I ntroduction

The book presents some of the fundamental ideas of Logic for Computer Science.
It introduces classical notions of mathematical logic to computer scientists and the
new ideas brought by the theory of complexity. Given a problem, it is important
to know if there is an algorithmic solution, i.e. if the problem can be solved by
an automatic procedure based on a finite set of instructions. The classical notions
of mathematical logic, such as decidability, completeness and incompleteness are
used to answer this question. When an algorithmic solution exists, it is then im-
portant to know if there exists an efficient solution, i.e. an automatic procedure
which uses few resources such as time or space. Complexity theory introduces
notions such as NP-completeness, reductions, approximations which are used to
answer this refined question. We present these concepts from the viewpoint of
logic, called descriptive complexity and emphasize the roles of randomness and
approximation. The presentation is divided into three parts:

Part 1. Model theory and recursive functions. We introduce the basic model
theory of propositional, first order, inductive definitions and second order logic.
Then, we define recursive functions, show their equivalence with Turing com-
putable functions, prove the completeness of first order logic and the incomplete-
ness theorems.

Part 2. Descriptive complexity. The functions computable in polynomial time
are called effectively computable and can be defined as global recursive functions
on classes of finite ordered structures. Decision problems of other complexity
classessuchas AC, NC, LOGSPACE, NLOGSPACE, NP, PH, have similar log-
ical characterizations and allow to view complexity questions as definability prob-
lemsinlogic. Thisapproach is caled descriptive asit isindependent of any model
of computation.

Part 3. Approximation. Randomized algorithms in polynomial time define the
classBPP for decision problemswhich generalizesthe classP and the classIP (In-
teractive proofs) for verification problems which generalizes the class NP. Other
models of verification include PCP (probabilistic checkable proofs) and property
testing. Some optimization problems and counting problems can also be approx-
imated according to their logical form. The PCP techniques allow one to prove
non-approximability results.



2 INTRODUCTION

The design of programming languages, query languages and specification lan-
guages follows many logical principles presented in the first part of the book. The
second part explains the rel ationshi p between the definitions of algorithms, queries,
properties of programs and their computational complexity. For many classical
tasks such asthe verification of programs, optimization problems or counting prob-
lems, it is essential to first study the complexity of these problems. When the de-
gree of unfeasibility is too high, approximation techniques presented in the third
part of the book can be useful.

Thisbook isbased on two books by the same authors, in French: Logique et Fonde-
ments de I’ Informatique, published in 1993 and Logique et Complexité, published
in 1996 (Editions Hermes, http://mmw.editions-hermes.fr). The first part is the
trandation of some of the chapters of the first book, whereas the second and third
parts of the present book are tranglations of the second book with additional new
subjects. We will maintain: http://mww.Iri.fr/~mdr/logicbook/ for the corrections
of some of the exercises, remarks and updates.

Most of the presented material appears in the books: Computational complexity
by C. Papadimitriou [Pap94], Descriptive Complexity by N. Immerman [Imm99],
and Finite Model Theory by H. D. Ebbinghaus and J. Flum [EF91].

We wish to thank all our colleagues who helped us on the French books, in partic-
ular Stéphane Boucheron, Miklos Santha and Avy Sharell. In addition, we thank
Mikagl Cozic, Miki Hermann, Isabelle Bril and our translator Elena Calude for
their contribution on this English version. We bear the responsibility for the errors
which remain in this book.



Part 1

Basic model theory and computability






CHAPTER 1
Propositional logic

Propositional logic, or propositional calculus, is an elementary mathematical sys-
tem that constitutes a minimal kernel common to all logical systems. It plays the
role of asimplified construction which will be generalized to more expressive sys-
tems. We study the construction of this language and its semantic interpretation,
i.e. the objects denoted by expressions of the language.

In thefirst section, we define the set of propositional for mulas. The second section
is dedicated to the interpretation of formulas in terms of truth values (true, false).
This interpretation gives rise to notions of equivalent formulas and logical conse-
guence. The equivalence relation between formulas captures the main properties of
propositional logic. The normal forms are presented in the third section. Ordered
binary decision diagrams (OBDD) are defined in the fourth section. They provide
a data structure to represent boolean functions and are used in some verification
tools, such as model checkers.

1.1. Propositional language

The purpose of this section is to define the set of propositional formulas and to
show how this type of definition — present in all branches of mathematical logic —
can be used to study properties of formulasin a chosen language.

1.1.1. Construction of formulas. The propositional language is character-
ized by a collection of symbols, called alphabet .A, which includes:

e aset P={p,q,r,...}, finiteor countable, of symbolscalled propositional
variables,
¢ the set of connectives (or logical symbols), which are = ( not), A (and),
V (or), — (imply), <> (equivalent to),
¢ the parentheses (and).
The connective — is unary and the others are binary. A word, or an expression, is
afinite sequence of elements of .4. The length of aword is equal to the number of
symbols composing it. The set of words constructed with the help of alphabet A is
denoted by .A*.

Concatenation is a composition rule defined on .A* which associates with the two
words u, v the word obtained by juxtaposing the sequence « with v: the new word
is denoted by uv. A word « is an initial segment of aword v if aword w exists

5



6 1. PROPOSITIONAL LOGIC

such that v = uw. The relation defined on .A* by “« isan initial segment of v” is
an order relation.

Example. The sequences of symbols —p, (—=p A (¢ V r)) and (p A Vqr) are
words belonging to A*.
Theword (—p isaninitia segment of (—p A (¢ V 1)).

From thelogical point of view only some of the words of .4*, are interesting: these
are what we call formulas. In the previous example, only thefirst two expressions
are formulas, in contrast to the last one.

DEFINITION 1.1. The set of propositional formulas, built with P, is the smallest
set F such that:

¢ all propositional variablesarein F,

o if F e F,then—-F € F,

o if G € F,then(FANG) € F,(FVG) e F,(F—G) e Fand
(F < G)eF.

The set 7 is well defined. There are sets satisfying these three conditions: for
example, the set A* consisting of all words. Among al these sets, there is one
set smaller than al the others: their intersection. This intersection is not empty
because it contains the set P of propositional variables. The set of formulas can
also be characterized in another way, by using the induction principle.

Let P be aproperty depending on non-negative integers. If P satisfies:
e Pistruefor 0 (respectively for the non-negative integer ny),
o if Pistruefor n, thenitistruefor n + 1,

then P istruefor all n (respectively, for al n > nyg).

DEFINITION 1.2. The sets F,, are defined by induction on n:
o fo = P,
e For1=F,U{-F :FeF,}U{(FaG):F.GeF,}
wherea isA, VvV, — Or <.

It is easy to see that the sequence (F,,) . iSincreasing (exercise).
PROPOSITION 1.1. The set F of propositional formulasisequal to|J,,c n Fn.

Proof : Theset U,cn Fr stisfiesthe conditions of the definition of 7:

o all propositiona variablesare in Fy;
o if e F,,then—F € Fp1;
o if F,G € U,cn Fn, thenthere exist n,m such that F' € F, and G € F; if
p = sup(n,m), F,G € F, andtheformulas (F A G), (FV G), (F — G) and
(F < G) arein Fpyq.
Therefore, the set | J,, . F» contains F, which is the smallest set satisfying these condi-
tions. In order to obtain the inclusion in the opposite direction, it is sufficient to show that
for every non-negative n, F,, C F. This property can be proved by induction on n:



1.1. PROPOSITIONAL LANGUAGE 7

e Fo=PCF,
e assumethat F,, C F by induction hypothesis. From the definition of F,; and
the fact that the set F is closed under all connectives, it followsthat 7,11 C F.

This concludes the proof.O

DEFINITION 1.3. Therank of aformula F' isthe smallest non-negative integer n
suchthat F € F,,.

Example. Theformula F' = (=p A ((¢ V r) — s)) hasrank 3.
p,q,r,s haverank 0,

-, (¢ V r) haverank 1,

((gVvr) —s)hasrank 2.

1.1.2. Proof by induction. In this section numerous results will have the
form: let P be a property of formulas; then the set of al propositional calculus
formulas having the property P is equal to . In order to prove these results,
we will not use a reasoning by induction on non-negative integers but instead, a
proof by induction on the formulas. Thistype of proof isjustified by the following
proposition:

PropPoOsSITION 1.2. Let P be a property of formulas, satisfying the following con-
ditions:
¢ all propositional variables have the property P,
¢ if G isaformula with the property P, then the formula -G has the prop-
erty P,
o if C);,H are formulas with the property P, then all formulas (G A H),
(GV H),(G— H), (G < H) havethisproperty.
Then all propositional formulas have the property P.

Proof : Let £ beaset of formulasin F with property P. In order to deduce the equality
F = € itissufficient to show that F C €. According to the hypothesis, the set £ contains
all propositiona variables and is closed under the application of operators. Therefore it
contains F, which is the smallest set verifying these conditions. O

The following proposition is a simple example of proof by induction on the set of
propositional formulas and is left as an exercise.

ProposITION 1.3. Every formula has exactly the same number of opening and
closing parentheses.

1.1.3. Decomposition of a formula. The following proposition provides an
answer to the question: given a particular formula, are there different ways to
decomposeitin“simpler formulas’ ?

PrROPOSITION 1.4. Let F' be a formula. Then F' has one and only one of the
following forms:



8 1. PROPOSITIONAL LOGIC

(1) apropositional variable,

(2) -G, where G isaformula,

(3) (G A H),where G, H areformulas,
4 (G vV H),where G, H areformulas,
(5) (G — H),whereG, H areformulas,
(6) (G < H),whereG, H areformulas.

Furthermore, in cases 2, 3, 4, 5 and 6, theformulas G, H are uniquely determined.

The existence of a decomposition is easily obtained from the definition of the set
of formulas. The uniqueness is more difficult to establish and requires two inter-
mediary results, which are stated in the exercises.

DEFINITION 1.4. Asubformula of F' isa formula which appearsin the decompo-
sition of F.

We define the notion of tree which will be used for the representation of the de-
composition of aformula.

DEFINITION 1.5. Atreeisaset T provided with an applicationh : T — N and
abinary relation P C T? satisfying the following conditions :

e thereisaunique element rof T, called theroot , such that h(z) = 0,

o for any element y of T', except the root, there is a unique element x such
as (z,y) € P, what we also note P(x, y),

e foranyz € T,if (x,y) € P,thenh(y) = h(x) + 1.

The elementsof 7" are called nodes. For any = € T', h(x) iscaled thelevel of x. If
(z,y) € P, z issaid the predecessor or the father of y, and y a successor or a son
of . A node without successor is aleaf. The decomposition of formulas justifies
the following method which alows one:

¢ to decide whether a given expression isaformula,

¢ in the case of a positive answer, to construct a decomposition tree for
thisformula, i.e. atree whose nodes are labelled by subformulas which
occur in the expression. If F' is a propositional variable (case 1 of the
decomposition), the corresponding node « is aleaf. In case 2 of the de-
composition, the node a has one successor labelled by G. In cases 3,4,5
and 6 of the decomposition, the node « labelled by a formula F has two
descendants nodes labelled by the formulas G and H.

Example. Isthefollowing expression aformula?
F=(((-peqV(rAs))—p)

F hastheform (F} — Fy) where F, = p isapropositional variable,

F, hastheform (F5 Vv Fy),

F; hastheform (F; < Fy) where F5 = —F;, Fs = g and F; = p are proposi-
tional variables,

F, hasthe form —F; and Fg and is of the form (Fy A Fio), where Fy = r and



1.2. SEMANTICS 9

Fo = s are propositional variables.

(((kp & @) V(rAs)) —p)

AN

(kFpe g Vva(ras) p

(—p < q) =(r —s)
/ \ |
P q (rAs)

/\

FIGURE 1.1. A tree decomposition.

Hence the expression F' is aformula. Furthermore, its tree decomposition shows
how it is constructed. Propositional variables are the labels of the leaves and the
subformulas are the labels of the nodes. The formula F is the label of the root of
the tree. The tree decomposition of F' is presented in the Figure 1.1.

Example. Theformulas(—p « ¢), (rAs) and p are subformulas of the formula
F in the previous example.

1.2. Semantics

Semantics is defined as the interpretation of formulas in terms of their truth val-
ues (true, false). A valuation, that is a distribution of truth values on the set of
propositional variables, allows the determination of the truth value of the formula.
In what follows, O represents the value false and 1 the value true. We use iff asan
abbreviation for if and only if.

DEFINITION 1.6. AvaluationV isafunction fromthe set of propositional variables
P into {0,1}.

PROPOSITION 1.5. Let V bea valuation. Thereisa unique extension V of ¥V on F
satisfying the following conditions:
(1) forall peP,V(p) =V(p),
(2) if Fis=G, then V(F) = 1iff V(G) = 0,
(3) if Fis(G A H),thenV(F) = 1iff V(G)
(4) if Fis(GV H),then V(F) = 0iff V(G)

(H) =1,
H

=V(H)=1
=V(H) =0,



10 1. PROPOSITIONAL LOGIC

(5) if Fis(G — H),thenV(F) = 0iff V(G) = 1and V(H) = 0,
(6) if Fis(G < H),thenV(F) = 1iff V(G) = V(H).

Proof : Thedistribution V is defined by induction on formulas.
e Case 1 givesthe definition for propositional variables.
e If Fis—G and V(G) isaready defined (induction hypothesis), weput V(F) = 1
if V(G) = 0and V(F) = 0 otherwise.
o If Fis(GAH)and V(G), V(H) are aready defined (induction hypothesis), we
put V(F) = 1if V(G) = V(H) = 1and V(F) = 0 otherwise.
The proofs for the other cases are similar: the values V(G) and V(H) alow one to define
V(F) satisfying conditions (4), (5) or (6), respectively. The function V iswell definedin a
unigue way according to the decomposition. The uniqueness of the extension of V' isleft
as an exercise: if we suppose that there are two extensions, it is easy to show by induction
on formulas, that they are equal. O

Example. Thevaue of theformula((p — ¢) A (¢ V r)) for the valuation of V
defined by V(p) = V(¢) =0and V(r) = 1is1.

One way to represent the conditions stated in the previous proposition is to con-
struct a table giving the values of V(F'), as a function of the different possible
values of V, from the immediate subformulas of F'. It is easy to construct truth
tablesfor the binary operators A, v, — :

G|\H|GANH|GVH |G—H
00 0 0 1
01 0 1 1
1|0 0 1 0
11 1 1 1

Henceforth, each valuation V given on P is extended to the set of all formulas, F,
and we also dencteits extension by V.

1.2.1. Tautologies. Equivalent formulas. The interpretation of formulas al-
lowstheir classification: two formulas with the same interpretation will be grouped
in the same class. A particularly interesting classisthe class of formulaswhich are
alwaystrue.

DEFINITION 1.7.

o Aformula F' issatisfied by avaluation V if V(F') = 1.

¢ Atautology isaformula satisfied by all valuations.

¢ Two formulas F, G are said to be equivalent if for every valuation V,
V(F) =V(G);, wewrite F = G.

Example. Thefollowing formulas are examples of tautologies:

(p—p)



1.2. SEMANTICS 11

(p— (¢ —p))
(p=(a—=r)=(p—=q9) = @—71))
((=p = @) = ((=p = —~q) = p))
The following pairs of formulas are examples of equivalences:

——p and p

(p — q) and (=pV q)
(p+ q) and ((p — q) A (¢ — D))
(pA(gVvr))and((pAg)V(pAT))

We note that two formulas F,G are equivalent iff the formula (F' + G) isa
tautology. The binary relation = defined on the set of formulasby: F = G iff F,G
are equivalent, is an equivalence relation (exercise).

1.2.2. Logical consequence. From the point of view of semantics, one of the
fundamental questionsis to determine whether one formulais a consequence of a
given set of formulas.

DEFINITION 1.8. Let X be a set of formulas and F' a formula.

o Aformula F issaidto beaconsequence of ¥ if every valuation satisfying
all formulas of X2, also satisfies the formula F'.

o A set of formulas ¥ is said to be satisfiable if there exists a valuation
which satisfies all formulas of .

Example. Theformulag isaconsequence of theset {p, (p — ¢)}.
The set of formulas {p, (p — ¢), —q} isnot satisfiable.

PROPOSITION 1.6. Any formula F' isa consegquence of the set of formulas X iff the
set ¥ U {=F} isnot satisfiable.

Proof : If every vauation satisfying X also satisfies F, then there is no valuation satisfy-
ing both ¥ and —F'. The converseis easily shown by contraposition: if thereisavaluation
satisfying ¥ and not satisfying F', then this valuation satisfies both ¥ and —F'. O

1.2.3. Value of a formula and substitution. The value of aformula, for ex-
ample ((p — q) A (¢ Vv r)) can be determined for any given valuation . But how
can we calcul ate the truth value of acomplex formula using truth values of simpler
formulas? In this paragraph we answer this question: it is sufficient to compose
truth values as in the case of propositional variables. In the first reading, it is pos-
sible to omit the general case treated within the theorem and its corollary. In fact,
the study of properties stated in the following examples are sufficient for the con-
struction of normal forms.



12 1. PROPOSITIONAL LOGIC

The notation F'(p1, p2, ..., pr) Specifies that the formula F' contains propositional
variables among p1, p2, ..., p». The following proposition expresses a rather intu-
itive property: in order to compute the truth value of a formula, it is sufficient to
check the values taken by the propositional variablesinvolved in thisformula.

PROPOSITION 1.7. Let F'(py, ..., p,,) besomeformulaand V a valuation. Then the
value V(F') depends only onthevaluesV on py, ..., p,,.

Proof : By induction on formulas.
e If Fisapropositiona variable p;, the statement istrue.
e Suppose that the values V(G), V(H) only depend on those of V on py, ..., p,
(induction hypothesis). If F'is -G then the property is equally true for F' since
V(F) only depends on those of V(G). If Fis (G A H), the property is still
truefor F' since V(F') only dependson V(G), V(H). The proof issimilar for al
other cases.

O

DEFINITION 1.9. An occurrence of thevariable p in some formula F' isa position
whereit appearsin F.

Let G be aformula. The formula obtained by the substitution of G for p in F,
denoted F'(G/p), isthe formulaobtained by replacing al occurrencesof p in F' by
the formulaG.

DEFINITION 1.10. The formula F'(G/p) is defined by induction on formula F':

e if F'isapropositional variablep, F'(G/p) istheformula G;

e if F'isa propositional variable ¢ distinct fromp, F(G/p) isthe formula
F;

o if F"hastheform—H, F'(G/p) istheformula —-H (G/p);

e if F' has form FiaF», where o is a binary connective, F'(G/p) is the
formula F1 (G /p)aF>(G/p).

Example. The substitution of the formula (¢ — r) for the variable ¢ in the
formula((p = q¢) A (g Vv r)) is:

(p=(g=r)Allg—=r)Vr))

Let F, G, H be some formulas. Suppose we know the values V(F), V(G), V(H).
How could we, for example, determine the value of V(((F' — G) A (G V H)))?
The following proposition answers this question.

PROPOSITION 1.8. Let F, G betwo formulasand V' a valuation whose value for G
isknown. Thevalue of theformula F'(G /p) for thevaluation V isequal to thevalue
of the formula F for a valuation V' satisfying: V'(p) = V(G) and V'(q) = V(q)
for each ¢ distinct from p.

Proof : The proof isby induction on formula F.



O

1.2. SEMANTICS 13

If F'isapropositional variable p, then the statement istrue. If F'issomevariable
q digtinct from p, F(G/p) isqand V'(F) = V(q) = V(F).
Assume that the property istrue for theformula H, i.e.

V(H(G/p)) = V'(H)
If F' hastheform —H, then:
V(F(G/p)) =1iff V(H(G/p)) =0
VI(F)=1iff V'(H) =0

Theinduction hypothesis allows one to obtain the desired condition for F'.
Assume the property istrue for formulas Fi, F5. If F hasthe form (F} A Fy),
thevaluesof V, V' in F will satisfy:

V(F(G/p)) = 1iff V(F1(G/p)) = V(F2(G/p)) =1
VI(F)=1iff V/(F) =V (F) =1

Once again, the induction hypothesis leads us to the desired conclusion. The
proof is similar for the other binary connectives.

COROLLARY 1.1. Let F, F', G, G’ beformulas and p a propositional variable.

e Iftheformula F is a tautology, then the formula F/(G/p) isalso a tautol -

ogy.

e If theformulas F' and F’ are equivalent, then the formulas F/(G/p) and

F'(G/p) arealso equivalent.

e If the formulas G and G’ are equivalent, then the formulas F/(G/p) and

F(G'/p) arealso equivalent.

The proof is |eft as an exercise. The following examples are direct consequences
of the corollary.

For every formula F, G, H, the following formul as are tautol ogies:

(F = F)
(F— (G —F))
(F—(G—H)— (F—-G) — (F— H)))

(2) For every formula F, G, H, the following formulas are equival ent:

——F=F
(F > G)=(-FVG)
(FoG) =(F—G)AG—F))



14 1. PROPOSITIONAL LOGIC
(3) If F = F'and G = G’, then the following formulas are equival ent:
—-F = —|F/
(FAG)=(F'ANG")
(FVG) = (F'vd)
(F—-G)=(F - &)
(F+ G)=(F G
Thefollowing equival ences of formulas expressthe main properties of connectives:
(1) commutativity:
(FAG)=(GAF)
(FVG)=(GVF)
(2) associativity:

(FA(GAH)) = ((FAG)AH)

(FV(GVH)=({(FVG)VH)
(3) idempotence:
(FAF)=F
(FVF)=F
(4) De Morgan’srules:
—~(FAG) = (—-FV-GQG)
-(FVG@G) = (=-FA-G)
(5) distributivity:
(FA(GVH)=((FAG)V(FAH))
(FV(GANH)=(FVG)AN(FVH))

(6) absorption:
(FA(FVG)=F

(FV(FAG)=F



1.3. NORMAL FORMS 15

1.2.4. Complete systems of connectives. The following proposition intro-
duces a set of connectives which allowsto express all propositional formulas.

ProPOSITION 1.9. Any propositional formula is equivalent to a formula con-
structed only with the connectives — and A.

Proof : The proof is obtained by induction on the formulas. It is true for propositional
variables. Assume the property is true for G, H, i.e. the formula G (respectively H) is
equivalent to the formula G’ (respectively H') built only with the connectives —, A.
e Let FF = —@, s0 F isequivalent to =G, which is aformula built only with the
connectives -, A, according to the induction hypothesis.
e Let FF=(GAH),so Fisequivalentto (G' A H'), whichisaformulabuilt only
with the connectives —, A, according to the induction hypothesis.
e Lt F=(GVH),F=(GVH'"). Using De Morgan's second rule and the fact
that K’ = —-— K, weget that F' = ~(—-G’ A —~H"), which isaformula built only
with the connectives —, A.
e letF=(G— H),F=(G'— H'),F=(=-G'V H'), whichisequivalent to
aformulabuilt only with the connectives —, A,, according to the previous case.
e let F=(G+ H),F=(G <+ H'),F=(G — H)A(H — G")), which
is equivalent to aformula built only with the connectives —, A, according to the
previous case.

This concludes the proof. O

Notice that the expression ' = G is arelation between two formulas and is not a
propositional formulal

DEFINITION 1.11. A set of connectives having the property stated in the above
proposition for {—, A} is called a complete system.

From the previous result, it is easy to deduce that the systems of operators {—, v},
{=, —} are complete; the proof is left as an exercise.

1.3. Normal forms

Normal forms are special formulas such that any formula can be transformed into
an equivalent normal form. We consider digjunctive and conjunctive normal forms.

1.3.1. Digunctive and conjunctive normal forms.

DEerINITION 1.12. Aliteral isa propositional variable or the negation of a propo-
sitional variable.

DEFINITION 1.13. Adigunctivenormal formisadigunction (FiV Fa V...V Fy)
of £ formulas (¢ > 1), where each formula F; (: = 1,2,...,k) isa conjunction
(Gi NGa A ... ANGy) of L literals (I > 1).

Example. Thefollowing formulas are disjunctive normal forms:
(pA@)V (=pA—q))

(pAgA=T)V(=pAQ))
(pA—q)



16 1. PROPOSITIONAL LOGIC

DEFINITION 1.14. A conjunctive normal form isa conjunction (F; A Fo A -+ A
F},) of k formulas (k > 1), whereeachformula F; (i = 1,2, ..., k) isadigunction
(Gl VGV -V Gl) of [ Ilterals(l > 1).

Example. The following formulas are conjunctive normal forms:
(e V@) A (pV—q))
((pV-gVr)A(=pVr)A(arVos))
(=pVaq)

1.3.2. Functions associated to formulas. The set P is now supposed to be
finitee. P = {p1,po,....,pn}. Thus there are 2" distinct valuations. Each for-
mula F(py,p2, ..., p,) defines a function fz from the set of valuations {0,1}7
into {0, 1} which associates the value V(F) to each valuation V. The following
property is obvious.

PropPosITION 1.10. Two formulas F, G are equivalent iff their associated func-
tions are equal.

COROLLARY 1.2. There are at most 22" propositional formulas, pairwise non-
equivalent, built with n variables.

Proof : Let F/ = be the quotient of the set of formulas by the equivalence relation
=. We associate the function fr to the equivalence class of some formula F. There
are 22" such functions because each one associates a valuation to {0,1} and there are
2™ such valuations. This application is an injection and therefore there are at most 22"
non-equivalent formulas. O

Thefollowing theorem claims that the function defined in the proof of the previous
corollary isin fact a bijection.

THEOREM 1.1. Every function f from {0,1}” to {0,1} can be represented by
aformula F(p1,po, ..., pr ), Mmeaning that there is some formula F'(p1, p2, ..., pn)
such that, for all valuations V', f(V) = V(F).

Proof : The proof is by induction on the number of propositional variablesn.

e If n = 1, there are four functions from {0, 1}” to {0, 1}: these functions can be
represented by the formulas p, —p, (p V —p), (p A —p).

e Assume the property true for n — 1 propositional variables.
Let P = {p1,p2,...,p,} and f be afunction from {0,1}” to {0,1}. Every val-
uation V' on {p1, po, ..., pn—1} €an be considered as arestriction of a vauation
YV on{pi1,p2,...,pn}. Letthefunction f,, respectively f,, be the restriction of
f tothe valuation V such that V(p,) = 0, respectively V(p,) = 1. fo, f1 are
functions from the set of valuations defined on {p, , p2, ..., p» } t0 {0,1} and are



1.3. NORMAL FORMS 17

represented by the formulas G(py, ..., pn—1) and H(p1, ..., pn_1), according to
the induction hypothesis. The function f can be represented by the formula:
(_‘pn A G(p17 "'7p71*1)) \ (pn A H(p17 ~-~7pn71)))

We conclude that any function from {0,1}” to {0,1} can be represented by a formula,
whatever the number of propositional variables. O

We obtain the existence of normal formsfor all propositional formulas.

COROLLARY 1.3. Every formulaisequivalent to a digunctive normal formand to
a conjunctive normal form.

Proof : Asin the previous proof, we prove this corollary by induction on the number n
of propositional variables.

e Inthecasen = 1, we consider the formulas above, which are both diunctive
and conjunctive normal forms.

e Assumethe property truefor n — 1 variables. Let fr be the function associated
to the formula F'(py, p2, ---, bn ). It is possible to construct aformulawhich rep-
resents fr, asin the proof of the previoustheorem. The formula F' is equivalent
to aformulaof theform (—p, A G) V (p, A H)), where G, H are equivalent to
digunctive normal forms:

G= (G VGV ..VGy)
H=(H VHy,V..VH)
(pn AG) = (mpn AGL) V (7P AG2) V.V (7pn A Gi))
which is a disjunctive normal form,
(pn ANH) = ((pn A H1) V (Do AH2) V.oV (P A Hy))

which isaso adisjunctive normal form. The formula F' isthen equivaent to the
disunction of these two disjunctive normal.

In order to obtain a conjunctive normal form, the induction hypothesis produces two con-
junctive normal forms G and H. The equivalence used in this case is:

F=((=pn VH)A(pnV Q)

and we obtain a conjunctive normal form for the formula F. O

1.3.3. Transformation methods. In practice, two main methods are used to
obtain adisunctive or conjunctive normal form. Thefirst method consistsin trans-
forming formulas by successive equivalences using the following rules, applied in
this order:

(1) eiminatethe connectives — and <> by using the following equivalences:
(F - G)=(-FVQG)
(F < G)=((-FVG)AN(FV-QG))
(2) push the negation asfar inside as possible:
—(FAG) = (-FV-G)
-(FVG)=(—-FA-G)



18 1. PROPOSITIONAL LOGIC

(3) usethedistributivity of A and Vv:
(FAGVH)=({(FANG)V(FAH))
(FV(GANH)=((FVG)AN(FV H))

Example. Determine disjunctive and conjunctive normal forms of the formula
=(p + (¢ — r)). Theformulaistransformed by successive equivalences:

“((p—=(@—=r)A({g—71)—Dp)
“((=pV (=g Vr))A(=(=gVr)Vp))
(=(=pV (g V1))V =(=(=gVr)Vp))
(pA=(=g V1)V ((—gVr)A-p))
(pAgA=T) V(=g V1) A-p))
(PAgA=T)V(=pA=q)V (=pAT))
which isadisunctive normal form.

Consider one of theformulaabove: ((pAgA=r))V ((=gVr)A-p)) and apply
the distributivity. We obtain:

(((pAgA=T)V (g V) A((pAgA—T)V—p))

(pV=gVr)A(=pVa) A(=pV-r))
which is a conjunctive normal form.

The second method to obtaining a disjunctive or conjunctive normal form equiva
lent to a given formula F, consistsfirst in determining the associated function fz.
Then we can build anormal form G which representsthe function f and which is
equivaentto F":

(1) we determinethe valuations) suchthat V(F') = 1;

(2) to each valuation V; such that V;(F') = 1, we associate a formula G,
which is of the form (e;p1 A eap2 A ... A e,py,), Where for each ¢ =
1,2,...,n,e;p; isp; if V]‘(pi) =1lande;p; is—wp; if V]‘(pi) =0,

(3) theformula G, obtained by taking the disjunction of the formulas G, is
adigjunctive normal form.

It is easy to verify that the function associated with the formula G is equal to fr
Therefore G is equivalent to the given formula F.

Example. Let usapply this method to the formula F', from the previous exam-
ple:

(p (g —1))
There arefour valuations V such that V(F') = 1: V4 = (1,1,0), V> = (0,1,1),
Vs = (0,0,1), V4 = (0,0,0), where we denote the valuation V by (e, €2, €3)
if V(p;) = €, fori = 1,2,3. The obtained formula G is a digunctive normal
form:

G=(pAgA-T)V(=pAgAT)V(ZpA=gAT)V (=p A =g A =T))



1.3. NORMAL FORMS 19

The construction of a conjunctive normal form for a given formulafollows a simi-
lar method: we exchange systematically the roles between valuations giving value
1 and those giving value 0, between propositional variables and negation of propo-
sitional variables, between disjunction and conjunction.

ProPOSITION 1.11. Determining a disjunctive normal (respectively conjunctive)
formfor F' isequivalent to determining a conjunctive normal (respectively digunc-
tive) formfor —F'.

Proof : Assume that G is a disunctive normal (respectively conjunctive) form for F.
The formula —F is equivalent to -G : if we apply De Morgan’s rules to -G, we obtain a
conjunctive (respectively digunctive) normal form, equivalent to -G andto —-F'. O

The previous proposition express the duality between a formula and its negation,
disjunction and conjunction, disunctive and conjunctive normal forms.

1.3.4. Clausal form. Clausal form is an alternative presentation of conjunc-
tive normal form, which is used in some automatic deduction methods.

DEFINITION 1.15.

e Aclause C isadigunction (G; Vv G2 V ...V G;) of [ formulas (I > 1),
whereeach G, (j = 1,2, ...,1) isaliteral.

¢ The propositional variables which appear in the clause C' without nega-
tion are called positive variables; propositional variables preceded by a
negation are called negative variables.

The following proposition isadirect consequence of the corollary on the existence
of conjunctive normal form.

ProPOSITION 1.12. Every propositional formula is equivalent to a conjunction of
clauses.

Clause C' is equivaent to aclause of the form:

(—|a1 V=asV...V=a, Vb Vb V..V bm)
whereadl a; (¢ = 1,2,...,n) and al b; (j = 1,2, ..., m) are propositional variables.
A clause which has at |east one negative variable and one positive variable is also
equivaent to aformula of the form:

((ax Nag A ... Nayp) — (b1 Vb V... Vby))

The notation (T, A) is often used as a representation of aclause C : T isthe set of
all negative propositional variablesin C and A the set of al positive variables in
C. If A isreduced to aunique variable b;, we have aHorn clause.

Example. Theformula—(p + (¢ — r)) isequivalent to the conjunction of the
following clauses:

Cy: (nqVvpVvr)=(¢g— (pVr))
Cy: (-pVvg)=(p—q



20 1. PROPOSITIONAL LOGIC

Cs : (-pV-r)
Only C5 isaHorn clause.

Among particular clauses we can distinguish the following three cases:
(1) aclauseC = (I', A) isnegativeif A = ), such as clause C3 for example;
(2) aclauseC = (I, A) is positiveif ' = §;
(3) anempty clause, definedby I' = A = 0.

The following properties are useful:

(1) The vauation V satisfiesaclause C = (T, A) iff there is some variable
p € T such that V(p) = 0 or there is some variable ¢ € A such that
V(g) =1.

(2) Thevaluation V does not satisfy aclause C = (T", A) iff for all variables
pe T, V(p) =1andforal variablesq € A, V(q) = 0.

(3) The empty clauseis satisfied by no valuation.

1.3.5. OBDD: Ordered Binary Decision Diagrams. OBDD’s are important
structures which represent boolean functions. In order to define these structures,
we need basic notions on graphs.

1.3.5.1. Graphs. A directed graph G consists of afinite set V' of vertices or
nodes and a set F of edges between two vertices. Theset F isasubset of V' x V
and defines abinary relation on V. Two nodes « and v are connected by an edge
starting in w iff (u,v) € E. The in-degree of a node v is the number of edges
leading to v. Analogoudly, the out-degree of v is the number of edges starting in
v. A nodeis caled a sink if it has out-degree 0. If the out-degree of v is larger
than 0, v iscalled an internal node. A nodeiscalled aroot if it hasindegree 0. If
(u,v) isan edge, then « is called a predecessor of v, and v is called a successor of
u. A path of length % isasequence ug, u1, ... ,u, Of £+ 1 nodeswhere u; 1 isa
successor of u; (1 = 0,1,...,k—1). If up = uyg, the path iscalled cyclic. A graph
issaid acyclic if there does not exist a cyclic path.

1.3.5.2. Decision diagrams. Consider the boolean algebra on the set {0, 1},
which is defined by the operations +, -,~ asfollows:

a+b=maz{a,b} a-b=min{a,b} 0=1 1=0.
In the sequel, theterm a - b is abbreviated by ab.

DEFINITION 1.16. Let < be a linear order on the set of variables z1,...,z,.
An ordered binary decision diagram (OBDD) with respect to the variable order
< is a directed acyclic graph with exactly one root, which satisfies the following
properties:
¢ There are exactly two sinks, labelled by the constants 1 and 0.
¢ Each non-sink node is labelled by a variable z;, and has two outgoing
edges which are labelled by 1 (1-edge) and 0 (0-edge), respectively.
e The order, in which the variables appear on a path in the graph, is con-
sistent with the variable order <, i.e. for each edge connecting a node
labelled by z; to a node labelled by z;, we have z; < x;.



1.3. NORMAL FORMS 21

Nodes labelled by a variable are called internal nodes.

The variable of a node v is denoted by var(v). The successor node of a node v,
which is determined by the 1-edge, is denoted by /(v) and the successor which is
determined by the 0-edge, is denoted by r(v).

DEFINITION 1.17.

e The computation path of an input @ = (ai,...,a,) € {0,1}" isthe
path from the root to a sink in the OBDD, defined by the input, i.e. the
computation path begins at the root, and in each node labelled by x; the
path follows the edge with label a;.

e An OBDD represents a given boolean function f : {0,1}* — {0,1}
if for any input @ € {0,1}", the computation path of @ reaches the sink
with label f(a).

FIGURE 1.2. Two OBDDsfor the function f.

Example. Let < bethe variable order z; < x5 < x3. Figure 1.2 shows two
OBDD representations of the function;

f(x1,22,23) = T12223 + 2172 T3 + T1x23

with respect to the variable order <. The 1-edges use plain edges whereas the
0-edges use dotted edges.

OBDDs in the sense of the previous definition are not uniquely determined. The
notion of reduced OBDD provides a canonical representation of boolean functions.

1.3.5.3. Reduced OBDDs. Two OBDDs are said isomorphic if they are iso-
morphic as labelled graphs, i.e. if there is a bijection between the set of vertices
which preservesthe 1 and 0 — edges.

DEFINITION 1.18. An OBDD iscalled reduced if



22 1. PROPOSITIONAL LOGIC

e it does not contain a node v with [(v) = r(v), and
¢ there does not exist a pair of nodes u, v such that the OBDDsrooted in u
and v areisomorphic.

We now define two reduction rules in order to construct reduced OBDDs.

DEFINITION 1.19. Thereduction rules on OBDDs are the following.

¢ Elimination rule; if the 1-edge and the 0-edge of a node « point to the
same node v, then eliminate «, and redirect all incoming edges of « to v.

e Merging rule: if the internal nodes v and v are labelled by the same
variable, their 1-edges lead to the same node, and their 0-edges lead to
the same node, then eliminate one of the two nodes u, v and redirect all
incoming edges of this node to the remaining one.

The following theorem justifies the use of reduction rules.

THEOREM 1.2. An OBDD isreduced if and only if none of the two reduction rules
can apply.

Proof : If an OBDD isreduced, it is clear that none of the reduction rules can be applied.

Conversely, let P an OBDD to which neither of the reduction rules can be applied. Then
P does not contain a node v with I(v) = r(v). Assume that P contains a pair of distinct
nodes u, v such that the subgraphs rooted in « and v are isomorphic.

If l(u) = I(v) and r(u) = r(v), then the merging rule can be applied and we obtain a
contradiction.

If I(u) # I(v), or r(u) # r(v), then the two OBDDs rooted in the two distinct nodes /()
and (v), or r(u) and r(v), areisomorphic.

We apply again the previous case distinction to the nodes /(«) and [(v), or r(u) and r(v).
As the subgraphs only depend on the variables which occur after var(u) in the order, the
recursive process stops after at most n steps, where n is the number of variables in the
origina OBDD. O

COROLLARY 1.4. For each variable order <, the reduced OBDD of a boolean
function f with respect to < is uniquely determined (up to isomor phism).

The proof of the previous result uses also the following lemmawhich is left as an
exercise.

LEMMA 1.1. Given a boolean function f, there is exactly one OBDD of minimal
sizefor f with respect to a variable order, up to isomor phism.

As a consequence of this lemma, any OBDD P for the boolean function f with
respect to the variable order is isomorphic the minimal OBDD for f iff none of
the reduction rules is applicable to P. An easy agorithm for transforming a given
OBDD into areduced OBDD for the same function: apply the reduction rules as
long as possible.



1.4. EXERCISES 23

1.4. Exercises

(1) Provethat the relation defined on the set of expressions of propositional logic “u
isan initial segment of v” isan order relation.

(2) Provethat every formula has the same number of open and closed parentheses.

(3) Prove that the binary relation =, defined on the set of formulas by: F' = G iff
F, G are equivaent, is an equivalence relation.

(4) Determine the tautologiesamong A, B,C, D and E.

(A< (B—=0C) < ((AANC)V (=(A < B)AC))

(A= (BVE)A((CANE)—= D))= ((ANC)— (BV D))
((FA—-B)—> (mA—-C)AN(B—-C))— A
((AAB)—=(CVvD))+< (A= C)Vv(B— D))

(5) A simplified notation used in the propositional, or boolean, calculus, allows for
shorter notations. —p iswrittenp, A iswritten . and Vv iswritten 4. The formula
p1A(p2V-ps) iswritten asp, . (p2+73). Let pr, po, p3 be propositional variables.

(8 Let F beformula (p1.p2.p3) + (p1.P2.p3) + (P1.p2.p3). Arethe formulas
F and —F satisfiable? Are F' and —F' tautologies?

(b) Find conjunctive normal forms and clausal formsfor F' and —F'.

(c) FindaformulaG suchthat theformula (FAG)V (-F A—G) isatautology.

(d) Let F; beaformulaobtained by substituting 1 for p; in F. Istheformula
F aconsequence of F, and F' aconseguence of Fi?

(6) Let G1, G2, G3 betheformulas: py + p2 + ps, p1-p2-Ps, p1-P2 + ps.

e Find all pairs of formulas, among G, G2 or G, such that one element of

apair is aconsequence of the other element.

e IstheformulaG; v G5 aconsequence of G; V =G ?

(7) Show that the systems of connectives {—,V}, {—, —} are complete, i.e. that
every propositional formulais equivalent to a formula built only with the con-
nectives —, V.

(8) Describe the second method for finding a disunctive normal form and apply it
totheformula—(p < (¢ — r)).

(9) Show the uniqueness of the decomposition of aformula. You can start by prov-
ing the following two results.

LEMMA 1.1. If I isaninitial segment of someformula F', then I hasat least
the same number of open and closed parenthesis. Furthermore if a formula F'
starts with an open parenthesisand I isan initial segment distinct from F', then
I has strictly more open parenthesis than closed ones.

LEMMA 1.2. Let F'beaformulaand I aninitial ssgment of F'. If I isitself
aformula, then I = F.

(10) Let f bethe boolean function defined by:
f(x1, 22,23, 24) = T3 T3 + 22(23 + T3)

and < the variable order x1 < x5 < w3 < w4. Construct a reduced OBDD for
I

(11) Prove the existence of exactly one OBDD of minimal size for a given boolean
function f with respect to the variable order, up to isomorphism.

(12) Deduce an algorithm for transforming a given OBDD into a reduced OBDD for
the same bool ean function.






