
1 Introduction and Overview

Many problems in combinatorics, number theory, probability theory, reliabil-
ity theory and statistics can be solved by applying a unifying method, which
is known as the principle of inclusion-exclusion. The principle of inclusion-
exclusion expresses the indicator function of a union of finitely many sets as an
alternating sum of indicator functions of their intersections. More precisely, for
any finite family of sets {Av}v∈V the principle of inclusion-exclusion states that
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where χ(A) denotes the indicator function of A with respect to some universal
set Ω, that is, χ(A)(ω) = 1 if ω ∈ A, and χ(A)(ω) = 0 if ω ∈ Ω\A. Equivalently,
(1.1) can be expressed as χ
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, where �Av

denotes the complement of Av in Ω and
⋂

i∈∅ Ai = Ω. A proof by induction
on the number of sets is a common task in undergraduate courses. Usually,
the Av’s are measurable with respect to some finite measure µ on a σ-field of
subsets of Ω. Integration of the indicator function identity (1.1) with respect
to µ then gives
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which now expresses the measure of a union of finitely many sets as an alternat-
ing sum of measures of their intersections. The step leading from (1.1) to (1.2)
is referred to as the method of indicators [GS96b]. Naturally, two special cases
are of particular interest, namely the case where µ is the counting measure on
the power set of Ω, and the case where µ is a probability measure on a σ-field of
subsets of Ω. These special cases are sometimes attributed to Sylvester (1883)
and Poincaré (1896), although the second edition of Montmort’s book “Essai
d’Analyse sur les Jeux de Hazard”, which appeared in 1714, already contains
an implicit use of the method, based on a letter by N. Bernoulli in 1710. A first
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explicit description of the method was given by Da Silva (1854). For references
to these sources and additional historical notes, we refer to Takács [Tak67].

Since the identities (1.1) and (1.2) contain 2|V | − 1 terms and intersections
of up to |V | sets, one often resorts to inequalities like that of Boole [Boo54]:
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A more general result, first discovered by Ch. Jordan [Jor27] and later by Bon-
ferroni [Bon36], states that for any finite family of sets {Av}v∈V and any r ∈ �,
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Nowadays, these inequalities are usually referred to as Bonferroni inequalities.
Again, there is no real restriction in using indicator functions rather than mea-
sures, since these inequalities can be integrated with respect to any finite mea-
sure µ (e.g., a probability measure) on any σ-field containing the sets Av, v ∈ V .

Numerous extensions of the classical Bonferroni inequalities (1.4) and (1.5)
were established in the second half of the 20th century. An excellent survey of
the various results, applications and methods of proof is given in the recent book
of Galambos and Simonelli [GS96b]. The following inequalities due to Galambos
[Gal75], which are valid for any finite collection of sets {Av}v∈V , improve (1.4)
and (1.5) by including additional terms based on the (r + 1)-subsets of V :
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Inequalities for the measure or indicator function of a union which are valid
for any finite collection of sets like the preceding ones are frequently referred to
as Bonferroni-type inequalities [GS96a, GS96b] or as inequalities of Bonferroni-
Galambos type [MS85, Măr89, TX89]. A new inequality of Bonferroni-Galambos
type based on chordal graphs will be established in Chapter 4 of this book.

The main part of this work deals with improved Bonferroni inequalities and
improved inclusion-exclusion identities that require the collection of sets to sat-
isfy some structural restrictions. Examples of such well-structured collections
of sets arise in some problems of statistical inference [NW92, NW97], reliability
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Figure 1.1: A Venn diagram of five sets.

theory [Doh98, Doh03, GNW02] and chromatic graph theory [Doh99a, Doh99d].
We shall mainly be interested in inclusion-exclusion identities of the form
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where � is a restricted set of non-empty subsets of V , and where (1.6) and
(1.7) are at least as sharp as their classical counterparts (1.4) and (1.5). A
first straightforward approach is to account only for non-empty subsets I of V
satisfying

⋂
i∈I Ai �= ∅. In fact, Lozinskii [Loz92] demonstrates that a skillful

implementation of this approach leads to a reduction of the average running time
of the standard inclusion-exclusion algorithm for counting satisfying assignments
of propositional formulae in conjunctive normal form. In the present work,
however, we are interested in more subtle improvements that arise from logical
dependencies of the sets involved. Consider for instance the five sets A1–A5,
whose Venn diagram is shown in Figure 1.1. The classical inclusion-exclusion
identity for the indicator function of the union of these sets gives a sum of
25−1 = 31 terms, many of which are equal with opposite sign. After cancelling
out, we are left with

χ(A1 ∪A2 ∪A3 ∪A4 ∪A5) = χ(A1) + χ(A2) + χ(A3) + χ(A4) + χ(A5)
− χ(A1 ∩A2)− χ(A2 ∩A3)− χ(A3 ∩A4)− χ(A4 ∩A5) ,

which contains only 9 terms. Our purpose is to predict such cancellations in
advance and thus to obtain shorter inclusion-exclusion identities and sharper
Bonferroni inequalities for the indicator function of a union.
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The book is organized as follows: In Chapter 2 we review some basic notions
of graph theory, lattice theory and combinatorial topology. Readers with an
appropriate background in these disciplines may want to skip this chapter.

Then, in Chapter 3, we give an introduction to the upcoming theory of ab-
stract tubes, which was initiated by Naiman and Wynn [NW92, NW97], and
which serves as a framework for establishing improved inclusion-exclusion iden-
tities as well as improved Bonferroni inequalities which are provably at least
as sharp as their classical counterparts. Some appealing geometric examples of
abstract tubes demonstrate the applicability of this beautyful new theory.

In Chapter 4 the main results of abstract tube theory in Chapter 3 are
applied in establishing improved inclusion-exclusion identities and Bonferroni
inequalities associated with closure and kernel operators. Several results from
the literature such as the semilattice sieve of Narushima [Nar74, Nar82] and the
tree sieve of Naiman and Wynn [NW92] are thus rediscovered in a unified way.
We also provide some elementary alternative proofs (not using abstract tubes)
as well as a generalization of one of the identities. One of these alternative
proofs uses Zeilberger’s abstract lace expansion [Zei97], which turns out to be a
valuable tool in establishing new inclusion-exclusion expansions. Inspired by our
results on closure operators and abstract tubes, we derive a new generally-valid
inequality of Bonferroni-Galambos type, where the selection of intersections in
the estimates is determined by a chordal graph. By varying this graph, several
well-known and new Bonferroni-type inequalities are obtained in a unified way.

In Chapter 5 we deduce some recursive schemes from our inclusion-exclusion
results in Chapter 4, which will then be used in Chapter 6 in deriving Shier’s re-
cursive algorithm and semilattice expression for system reliability [Shi88, Shi91].

In Chapter 6 our results of the preceding chapters are applied to reliability
analysis of coherent binary systems such as communications networks, k-out-of-
n systems and consecutive k-out-of-n systems. We then turn our attention to
reliability covering problems and identify a comprehensive class of hypergraphs
for which the coverage probability can be computed in polynomial time.

In Chapter 7, which is devoted to applications to combinatorics and re-
lated topics, we give an abstract tube generalization of Narushima’s principle of
inclusion-exclusion on partition lattices [Nar74, Nar77] and of Whitney’s bro-
ken circuit theorem on the chromatic polynomial of a graph. The results on
the chromatic polynomial are then extended to a new two-variable polynomial
generalizing the chromatic polynomial, the independence polynomial, and the
matching polynomial. After generalizing our inclusion-exclusion identity for ker-
nel operators to a result on sums over partially ordered sets, similar results as
for the chromatic polynomial are obtained for the Tutte polynomial, the char-
acteristic polynomial and the β invariant of a matroid, the Euler characteristic
of an abstract simplicial complex and the Möbius function of a finite lattice.




