cooper and
C. Glymour, editors, Computation, Causation, and Discovery, pages 211–
252. MIT Press, 1999.

