7. How to Reason about Velocity Relationships

In constrained linkage mechanism analysis, apart from knowing configura-
tions and trajectories, it i1s desirable to know the velocities of various links
as well as their interrelationships given certain kinematic constraints. This
chapter introduces a method for deriving instantaneous velocity relationships
among constrained bodies of a mechanism. The method utilizes the qualita-
tive kinematic properties (i.e., instantaneous rotation center) of mechanisms,
and permits computationally efficient solution to the problem of deriving
velocity relationships.

Liu [132] previously proposed a qualitative approach to velocity analy-
sis based on instantaneous rotation centers. His approach relied on a set of
naive spatial inference rules and generated spatial envisionments which were
sometimes considered too ambiguous to be practically useful. The current
work, however, derives instantaneous centers by means of the qualitative-
quantitative configuration analysis as presented in Chapter 6. Since the qual-
itative configuration modeling step is based on a complete set of trigonometric
rules and of reasonable precision, the results of spatial analysis will contain
less uncertainty. Furthermore, since quantitative spatial relationships are gen-
erated for each instantaneous configuration, successive qualitative modeling
of instantaneous rotation centers will avoid the problem of combinatorial

complexity caused by the ambiguous envisionments.

7.1 Instantaneous Rotation Center

Before describing the qualitative approach to velocity analysis, it will be
useful to recall one of the properties of an instantaneous rotation center (in-

stantaneous center) [91], that is,

The instantaneous linear velocities of points on a given link are per-
pendicular to the lines joining these points with an instantanecous

center.
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Based on the V-direction axiom, the instantaneous center of an individ-
ual link in a linkage can be located. Consider the four-bar linkage, as shown
in Figure 7.1. It can be readily realized that point D is a point on both link
L3z and link L4. As a point on L4, D moves with respect to L; about the
center A and thus in a direction normal to L4 itself. The motion of D on L3
with respect to Lq 1s in a direction perpendicular to L4. Hence, by definition,
the instantaneous center will lie on the line through D and the direction of
L4. Similar reasoning can be applied to infer that the instantaneous center
of Lz must also lie on the line through point C' normal to Ls. Hence, Pj3 is

at the intersection of two lines extended from L, and L4.

24

Fig. 7.1. An illustration of instantaneous rotation centers. By means of building
instantaneous centers, the problem of qualitatively describing velocity relationships
can be reduced to that of qualitative spatial analysis.

The concept of instantaneous centers is essential to motion analysis. It
provides a geometric method in determining the relationship between two
linear velocities of the same mechanism. The relative instantaneous velocities

have the following geometric property:

The instantaneous linear velocity of a pownt on a given link is pro-

portional to its radius of instantaneous rotation.
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Based on the V-magnitude axiom, it is possible to determine the ve-
locity distribution on each link, and to infer the motion transferred from one
link to another.

It is important to point out that the notion of instantaneous rotation can
be applied not only to derive the linear velocity relationships, but also to
infer angular velocity relationships. As an example, shown in Figure 7.1, the
instantaneous center for the relative motion of links Ly and L4, namely Poy,
1s found at the intersection of two lines extended from L; and Ls. The two
links behave instantaneously as though they were spur gears having internal

contact at Psy. Hence, their angular velocity ratio is given by

Wy _ BP24
Wy o AP24

tog = (71)

which provides a simple and quick method of finding the instantaneous an-
gular velocity relationships.

The idea of instantaneous centers has in fact been employed in classical
kinematics for analyzing velocities. However, such an analysis is mainly based
on the graphical construction of all the centers and the visual determination
of the distances from a given center to certain points on the corresponding
link. In order to locate the centers, it usually requires the use of Kennedy’s
Theorem [91], which states that the centers of any three planar bodies lie on
a straight line.

In the method presented below, the same concept of instantaneous cen-
ters 1s used. Instead of graphically analyzing a linkage and constructing its
centers, this method applies the qualitative-quantitative configuration analy-
sis algorithm, as presented in Section 6.1, to infer the approximate locations
of the centers. The location of an instantaneous center is determined ac-
cording to axioms of instantaneous velocity direction and magnitude (i.e.,
V-direction and V-magnitude, respectively). The distances from a given
center to other points of interest are first qualitatively inferred using algo-
rithm QUALITATIVE CONFIG, and then quantitatively located using algorithm
ANNEAL (the simulated annealing). Thereafter, the analysis of instantaneous

velocity relationships in the linkage is carried out.

7.2 Velocity Relationship Analysis

This section discusses how to reason about the transfer of motion between

two links as well as the velocity distribution on a given link. The qualitative-



104 7. How to Reason about Velocity Relationships

quantitative analysis of velocities will be illustrated with linkage examples.

Definition 7.2.1 (Velocity distribution and motion transfer). Given
any instantaneous configuration of the linkage, the velocity distribution in a
certain link 1s defined as the absolute linear velocities of a set of points on
the link. The absolute linear velocity relationship between a driver link and a

driven link is referred to as motion transfer.

In general, there are two primary types of motion transfer problems to
be considered, with respect to whether the desired velocity is on a floating
link or on a follower link. They are denoted as TransFlt and TransFlw
types, respectively. The only distinction between the follower link and the
floating link is that the former has one fixed end-point (i.e., connected to a
fixed link where the frame of reference is located), whereas the latter has no
fixed end-point. Under each of these two types, there exist two situations to
be distinguished, depending on whether the input and the desired velocities
are located in a single four-bar (or equivalent) linkage, or in two different
four-bar linkages. These situations will be denoted by subscripts “within”
and “between”, respectively. Hence, in total, the analysis method will deal
with four specific types of problems, as illustrated in Figure 7.2.

The details of the method are given as follows in an algorithm for analyz-
ing motion transfer (C_-VELOCITY). It should be noted that when the velocities
of two or more points on a given link are analyzed, the velocity distribution of
this link is obtained. Hence, the velocity distribution problem can be viewed

as a special case of the motion transfer problem.

Algorithm c_vELOCITY

Input: Link lengths and a driver joint angle in a linkage mechanism
(qualitative or quantitative), linear velocity of a specific link, and
point(s) whose relative velocity is of interest.
Output: Quantitative velocity relationships.

1. Linkage decomposition: Find a set of independent sub-
linkages (equivalent to four-bar linkage mechanisms) from the
given linkage.

2. Velocity input: If the input linear velocity is not located at
an end-point, compare distances from the fixed end-point of the

link to that location, and to another end-point.
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(@) TransFlt,p (b) TransFlt,,,..,

(c) TranSFlei,/,,-,, (d) TranSFle@zw@en

Fig. 7.2. Taking the linkage mechanism of Figure 6.4 for example, four types of
qualitative velocity distribution problems can be identified, depending on whether
or not the desired velocity (at point ) is on a floating link, and also whether or
not the input velocity (at point r) and the desired velocity (at point z) are located
in a single four-bar (or equivalent) linkage.

3. Instantaneous center: Start with the sub-linkage containing
a given driver link. Locate the instantaneous center of its floating
link by applying algorithm I_CENTER (see below).

4. If it 1s a TransFlty;thin problem, or a Trans* x*kpegyeen problem
and the linkage shares its floating link with another sub-linkage,

a) Compare distances from the fixed end-point to the driver
link and to the floating link.

b) Ifitis a TransFltyitnin problem, based on obtained distance
ordering, derive the velocity relationship between the known
driver link and the desired point, and exit; else go to Step 6.

5. Ifitis a TransFlwyithin problem, or a Transx*petyeen problem

and the linkage shares its follower link with another sub-linkage,
a) Compare distances from the fixed end-point to the driver link
and to the follower link. If the desired point or the shared
axis is not an end-point, further compare distances from the

fixed end-point to the free end-point and to the desired point.
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b) Ifitis a TransFlwyithin problem, based on distance ordering
obtained, derive the velocity relationship between the driver
link and the desired point, and exit.

6. If the relative velocity at the final desired point is found, then

exit; else find an associated sub-linkage and go to Step 2.

Symbol *** denotes either Flt or Flw.
The following algorithm provides details on how to locate an instanta-

neous axis for a floating link, as illustrated in Figure 7.3.

Algorithm I_CENTER

Input: Link lengths and a driver joint angle of a four-bar linkage (or
equivalent) mechanism (qualitative or quantitative).
Output: The quantitative location of an instantaneous rotation cen-
ter O of the floating link with respect to the fixed link L.
1. Determine the joint angles from an intermediate link L, (con-
necting Ly and Ls) to Lz and Ls.
2. IF MAX(faq,034) < 023 THEN
a) IF SUM(f2,614) < m OR SUM(fs3,034) > 7 THEN
0@, = SUM(OP, La) and OQ2 = SUM(OPs, Ly) (see Fig-
ure 7.3a), where OP; and O P, with respect to Lz are com-
puted from DIFF(mr, f23) and DIFF(, fl34).
b) ELSE
0@ = DIFF(OPy, L) and OQy = DIFF(OP,, L4) (see Fig-
ure 7.3b), where OP; and O P> with respect to Lz are com-
puted from 653 and 0s4.
3. IF MAX(f2q,034) > 023 THEN
a) IF 0y, > 03, THEN
0@, = DIFF(OPy, Ly) and OQ2 = SUM(OP;, L4) (see Fig-
ure 7.3¢), where OP; and OP; with respect to Lz are com-
puted from DIFF(7,f634) and fas.
b) ELSE
0@ = DIFF(Ly,OP;) and OQy = DIFF(L4, OPs) (see Fig-
ure 7.3d), where OP; and O P> with respect to Lz are com-
puted from 034 and @s3.

@; denotes the joint angle between links L; and L;. The lengths and joint an-
gles are determined using the QUALITATIVE CONFIG and ANNEAL algorithms.
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SUM(%, x), DIFF(*, %), MAX(*, %), and MIN(x, *) denote the sum, difference, max-

imum, and minimum of the two given parameters, respectively.

(c) (d)

Fig. 7.3. Given a specific instantaneous configuration of a linkage, algorithm
I_CENTER can generate spatial descriptions of the corresponding instantaneous cen-
ter for a floating link.

Figure 7.4 presents a schematic review of the method for deriving instan-

taneous velocity relationships in a mechanism.
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Fig. 7.4. A schematic review of the method for deriving instantaneous velocity
relationships.
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This section illustrates how algorithm C_VELOCITY can be applied to the qual-

itative velocity analysis, using the same linkage example shown in Figure 6.4.

Example 7.1: Velocity Relationships in a Four-Bar Linkage

Consider the mechanism shown in Figure 6.4, the motion trans-
ferred from an input crank (L) to a slider (Lg) is to be analyzed,
as indicated in Figure 7.5. By applying graph searching, two inde-
pendent four-bar linkages, A and B, can be found, and further, by
definition, it is known that the problem is of TransFlwpetween type.

The velocity analysis starts with the linkage containing the driver
link, i.e., linkage A. As the location of the linear velocity on the driver
link is at its end-point, Step 2 of C_VELOCITY is bypassed. Next,
the instantaneous rotation center of the floating link in linkage A is
determined. In doing so, the above-mentioned I_CENTER algorithm is
applied to obtain O1@Q11; and 01012, with respect to L, from 615
and 641, and O1P;y and Oy P9, with respect to Lz, from 6,3 and
f34. From the results of O Py; and O1 Py, the velocity relationship
between Vp,, and Vp,, can be derived. Having computed the velocity
at the joint of L3 and L4 with respect to the axis of Ly, it is possible
to further analyze the velocity Vp,, at the shared joint Ps;.

Next, the second linkage, B, with the shared link as its driver link
is considered, and the previous steps are repeated. Note that the in-
stantaneous center of the slider is located at infinity. Thus, by apply-
ing I_CENTER, O3 P55 and Os P»; can be derived, and consequently the
relationship between Vp,, and Vp,,. If all the velocity relationships
obtained are combined, an approximate quantitative description of
the motion transfer from La to Lg, i.e., a relationship between Vp,,
and Vp,,, will be obtained.

Example 7.2 1s concerned with the velocity relationships in an
ellipsograph mechanism, as shown in Figure 7.6. Suppose that O
i1s motionless with respect to a global fixed frame of reference. The
constraint at point A allows the floating link ABP to translate along

the y-axis and to rotate about the z-axis, while the constraint at point

Example 7.2: Velocity Constraints in an Ellipsograph Mechanism
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Ve, is given

Vb, is desired

Fig. 7.5. An illustration of the velocity analysis with the same mechanism shown in
Figure 6.4. There are two independent sub-linkages identified in this linkage. The
velocity relationships are derived with algorithm C_VELOCITY. The instantaneous
centers are computed with algorithm I_CENTER. In this mechanism, links i and L~
are both fixed with respect to a frame of reference. All the kinematic joints, except
the joint between links Lg and L (a sliding joint), are revolute joints.
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B allows ABP to translate along the z-axis and to rotate about the
z-axis. The velocity at point P of the floating link relative to the

velocity at A is desired.

-

[0) Lp, 5
b
B Ve

7§

Fig. 7.6. Velocity analysis for an ellipsograph mechanism. In the mechanism, A
translates along the y-axis and B translates along the z-axis. The velocity at point
P, Vp, relative to the velocity at A, V4, is desired.

In order to derive the velocity at point P, the intersection of
La and Lp (i.e., the instantaneous center of the link ABP) is first
located, which is denoted by I. Then, from the given position, £Z@, of
the link, the relationships between lengths A7 and BI and between
Va and Vg are inferred. Similarly, the relationship between Vp and
V4 can be obtained. Furthermore, the direction of Vp is known from
LAIP.If Vp is expressed by a motion vector, then the approximate
values of the velocity vector components in the x and y directions
can be derived.

As the link moves, it may be desirable to know how Vp should
change correspondingly in order to maintain V4. Based on the above
reasoning, the change can be readily analyzed. More specifically, with
respect to the triangle AAIP, if the angle ZP AT increases by a cer-
tain value, ZAIP and the distances Al and /P will change accord-

ingly. As a result, a new velocity Vp can be determined.
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7.4 Notes on the Application of Velocity Analysis

As a robotic application, the velocity analysis method illustrated in Exam-
ple 7.2 can be used to identify external velocity constraints in a robot’s task
environment. Such velocity constraints are taken into account in program-
ming the robot’s compliant motions for certain manipulation tasks (such as
turning the crank of the mechanism, as shown in Figure 7.6) [94, 189].

Mason [147] has proposed a method of planning robot compliant mo-
tions. This method requires that velocity constraints of individual links be
propagated to a common point at the robot’s effector by means of linear
translational and rotational transformations. The new constraints obtained
can then be translated into specific control strategies. This method outputs
accurate velocity constraint information with respect to given task configu-
ration and trajectory, provided that the information on the task geometry as
well as appropriate linear transformations are given.

In real-world robot manipulation tasks, it may not be possible to ob-
tain exact geometric information about a mechanism. Furthermore, the lin-
ear transformations for performing velocity propagations are usually difficult
to formulate. In such cases, the method described in Sections 7.2 and 7.3

becomes handy to use.

7.5 Relative Motion Method of Analyzing Velocities

In the preceding sections, we have shown a qualitative geometric reasoning
method formulated especially for the analysis of motion relationships in link-
age mechanisms. Although the method may further be modified to handle
more general CSI mechanisms, the resulting algorithm will conceivablely be
complicated and dependent on the mechanisms being analyzed.

In this section, we will discuss a more general approach to deriving the
qualitative description of linear velocities in CSI mechanisms based on in-
dividual bodies’ relative motions. Typically, the information required is a
description of the mechanism’s configuration specifying qualitative positions
(e.g., angular positions in the case of four-bar linkages) with respect to a set
of local reference frames (i.e., relative coordinate systems as given in Defini-
tion 3.1.5).

From the definition of relative motion, we know that an absolute velocity
may be expressed in terms of a sequence of velocities relative to an absolute

velocity. In such a case, we say that the absolute velocity satisfies a velocity
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constraint equation. The fundamental idea of qualitative analysis with the
relative velocity method is that, since we can find a set of motion vectors (see
Figure 6.21) which qualitatively indicates the direction of relative motion, and
an actual velocity vector is in fact proportional to its corresponding motion
vector, we can write a velocity constraint equation describing the motion
of a kinematic chain in terms of relative motion vectors. Furthermore, by
evaluating and selecting sets of vector modifiers in the equation, we will be

able to qualitatively determine both relative and absolute linear velocities.

7.5.1 Axioms and Theorems in Revolute or Prismatic-Pairing
Body Motion

Of the various methods for transmitting motions, revolute and prismatic pair-
ing methods are of the most interest in qualitative kinematics. Examples of
mechanisms using these methods are linkages. In linkages, the motion of one
link relative to another satisfies a certain constraint imposed by their inter-
mediate pairs, and the velocity can be determined given the link’s relative
instantaneous position. In other words, it 1s possible to describe the con-
strained motion of a mechanism composed of such links in terms of the sum
of individual links’ relative motions.

Before we can qualitatively analyze the motions of a CSI mechanism using
the relative motion approach, we will first formulate some fundamental ax-
ioms, theorems, and constructions concerning the motion of CSI mechanism

components.

Revolute-Pairing Bodies. Suppose that body A is connected to body B
by means of a revolute pair. In this case, the motion of A relative to B
may be described in terms of the motion of A with respect to a reference
frame on B originated at the rotational axis. In the foregoing discussion,
we will use Cartesian coordinate systems as the relative reference frames.
The relative instantaneous angular position of a given point on body A is
defined as the smallest non-negative angle formed by the z-axis and the line
segment passing through the point and its rotational axis. Hence, no matter
in which quadrant the line segment lies, its relative angular position (#) is

always within the range of [0, 7].

Axiom 7.5.1 Let a point on the body A be in rotation with respect to a
reference frame and let | be the line segment passing through the point and its
rotating axis. If the rotation is counterclockwise, then when [ is in the first
quadrant, the motion vectors corresponding to the set of qualitative angles
can be described as wn Table 7.1.
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g = va~ va™T a” at

(mz,my) | (-5, v])  (-m, 1) (-I, m) (-vl, s)

Table 7.1. Relative motion vectors of a rotating point in quadrant I.

Theorem 7.5.1 (Change of direction). In Aziom 7.5.1, if the point ro-
tates in an opposite direction, then the corresponding motion vectors will have

the same magnitudes as before, but with opposite directions.

Theorem 7.5.2 (Symmetrical property of a circular motion). In Az-
tom 7.5.1, ifl 1s in the second quadrant, then the direction of the y-coordinate
components (my ) in the corresponding motion vectors will change from pos-
wtive to negative. If | is in the third quadrant, then the © and y components
wmn the corresponding motion vectors will both change directions. If [ is in the
fourth quadrant, then the x components in the corresponding motion vectors

will change direction.

In general, it is always possible to determine the constrained motion of a

mechanism from its reversed motion.

Theorem 7.5.3 (Inversion of a constrained motion). Suppose that
some constrained relative motion in a constrained closed-loop kinematic
chain, A, is qwen. If one link of A moves over its entire range of motion,
but with an opposite driving direction at each position, then the motions of

all links in A reverse their directions.

Prismatic-Pairing Bodies. The relative motion between two bodies A and
B of a prismatic pair can be described in the same way as that of the revolute

pair. A reference frame for the motion of A is fixed on B.

Axiom 7.5.2 [f the x-axis of the Cartesian system is parallel to a common
tangent on the contact surface, then the motion of A relative to the frame

can be described in terms of A’s relative motion vector, (+vl,0).

Axiom 7.5.3 The prismatic motion of A relative to B is equivalent to the

rotation of A relative to B with its center at infinity.

Having understood the relative motion vectors of revolute-pairing and
prismatic-pairing mechanism components, we can readily determine the con-
strained motion of an intermediately connected (e.g., linkage) mechanism,
the details of which will be shown in Chapter 7.5.
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7.5.2 Kinematic Modeling

In order to derive a velocity constraint equation, we will first find the relative
motion vectors at the pairs of links (here the term link is used in a general
sense). In general, corresponding to a specific chain progression in a derived
mechanism graph, there exists a directed kinematic chain, py = p; —=/2
P2 sl P, Where pgp_1 b pi denotes that link I; is directed from
lower pair pgp_1 to pg. In this chain, the local relative coordinate system for
link I;; will be centered at the pairing contact pg_1 on {x_1. In other words,
the determination of positions for local reference coordinate systems in a
mechanism will depend on the direction we choose for the chain progression.
Given a set of relative reference frames, the derivations of relative motion
vectors 1n relation to specific pairing contacts can be based on the axioms
and theorems presented in Section 7.5.1.

As we know, an actual velocity vector has the same direction as its corre-
sponding motion vector and their magnitudes are proportional to each other.
Therefore, having obtained the motion vectors of a set of connected links,
we can further find a constraint equation of the actual velocity vectors. In
doing so, we may apply the following two theorems of constrained kinematic

chains.

Theorem 7.5.4 (Loop postulate). The algebraic sum of relative actual
velocity vectors associated with the consecutive lower pairs of links in a simple

closed-loop kinematic chain s zero.
From Theorem 7.5.4, it is possible to further derive the following theorem:

Theorem 7.5.5 (Vertex postulate). The actual velocity vectors of two

links with respect to the same frame are equal at their lower-pairing contact.

7.6 Qualitative Analysis of Relative Velocities

In this section, we discuss how to derive the qualitative description of motion
of any specific link given the kinematic model of a CSI mechanism expressed

in terms of an actual velocity constraint equation.

7.6.1 Solving Velocity Constraint Equations

The essence of qualitative reasoning about the motion of a CSI mechanism

lies in the use of a heuristic search technique to modify the qualitative values
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of velocity vectors in a constraint equation initialized by motion vectors. The
problem of heuristic search for appropriate velocity values can be stated as
follows:

Given an initial representation of a velocity constraint equation, as ex-
pressed in terms of relative motion vectors, determine for each motion vector
a sequence of modifiers such that the resulting vectors best satisfy the equa-
tion. This set of vectors is considered a qualitative solution of the velocity
equation and therefore gives the absolute or relative velocities of links in the
mechanism.

Here, the vectors that best satisfy the velocity equation are defined as
those which, as compared to others resulting from further applying modifiers,
yield the smallest error with respect to the equation. In order to obtain
the overall best solution, the heuristic search is carried out in such a way
that at each iteration all the possible modifiers are evaluated and those that
can give a temporary best solution with respect to the previous vectors are
selected. During each modification of velocity vectors, the derivations and
evaluations of qualitative vectors are constructed from the inference rules
of qualitative vector operation. The modified velocity vectors are termed

intermediate velocity vectors or temporary velocity vectors.

7.6.2 An Algorithm for Determining Linear Velocities

An algorithm for determining linear velocities of a CSI mechanism utilizing

the relative motion representation is given as follows:

Algorithm LINEAR VELOCITY

Input: A representation of the mechanism’s configuration in terms
of the instantaneous position of each link with respect to some local
reference frame at its lower pair.
Output: The desired velocity vector of a given link with respect to
a fixed or moving link.
1. Derive a mechanism graph representation of the CSI mechanism.
2. Determine the independent loops in the graph which correspond
to the constrained kinematic subchains in the mechanism.
3. Find the subchain which contains a link whose relative velocity
at a certain pair 1s given.
4. Divide the subchain into two distinct chain progressions directed

from the fixed link to the known pair.
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5. For each chain progression, according to the given direction, ex-
press the velocity at the known pair in terms of the relative ve-
locities of consecutive links. Connect these two expressions into
a velocity constraint equation (Theorem 7.5.5).

6. For each chain progression, find the relative motion vectors
of links utilizing the axioms and theorems presented in Sec-
tion 7.5.1.

7. Transform the actual velocity vector terms in the original velocity
constraint equation into corresponding modified motion vectors.
If a relative velocity term is the given velocity then write its
qualitative value.

8. Modify the set of motion (or intermediate) vectors in the new
equation by using vector modifiers until the resulting vectors
yield the smallest qualitative error in the original constraint
equation. In each step of modification, all combinations of pos-
sible modifiers are evaluated and the (temporarily) best one is
selected and applied.

9. Let the set of resulting intermediate vectors be the qualitative
solution of the original velocity constraint equation. If the desired
relative velocity between two links is within the current loop,
then find 1ts qualitative vector value by adding or subtracting the
consecutive relative velocities in the given progression direction;
else find the absolute velocity value of the link shared by another
independent loop and consider the subchain corresponding to the

new loop back to Step 4.

It should be noted that the temporarily best modifiers for a set of inter-

mediate velocity vectors, as mentioned in Step 8, are defined such that
maz(|Eeil, | Byil) = min{maz (| Ee;|, | By;])}

where E; and E,; denote the x and y velocity-component errors of the con-
straint equation, respectively, resulting from applying one of the four mod-
ifiers, j. Ey; and Ey; denote the errors resulting from applying temporarily

best modifier 1.
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7.7 An Example

In this section, we present an example of qualitative reasoning about instan-
taneous linear velocities of a linkage mechanism with the relative motion
method.

Example 7.3: Relative Motions in a Quick-Return Mechanism

The linkage to be analyzed is a quick-return mechanism, as shown
in Figure 7.7, where the velocity of point d is desired and Vj, is given
as a qualitative row vector ({,[). Tt can be noted that if the velocity
at point b4 which lies on the link 4 is known, then V; can be inferred
by comparing the distances from the axis ¢ to b4 and to d. Therefore,
the subgoal of the velocity analysis becomes the determination of

linear velocity at b4.

Fig. 7.7. A quick-return mechanism.

To begin the analysis, we represent the mechanism in an equiv-
alent mechanism graph. Since component 3 is constrained to slide
along link l4, we can obtain an equivalent linkage mechanism by
adding an imaginary link [, between ls and l4. The corresponding
mechanism graph is given in Figure 7.8. It is obvious that the de-

rived graph contains only one independent loop.
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Ly

Fig. 7.8. The mechanism graph of a quick-return mechanism shown in Figure 7.7.

The next step is to construct a velocity constraint equation from
the graph. We divide the loop into two distinct chains from one fixed
joint to the known joint by and, for each of the two chains, write Vj, in
terms of the sum of pairwise relative velocities. As the linear velocity
at the endpoint of link /2 relative to the fixed link /3 1s given, Vi, .,
i.e., the velocity derived from the chain containing l», will be written
in terms of the known qualitative row vector (/,/). Consequently, by
Theorem 7.5.5 (vertex postulate), we can write a velocity constraint

equation for this particular closed-loop mechanism as follows:

Visetala. = Vosets (7.2)

or
Vl4/11 + Vla/l4 = (lal) (73)

where V, /1, and V_;, denote the velocities of links [4 and I, relative
to Iy and Iy, respectively.

We know that the velocities Vi, /1, and V,_,;, are proportional to
their corresponding relative motion vectors my,;, and my, ;. There-

fore, Eq. 7.3 can further be approximately rewritten as
Ay, 4 Aamy, i, = (L 1) (7.4)

where A; and Ay denote the series of qualitative vector modifiers to
be found. The relative motion vectors, corresponding to the given
configuration, are shown in Figure 7.9. They are derived straightfor-
wardly from Axioms 7.5.1, 7.5.2, and Theorem 7.5.1.

Having obtained Eq. 7.4, the next step of velocity analysis is to
evaluate the possible combinations of the predefined modifiers and

assign the best suitable set to the equation. The criterion is that the
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2 My, = (1)

by

M, =(/+1 +/-m)

M . = (+/-m, +/-1)

la/i4 —

Fig. 7.9. The relative motion vectors of links in the mechanism of Figure 7.7.

intermediate vectors resulting from applying modifiers should yield
the smallest error in Eq. 7.3. This step is repeated until the error
cannot be further reduced. Table 7.2 shows such an iterative process
and Table 7.3 gives the details of the qualitative modifier evaluations
in Step 3. In the tables, the qualitative inferences involved are based
on the rules given in Section 7.5.1 and the error of Step ¢ is defined

as follows:

Ei =Ml + 2 v, (7.5)

where A% and Ao’ denote the qualitative vector modifiers being ap-
plied in Step ¢, and vl(z/_li) 1(2711) denote the intermediate vectors
resulted from the iterative Step ¢— 1. Note that in Step 3 the modifier

Inverse is not evaluated. This is because the directions of velocities

and v

have been modified in Step 1 and therefore the remaining steps will
deal only with magnitudes.

From Table 7.2 it may be noticed that since the error cannot be
further reduced, the value of v,/ , i.e., (s, —vs), will be considered
as the approximate value of Vi, /;,, the qualitative value of the linear
velocity of link {4 at the instantaneous pairing point b4 relative to
fixed link [;. Therefore, by comparing the distances from the fixed
axis ¢ to by and to d, we can determine the qualitative value of the

linear velocity at d. As given in the instantaneous configuration of



7.8 Summary
Steps )\177114/11 )\lea/l4 Voot Errors
0 (=1, m) (m,1) 0 (—vl,m)
1 Inverse(—l,m) Identity(m,1) 3 m,—m)
= (I,—m) = (m,l)
2 | Decrease(l,—m) Identity(m,l) ) (s,—9)
= (m, —s) = (m,l)
3 | Decrease(m,—s) Identity(m,1) LY (vs,—vs)
= (s, —vs) = (m,l)

Table 7.2. The modifications of motion (and intermediate velocity) vectors.

this problem, distance cd is almost twice as long as distance cba,

which is to say that the magnitude of Vy is similarly twice as large

as that of Vp,. Hence, we can derive the qualitative value of V4, to be

({,—s). This step is readily understood by following the discussion

presented in Chapter 6.
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Steps Increase  Decrease  Identity Uiyt Vi iy Vg iy Errors
3a Ai° Ag® - ({,—m) ¥ (s,m) {, =) (s,=1)
3b Ar? - Ag? [, —m) + (m, 1) {, =) (m, —m)
3¢ - X ? Ao? (s, —vs)+ (m,1) (1=, 1)  =(vs,—vs)
3d Ao? X ? - (Lvl) + (s, —vs) (=40 (s5,0)
3e Ao? - X ? (1, vl) + (m, —s) ()] (m, —vs)
3f N >\23 >\13 (m,l)-|—(m,—s) (lv_l) (57_5)
3g | A2 A° - (4, vl) + (I, =m) (=4, 1) {, —s)
3h - A2 A ? (s,m) + (s, —vs) (=L (0,—3)

Table 7.3. The evaluations of qualitative modifiers in Step 3.

7.8 Summary

In this chapter, we have shown how to analyze the velocity relationships of

a linkage mechanism given its dimensional specifications. We have developed

an algorithm for the velocity analysis, which applies the kinematic concept

of instantaneous axis. This approach, although computationally efficient, is

to some extent limited to the analysis of linkage-like mechanisms.

Later in this chapter, we showed how to utilize the relative motion vector

representation of mechanism components and to generate solutions by resolv-

ing qualitative motion constraint equations. Although this approach appears

to be less computationally efficient than the qualitative trigonometric rea-

soning approach, it is more applicable in solving general CSI mechanism

problems.
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The algorithms described in this chapter are designed particularly for
solving instantaneous velocity problems. It should be noted that these algo-
rithms can also be extended to handle the kinematic state transitions of a
moving CSI mechanism. In such a case, the analysis should be preceded by a
step consisting of partitioning the value of an input displacement into a quan-
tity space and computing the set of corresponding qualitative configurations,

as mentioned in the previous chapters.
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