
1. The Parametric λ-Calculus

A calculus is a language equipped with some reduction rules. All the calculi
we consider in this book share the same language, which is the language of λ-
calculus, while they differ each other in their reduction rules. In order to treat
them in an uniform way we define a parametric calculus, the λ∆-calculus,
which gives rise to different calculi by different instantiations of the parameter
∆. In Part I we study the syntactical properties of the λ∆-calculus, and in
particular those of its two most important instances, the call-by-name and
the call-by-value λ-calculi. The λ∆-calculus has been introduced first in [85]
and further studied in [74]. We use the terminology of [9].

1.1 The Language of λ-Terms

Definition 1.1.1 (The language Λ).
Let Var be a countable set of variables. The set Λ of λ-terms is a set of words
on the alphabet Var ∪ { (,) , . , λ } inductively defined as follows:

• x ∈ Var implies x ∈ Λ,
• M ∈ Λ and x ∈ Var implies (λx.M) ∈ Λ (abstraction),
• M ∈ Λ and N ∈ Λ implies (MN) ∈ Λ (application).

λ-terms will be ranged over by Latin capital letters. Sets of λ-terms will be
denoted by Greek capital letters.

Sometimes, we will refer to λ-terms simply as terms. The symbol ≡ will
denote syntactical identity of terms. We will use the following abbreviations in
order to avoid an excessive number of parenthesis: λx1...xn.M will stand for
(λx1.(...(λxn.M)...)), and MN1N2...Nn will stand for (...((MN1)N2)...Nn).
Moreover, �M will denote a sequence of terms M1,. . .,Mn for some n ≥ 0, and
λ�x.M and �M �N will denote respectively λx1. . .xn.M and M1. . .MmN1. . .Nn
for some n,m ≥ 0. The length of the sequence �N is denoted by ‖ �N‖. By
abusing the notation, N ∈ �N denotes that the term N occurs in the sequence
�N .

Example 1.1.2. λx.xx, λx.x(λz.zy), λy.(λx.x)(λuv.u) are examples of λ-
terms. Some λ-terms have standard names for historical reasons. The names

4 1. The Parametric λ-Calculus

that will be extensively used in this book are:
I ≡ λx.x , K ≡ λxy.x , O ≡ λxy.y , D ≡ λx.xx , E ≡ λxy.xy.

Definition 1.1.3 (Subterms).
A term N is a subterm of M if and only if one of the following conditions
arises:

• M ≡ N ,
• M ≡ λx.M ′ and N is a subterm of M ′,
• M ≡ PQ and N is a subterm either of P or of Q.

A term N occurs in a term M if and only if N is a subterm of M .

Example 1.1.4. The set of subterms of the term λx.x(λz.zy) is

{λx.x(λz.zy), x(λz.zy), λz.zy, zy, x, z, y}.

The symbol “λ” plays the role of binder for variables, as formalized in the
next definition.

Definition 1.1.5 (Free variables).

(i) The set of free variables of a term M , denoted by FV(M), is inductively
defined as follows:
• M ≡ x implies FV(M) = {x},
• M ≡ λx.M ′ implies FV(M) = FV(M ′)− {x},
• M ≡ PQ implies FV(M) = FV(P) ∪ FV(Q).
A variable is bound in M when it is not free in M .

(ii) A term M is closed if and only if FV(M) = ∅. A term is open if it is
not closed. For every subset of terms Θ ⊆ Λ, we will denote with Θ0 the
restriction of Θ to closed terms.

Example 1.1.6. FV
(
λz.(λx.x(λz.zy))(λxyz.yz)

)
= {y}, FV

(
λz.x(λx.xy)

)
=

{x, y}, and FV
(
(λyx.x)y

)
= {y}.

The replacement of a free variable by a term is the basic syntactical op-
eration on Λ on which the definition of reduction rules will be based. But the
replacement must respect the status of the variables: e.g., x can be replaced
by M ≡ λy.zy in λu.xu, so obtaining the term λu.(λy.zy)u, while the same
replacement cannot take place in the term λz.xz, since in the obtained term
λz.(λy.zy)z the free occurrence of z in M would become bound. The notion
is formalized in the next definition.

Definition 1.1.7. The statement “M is free for x in N” is defined by induc-
tion on N as follows:

• M is free for x in x;
• M is free for x in y;
• If M is free for x both in P and Q then M is free for x in PQ;

1.1 The Language of λ-Terms 5

• If M is free for x in N and x 	≡ y and y 	∈ FV(M)
then M is free for x in λy.N .

Example 1.1.8. λxy.xz is free for x and y in (λu.x)(λu.xz) but is not free for
u in both λxz.u and λzu.u.

LetM be free for x inN ; soN [M/x] denotes the simultaneous replacement
of all free occurrences of x in N by M . Clearly,

FV(N [M/x]) =
{

FV(N) if x 	∈ FV(N),
(FV(N)− {x}) ∪ FV(M) otherwise.

For example, (λx.u(xy))[xy/u] is not defined because xy is not free for u in
λx.u(xy), while (λx.u(xu))[u(λz.z)/u] ≡ λx.u(λz.z)(xu(λz.z)).

Let ‖ �N‖ = ‖�x‖; both �M [N1/x1, ..., Nn/xn] and �M [�N/�x] are abbreviations
for the simultaneous replacement of xi by Ni in every Mj (0 ≤ i ≤ ‖�x‖ = n,

0 ≤ j ≤ ‖ �M‖).

In the standard mathematical notation, the name of a bound variable is
meaningless; for example,

∑
1≤i≤n i and

∑
1≤j≤n j both denote the sum of

the first n natural numbers. Also in the language Λ, it is natural to consider
the terms modulo names of bound variables. The renaming is formalized in
the next definition.

Definition 1.1.9 (α-Reduction).

(i) λx.M →α λy.M [y/x] if y is free for x in M and y 	∈ FV(M).
(ii) =α is the reflexive, symmetric, transitive and contextual closure of →α.

Example 1.1.10. λx.x =α λy.y =α λz.z, λxy.x =α λxz.x and λxy.x =α

λyx.y. On the other hand, λx.y 	=α λx.x and λx.yx 	=α λy.yy.

In the entire book, we will consider terms modulo =α.

Thus we can also safely extend the notation N [M/x] to the case where M
is not free for x in N . In this case N [M/x] denotes the result of replacing
x by M in a term N ′ =α N such that M is free for x in N ′. Clearly such
an N ′ always exists and the notation is well posed. So (λx.u(xy))[xy/u] is
α-equivalent to the term λz.xy(zy).

An alternative way of denoting a simultaneous replacement is by explicitly
using the notion of substitution. A substitution is a function from variables
to terms. If s is a substitution and FV(M) = {x1, ..., xn}, s(M) denotes
M [s(x1)/x1, ..., s(xn)/xn].

An important syntactical tool that will be extensively used in the following
chapters is the notion of context. Informally, a context is a term that can
contain some occurrences of a hole (denoted by the constant [.]) that can be
filled by a term.

6 1. The Parametric λ-Calculus

Definition 1.1.11 (Context).
Let Var be a countable set of variables, and [.] be a constant (the hole).

(i) The set ΛC of contexts is a set of words on Var ∪ { (,) , . , λ , [.] }
inductively defined as follows:
• [.] ∈ ΛC;
• x ∈ Var implies x ∈ ΛC ;
• C[.] ∈ ΛC and x ∈ Var implies (λx.C[.]) ∈ ΛC ;
• C1[.] ∈ ΛC and C2[.] ∈ ΛC implies (C1[.]C2[.]) ∈ ΛC.

Contexts will be denoted by C[.], C′[.], C1[.],

(ii) A context of the shape: (λ�x.[.])�P is a head context.

(iii) Let C[.] be a context and M be a term. Then C[M] denotes the term
obtained by replacing by M every occurrence of [.] in C[.].

We will use the same abbreviation notation for contexts that we used for
terms.

Note that filling a hole in a context is not a substitution; in fact, free variables
in M can become bound in C[M]. For example, filling the hole of λx.[.] with
the free variable x results in the term λx.x.

1.2 The λ∆-Calculus

We will present some λ-calculi, all based on the language Λ, defined in the
previous section, each one characterized by different reduction rules.

The λ∆-calculus is the language Λ equipped with a set ∆ ⊆ Λ of input
values, satisfying some closure conditions. Informally, input values represent
partially evaluated terms that can be passed as parameters. Call-by-name and
call-by-value parameter passing can be seen as the two most radical choices;
parameters are not evaluated in the former policy, while in the latter they
are evaluated until an output result is reached.

Most of the known variants of λ-calculus can be obtained from this para-
metric calculus by instantiating∆ in a suitable way. The set∆ of input values
and the reduction →∆ induced by it are defined in Definition 1.2.1.

Definition 1.2.1. Let ∆ ⊆ Λ.

(i) The ∆-reduction (→∆) is the contextual closure of the following rule:

(λx.M)N →M [N/x] if and only if N ∈ ∆.

(λx.M)N is called a ∆-redex (or simply redex), and M [N/x] is called its
∆-contractum (or simply contractum).

1.2 The λ∆-Calculus 7

(ii) →∗
∆ and =∆ are respectively the reflexive and transitive closure of →∆

and the symmetric, reflexive and transitive closure of →∆.
(iii) A set ∆ ⊆ Λ is said set of input values when the following conditions are

satisfied:

• Var ⊆ ∆ (Var-closure);
• P,Q ∈ ∆ implies P [Q/x] ∈ ∆, for each x ∈ Var (substitution closure);
• M ∈ ∆ and M →∆ N imply N ∈ ∆ (reduction closure).

(iv) A term is in ∆-normal form (∆-nf) if it has not ∆-redexes and it has a
∆-normal form, or it is ∆-normalizing if it reduces to a ∆-normal form;
the set of ∆-nf is denoted by ∆-NF.

(v) A term is ∆-strongly normalizing if it is ∆-normalizing, and moreover
there is not an infinite ∆-reduction sequence starting from it.

The closure conditions on the set of input values need some comment.
Since, as already said, input values represent partially evaluated terms, it is
natural to ask that this partial evaluation is preserved by reduction, which
is the rule on which the evaluation process is based. The substitution closure
comes naturally from the fact that variables always belong to the set of input
values.

In this book the symbol ∆ will denote a generic set of input values. We
will omit the prefix ∆ in cases where it is clear from the context.

Example 1.2.2. Let I,K,O,D be the terms defined in the Example 1.1.2, and
let M,N be input values. Then IM →∆ M , so I has the behaviour of the
identity function, KMN →∗

∆ M , OMN →∗
∆ N , DM →∆ MM . If D ∈ ∆

then DD →∗
∆ DD.

Now some possible sets of input values will be defined.

Definition 1.2.3. (i) Γ = Var ∪ {λx.M |M ∈ Λ}.
(ii) ΛI is the language obtained from the grammar generating Λ, given in

Definition 1.1.1, by modifying the formation rule for abstraction in the
following way:

(λx.M) ∈ ΛI if and only if M ∈ Λ and x ∈ Var and x occurs in M .

The next property shows that there exists some set of input values, al-
though not all sets of terms are sets of input values.

Property 1.2.4. (i) Λ is a set of input values.
(ii) Γ is a set of input values.
(iii) ΛI is a set of input values.
(iv) Λ-NF is not a set of input values.
(v) Var ∪ Λ-NF0 is a set of input values.
(vi) Υ = Var ∪ {λx.P | x ∈ FV(P)} is not a set of input values.

8 1. The Parametric λ-Calculus

Proof. The first case is obvious. In cases 2, 3, and 5, it is easy to check that the
closure properties of Definition 1.2.1 are satisfied. Λ-NF is not closed under
substitution. It is easy to see that Υ is closed under substitution, but it is not
closed under reduction. In fact, λx.KIx ∈ Υ , while λx.KIx→Υ λx.I 	∈ Υ . �

The choice ∆ = Λ gives rise to the classical call-by-name λ-calculus [25],
while ∆ = Γ gives rise to a pure version (i.e. without constants) of the
call-by-value λ-calculus, first defined by Plotkin [78].

The fact that Var∪Λ-NF0 is a correct set of input values was first noticed
in [39].

It is easy to check that every term M has the following shape:

λx1...xn.ζM1...Mm (n,m ≥ 0),

where Mi ∈ Λ are the arguments of M (1 ≤ i ≤ m) and ζ is the head
of M . Here ζ is either a variable (head variable) or an application of the
shape (λz.P)Q, which can be either a redex (head redex) or not (head block),
depending on the fact that Q belongs or not to the set ∆.

The natural interpretation of an abstraction term λx.M is a function
whose formal parameter is x. The interpretation of an application (λx.M)N ,
when N ∈ ∆, is the application of the function λx.M to the actual param-
eter N , and so the ∆-reduction rule models the replacement of the formal
parameter x by the actual parameter N in the body M of the function. Thus
the ∆-normal form of a term, if it exists, can be seen as the final result of a
computation.

The following fundamental theorem implies that this interpretation is
correct, i.e. if the computation process stops, then the result is unique.

Theorem 1.2.5 (Confluence). [26, 74]
Let M →∗

∆ N1 and M →∗
∆ N2. There is Q such that both N1 →∗

∆ Q and
N2 →∗

∆ Q.

Proof. The proof is in Sect. 1.2.1. �

Corollary 1.2.6. The ∆-normal form of a term, if it exists, is unique.

Proof. Assume by absurdum that a term M has two different normal forms
M1 and M2. Then, by the confluence theorem, there is a term N such that
both M1 and M2 ∆-reduce to N , against the hypothesis that both are normal
forms. �

It is natural to ask if the closure conditions on input values, given in
Definition 1.2.1, are necessary in order to assure the confluence of the calculus.
It can be observed that they are not strictly necessary, but a weaker version
of them is needed.

1.2 The λ∆-Calculus 9

Let P ∈ ∆ be such that, for every Q 	≡ P such that P →∗
∆ Q, Q 	∈ ∆.

Thus (λx.M)P reduces both to M [P/x] and to (λx.M)Q, which do not have
a common reduct, since the last term will be never a redex. Thus the weaker
version of reduction closure that is necessary is the following: M ∈ ∆ and
M →∗

∆ N imply that there is P ∈ ∆ such that N →∗
∆ P .

On the other hand, let N,P ∈ ∆ but for all Q such that N [P/x] →∗
∆ Q,

Q 	∈ ∆. Thus (λx.(λy.M)N)P reduces both to (λy.M [P/x])N [P/x] and to
(M [N/y])[P/x], which do not have a common reduct. Thus the weaker version
of the substitution closure that is necessary is the following: P,Q ∈ ∆ implies
there is R ∈ ∆ such that P [Q/x]→∗

∆ R.

Assume M →∗
∆ N , and assume that there is more than one ∆-reduction

sequence fromM to N . The standardization theorem says that, in case the set
of input values enjoys a particular property, there is a “standard” reduction
sequence from M to N , reducing the redexes in a given order.

Let us introduce formally the notion of standard reduction sequence.

Definition 1.2.7. (i) A symbol λ in a term M is active if and only if it is
the first symbol of a ∆-redex of M .

(ii) The ∆-sequentialization (M)◦ of a term M is a function from Λ to Λ
defined as follows:
• (xM1...Mm)◦ = x(M1)◦...(Mm)◦;
• ((λx.P)QM1...Mm)◦ = (λx.P)◦(Q)◦(M1)◦...(Mm)◦, if Q ∈ ∆;
• ((λx.P)QM1...Mm)◦ = (Q)◦(λx.P)◦(M1)◦...(Mm)◦, if Q 	∈ ∆;
• (λx.P)◦ = λx.(P)◦.

(iii) The degree of a redex R in M is the numbers of λ’s that both are active
in M and occur on the left of (R)◦ in (M)◦.

(iv) The principal redex of M , if it exists, is the redex of M with minimum
degree. The principal reduction M →p

∆ N denotes that N is obtained
from M by reducing the principal redex of M . Moreover, →∗p

∆ is the
reflexive and transitive closure of →p

∆.
(v) A sequence M ≡ P0 →∆ P1 →∆ ... →∆ Pn →∆ N is standard if and

only if the degree of the redex contracted in Pi is less than or equal to the
degree of the redex contracted in Pi+1, for every i < n.
We denote by M →◦

∆ N a standard reduction sequence from M to N .

It is important to notice that the degree of a redex can change during the
reduction; in particular, the redex of minimum degree always has degree zero.
Moreover, note that the reduction sequences of length 0 and 1 are always
standard. It is easy to check that, for every M , the Λ-sequentialization is
(M)◦ ≡M ; thus in this case the redex of degree 0 is always the leftmost one.

Example 1.2.8. (i) Let ∆ = Λ, and let M ≡ (λx.x(KI))(II). Thus M has
degree 0, KI has degree 1 and II has degree 2 (in the term M). The
following reduction sequence is standard:
(λx.x(KI))(II) →Λ (II)(KI) →Λ I(KI) →Λ I(λy.I).

10 1. The Parametric λ-Calculus

(ii) Let M be as before, and let ∆ = Γ . Thus II has degree 0, and KI has
degree 1. Note that now M is no more a redex. The following reduction
sequence is standard:
(λx.x(KI))(II) →Γ (λx.x(KI))I →Γ I(KI)→Γ I(λy.I) →Γ λy.I.

(iii) Let M be as before, and let ∆ = Var ∪ Λ-NF0. Thus KI has degree 0
and II has degree 1. Also in this case M is not a redex. The following
reduction sequence is standard:
(λx.x(KI))(II) →∆ (λx.x(KI))I →∆ (λx.x(λy.I))I.

The notion of a standard set of input values, which is given in Definition
1.2.9 is key for having the standardization property.

Definition 1.2.9 (Standard input values).
A set ∆ of input values is standard if and only if M 	∈ ∆ and M →∗

∆ N by
reducing at every step a not principal redex imply N 	∈ ∆.

Now the standardization property can be stated.

Theorem 1.2.10 (Standardization). [74]
Let ∆ be standard. M →∗

∆ N implies there is a standard reduction sequence
from M to N .

Proof. The proof is in Sect. 1.2.1. �

The next property shows that some sets of input values are standard,
while some are not standard.

Property 1.2.11. (i) Λ and Γ are standard.
(ii) Var ∪∆-NF0 is standard, for every ∆.
(iii) ΛI is not standard.

Proof. (i) Λ is trivially standard. Let us consider Γ ; we will prove that, if
M 	∈ Γ , and M →Γ N through a not principal reduction, then N 	∈ Γ .
M 	∈ Γ implies that M has one of the following shapes:
1. yM1...Mm (m > 1).
2. (λx.M1)M2...Mm (m ≥ 2) and either (λx.M1)M2 is a redex or it is

a head block.
Case 1 is trivial, since M can never be reduced to a term in Γ .
In case 2, if M2 ∈ Γ then the principal redex is (λx.M1)M2, while if
M2 	∈ Γ then if M2 	∈ Γ -NF the principal redex is in M2; if M2 ∈ Γ -NF
then the principal redex is in some Mj (j ≤ 3). So the reduction of a not
principal redex cannot produce a term belonging to Γ .

(ii) Var∪∆-NF0 is standard since not principal reductions preserve the pres-
ence of the redex of minimum degree.

(iii) Consider the term, M ≡ λx.x(DD)((λz.I)I). Clearly M 	∈ ΛI and the
principal redex of M is DD. So M →ΛI λx.x(DD)I ∈ ΛI and in this
reduction the reduced redex is not principal, while for every sequence of
→∗p
ΛI

reductions; M →∗p
ΛI
M 	∈ ΛI . �

1.2 The λ∆-Calculus 11

It is easy to see that the substitution closure on input values, given in
Definition 1.2.1, is necessary in order to assure the standardization property.

In fact, let M,N ∈ ∆ and M [N/x] 	∈ ∆. The following non-standard
reduction sequence (λx.IM)N →∆ (λx.M)N →∆ M [N/x] does not have a
standard counterpart, in fact I(M [N/x]) 	→∆ M [N/x].

Theorem 1.2.12. The condition that ∆ is standard is necessary and suffi-
cient for the λ∆-calculus enjoys the standardization property.

Proof. The sufficiency of the condition is a consequence of the Standardiza-
tion Theorem. To prove its necessity, assume ∆ is not standard; we can find a
term M 	∈ ∆ such that M →∗

∆ N ∈ ∆, without reducing the principal redex.
Hence IM →∆ IN →∆ N , by reducing first a redex of degree different from
0 and then a redex of degree 0. Clearly, there is no way of commuting the
order of reductions. �

An important consequence of the standardization property is the fact
that the reduction sequence reducing, at every step, the principal redex is
normalizing, as shown in Corollary 1.2.13.

Corollary 1.2.13. Let ∆ be standard.
If M →∗

∆ N and N is a normal form then M →∗p
∆ N .

Proof. By Corollary 1.2.6 and by the definition of the standard set of input
values. �

Example 1.2.14. (i) Let ∆ = Λ. The term KI(DD) has Λ-normal form I. In
fact, the principal Λ-reduction sequence is KI(DD) →Λ (λy.I)(DD) →Λ

I, while the Λ-reduction sequence choosing at every step the rightmost
Λ-redex never stops. Notice that, if we choose ∆ = Γ , KI(DD) has not
Γ -normal form.

(ii) The term II(II(II)) is Λ-strongly normalizing and Γ -strongly normal-
izing, while KI(DD) is neither Λ-strongly normalizing nor Γ -strongly
normalizing.

(iii) Let ∆ = Var ∪ Λ-NF0. Thus I(K(xx)) is the ∆-normal form of term
I(II)(K(xx)).

Remark 1.2.15. The first notion of standardization was given, for the λΛ-
calculus, by Curry and Feys [34, 35]. With respect to their notion, ifM →∗

Λ N
then there is a standard reduction sequence from M to N , but this re-
duction sequence is not necessarily unique. For instance, λx.x(II)(II) →Λ

λx.xI(II) →Λ λx.xII and λx.x(II)(II) →Λ λx.x(II)I →Λ λx.xII are both
standard reduction sequences. Klop [58] introduced a notion of strong stan-
dardization, according to which, if M →∗

Λ N , then there is a unique strongly
standard reduction sequence from M to N , and he designed an algorithm
for transforming a reduction sequence into a strongly standard one. Accord-
ing to his notion, in the example before only the first reduction sequence is

12 1. The Parametric λ-Calculus

standard. Our definition, when restricted to the λΛ-calculus, is quite sim-
ilar to the strong standardization. In fact, according to our definition, the
standard reduction sequence is unique, but in some degenerated case: e.g. for
∆ = Λ, there are infinite reduction sequences from x(DD) to x(DD), each
one performing a different number of Λ-reductions.

Plotkin [78] extended the notion of standardization to the λΓ -calculus.
His notion of standardization is not strong using Klop’s terminology. Our
definition, when restricted to λΓ -calculus, is similar to a strong version of
Plotkin’s standardization. The advantage of our notion of standardization is
the validity of Corollary 1.2.13, i.e. the fact that the principal reduction is
∆-normalizing.

A notion that will play an important role in what follows is that one of
solvability.

Definition 1.2.16. (i) An head context (λ�x[.])�P is ∆-valuable if and only
if each P ∈ �P is such that P ∈ ∆.

(ii) A term M is ∆-solvable if and only if there is a ∆-valuable head context
C[.] ≡ (λ�x.[.]) �N such that:

C[M] =∆ I.

(iii) A term is ∆-unsolvable if and only if it is not ∆-solvable.

Note that (λ�x.[.]) �N =∆ I means (λ�x.[.]) �N →∗
∆ I, since I is in ∆-nf, for

every ∆.
We will abbreviate ∆-solvable and ∆-unsolvable respectively as solvable

and unsolvable, when the meaning is clear from the context. Informally speak-
ing, a solvable term is a term that is in some sense computationally mean-
ingful. In fact, let M ∈ Λ0 be solvable, and let P be an input value; we can
always find a sequence �N of terms such that M �N reduces to P : just take the
sequence �Q such that M �Q =∆ I, which exists since M is solvable, and pose
�N ≡ �QP . So a closed solvable term can mimic the behaviour of any term, if
applied to suitable arguments.

It would be interesting to syntactically characterize the solvable terms.
Unfortunately, there is not a general characterization for the λ∆-calculus, so
we will study this problem for some particular instances of ∆.

Example 1.2.17. (i) Consider the two sets of input values Λ and Γ . In
both calculi, the term I is solvable, while DD is unsolvable. λx.x(DD)
is an example of a term that is Λ-solvable and Γ -unsolvable. In fact,
(λx.x(DD))O →∗

Λ I, while there is no term P such that P (DD) →∗
Γ I,

since DD 	∈ Γ and DD →∗
Γ DD.

(ii) Let Φ be the set of input values Var∪Λ-NF0. Then I(λx.I(xx)) ∈ Φ-NF
is a Φ-unsolvable term.

1.2 The λ∆-Calculus 13

In order to understand the behaviour of unsolvable terms, it is important
to stress some of their closure properties.

Property 1.2.18. (i) The unsolvability is preserved by substitution of vari-
ables by input values.

(ii) The unsolvability is preserved by ∆-valuable head contexts.

Proof. Let M be unsolvable.

(i) By contraposition let us assume M [P/z] to be solvable for some input
values P . Then there is a ∆-valuable head context C[.] ≡ (λ�x.[.]) �Q such
that C[M [P/z]]→∗

∆ I.
Without loss of generality, we can assume ‖ �Q‖ > ‖�x‖. Indeed, in the case
‖ �Q‖ ≤ ‖�x‖, we can choose a closed solvable term N such that there is
�R such that N �R →∗

∆ I and ‖ �R‖ = ‖�x‖ − ‖ �Q‖, and then consider the
∆-valuable context C[.]N �R. So let �Q ≡ �Q1

�Q2, where ‖ �Q1‖ = ‖�x‖.
(λ�x.M [P/z]) �Q1

�Q2 →∗
∆ I implies (λ�x.(λz.M)P) �Q1

�Q2 →∗
∆ I (since

P ∈ ∆). This in turn implies (λz.(λ�x.M) �Q1)(P [�Q1/�x]) �Q2 →∗
∆ I and

(λz�x.M)(P [�Q1/�x]) �Q1
�Q2 →∗

∆ I, because by α-equivalence we can as-
sume z 	∈ FV(Q1) and z 	∈ �x. But P [�Q1/�x] ∈ ∆ (since input values are
closed under substitution) which means that the ∆-valuable head context
C′[.] ≡ (λz�x.[.])(P [�Q1/�x]) �Q1

�Q2 is such that C′[M]→∗
∆ I.

(ii) By contraposition let us assume C′[M] to be solvable for some∆-valuable
head context C′[.] ≡ (λ�z.[.])�P . Then there is a ∆-valuable head context
C[.] ≡ (λ�x.[.]) �Q, such that C[C′[M]] →∗

∆ I. If �z ≡ �z0 �z1 and ‖ �P‖ = ‖�z0‖
then C[C′[M]] →∗

∆ C[λ�z1.M [�P/�z0]] →∗
∆ I, thus M [�P/�z0] is solvable,

and by the previous part of this property M is also solvable. Otherwise
�P ≡ �P0

�P1, ‖ �P1‖ > 1 and ‖ �P0‖ = ‖�z‖. Thus

C[C′[M]]→∗
∆ C[M [�P0/�z] �P1] ≡ (λ�x.M [�P0/�z] �P1) �Q→∗

∆ I.

Without loss of generality we can assume ‖ �Q‖ > ‖�x‖, �Q ≡ �Q0
�Q1 and

‖ �Q0‖ = ‖�x‖. So

(λ�x.M [�P0/�z] �P1) �Q→∗
∆ (M [�P0/�z] �P1)[�Q0/�x] �Q1 ≡

(M [�P0/�z][�Q0/�x])(�P1[�Q0/�x]) �Q1 →∗
∆ I,

which implies (M [�P0/�z][�Q0/�x]) solvable. Again the proof follows from
part (i) of this property. �

We will see that in all the calculi we will study in the following, the
property of solvability is not preserved by either substitution or by head
contexts. As an example in the λΛ-calculus xD is Λ-solvable, but xD[D/x]
is not Λ-solvable.

14 1. The Parametric λ-Calculus

1.2.1 Proof of Confluence and Standardization Theorems

Both the proofs are based on the notion of parallel reduction.

Definition 1.2.19. Let ∆ be a set of input values.

(i) The deterministic parallel reduction ↪→∆ is inductively defined as follows:
1. x ↪→∆ x;
2. M ↪→∆ N implies λx.M ↪→∆ λx.N ;
3. M ↪→∆ M ′,N ↪→∆ N ′ and N ∈ ∆ imply (λx.M)N ↪→∆ M ′[N ′/x];
4. M ↪→∆ M ′,N ↪→∆ N ′ and N 	∈ ∆ imply MN ↪→∆ M ′N ′.

(ii) The nondeterministic parallel reduction ⇒∆ is inductively defined as fol-
lows:
1. x⇒∆ x;
2. M ⇒∆ N implies λx.M ⇒∆ λx.N ;
3. M ⇒∆ M ′,N ⇒∆ N ′ and N ∈ ∆ imply (λx.M)N ⇒∆ M ′[N ′/x];
4. M ⇒∆ M ′,N ⇒∆ N ′ imply MN ⇒∆ M ′N ′.

Roughly speaking, the deterministic parallel reduction reduces in one step
all the redexes present in a term, while the nondeterministic one reduces a
subset of them.

Example 1.2.20. Let M ≡ I(II). If ∆ ≡ Λ then M ↪→∆ I, while M ⇒∆ M ,
M ⇒∆ II and M ⇒∆ I. If ∆ ≡ Γ then M ↪→∆ II while M ⇒∆ M and
M ⇒∆ II.

The following lemma shows the relation between the⇒∆ and→∆ reductions.

Lemma 1.2.21. Let ∆ be a set of input values.

(i) M →∆ N implies M ⇒∆ N .
(ii) M ⇒∆ N implies M →∗

∆ N .
(iii) →∗

∆ is the transitive closure of ⇒∆.

Proof. Easy. �

⇒∆ enjoys a useful substitution property.

Lemma 1.2.22. Let M ⇒∆ M ′ and N ⇒∆ N ′.
If N ∈ ∆ then M [N/x]⇒∆ M ′[N ′/x].

Proof. By induction on M . Let us prove just the most difficult case, i.e. the
term M is a ∆-redex. Let M ≡ (λz.P)Q, Q ∈ ∆, P ⇒∆ P ′, Q ⇒∆ Q′

and M ′ ≡ P ′[Q′/z]. By induction P [N/x] ⇒∆ P ′[N ′/x] and Q[N/x] ⇒∆

Q′[N ′/x], where Q′[N ′/x] ∈ ∆ for the closure conditions on ∆. Thus

((λz.P)Q)[N/x] ≡ (λz.P [N/x])Q[N/x]⇒∆

P ′[N ′/x][Q′[N ′/x]/z] ≡ (P ′[Q′/z])[N ′/x]

by point 3 of the definition of ⇒∆. �

1.2 The λ∆-Calculus 15

The next property, whose proof is obvious, states that, for every term M ,
there is a unique term N such that M ↪→∆ N .

Property 1.2.23. M ↪→∆ P and M ↪→∆ Q implies P ≡ Q.

Proof. Trivial. �

Let [M]∆ be the term such M ↪→∆ [M]∆. In the literature [M]∆ is called
the complete development of M (see [93]). The following lemma holds.

Lemma 1.2.24. M ⇒∆ N implies N ⇒∆ [M]∆.

Proof. By induction on M .

• If M ≡ x, then N ≡ x and [M]∆ ≡ x.
• If M ≡ λx.P then N ≡ λx.Q, for some Q such that P ⇒∆ Q. By induction
Q⇒∆ [P]∆, and so N ⇒∆ λx.[P]∆ ≡ [M]∆.

• If M ≡ P1P2 and it is not a ∆-redex, then N ≡ Q1Q2 for some Q1 and Q2

such that P1 ⇒∆ Q1 and P2 ⇒∆ Q2. So, by induction, Q1 ⇒∆ [P1]∆ and
Q2 ⇒∆ [P2]∆, which implies N ⇒∆ [P1]∆[P2]∆ ≡ [M]∆.

• If M ≡ (λx.P1)P2 is a redex (i.e. P2 ∈ ∆) then either N ≡ (λx.Q1)Q2 or
N ≡ Q1[Q2/x], for some Qi such that Pi ⇒∆ Qi (1 ≤ i ≤ 2). By induction,
Qi ⇒∆ [Pi]∆ (1 ≤ i ≤ 2). Note that [P2]∆ ∈ ∆ by Lemma 1.2.21.(ii). In
both cases, N ⇒∆ [P1]∆[[P2]∆/x] ≡ [M]∆, in the former case simply by
induction, and in the latter both by induction and by Lemma 1.2.22. �

M

∆

�� ��
��

��
�

��
��

��
�

∆

��
��

��
��

�

��
��

��
�

N0

∆ ��
��

��
��

�

��
��

��
� N1

∆�� ��
��

��
�

��
��

��
�

N2

Fig. 1.1. Diamond property.

The proof of confluence follows the Takahashi pattern [93], which is a
simplification of the original proof made by Täıt and Martin Löf for classical
λΛ-calculus. It is based on the property that a reduction that is the transitive
closure of another one enjoying the Diamond Property is confluent.

Lemma 1.2.25 (Diamond property of ⇒∆).
If M ⇒∆ N0 and M ⇒∆ N1 then there is N2 such that both N0 ⇒∆ N2 and
N1 ⇒∆ N2.

16 1. The Parametric λ-Calculus

Proof. By Lemma 1.2.24, M ⇒∆ N implies N ⇒∆ [M]∆. So, if M ⇒∆ M1

and M ⇒∆ M2, then both M1 ⇒∆ [M]∆ and M2 ⇒∆ [M]∆, as shown in
Fig. 1.1 (pag. 15). �

M
∆

��

∆

��

∆∗

��

∆∗

��

N1
0 ∆

��

∆

��

. . .
∆

�� Nn0
0 ∆

��

∆

��

N0

∆

��

N1
1 ∆

��

∆

��

[M1]∆
∆

��

∆

��

. . .
∆

�� . . .
∆

�� ...

∆

��
...

∆

��

...

∆

��

∆∗

��

...

∆

��
Nn1

1 ∆
��

∆

��

...

∆

��

...

∆

��
N1

∆
�� . . .

∆
�� . . .

∆
�� . . .

∆
�� N2

Fig. 1.2. Diamond closure.

� Proof of Confluence Theorem (Theorem 1.2.5 pag. 8).
By Property 1.2.21.(iii),→∗

∆ is the transitive closure of⇒∆. This means that
there are N1

0 , ..., N
n0
0 , N1

1 , ..., N
n1
1 (n0, n1 ≥ 1) such that M ⇒∆ N1

0 ... ⇒∆

Nn0
0 ⇒∆ N0 and M ⇒∆ N1

1 ... ⇒∆ Nn1
m ⇒∆ N1. Then the proof follows

by repeatedly applying the diamond property of ⇒∆ (diamond closure), as
shown in Fig. 1.2. �

The rest of this subsection is devoted to the proof of the standardization
theorem. First, we need to establish some technical results.

Let M ⇒◦
∆ N denote “M →◦

∆ N and M ⇒∆ N”.
The following lemma, at the point (ii), shows that a nondeterministic parallel
reduction can always be transformed into a standard reduction sequence.

1.2 The λ∆-Calculus 17

Lemma 1.2.26. Let �P , �Q be two sequences of terms such that ‖ �P‖ = ‖ �Q‖;
moreover, let Pi ∈ ∆ and Pi ⇒◦

∆ Qi for all i ≤ ‖ �P‖.

(i) If M ⇒◦
∆ N then M [�P/�x]⇒◦

∆ N [�Q/�x].
(ii) If M ⇒∆ N then M ⇒◦

∆ N .

Proof. Parts (i) and (ii) can be proved by mutual induction on M .

(i) By Lemma 1.2.22, M [�P/�x] ⇒∆ N [�Q/�x], hence it suffices to show that
M [�P/�x] →◦

∆ N [�Q/�x].
Let M ≡ λy1...yh.ζM1...Mm (h,m ∈ N), where either ζ is a variable or
ζ ≡ (λz.T)U .
If h > 0, then the proof follows by induction.
Let h = 0, thus N ≡ ξN1...Nm such that ζ ⇒◦

∆ ξ and Mi ⇒◦
∆ Ni; fur-

thermore, let M ′
i ≡Mi[�P/�x] and N ′

i ≡ Ni[�Q/�x] (1 ≤ i ≤ m).
The proof is organized according to the possible shapes of ζ.

1. Let ζ be a variable. If m = 0 then the proof is trivial, so let m > 0.
There are two cases to be considered.
1.1. ζ 	∈ �x, so ξ[�Q/�x] ≡ ζ. By induction Mi[�P/�x] →◦

∆ Ni[�Q/�x] and
the standard reduction sequence is

ζM ′
1...M

′
m →◦

∆ ζN ′
1M

′
2...M

′
m →◦

∆ →◦
∆ ζN ′

1...N
′
m.

1.2. ζ ≡ xj ∈ �x (1 ≤ j ≤ l), so ξ[�Q/�x] ≡ Qj . But Pj ⇒◦
∆ Qj means

that there is a standard sequence Pj ≡ S0 →∆→∆ Sn ≡ Qj
(n ∈ N). Two cases can arise.
1.2.1. ∀i ≤ n, Si 	≡ λz.S′. Then the following reduction sequence

σ : S0M
′
1...M

′
m →∆ →∆ SnM

′
1...M

′
m

is standard. Since by induction Mi[�P/�x]→◦
∆ Ni[�Q/�x], there

is a standard reduction sequence

τ : SnM ′
1...M

′
m →◦

∆ SnN
′
1M

′
2...M

′
m →◦

∆ →◦
∆ SnN

′
1...N

′
m.

Note that S0M
′
1...M

′
m ≡M [�P/�x] and SnN ′

1...N
′
m ≡ N [�Q/�x],

so σ followed by τ is the desired standard reduction sequence.
1.2.2. There is a minimum k ≤ n such that Sk ≡ λz.S′.

By induction on (ii), M1 ⇒◦
∆ N1. Therefore, by induction

M1[�P/�x] ⇒◦
∆ N1[�Q/�x], where M1[�P/�x] →◦

∆ N1[�Q/�x] is
M1[�P/�x] ≡ R0 →∆ →∆ Rp ≡ N1[�Q/�x] (p ∈ N). There
are two subcases:

18 1. The Parametric λ-Calculus

1.2.2.1. ∀i ≤ p, Ri 	∈ ∆. Then the following reduction sequence:

σ′ : M [�P/�x] ≡ S0R0M
′
2...M

′
m →∆→∆ SkR0M

′
2...M

′
m

→∆→∆ SkRpM
′
2...M

′
m

→∆ Sk+1RpM
′
2...M

′
m →∆→∆ SnRpM

′
2...M

′
m

is also standard. Moreover, since Mi[�P/�x] →◦
∆ Ni[�P/�x], the

following reduction sequence:

τ ′ : SnRpM ′
2...M

′
m →◦

∆

SnRpN
′
2M

′
3...M

′
m →◦

∆ →◦
∆ SnRpN

′
2...N

′
m

is also standard. Clearly σ′ followed by τ ′ is the desired stan-
dard reduction sequence.

1.2.2.2. There is a minimum q ≤ p such that Rq ∈ ∆. So

σ′′ : M [�P/�x] ≡ S0R0M
′
2...M

′
m →∆→∆ SkR0M

′
2...M

′
m

→∆→∆ SkRqM
′
2...M

′
m →∆ Sk+1RqM

′
2...M

′
m

→∆→∆ SnRqM
′
2...M

′
m →∆→∆ SnRpM

′
2...M

′
m

is a standard reduction sequence. The desired standard re-
duction sequence is σ′′ followed by τ ′.

2. Let ζ ≡ (λz.T)U . ThusN ≡ (λz.T̄)ŪN1...Nm orN ≡ T̄ [Ū/z]N1...Nm,
where T ⇒∆ T̄ , U ⇒∆ Ū and Mi ⇒∆ Ni (1 ≤ i ≤ m).

By induction, U ′ ≡ U [�P/�x] ⇒◦
∆ Ū [�Q/�x] ≡ U ′′, T ′ ≡ T [�P/�x] ⇒◦

∆

T̄ [�Q/�x] ≡ T ′′ and M ′
i ≡Mi[�P/�x]⇒◦

∆ Ni[�Q/�x] ≡ N ′
i (1 ≤ i ≤ m).

Let U ′ ≡ R0 →∆ ...→∆ Rp ≡ U ′′ (p ∈ N) be the standard sequence
U ′ →◦

∆ U ′′. Without loss of generality let us assume z 	∈ �x.
2.1. Let N ≡ (λz.T̄)ŪN1...Nm. There are two cases.

2.1.1. ∀i ≤ p Ri 	∈ ∆. Then the standard reduction sequence
M [�P/�x]→◦

∆ N [�Q/�x] is

(λz.T ′)R0M
′
1...M

′
m →∆→∆ (λz.T ′)RpM ′

1...M
′
m

→◦
∆ (λz.T ′′)RpM ′

1...M
′
m →◦

∆ (λz.T ′′)RpN ′
1M

′
2...M

′
m

→◦
∆ →◦

∆ (λz.T ′′)RpN ′
1...N

′
m.

2.1.2. There is a minimum q ≤ p such that Rq ∈ ∆. Thus the
desired standard reduction sequence is:

(λz.T ′)R0M
′
1...M

′
m →∆→∆ (λz.T ′)RqM ′

1...M
′
m

→◦
∆ (λz.T ′′)RqM ′

1...M
′
m →∆→∆ (λz.T ′′)RpM ′

1...M
′
m

→◦
∆ (λz.T ′′)RpN ′

1M
′
2...M

′
m →◦

∆ →◦
∆ (λz.T ′′)RpN ′

1...N
′
m.

1.2 The λ∆-Calculus 19

2.2. Let N ≡ T̄ [Ū/z]N1...Nm. So, there is a minimum q ≤ p such
that Rq ∈ ∆; let µ be the standard reduction sequence:

M [�P/�x] ≡ (λz.T ′)R0M
′
1...M

′
m →∆ →∆ (λz.T ′)RqM ′

1...M
′
m

→∆ T ′[Rq/z]M ′
1...M

′
m.

T ⇒◦
∆ T̄ , by induction on (ii). Furthermore, since Rq ⇒◦

∆ U ′′, it
follows by induction that T [�P/�x][Rq/z]⇒◦

∆ T̄ [�Q/�x][U ′′/z].
Let T [�P/�x][Rq/z] ≡ T0 →∆ →∆ Tt ≡ T̄ [�Q/�x][U ′′/z] be the
corresponding standard reduction sequence. Two subcases can
arise:
2.2.1. ∀i ≤ t, Ti 	≡ λz.S′. The desired standard reduction se-

quence is µ followed by:

T ′[Rp/z]M ′
1...M

′
m ≡ T [�P/�x][Rp/z]M ′

1...M
′
m →∆ T1M

′
1...M

′
m

→∆→∆ TtM
′
1...M

′
m →◦

∆ →◦
∆ TtN

′
1...N

′
m ≡ [�Q/�x]

2.2.2. Let k ≤ t be the minimum index such that Tk ≡ λy.T ′
k.

The construction of the standard reduction sequence depends
on the fact that M2 may or may not become an input value,
but, in every case, it can be easily built as in the previous
cases.

(ii) The cases M ≡ x and M ≡ λz.M ′ are easy.
1. Let M ≡ PQ⇒∆ P ′Q′ ≡ N , P ⇒∆ P ′ and Q⇒∆ Q′.

By induction, there are standard sequences P ≡ P0 →∆ ...→∆ Pp ≡
P ′ and Q ≡ Q0 →∆ ...→∆ Qq ≡ Q′.
If ∀i ≤ p Pi 	≡ λz.P ′

i , then M →◦
∆ N is P0Q0 →◦

∆ PpQ0 →◦
∆ PpQq.

Otherwise, let k be the minimum index such that Pk ≡ λz.P ′
k.

- If ∀j ≤ q Qj 	∈ ∆, then M →◦
∆ N is

P0Q0 →∆→∆ PkQ0 →◦
∆ PkQq →∆ Pk+1Qq →∆→∆ PpQq.

- If there is a minimum h such that Qh ∈ ∆, the standard sequence
is P0Q0 →◦

∆ PkQ0 →◦
∆ PkQh →∆ Pk+1Qh →◦

∆ PpQh →◦
∆ PpQq.

2. Let M ≡ (λx.P)Q ⇒∆ P ′[Q′/x] ≡ N where P ⇒∆ P ′, Q ⇒∆ Q′

and Q ∈ ∆. Hence P ⇒◦
∆ P ′ and Q ⇒◦

∆ Q′ follow by induction, so
P [Q/x] ⇒◦

∆ P ′[Q′/x], by induction on (i). Thus, the desired stan-
dard reduction sequence is (λx.P)Q→∆ P [Q/x]→◦

∆ P ′[Q′/x]. �

In order to prove the standardization theorem some auxiliary definitions
are necessary.

Definition 1.2.27. Let M,N ∈ Λ.

(i) M →i
∆ N denotes that N is obtained from M by reducing a redex that is

not the principal redex.
(ii) M ⇒i

∆ N denotes M ⇒∆ N and M →∗i
∆ N .

20 1. The Parametric λ-Calculus

According to this new terminology, a set of input values is standard, in
the sense of Definition 1.2.9 (pag. 10), if and only if M 	∈ ∆ and M →∗i

∆ N
imply N 	∈ ∆.

Lemma 1.2.28. M ⇒∆ N implies there is P such that M →∗p
∆ P ⇒i

∆ N .

Proof. Trivial, by Lemma 1.2.26.(ii).
Notice that it can be M ≡ P , by definition of →∗p

∆ . �

Example 1.2.29. Let M ≡ (λxy.I(λz.IK(II)))I ⇒Γ λyz.IKI.
Therefore M →p

Γ λy.I(λz.IK(II)) →p
Γ λyz.IK(II) ⇒i

Γ λyz.IKI and
clearly λyz.IK(II) ∈ Γ .

Note that if ∆ is standard and R is the principal redex of M and M →∗i
∆ N ,

then R is the principal redex of N .

Lemma 1.2.30. Let ∆ be standard.
M ⇒i

∆ P →p
∆ N implies M →∗p

∆ Q⇒i
∆ N , for some Q.

Proof. By induction on M . If either M ≡ λx.M ′, or the head of M
is a variable, then the proof follows by induction. Otherwise, let M ≡
(λy.M0)M1...Mm; thus it must be P ≡ (λy.P0)P1...Pm. Note that M ⇒i

∆ P
implies Mi ⇒∆ Pi (1 ≤ i ≤ m). Now there are two cases, according to
whether P1 ∈ ∆ or not.

• Let P1 ∈ ∆; it follows that P1 is the argument of the principal redex of P ,
thus N ≡ P0[P1/y]P2...Pm.
Let M1 ∈ ∆. Then we can build the following reduction sequence:
M ≡ (λy.M0)M1...Mm →p

∆ M0[M1/y]...Mm ⇒∆ P0[P1/y]P2...Pm, which
can be transformed into a standard one by Lemma 1.2.28.
Let M1 	∈ ∆ and P1 ∈ ∆; since the set ∆ is standard, M1 ⇒∆ P1 ∈ ∆ if
and only if M1 →∗p

∆ P ′
1 ⇒i

∆ P1, where P ′
1 ∈ ∆. But this would imply that

in the reduction M ⇒i
∆ P the principal redex of M1 has been reduced; but

by definition the principal redex of M1 coincides with the principal redex
of M , against the hypothesis that M ⇒i

∆ P . So this case is not possible.
• Let P1 	∈ ∆. Then there is j ≥ 0 such that the principal redex of Pj

is the principal redex of P . Let j ≥ 2; so ∀k ≤ j Pk is a normal form.
So N ≡ (λy.P0)P1...P

′
j ..Pm, where Pj →p

∆ P ′
j . From the hypothesis that

M ⇒i
∆ P , it follows that Mi ≡ Pi (0 ≤ i ≤ j − 1), and Mi ⇒∆ Pi

(j < i ≤ m). Then by induction there is P ∗
j such that Mj →∗p

∆ P ∗
j ⇒i

∆ P ′
j ,

and we can build the following reduction sequence:

(λy.M0)M1...Mm →∗p
∆ (λy.M0)M1...P

∗
j Pj+1...Pm ⇒∆ (λy.M0)M1...P

′
j ...Pm

which can be transformed into a standard one by Lemma 1.2.28.
The case j < 2 is similar. �

This Lemma has a key corollary.

1.3 ∆-Theories 21

Corollary 1.2.31. Let ∆ be standard.
If M →∗

∆ N then M →∗p
∆ Q⇒i

∆ . . .⇒i
∆︸ ︷︷ ︸

k

N , for some Q and some k.

Proof. Note that if P →∆ P ′ then P ⇒∆ P ′. So M →∗
∆ N implies M ⇒∆

N1 ⇒∆ ... ⇒∆ Nn ⇒∆ N . So, by repeatedly applying Lemma 1.2.28 and
Lemma 1.2.30 we reach the proof. �

Now we are able to prove the standardization theorem.

� Proof of Standardization Theorem (Theorem 1.2.10 pag. 10).
The proof is given by induction on N . From Corollary 1.2.31, M →∗

∆ N
implies M →∗p

∆ Q →∗i
∆ N for some Q. Obviously, the reduction sequence

σ : M →∗p
∆ Q is standard by definition of →p

∆. Note that, by definition of
→∗i
∆, Q →∗i

∆ N implies that Q and N have the same structure, i.e. Q ≡
λx1...xn.ζQ1...Qn and N ≡ λx1...xn.ζ

′N1...Nn, where Qi →∗
∆ Ni (i ≤ n)

and either ζ and ζ′ are the same variable, or ζ ≡ (λx.R)S, ζ′ ≡ (λx.R′)S′,
R→∗

∆ R′ and S →∗
∆ S′.

The case when ζ is a variable follows by induction. Otherwise, by induction
there are standard reduction sequences σi : Qi →◦

∆ Ni (1 ≤ i ≤ n), τR :
R→◦

∆ R′ and τS : S →◦
∆ S′. Let S ≡ S0 →∆→∆ Sk ≡ S′ (k ∈ N).

If ∀i ≤ k Si 	∈ ∆ then the desired standard reduction sequence is σ followed
by τS , τR, σ1, ..., σn.
Otherwise, there is Sh ∈ ∆ (h ≤ k). In this case, let τ0

S : S0 →∆→∆ Sh
and τ1

S : Sh+1 →∆→∆ Sk; the desired standard reduction sequence is σ
followed by τ0

S , τR, τ
1
S , σ1, ..., σn. �

1.3 ∆-Theories

In order to model computation, ∆-equality is too weak. As an example,
let ∆ be either Λ or Γ . If we want to model the termination property,
both the terms DD and (λx.xxx)(λx.xxx) represent programs that run for-
ever, while the two terms are 	=∆ each other. Indeed DD →∆ DD and
(λx.xxx)(λx.xxx) →∆ (λx.xxx)(λx.xxx)(λx.xxx). So it would be natural to
consider them equal in this particular setting. But if we want to take into
account not only termination but also the size of terms, they need to be dif-
ferent; in fact, the first one reduces to itself while the second increases its
size during the reduction. As we will see in the following, for all instances of
∆ we will consider, all interesting interpretations of the calculus also equate
terms that are not =∆.

Let us introduce the notion of ∆-theory.

Definition 1.3.1. (i) T ⊆ Λ× Λ is a congruence whenever:
• (M,M) ∈ T for each M ∈ Λ,

22 1. The Parametric λ-Calculus

• (M,N) ∈ T implies (N,M) ∈ T ,
• (M,P) ∈ T and (P,N) ∈ T imply (M,N) ∈ T ,
• (M,N) ∈ T implies (C[M], C[N]) ∈ T , for all contexts C[.].

(ii) T ⊆ Λ× Λ is a ∆-theory if and only if it is a congruence and M =∆ N
implies (M,N) ∈ T .

We will denote (M,N) ∈ T also by M =T N .
Clearly a ∆-theory equating all terms would be completely uninteresting.

So we will ask for consistency.

Definition 1.3.2. (i) A ∆-theory T is consistent if and only if there are
M,N ∈ Λ such that M 	=T N . Otherwise T is inconsistent.

(ii) A ∆-theory T is input consistent if and only if there are M,N ∈ ∆ such
that M 	=T N . Otherwise T is input inconsistent.

(iii) A ∆-theory T is maximal if and only if it has no consistent extension,
i.e. for all M,N ∈ Λ such that M 	=T N , any ∆-theory T ′ containing T
and such that M =T ′ N is inconsistent.

Property 1.3.3. Let T be a ∆-theory.
If T is input consistent then it is consistent.

Proof. Obvious. �

In the last section of this book, we will see that in order to use a λ∆-
calculus for computing, we need to work inside theories that are both consis-
tent and input consistent.

∆-theories can be classified according to their behaviour with respect to
the ∆-solvable terms.

Definition 1.3.4. (i) A ∆-theory is sensible if it equates all ∆-unsolvable
terms.

(ii) A ∆-theory is semisensible if it never equates a ∆-solvable term and a
∆-unsolvable term.

Another important notion for ∆-theories is that of separability. In fact,
this property help us to understand what equalities cannot be induced by a
theory.

Definition 1.3.5. Let ∆ be a set of input values.
Two terms M,N are ∆-separable if and only if there is a context C[.] such
that C[M] =∆ x and C[N] =∆ y for two different variables x and y.

Property 1.3.6. Let M,N be ∆-separable.
If T is a ∆-theory such that M =T N then T is input inconsistent.

1.3 ∆-Theories 23

Proof. Let C[.] be the context separating M and N , i.e. C[M] =∆ x and
C[N] =∆ y for two different variables x and y. Since =T is a congruence,
M =T N implies C[M] =T C[N], and so, since T is closed under =∆,
x =T y. But this implies λxy.x =T λxy.y, i.e. K =T O. But, since =T is a
congruence, this implies KMN =T OMN for all terms M,N . In particular,
if M,N ∈ ∆ then M =T N by ∆-reduction. �

A theory is fully extensional if all terms in it (not only abstractions)
have a functional behaviour. So, in a fully extensional theory, the equality
between terms must be extensional (in the usual sense), i.e., it must satisfy
the property:

(EXT) Mx = Nx⇒M = N x 	∈ FV(M) ∪ FV(N).

Clearly =∆ does not satisfy (EXT). In fact, (EXT) holds for =∆ only if it
is restricted to terms that reduce to an abstraction: indeed, xy =∆ (λz.xz)y,
but x 	=∆ λz.xz.

The least extensional extension of =∆ is induced by the η-reduction rule,
defined as follows:

Definition 1.3.7 (η-Reduction).

(i) The η-reduction (→η) is the contextual closure of the following rule:
λx.Mx→η M if and only if x 	∈ FV(M);
λx.Mx is a η-redex and M is its contractum;

(ii) M →∆η N if N is obtained from M by reducing either a ∆ or a η redex
in M ;

(iii) →∗
∆η and =∆η are respectively the reflexive and transitive closure of →∆η

and the symmetric, reflexive and transitive closure of →∆η.

The next theorem shows an interesting result for η-reduction.

Theorem 1.3.8. =∆η is the least extensional extension of =∆.

Proof. It is immediate to check that =∆η is extensional. In fact, for x 	∈
FV(M), Mx =∆η Nx implies λx.Mx =∆η λx.Nx (since =∆η is a congru-
ence), and this implies, M =∆η N by =η.
On the other hand, let T be a fully extensional ∆-theory, i.e. Mx =T Nx
implies M =T N . For x 	∈ FV(M), (λx.Mx)x =T Mx, since (λx.Mx)x →∆

Mx, and thus by (EXT), λx.Mx =T M . So T is closed under =η. �

In the literature, full extensionality is called simply extensionality. We use
this name to stress the fact that it is also possible to define weaker notions
of extensionality. We will develop this topic in Sect. 8.1.

