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Abstract f,-Adrenoceptor agonist bronchodilators are widely used in the treat-
ment of both asthma and chronic obstructive pulmonary disease (COPD). They
provide rapid and effective symptom relief principally by opposing the bron-
choconstriction induced by excitatory airway mediators. While asthma is asso-
ciated with episodic increases in baseline airway tone, it is defined as an inflam-
matory disease of the airways, and accordingly, therapy generally involves the
use of anti-inflammatory as well as bronchodilator therapy. When delivered di-
rectly to the lungs by inhalation, ,-adrenoceptor agonist bronchodilators pro-
vide rapid and effective reversal of acute airway obstruction caused by broncho-
constriction, with minimal acute adverse effects on the patient. Importantly, the
rapidity of relief provided by inhaled f,-adrenoceptor agonists is a significant
feature of this class of drugs and helps to explain why they are used so widely to
reverse the potentially life-threatening effects of bronchoconstriction in asthma.
Short-acting f3,-adrenoceptor agonist bronchodilators, such as salbutamol, have
durations of action of 4-6 h and provide rapid symptom relief in a large propor-
tion of asthmatics. Long-acting 3,-adrenoceptor agonists, which include salme-
terol, have durations of action of up to 12 h and provide effective treatment in
asthmatic individuals whose symptoms were not adequately managed with
short-acting agents. Given the complementary roles of 5,-adrenoceptor agonists
and glucocorticoids in the treatment of asthma, combination therapy using
these drugs has been shown to improve disease control and lower exacerbation
rates. Accordingly, the consensus is that these f,-adrenoceptor agonist bron-
chodilators should not be used as monotherapy in asthma in any but the most
mild of cases. Indeed, the powerful bronchodilator actions of short- and long-
acting f3,-adrenoceptor agonists may mask the onset and/or deterioration of air-
way inflammation in asthmatics. COPD is characterized by shortness of breath,
cough, sputum production and exercise limitation, with acute exacerbations re-
sulting in worsening of symptoms. While short-acting inhaled j3,-adrenoceptor
agonist bronchodilators reduce respiratory symptoms and improve the quality
of life in COPD patients, these drugs fail to alter the progression of this disease
in the long term. In these individuals however, the recent introduction of long-
acting fB,-adrenoceptor agonists has had a positive impact on quality of life. The
combined use of bronchodilator/corticosteroid regimes further assists in the
management of COPD.

Keywords Asthma - Chronic obstructive pulmonary disease - 5,-Adrenoceptor
agonists - Delivery devices - Combination therapy

1
Introduction

Br-Adrenoceptor agonist bronchodilators are widely used in the treatment of
both asthma and chronic obstructive pulmonary disease (COPD) where they
can provide rapid and effective symptom relief. The major role of these agents
in these diseases is to oppose airway smooth muscle contraction caused by a va-
riety of excitatory airway mediators.
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1.1
Asthma

In addition to elevated bronchial tone, a major defining characteristic of asthma
is that it is an inflammatory airway disease. The combined effects of these two
elements results in a disease involving reversible airway obstruction which may
cause persistent systems such as dyspnea, chest tightness, wheezing, cough and
sputum production. Variable airflow obstruction and airway hyperresponsive-
ness to both endogenous and exogenous stimuli are also distinguishing features
of asthma. Chronic inflammation of the airways is accompanied by structural
changes to the bronchial wall and these phenomena are collectively referred to
as airway remodelling. These changes to the normal architecture of airway mu-
cosal and submucosal tissues underlie the development and continued mainte-
nance of this disease. The inflammatory response in the airways is characterized
by mucosal and bronchial wall oedema, lymphocyte and eosinophil infiltration,
damage to and loss of airway epithelium, and hypersecretion of mucus that may
cause plugging and occlusion of the airway lumen. Accordingly, asthma therapy
in the modern era has tended to emphasize anti-inflammatory drug approaches
since these are predicted to have a positive impact on processes driving airway
remodelling.

However, it must be remembered that asthma also involves episodic increases
in baseline airway tone resulting from active shortening of airway smooth mus-
cle, causing reduced bronchial airflow and thus impaired lung ventilation. Con-
traction of airway smooth muscle, like airway wall remodelling, oedema and hy-
persecretion of mucus, contributes significantly to bronchial obstruction. As a
result, the use of bronchodilators remains at the forefront of modern approach-
es to asthma therapy. This is despite the continuing research and therapeutic
emphasis on airway inflammation as a driver of asthma progression and main-
tenance.

B2-Adrenoceptor agonist bronchodilators in particular, delivered directly to
the airways by inhalation, provide rapid and effective reversal of acute airway
obstruction caused by bronchoconstriction, with minimal acute adverse effects
on the patient. Importantly, the rapidity of relief provided by inhaled f3,-adreno-
ceptor agonists is a significant feature of this class of drugs and helps to explain
why they are used so widely to reverse the potentially life-threatening effects of
bronchoconstriction in asthma.

1.2
COPD

COPD is defined as “a disease state characterized by airflow limitation that is
not fully reversible. The airflow limitation is usually both progressive and asso-
ciated with an abnormal inflammatory response of the lungs to noxious parti-
cles or gases” [Global Initiative for Chronic Obstructive Lung Disease (GOLD)
Workshop Report 2001]. COPD is characterized by inflammation throughout
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the respiratory system, including bronchial and bronchiolar airways, parenchy-
ma and pulmonary vasculature. There are increased numbers of macrophages,
T lymphocytes (predominantly CD8") and neutrophils in the airways (Jeffery
1998; Pesci et al. 1998). These activated inflammatory cells release a variety of
mediators, including leukotriene B, (LTB,), interleukin (IL)-8 and tumour ne-
crosis factor (TNF)-a that contribute to widespread degenerative structural
changes to the respiratory tract and promote neutrophilic inflammation
(Keatings et al. 1996; Mueller et al. 1996; Yamamoto et al. 1997; Pesci et al. 1998;
Hill et al. 1999). There is also evidence in COPD for an imbalance in proteases
that digest elastin and other structural proteins and antiproteases that protect
against this damage (Chapman and Shi 2000). Oxidative stress may also con-
tribute to the pathogenesis of this disease. It is likely that cigarette smoke and
other COPD risk factors initiate an inflammatory response in the airways that
can lead to this disease. As in asthma, the airflow obstruction seen in COPD pa-
tients is often accompanied by airway hyperresponsiveness. The chronic airflow
obstruction particularly affects small airways, and lung elasticity is also lost due
to enzymatic destruction of the lung parenchyma, resulting in progressively
worsening emphysema. Thus, COPD is characterized by shortness of breath,
cough, sputum production and exercise limitation, with acute exacerbations re-
sulting in worsening of symptoms. Inhaled bronchodilators, including f3,-adre-
noceptor agonists, have been shown to reduce respiratory symptoms and im-
prove the quality of life for COPD patients and are recommended in the man-
agement of acute exacerbations of this disease. However, in the long term, S3,-
adrenoceptor agonists fail to alter the progression of this disease.

Much of what is known of the basic and clinical pharmacology of 3,-adreno-
ceptor agonist bronchodilators, such as salbutamol, was established in studies
from the 1970s and 1980s. The actions of f3,-adrenoceptor agonists in the lung,
particularly in relation to asthma, have previously been extensively reviewed by
us (Goldie et al. 1991) and it is appropriate to revisit some of the issues raised at
that time. However, significant advances in f,-adrenoceptor agonist develop-
ment and therapy in asthma and COPD have been made in recent years and
these will also be highlighted in this review.

2
The B-Adrenoceptor and Its Associated Signal Transduction Processes

2.1
B-Adrenoceptor Subtypes

The B-adrenoceptor is a single polypeptide glycoprotein moiety (Gilman 1987),
embedded in the plasma membrane of the cell (Stiles et al. 1984). At least three
functionally distinct subtypes (), f,, and ;) are known to exist and have been
cloned. f-Adrenoceptors are found throughout the respiratory tract and, in hu-
man bronchial smooth muscle, are entirely of the f,-subtype (Harms 1976;
Goldie et al. 1986b). While 3;-adrenoceptors predominate in human cardiac tis-
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Fig. 1 Main pathways promoting airway smooth muscle relaxation associated with the S-adrenocep-
tor-effector system. The dashed lines indicate inhibition of Ca** entry into the cell via voltage-gated
Ca®* channels. The dotted line indicates that the exact mechanism is yet to be defined. (Adapted from
Thirstrup 2000)

sue, a small functional population of 3,-adrenoceptors is also present. More re-
cently, f3-adrenoceptors have been found in cardiac muscle, intestinal smooth
muscle as well as in white and brown fat. However, f3-adrenoceptor mRNA has
not been detected in human lung (Mak et al. 1996) and fSs-adrenoceptor ago-
nists failed to induce relaxation in human isolated bronchi (Martin et al. 1994).

2.2
Adenylyl Cyclase

Agonist-binding to all B-adrenoceptors subtypes activates the membrane-bound
enzyme adenylyl cyclase via a guanine nucleotide regulatory protein (Gs) to
convert adenosine 5'-triphosphate (ATP) to cyclic adenosine 3',5'-monophos-
phate (cAMP; Benovic et al. 1985) (Fig. 1). Cyclic AMP is produced continuously
following B-adrenoceptor activation and is inactivated by hydrolysis to 5'-AMP,
through the action of phosphodiesterases. Cyclic AMP acts as an intracellular
messenger to regulate many aspects of cellular function including the contrac-
tion of smooth muscle. Thus, cAMP activates cAMP-dependent protein kinases
to modify cellular function by phosphorylation. For example, relaxation of air-
way smooth muscle results from phosphorylation, and thus inactivation of myo-
sin light chain kinase, which precludes its interaction with the contractile pro-
tein myosin (Thirstrup 2000). In addition, S-adrenoceptor agonists may also de-
crease airway smooth muscle tone via an interaction with plasma membrane po-
tassium channels (Fig. 1). This results in hyperpolarization of the cell mem-
brane and inhibition of calcium influx via voltage-dependent calcium channels.
Rho, a small monomeric G protein of the Ras superfamily of guanosine tri-
phosphate (GTP)ases, has been shown to control airway smooth muscle tone
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following activation of G protein-coupled receptors (Seasholtz et al. 1999; Ama-
no et al. 2000; Schmitz et al. 2000; Somlyo and Somlyo 2000; Pfitzer 2001). Rho
activates Rho-kinase (Kimura et al. 1996) which phosphorylates and thus in-
hibits myosin light chain phosphatase. The latter enzyme acts to de-phosphory-
late myosin light chain and promote smooth muscle relaxation. However, the re-
sult of Rho-kinase activity is blockade of this process and thus maintenance
of smooth muscle tone (Seasholtz et al. 1999; Amano et al. 2000; Somlyo and
Somlyo 2000). While Y27632, an inhibitor of Rho-kinase, has been shown to po-
tentiate the relaxant effects of S-adrenoceptor agonists in airway smooth muscle
(lizuka et al. 2000; Nakahara et al. 2000), a linkage between Rho-kinase and the
B-adrenoceptor-effector system has yet to be clearly defined.

3
Distribution and Density of 3-Adrenoceptors in the Lung

Radioligand binding and autoradiographic studies have been critical to evalua-
tions of the distribution of B-adrenoceptors in both animal and human lung
tissue. Over 20 years ago, Rugg and coworkers (1978) using rabbit and rat
lung membranes and Szentivanyi (1979) using human lung membrane prepara-
tions demonstrated the presence of high densities of S-adrenoceptors (Rugg
et al. 1978; Szentivanyi 1979). Subsequent studies in guinea-pig (Barnes et al.
1980; Engel et al. 1981) and hamster lung (Benovic et al. 1983) confirmed that
the lung was densely populated with -adrenoceptors. Furthermore, lung paren-
chyma contained heterogeneous populations of both f;- and f,-adrenoceptors
(Dickinson et al. 1981; Engel et al. 1981; Carswell and Nahorski 1983). However,
the most important information, i.e. the location of these receptors within the
normal structure of the lung, was not revealed in detail until autoradiographic
assessments were completed.

Light-microscopic autoradiography (Young and Kuhar 1979) has enabled the
detection and localization of f-adrenoceptor subtypes in mammalian airways
and lung parenchyma from many animal species including ferret (Barnes et al.
1982), guinea-pig (Goldie et al. 1986a), rabbit (Barnes et al. 1984), rat (Finkel et
al. 1984), mouse (Henry et al. 1990) and pig (Goldie et al. 1986a), as well as from
the human (Carstairs et al. 1985; Spina et al. 1989).

In human lung, the greatest density of 3-adrenoceptors was found in alveolar
septae (Carstairs et al. 1984). Approximately 78% of the total human lung tissue
volume consists of alveolar tissue, with only 8% being vascular smooth muscle,
3% as airway smooth muscle and the remaining 11% is connective tissue and
cartilage (Bertram et al. 1983). Furthermore, -adrenoceptor numbers were 3
times higher in the alveolar wall than over bronchial smooth muscle and 1.4
times higher than over bronchiolar smooth muscle. Thus, approximately 96% of
the B-adrenoceptor population was located in alveolar tissue. However, as might
be expected, significant numbers of S-adrenoceptors were found in bronchial
and bronchiolar airway smooth muscle, as well as in airway epithelium and in
vascular endothelium and smooth muscle.
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4
B-Adrenoceptor Agonists

4.1
Adrenaline

The f,-adrenoceptor agonists used in the therapy of both asthma and COPD are
all structurally related to the endogenous catecholamine adrenaline (Fig. 2). It is
the powerful 3, effects of adrenaline that are most important in asthma treat-
ment, although a- and f;-adrenoceptors are also activated. Adrenaline is not ef-
fective when taken orally because it is rapidly metabolized by gastrointestinal
and hepatic monoamine oxidase (MAO). Accordingly, in emergency conditions,
when the use of adrenaline in asthma is necessary, it is given by parenteral in-
jection.

Fig. 2 [3-Adrenoceptor agonists



10 L. B. Fernandes et al.

4.2
Isoprenaline

Isoprenaline is an N-isopropyl derivative of adrenaline that has no significant
agonist effect at a-adrenoceptors, and was the first f-adrenoceptor-selective ag-
onist introduced into asthma therapy. Isoprenaline, like adrenaline, is a cate-
cholamine and so is not useful orally since it is metabolized rapidly by catechol-
O-methyltransferase (COMT). However, significant cardiac stimulation induced
via activation of f;-adrenoceptors, even after inhalational administration, re-
duces its acceptability as a bronchodilator.

43
Selective 3,-Adrenoceptor Agonists

A major advance occurred with the development and introduction of 5,-adreno-
ceptor-selective agonists that could be given orally or by inhalation and had ex-
tended durations of action compared with adrenaline or isoprenaline. Or-
ciprenaline was the first of this new generation of bronchodilator amines and is
a resorcinol derivative rather than a catecholamine and thus is not inactivated
by extraneuronal COMT. Furthermore, this tertiary amine is not metabolized by
MAO. Although orciprenaline is metabolized by sulpho-conjugation, enough
free drug is absorbed to make it an effective oral bronchodilator. However, se-
lectivity for the ,-adrenoceptor is only slightly improved over that of isoprena-
line (Mcevoy et al. 1973).

Salbutamol (Brittain et al. 1968) and terbutaline (Bergman et al. 1969) pos-
sess much greater selectivity for f,-adrenoceptors than orciprenaline. Both
compounds are active orally, as well as by inhalation and intravenous injection.
All of the newer orally active 5,-adrenoceptor agonists are used in various inha-
lation formulations. The great virtue of being able to administer these new f3,-
adrenoceptor agonists by inhalation is that small but highly effective doses can
be delivered to the lung, giving the desired therapeutic effect rapidly (onset 5-
10 min) and with an extended duration of action (up to 6 h). Negligible plasma
concentrations of the active drug result from these inhaled doses.

4.4
Long-Acting 3,-Adrenoceptor Agonists

Members of the first generation of f,-adrenoceptor-selective agonist bron-
chodilators, such as salbutamol, are considered to be short-acting since they
have a duration of action of 4-6 h. These agents are effective in a large propor-
tion of asthmatics where they provide rapid symptom relief. Short-acting j3,-ad-
renoceptor agonists are also used to prevent asthma exacerbations that may, for
example, be triggered by exposure to cold air or exercise. However, in some
asthmatic patients, these short-acting drugs need to be administered several
times a day for adequate symptom relief. In addition, treatment of nocturnal
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symptoms in susceptible patients may be problematic given the relatively short
duration of action of these drugs. In order to provide effective treatment in
asthmatic individuals whose symptoms were not adequately managed with
short-acting agents, f,-adrenoceptor agonist bronchodilators were developed
that had durations of action of up to 12 h. Their use in asthma has recently been
reviewed (Kips and Pauwels 2001). Long-acting f3,-adrenoceptor agonists have
been shown to be more effective than salbutamol in reducing asthma symptoms
and improving lung function in mild-to-moderate asthmatics (Pearlman et al.
1992; Leblanc et al. 1996; Taylor et al. 1998). Since long-acting S,-adrenoceptor
agonists are relatively new drugs, their safety and efficacy has been compared to
both theophylline and the cysteinyl leukotriene receptor antagonist zafirlukast.
Here, salmeterol has been found to provide significantly greater improvement in
the management of asthma symptoms than either theophylline or zafirlukast
(Davies et al. 1998; Busse et al. 1999).

Salmeterol (Ullman and Svedmyr 1988) (Fig. 2) was specifically designed to
prolong the duration of action of the short-acting f3,-adrenoceptor agonist sal-
butamol. While formoterol (Fig. 2) was not deliberately designed to have this
property, it was found to have a 12-h duration of action when administered by
inhalation (Hekking et al. 1990). The agonist activity profiles of formoterol and
salmeterol are distinct, suggesting that the extended duration of action of these
agents is achieved via different mechanisms. Furthermore, salmeterol is a partial
Br-adrenoceptor agonist, whereas formoterol has higher intrinsic activity and is
a full agonist (Linden et al. 1993; Naline et al. 1994). Unlike salbutamol, which is
hydrophilic, both salmeterol and formoterol possess lipophilic properties which
allow them to remain in airway tissues in close proximity to the f,-adrenocep-
tor. This partly explains why the duration of action of these long-acting f3,-adre-
noceptor agonist bronchodilators is at least 12 h. In addition to being lipophilic,
formoterol is also water soluble, ensuring rapid access to the f3,-adrenoceptor
and thus rapid bronchodilator activity. In contrast, salmeterol, being highly li-
pophilic, probably diffuses more slowly to the f3,-adrenoceptor laterally through
the cell membrane and has a slower onset of action (Lotvall 2001; Kottakis et al.
2002). Salmeterol contains the saligenin head of salbutamol that binds to the ac-
tive site of the B,-adrenoceptor. This saligenin head is coupled to a long aliphat-
ic side chain that significantly increases the lipophilicity of salmeterol. The side
chain then binds to a discrete “exosite” that anchors it to the receptor and en-
ables repetitive receptor activation (Green et al. 1996). The exact mechanism by
which formoterol exerts its prolonged effects is unclear but may result from its
lipophilicity, allowing formoterol to enter the plasma membrane where it is held
for a prolonged period. From this site, formoterol diffuses over time to activate
the fB,-adrenoceptor. Inhaled formoterol has also been shown to have a longer
duration of action than orally administered formoterol, probably as a result of
high concentrations building in the bronchial periciliary fluid (Anderson et al.
1994).
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4.5
Delivery of 8,-Adrenoceptor Agonists

The metered dose inhaler (MDI) is the most commonly prescribed patient-oper-
ated device for the delivery of asthma therapies, including J,-adrenoceptor
agonists, with approximately 340 million units used every year world-wide
(Partridge 1994; Woodcock 1995). The popularity of the MDI is by virtue of its
effectiveness and ability to deliver a wide range of drugs (Woodcock 1995). In-
deed, salbutamol, when administered via MDI and spacer is as effective and
more cost-effective when compared with delivery via a nebulizer (Newman et al.
2002). MDIs were formulated with a combination of the chlorofluorocarbon
(CFC) propellants 11 and 12. However, because of the ozone-depleting potential
of CFCs, the ozone-friendly propellant hydrofluoroalkane (HFA) 134a has now
replaced CFCs. Studies have demonstrated that the effectiveness and safety of
salbutamol/HFA 134a is comparable to that of salbutamol/CFC (Hawksworth et
al. 2002; Langley et al. 2002).

5
Major Sites of Therapeutic Action

5.1
Airway Smooth Muscle

Both contraction studies in vitro (Goldie et al. 1982) and autoradiographic stud-
ies have confirmed that only f5,-adrenoceptors are expressed and mediate relax-
ation to B-adrenoceptor agonists in human airway smooth muscle (Spina et al.
1989). This explains why f;-adrenoceptor-selective agents such as prenalterol
given intravenously, elevate heart rate without inducing bronchodilatation
(Lofdahl and Svedmyr 1982). Agonist stimulation of S,-adrenoceptors reverses
airway obstruction in asthmatics primarily by causing relaxation of central and
peripheral airway smooth muscle. However, given that S,-adrenoceptors are
widely distributed throughout the lung, the beneficial actions of f,-adrenocep-
tor agonists may in part be the result of actions at other sites. For example, re-
versal or blunting of the actions of inflammatory mediators causing airway wall
oedema would be expected to relieve that component of bronchial obstruction.

5.2
Tracheobronchial Microvessels

It has long been established that airway wall oedema is an obligatory accompa-
niment to airway inflammation. This phenomenon involves the exudation of
plasma from tracheobronchial microvessels into the extravascular space in these
airways and thereby contributes significantly to airway narrowing in asthma
and possibly to epithelial shedding and bronchial hyperresponsiveness (Persson
et al. 1986). The infiltration of inflammatory cells from the vascular space into
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the submucosa and thence into the mucosa itself, is a natural consequence of
this increased microvascular permeability in response to neuropeptides, hista-
mine, endothelin-1 and other mediators of asthma. The tracheobronchial circu-
lation consists of a subepithelial capillary network, with postcapillary venules as
the main site of plasma extravasation. While the mechanisms that provoke plas-
ma protein extravasation are incompletely understood, a variety of stimuli such
as antigen, histamine, platelet-activating factor (PAF) and substance P induce
direct plasma extravasation from bronchial microvessels. The targets of such
mediators and thus the major sites of microvascular plasma leakage leading to a
generalized airway wall oedema, are postcapillary venular endothelial cells
which contract, leaving intercellular gaps which act as pores facilitating plasma
leakage (Persson 1987). Airway oedema contributes to airway narrowing as well
as to bronchial hyperresponsiveness. Thus, inhibition of microvascular perme-
ability could improve airway calibre and also reduce airway inflammation,
thereby providing both therapeutic and prophylactic benefit.

Br-Adrenoceptor agonists have the potential to inhibit mediator-induced mi-
crovascular plasma extravasation by relaxing post-capillary endothelial cells
and thus opposing the spasmogenic actions of various mediators that induce in-
tercellular gap formation (Persson 1986). Indeed, such activity has been demon-
strated for f,-adrenoceptor agonists in vitro (Langeler and Van Hinsbergh
1991) and in vivo (Rippe and Grega 1978; Baluk and Mcdonald 1994). With re-
spect to its effects on endothelial barrier function, cAMP stabilizes endothelial
tight junctions, inhibits myosin light chain kinase, reduces actin-non-muscle in-
teraction and the formation of stress fibres and prevents agonist-induced endo-
thelial gap formation (Moy et al. 1993; Siflinger-Birnboim et al. 1993; Adamson
et al. 1998).

The long acting f,-adrenoceptor agonist formoterol reduced histamine-in-
duced microvascular leakage in guinea-pig airways (Erjefalt and Persson 1991;
Advenier et al. 1992) and salmeterol reduced both early- and late-phase micro-
vascular plasma leakage in rat. Furthermore, inhaled procaterol inhibited hista-
mine-induced microvascular leakage in not only non-sensitized control guinea-
pigs but also in animals sensitized and challenged with ovalbumin (Mirza et al.
1998). This suggests that 5,-adrenoceptor agonists may be effective in reversing
oedema in the airway wall associated with allergic inflammation. Furthermore,
Br-adrenoceptor agonists can potentiate the inhibitory effects of both non-selec-
tive and selective phosphodiesterase IV inhibitors against antigen-induced mi-
crovascular leakage (Planquois et al. 1998). The long acting f3,-adrenoceptor ag-
onist salmeterol may also reduce angiogenesis and vascular remodelling in the
airways (Orsida et al. 2001). Another controversial action of f3,-adrenoceptor
agonists is their potential to inhibit the release of inflammatory mediators from
sensory nerves (Advenier et al. 1992; Verleden et al. 1993). This raises the possi-
bility that f,-adrenoceptor agonists have an anti-inflammatory impact and
might attenuate oedema via this indirect mechanism.

These positive findings are to some extent countered by the observations that
formoterol was less effective in the presence of ozone-induced airway inflamma-
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tion (Inoue et al. 1997). Indeed, it has previously been shown in cases of estab-
lished airway microvascular leakage that pretreatment with a j,-adrenoceptor
agonist does not always reduce the leakage of molecules induced by a further
inflammatory stimulus (Erjefalt et al. 1985; Persson 1987). Furthermore, estab-
lished oedema in the tracheobronchial model associated with airway inflamma-
tion does not resolve rapidly in the presence of a conventional (short-acting)
Br-adrenoceptor agonist. Hence, the therapeutic importance of the relaxant ef-
fect of B,-adrenoceptor agonists on post-capillary endothelial cells is controver-
sial. Despite this misgiving, formoterol has been shown to reduce plasma exuda-
tion in induced sputum in normal subjects (Greiff et al. 1998).

6
Other Potential Therapeutic Tissue Targets

6.1
Inflammatory Cells

It has long been known that ,-adrenoceptors are expressed on inflammatory
cells including mast cells (Butchers et al. 1980; Hughes et al. 1983), peripheral
blood lymphocytes (Williams et al. 1976; Koeter et al. 1982; Sano et al. 1983),
polymorphonuclear leukocytes (PMNL) (Galant et al. 1980; Davis et al. 1986;
Nielson 1987), peritoneal macrophages (Schenkelaars and Bonta 1984), alveolar
macrophages; (Fuller et al. 1988), platelets (Cook et al. 1987) and eosinophils
(Koeter et al. 1982; Kraan et al. 1985). The established effects of 3,-adrenoceptor
stimulation in some of these cells may be relevant to the therapeutic benefits of
these agents in asthma. For example, it is well established that the response of
both normal volunteers and of asthmatics to intramuscular -adrenoceptor ago-
nists such as adrenaline is for blood eosinophil numbers to fall dramatically
(Koch-Weser 1968; Reed et al. 1970), an apparent anti-inflammatory reaction.
However, in the case of the inhaled j,-selective bronchodilator terbutaline, no
such decrease in circulating eosinophils was observed.

Arguably, the most important potential anti-inflammatory action of the rela-
tively short-acting 3,-adrenoceptor agonist bronchodilators such as salbutamol
and terbutaline, is their capacity to suppress pro-inflammatory mediator release
from inflammatory cells. For example, in the case of lymphocytes, inhibition of
lymphokine secretion (and of proliferation) is well established (Bourne et al.
1974; Reed 1985). In PMNL, inhibition of superoxide radical generation and leu-
kotriene release has been reported (Busse and Sosman 1984; Mack et al. 1986).
In the case of human lung mast cells, salbutamol is a potent inhibitor of anti-
gen-induced release of histamine and leukotrienes (Peters et al. 1982; Church
and Young 1983). Indeed, salbutamol is 10-100 times more potent that disodi-
um cromoglycate in this regard (Church and Hiroi 1987).

However, while the early asthmatic response is inhibited by f,-adrenoceptor
agonists, their impact on the late response to allergen is much less impressive
(Cockcroft and Murdock 1987). Thus, the anti-inflammatory effects of
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monotherapy with inhaled, short-acting f3,-adrenoceptor agonist bronchodila-
tors is minimal (Juniper et al. 1990; Haahtela et al. 1991; Van Essen-Zandvliet et
al. 1992). Accordingly, it is generally accepted that the airway smooth muscle re-
laxant activity of 3,-adrenoceptor agonists is the action of primary importance
in asthma. Paradoxically, it is this very powerful bronchodilator action that can
harbour dangers for the asthmatic, since the sense of relative well-being and
control over symptoms that accompanies the use of 3,-adrenoceptor agonists
can mask the underlying progression and deterioration of this disease. This po-
tential problem has been recognized and is a driver of recommendations for the
combined use of such bronchodilators with an anti-inflammatory glucocorti-
coid (Kips and Pauwels 2001).

The advent of long-acting f,-adrenoceptor agonist bronchodilators such as
formoterol and salmeterol has re-ignited the question of whether or not a real
therapeutic benefit is obtained in terms of the suppression of mediator release
from inflammatory cells, even though these agents are also delivered by inhala-
tion. It could be argued that the longer duration of action of these agents in-
creases the likelihood of such an effect. Predictably, long-acting 3,-adrenoceptor
agonists have been shown in animal studies both in vivo and in vitro, to effec-
tively suppress pro-inflammatory mediator release and cytokine production
and/or release from inflammatory cells. These actions have been demonstrated
in human and/or animal T lymphocytes (Sekut et al. 1995; Holen and Elsayed
1998), macrophages (Linden 1992; Baker et al. 1994; Oddera et al. 1998), mast
cells (Butchers et al. 1991; Gentilini et al. 1994; Lau et al. 1994; Nials et al. 1994;
Bissonnette and Befus 1997; Chong et al. 1998; Drury et al. 1998), eosinophils
(Eda et al. 1993; Rabe et al. 1993; Munoz et al. 1995) and neutrophils (Anderson
et al. 1996). Furthermore, these agonists are also known to inhibit chemotaxis
and recruitment of eosinophils (Whelan and Johnson 1992; Eda et al. 1993;
Whelan et al. 1993; Teixeira et al. 1995; Teixeira and Hellewell 1997) and to delay
apoptosis in these cells (Kankaanranta et al. 2000). However, it is now clear that
monotherapy with long-acting agents such as salmeterol does not provide sig-
nificant anti-inflammatory effect in asthma (Simons 1997; Verberne et al. 1997).

6.2
Secretory Cells

The deleterious impact of mucous hypersecretion and impaired mucociliary
clearance on the effective bronchial lumen diameter and thus on bronchial air-
flow, can be life-threatening in the poorly controlled, severe asthmatic. Submu-
cosal glands in human airways contain f5,-adrenoceptors (Carstairs et al. 1985),
the stimulation of which increases mucus output. Importantly, ,-adrenoceptor
agonists also stimulate increases in ciliary beat frequency (Verdugo et al. 1980;
Lopez-Vidriero et al. 1985) and in the movement of water towards the mucosal
surface where it can hydrate mucus (Phipps et al. 1980). The net effect of these
actions appears to be to improve mucociliary transport in asthmatics (Mossberg
et al. 1976). However, in patients with significantly damaged bronchial epitheli-
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um, it seems likely that cilia function will be impaired, raising the possibility
that in some patients, fB,-adrenoceptor agonist-stimulated mucous secretion
could be detrimental.

7
Adverse Reactions to 3,-Adrenoceptor Agonists

71
Primary Adverse Reactions

The most widely reported adverse effects of therapeutic doses of f5,-adrenocep-
tor agonists mediated via f§,-adrenoceptors are skeletal muscle tremor (Larsson
and Svedmyr 1977), cardiac effects (Paterson et al. 1979), metabolic changes in-
cluding hyperglycaemia, hypokalaemia and decreased partial pressure of arterial
oxygen (Pa0,) (Tai and Read 1967; Smith and Kendall 1984). These effects are
seen in both healthy volunteers and in asthmatics. However, tolerance usually
develops to the tremorogenic effects of ,-adrenoceptor agonists in patients re-
ceiving long-term treatment (Svedmyr et al. 1976; Paterson et al. 1979). Further-
more, while there is little evidence that recommended aerosolized doses exacer-
bate pre-existing cardiac arrhythmias, caution should be taken in such cases.

7.2
Other Significant Direct Adverse Reactions

B2-Adrenoceptor agonist bronchodilators can induce the mobilization of triglyc-
erides resulting in elevated blood levels of fatty acids and glycerol (Smith and
Kendall 1984), although it is the j;-adrenoceptor that is responsible for mediat-
ing this effect. Salbutamol, terbutaline and fenoterol can induce mild appetite
suppression, headache, nausea and sleep disturbances (Miller and Rice 1980;
Pratt 1982). This is consistent with their ability to cross the blood-brain barrier,
leading to CNS levels approximately 5% of those seen in plasma (Caccia and
Fong 1984).

7.3
Stereoisomers of Salbutamol

Salbutamol, the most widely used f,-adrenoceptor agonist bronchodilator, is a
racemic mixture of equal parts of R-salbutamol and S-salbutamol. $,-Adreno-
ceptor-mediated bronchodilatation is stereoselective, with R-salbutamol being
wholly responsible for 3, adrenoceptor-mediated bronchodilation and S-salbu-
tamol being inactive in humans (Prior et al. 1998; Zhang et al. 1998). Since
S-salbutamol has previously been shown to cause a small increase in airway
reactivity in vitro (Mazzoni et al. 1994; Yamaguchi and Mccullough 1996), it
was suggested that the S-enantiomer of racemic f,-adrenoceptor agonists
may cause airway hyperreactivity and even contribute to increased mortality
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(Perrin-Fayolle et al. 1996; Handley et al. 1998). This potential safety concern,
coupled with the finding that repeated administration of R, S-salbutamol result-
ed in S-salbutamol accumulation (Gumbhir-Shah et al. 1998; Dhand et al. 1999;
Schmekel et al. 1999), resulted in the development of the optically pure R-salbu-
tamol, levalbuterol, recently introduced into the U.S. market. Importantly, stud-
ies have now demonstrated that S-salbutamol has no deleterious effect on
airway responsiveness to methacholine in asthmatic patients (Cockcroft and
Swystun 1997; Cockcroft et al. 1999). Thus, R-salbutamol cannot claim to be
safer than R,S-salbutamol based on the argument that S-salbutamol increases
airway reactivity. Indeed, R,S-salbutamol has been found to be as safe as R-sal-
butamol in patients with asthma (Gumbhir-Shah et al. 1998; Nelson et al. 1998;
Gawchik et al. 1999). Furthermore, evidence in both adults and children with
stable asthma indicates that R-salbutamol is as effective a bronchodilator as
equimolar doses of R,S-salbutamol (R-salbutamol 1.25 mg=R,S-salbutamol
2.5 mg) (Nelson et al. 1998; Gawchik et al. 1999). As an added disadvantage,
R-salbutamol is likely to be more expensive than a comparable generic racemic
salbutamol preparation. Taken together, the evidence indicates that R-salbuta-
mol offers no genuine advantage with respect to safety or clinical efficacy over
racemic salbutamol (Ahrens and Weinberger 2001; Boulton and Fawcett 2001).

8
Combination Therapy

8.1
Long-Acting 3,-Adrenoceptor Agonists and Glucocorticoids

The scientific rationale for the use of long-acting f,-adrenoceptor agonists in
combination with a corticosteroid has recently been summarized (Barnes 2002).
The use of long-acting f3,-adrenoceptor agonists has been examined in asthmat-
ic patients whose symptoms persisted despite treatment with low-dose gluco-
corticoids. In a randomized, double-blind, parallel-group trial, 429 adult asth-
matics receiving 200 ug twice daily of inhaled beclomethasone dipropionate
were selected. These mild-to-moderate asthmatics were symptomatic despite
treatment with inhaled glucocorticoids. Subjects were assigned to receive either
50 pg salmeterol plus 200 ug beclomethasone or 500 ug beclomethasone alone
twice daily for 6 months (Greening et al. 1994). There were significant advan-
tages in favour of salmeterol plus beclomethasone compared with the higher
dose of beclomethasone alone with respect to lung function and symptom con-
trol. Woolcock et al. (1996) recruited 738 moderate-to-severe asthmatics, whose
symptoms were not controlled by twice daily 500 g beclomethasone dipropi-
onate. In this study, the administration of either 50 ug or 100 ug salmeterol
twice daily with 500 ug beclomethasone had a more rapid and pronounced ben-
eficial effect on control of asthma symptoms and lung function than doubling
the dose of beclomethasone (twice daily 1000 ug) (Woolcock et al. 1996). Impor-
tantly, the addition of salmeterol was found to not increase bronchial hyperre-
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sponsiveness or asthma exacerbation rates (Greening et al. 1994; Woolcock et al.
1996). Furthermore, meta analysis of nine parallel group trials revealed that ad-
dition of salmeterol to low to moderate doses of inhaled glucocorticoid in
symptomatic patients was superior to doubling the dose of inhaled glucocorti-
coid (Shrewsbury et al. 2000).

These studies demonstrate that interactions between f,-adrenoceptor ago-
nists and glucocorticoids are predominantly positive, with combinations of the
two drugs improving asthma control and exacerbation rates. While this is par-
ticularly true for long-acting f3,-adrenoceptor agonists, the exact mechanism re-
mains unclear. For example, the effects of long-acting f,-adrenoceptor agonists
and glucocorticoids may be merely additive; with the former causing prolonged
bronchodilation and the latter reducing or reversing airway inflammation. Al-
ternately, there may be true synergy between these agents with long-acting
Br-adrenoceptor agonists enhancing the effects of glucocorticoids (Kips and
Pauwels 2001; Barnes 2002). It has been suggested that long-acting S,-adreno-
ceptor agonists may have “steroid-enhancing” or “steroid-sparing” effects. How-
ever, it is important to note that monotherapy with long-acting 3,-adrenoceptor
agonists is less effective than inhaled glucocorticoids alone, suggesting that
these terms need to be used cautiously (Lazarus et al. 2001).

Based on the complementary roles of 3,-adrenoceptor agonists and glucocor-
ticoids, the long-acting f3,-adrenoceptor agonist salmeterol and the glucocorti-
coid fluticasone have been combined in a single inhaler with the potential to
treat both the airway smooth muscle dysfunction and inflammatory compo-
nents of asthma. Such combination products have the potential to limit overuse
of 3,-adrenoceptor agonist bronchodilators in the absence of anti-inflammatory
therapy, thus ensuring that f5,-adrenoceptor agonists are not used as monother-
apy. However, the use of “fixed” combination inhalers may be associated with
the overuse of both drugs in the management of asthma, as control over individ-
ual drug dosages is lost.

In spite of these shortcomings, combination inhalers are effective in the treat-
ment of many asthmatics and this format for combination therapy may become
the method of choice in the near future in patients with persistent asthma
(Barnes 2002). Studies in adults and adolescents have demonstrated improve-
ments in forced expiratory volume in 1 s (FEV,), peak expiratory flow (PEF),
and asthma symptoms with a combination product containing salmeterol
(50 ug) and fluticasone propionate (100, 250 or 500 ug) delivered via the dry
powder Diskus inhaler (Seretide) (Aubier et al. 1999; Chapman et al. 1999; Bate-
man et al. 2001). Additionally, children aged 4-11 years who were symptomatic
while receiving inhaled glucocorticoids, had similar improvements in FEV,, PEF
and asthma symptoms with salmeterol/fluticasone propionate (50/100 ug) (Van
den Berg et al. 2000). The combination of fluticasone propionate and salmeterol
via the Diskus device has also been found to improve lung function and reduce
the severity of dyspnea in patients with COPD (Mahler et al. 2002). More recent-
ly, a salmeterol/fluticasone propionate MDI has been developed to provide an
alternative choice of delivery system. Three strengths of the salmeterol/fluticas-
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one propionate MDI are available each containing a constant dose of salmeterol
(25 pg) combined with fluticasone (50, 125 or 250 ug) per actuation. Since each
dose is given as two actuations, these preparations are equivalent to the three
strengths of the salmeterol/fluticasone propionate Diskus indicated above. The
efficacy and safety of salmeterol/fluticasone propionate (50/100 ug) was found
to be comparable whether administered via MDI or dry powder Diskus inhaler,
allowing a choice of delivery systems (Bateman et al. 2001).

8.2
D,-Receptor Agonists

A different approach to combination therapy is to incorporate multiple pharma-
cological actions within the one drug molecule. Airway hyperreactivity, a feature
of both asthma and COPD, is associated with neural reflex pathways that include
sensory afferent nerves. While the receptors that modulate the activity of these
airway nerves have yet to be characterized, reflex nerve activity may be con-
trolled by modulating the activity of afferent nerves. For example, dopamine,
via stimulation of D,-receptors, may play a role in the control of lung function
by reducing the ability of sensory nerves to produce harmful reflex activity.
Indeed, D,-receptor mRNA has been detected in rat vagal afferent neurones
(Lawrence et al. 1995) and dorsal root ganglia (Xie et al. 1998), nerves associat-
ed with reflex pathways. Thus, D,-receptor agonists should reduce reflex bron-
choconstriction, dyspnea, cough and mucus production, without any direct
bronchodilator activity. A dual dopamine D,-receptor and S3,-adrenoceptor ago-
nist would combine the modulating effects of a dopamine D,-receptor agonist
on sensory afferent nerves with the bronchodilator action of a ;-adrenoceptor
agonist in the one molecule. An example of such a compound is AR-C68397AA
(Viozan) (Bonnert et al. 1998). Combination therapy of this sort may provide
effective symptomatic treatment for both asthma and COPD with the added ad-
vantage of reducing neurogenic inflammation in the airways. Interestingly, the
benzothiazole structure of the synthetic compound AR-C68397AA has since
been found to occur in the natural 5,-adrenoceptor agonist S1319 (4-hydroxy-7-
[1-(1-hydroxy-2-methylamino)ethyl]-1,3-benzothiazole-2(3H)-one) found in a
marine sponge Dysidea sp. (Suzuki et al. 1999).

9
Pharmacogenetics of 3,-Adrenoceptor Agonists in Asthma

Pharmacogenetics is the study of the role of genetic determinants in the variable
response to therapy. Within the human population, the 5,-adrenoceptor is poly-
morphic, with some of these polymorphic receptors having different pharmaco-
logical properties. Recent studies have suggested that genetic factors may under-
lie some of the variability in treatment responses to f-adrenoceptor agonists
seen in asthmatics. Both single-nucleotide polymorphisms (SNPs) and variable
nucleotide tandem repeats (VNTRs) are genetic polymorphisms that have been
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shown to have pharmacogenetic effects in asthma. A total of 13 polymorphisms
in the f,-adrenoceptor gene and its transcriptional regulator S-upstream pep-
tide have been identified (Liggett 2000a,b).

Within the f,-adrenoceptor gene, coding variants at positions 16 and 27, in
the extracellular N-terminal domain, have been shown to be functionally impor-
tant in vitro (Green et al. 1994; Mcgraw et al. 1999). While the Gly-16 receptor
exhibits enhanced downregulation in vitro following exposure to an agonist
(Green et al. 1994), Arg-16 receptors are more resistant to desensitization. How-
ever, N-terminal polymorphisms at position 16 failed to alter either the rates of
new receptor synthesis following irreversible alkylation or the rate of agonist-
promoted internalization of the receptor to the intracellular pool (Green et al.
1994). Due to linkage disequilibrium, individuals who are Arg/Arg-16 are much
more likely to be Glu/Glu-27 and individuals who are Gly/Gly-16 are much more
likely to be GIn/Gln-27. Furthermore, the position 27 genotypes influence but
do not abolish the effect of position 16 polymorphisms with respect to down-
regulation of phenotypes in vitro (Green et al. 1994; Mcgraw et al. 1999). The
potentially protective Glu-27 polymorphism has been reported to be associated
with decreased airway reactivity in asthma (Hall et al. 1995) but it did not seem
to influence nocturnal asthma (Turki et al. 1995) or bronchodilator responsive-
ness (Martinez et al. 1997). In contrast, the GIn-27 polymorphism has been as-
sociated with elevated IgE levels and an increase in self-reported asthma in chil-
dren (Dewar et al. 1997). Israel and co-workers (2001) noted a decrease in
morning peak expiratory flow in patients who were Arg/Arg-16 and who regu-
larly used salbutamol (Israel et al. 2001).

In an attempt to explain the apparent disparity between in vitro and patient
data, Liggett has proposed that Gly/Gly-16 individuals are already downregulat-
ed as a result of exposure to endogenous catecholamines (Liggett 2000b). As
such, desensitization caused by recurrent exogenous -adrenoceptor agonist ex-
posure would be more apparent in Arg/Arg patients with functional -adreno-
ceptors. In this scenario, the initial response to salbutamol in B-adrenoceptor
agonist-naive patients would be depressed in Gly/Gly individuals, since their re-
ceptors would have been downregulated to a greater extent due to endogenous
catecholamines. The bronchodilator response obtained after administration of a
single dose of salbutamol has also been examined (Martinez et al. 1997). Here,
B-adrenoceptor agonist-naive asthmatic and non-asthmatic children in the Arg/
Arg-16 group showed a greater bronchodilator response, with Arg/Arg-16 chil-
dren being 5.3-fold more likely to exhibit a positive bronchodilator response to
salbutamol compared with Gly/Gly-16 children.

It is important to note that pharmacogenetic studies of treatment response
are often negative (Hancox et al. 1998) or involve small subject numbers (Tan et
al. 1997; Lipworth et al. 1999). Larger scale pharmacogenetic studies will need
to be conducted in order to detect large effects associated with a SNP. The data
obtained so far suggest that 3,-adrenoceptor polymorphisms may alter the re-
sponse to B-adrenoceptor agonists. However, it is still unclear whether j3,-adre-
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noceptor polymorphisms will have any great clinical relevance for most pa-
tients.

10
Clinical Application

10.1
Asthma

In general, asthma medication can be divided into two groups; reliever and pre-
venter medications. The major group of asthma reliever medications are ,-ad-
renoceptor agonist bronchodilators which act quickly and effectively to relieve
bronchoconstriction and the associated asthma symptoms of chest tightness,
wheezing and cough. The main asthma preventer medications are the glucocor-
ticoids which are used prophylactically and as maintenance therapy to reduce,
reverse and prevent airway inflammation. It is vital that all asthmatic patients
learn to manage their own asthma and that they have a good understanding of
the role of reliever and preventer medications in treating their disease. The goal
of asthma management is to achieve and maintain best lung function and an
ideal starting point is the institution of an asthma management plan (National
Asthma Campaign—Asthma Management Handbook 2002). Typically, the first
step in such a plan is the assessment of the patient’s asthma severity. The patient
may then be treated intensively, with reliever and/or preventer medication, until
best lung function is achieved. The types and quantity of drug used can then be
back-titrated to the least number of medications and lowest dose required for
good control of asthma symptoms and maintenance of best lung function. Since
prevention is the key to successful asthma management, an important compo-
nent of any asthma management plan is the identification and avoidance or con-
trol of asthma triggers such as allergen, exercise and cold air. In addition, an in-
dividualized action plan needs to be developed to manage any ongoing asthma
symptoms and exacerbations. An effective asthma management plan necessi-
tates regular review and ongoing patient education.

The severity of asthma may be classified based on an assessment of asthma
symptoms and lung function in combination with the types and quantity of
drug required to reduce or avoid symptoms. In this way, patients with asthma
may be classified as having mild intermittent, mild persistent, moderate or se-
vere disease (NIH: NHLBI 1997; 1998; NHLBI/WHO Workshop report 1995).
The clinical classification of asthma severity forms the basis of the stepwise ap-
proach to asthma pharmacotherapy, with the number and frequency of medica-
tions increasing (step up) as the severity of asthma increases and decreasing
(step down) when asthma is under control (Table 1). However, classifying asth-
ma severity is not intended to restrict the type of drug therapy received by an
individual patient, but is intended as a guide to the level of therapy that may be
required to achieve symptom control. Furthermore, patients diagnosed with any
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level of asthma may have mild, moderate or severe exacerbations and these ex-
acerbations also require appropriate management.

In patients with mild intermittent asthma, short-acting inhaled f,-adreno-
ceptor agonists, including salbutamol and terbutaline, are the treatment of
choice and should be used as required to relieve symptoms and prevent those
induced by exercise or exposure to allergen. If this regimen fails to control asth-
ma symptoms, an increase in f,-adrenoceptor agonist use needs to be consid-
ered. Usually, the infrequent nature of symptoms in this group of patients does
not warrant continuous f3,-adrenoceptor agonist therapy.

Patients with mild persistent asthma should be treated with low-dose inhaled
glucocorticoids to treat airway inflammation. In addition, the regular use of
short-acting inhaled f,-adrenoceptor agonists is required for the relief of acute
asthma symptoms. If best lung function is not maintained under this treatment
regimen, the dose of inhaled glucocorticoid can be increased and/or a long-act-
ing f,-adrenoceptor agonist used, particularly when breakthrough and/or
night-time symptoms persist.

The treatment of moderate persistent asthma involves inhaled glucocorti-
coids and the regular use of long-acting f,-adrenoceptor agonists, such as sal-
meterol and formoterol. The latter are particularly useful for the control of
night-time symptoms. The addition of a long-acting S-adrenoceptor agonist to
the treatment regimen may also have a steroid-sparing effect in these patients.
Short-acting 3,-adrenoceptor agonists may be used in these patients for the ra-
pid treatment of acute symptoms.

In most cases, patients with severe asthma should receive high doses of in-
haled glucocorticoids and the regular use of long-acting f,-adrenoceptor ago-
nists. Short-acting B-adrenoceptor agonist medications should be used for acute
symptom relief. Asthma exacerbations in this group of patients may also require
a course of oral glucocorticoid therapy.

10.2
COPD

The severity of COPD may be classified into four stages (GOLD 2001; Table 2).
However, the management of COPD is driven largely by symptomology and
there is often no direct relationship between the degree of airflow limitation and
the presence of symptoms. Thus, disease classification provides only a very gen-
eral indication of the approach to be given to management of COPD.

The goals of effective COPD management are to prevent disease progression,
relieve symptoms, improve exercise tolerance, improve health status, prevent
and treat complications, prevent and treat exacerbations and reduce mortality.
Pharmacotherapy is used to prevent and control symptoms, reduce the frequen-
cy and severity of exacerbations, improve health status and improve exercise
tolerance. Importantly, existing medications used for the treatment of COPD
have not been shown to modify the long-term decline in lung function associat-
ed with this disease. Bronchodilator medications including f,-adrenoceptor ag-
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Table 2 Classification of COPD by severity (GOLD 2001)

Stage Characteristics
0: At Risk Normal spirometry

Chronic symptoms (cough, sputum production)
I: Mild COPD FEV4/FVC<70%

FEV;>80% predicted
With or without chronic symptoms (cough, sputum production)
II: Moderate COPD FEV1/FVC<70%
30%>FEV;<80% predicted
With or without chronic symptoms (cough, sputum production)
[Il: Severe COPD FEV1/FVC<70%
FEV;<30% predicted or FEV,<50% predicted plus respiratory failure or
clinical signs of right heart failure

FEV; values refer to post-bronchodilator values; FVC, forced vital capacity.

onists, anticholinergics and theophylline, given alone or in combination, have a
role to play in relieving symptoms as well as preventing and treating exacerba-
tions (Chrystyn et al. 1988; Vathenen et al. 1988; Gross et al. 1989; Higgins et al.
1991; Anthonisen et al. 1994). These bronchodilators may be used either on an
as needed basis for the relief of persistent or worsening symptoms, or on a reg-
ular basis to prevent or reduce symptoms. The choice between f,-adrenoceptor
agonist, anticholinergic, theophylline (or related compound) or some combina-
tion of these drug therapies depends on the response obtained by the individual
in terms of symptom relief and side effects. A combination of bronchodilators
may produce additional improvements in lung function and health status while
decreasing the risk of side effects compared with increasing the dose of a single
bronchodilator (Taylor et al. 1985; Guyatt et al. 1987; Gross et al. 1998; Van No-
ord et al. 2000).

A key diagnostic feature of COPD is poor reversibility of airflow limitation
following inhalation of a short-acting f,-adrenoceptor agonist. Importantly, 3,-
adrenoceptor agonist bronchodilators have been shown to improve hyperinfla-
tion, exercise capacity and quality of life in COPD patients, without necessarily
producing significant changes in FEV; (Guyatt et al. 1987; Jenkins et al. 1987;
Cazzola et al. 1995; Boyd et al. 1997). Recent studies have shown that long-acting
inhaled f,-adrenoceptor agonists significantly improve symptoms and increase
health-related quality of life in COPD patients (Ulrik 1995; Jones and Bosh 1997;
Mabhler et al. 1999).

11
Concluding Remarks

The airway smooth muscle relaxant effect of 3,-adrenoceptor agonists is their
primary beneficial action in asthma and COPD, although positive therapeutic
influences on mucus production and clearance and bronchial oedema may also
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occur. f3,-Adrenoceptor agonists appear to be largely ineffective in suppressing
or controlling airway inflammation in asthmatics and are likely to be equally in-
effective in COPD patients. Accordingly, in asthma, despite their relative lack of
significant, direct detrimental side effects, there is consensus that ,-adrenocep-
tor agonist bronchodilators, whether or not they are long acting, should not be
used as monotherapy in any but the most mild of cases. Indeed, the powerful
bronchodilator (reliever) actions of both long- and short-acting f,-adrenocep-
tor agonists may mask the onset and/or deterioration of on-going airway in-
flammation in asthmatics. The increased emphasis on anti-inflammatory thera-
pies in recent years is now complemented by the use of ,-adrenoceptor ago-
nists in therapeutic regimes centred on the combined use of corticosteroids and
Br-adrenoceptor agonist bronchodilators. Indeed, the introduction of single ad-
ministration formulations of inhaled steroid with a bronchodilator is finding in-
creasing acceptance in the treatment of persistent asthma. Unfortunately, in
COPD, bronchodilator therapies do not alter the long-term decline in lung func-
tion. However, f,-adrenoceptor agonist bronchodilators and anticholinergics
and theophylline, given alone or in combination, can relieve symptoms and help
to reverse exacerbations. The introduction of long-acting 3,-adrenoceptor ago-
nists has produced significant improvements in symptoms in COPD patients
and thus has had a positive impact on quality of life in these patients. The use of
combination bronchodilator/corticosteroid regimes further assists in the man-
agement of this disease.
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