Introduction

The book presents some of the fundamental ideas of Logic for Computer Science. It introduces classical notions of mathematical logic to computer scientists and the new ideas brought by the theory of complexity. Given a problem, it is important to know if there is an algorithmic solution, i.e. if the problem can be solved by an automatic procedure based on a finite set of instructions. The classical notions of mathematical logic, such as decidability, completeness and incompleteness are used to answer this question. When an algorithmic solution exists, it is then important to know if there exists an efficient solution, i.e. an automatic procedure which uses few resources such as time or space. Complexity theory introduces notions such as NP-completeness, reductions, approximations which are used to answer this refined question. We present these concepts from the viewpoint of logic, called descriptive complexity and emphasize the roles of randomness and approximation. The presentation is divided into three parts:

Part 1. Model theory and recursive functions. We introduce the basic model theory of propositional, first order, inductive definitions and second order logic. Then, we define recursive functions, show their equivalence with Turing computable functions, prove the completeness of first order logic and the incompleteness theorems.

Part 2. Descriptive complexity. The functions computable in polynomial time are called effectively computable and can be defined as global recursive functions on classes of finite ordered structures. Decision problems of other complexity classes such as AC, NC, LOGSPACE, NLOGSPACE, NP, PH, have similar logical characterizations and allow to view complexity questions as definability problems in logic. This approach is called descriptive as it is independent of any model of computation.

Part 3. Approximation. Randomized algorithms in polynomial time define the class BPP for decision problems which generalizes the class P and the class IP (Interactive proofs) for verification problems which generalizes the class NP. Other models of verification include PCP (probabilistic checkable proofs) and property testing. Some optimization problems and counting problems can also be approximated according to their logical form. The PCP techniques allow one to prove non-approximability results.

The design of programming languages, query languages and specification languages follows many logical principles presented in the first part of the book. The second part explains the relationship between the definitions of algorithms, queries, properties of programs and their computational complexity. For many classical tasks such as the verification of programs, optimization problems or counting problems, it is essential to first study the complexity of these problems. When the degree of unfeasibility is too high, approximation techniques presented in the third part of the book can be useful.

This book is based on two books by the same authors, in French: Logique et Fondements de l'Informatique, published in 1993 and Logique et Complexité, published in 1996 (Editions Hermès, http://www.editions-hermes.fr). The first part is the translation of some of the chapters of the first book, whereas the second and third parts of the present book are translations of the second book with additional new subjects. We will maintain: http://www.lri.fr/~mdr/logicbook/ for the corrections of some of the exercises, remarks and updates.

Most of the presented material appears in the books: Computational complexity by C. Papadimitriou [Pap94], Descriptive Complexity by N. Immerman [Imm99], and Finite Model Theory by H. D. Ebbinghaus and J. Flum [EF91].

We wish to thank all our colleagues who helped us on the French books, in particular Stéphane Boucheron, Miklós Sántha and Avy Sharell. In addition, we thank Mikaël Cozic, Miki Hermann, Isabelle Bril and our translator Elena Calude for their contribution on this English version. We bear the responsibility for the errors which remain in this book.

Part 1

Basic model theory and computability

CHAPTER 1

Propositional logic

Propositional logic, or propositional calculus, is an elementary mathematical system that constitutes a minimal kernel common to all logical systems. It plays the role of a simplified construction which will be generalized to more expressive systems. We study the construction of this language and its semantic interpretation, i.e. the objects denoted by expressions of the language.

In the first section, we define the set of propositional formulas. The second section is dedicated to the interpretation of formulas in terms of truth values (true, false). This interpretation gives rise to notions of equivalent formulas and logical consequence. The equivalence relation between formulas captures the main properties of propositional logic. The normal forms are presented in the third section. Ordered binary decision diagrams (OBDD) are defined in the fourth section. They provide a data structure to represent boolean functions and are used in some verification tools, such as model checkers.

1.1. Propositional language

The purpose of this section is to define the set of propositional formulas and to show how this type of definition - present in all branches of mathematical logic can be used to study properties of formulas in a chosen language.
1.1.1. Construction of formulas. The propositional language is characterized by a collection of symbols, called alphabet \mathcal{A}, which includes:

- a set $\mathcal{P}=\{p, q, r, \ldots\}$, finite or countable, of symbols called propositional variables,
- the set of connectives (or logical symbols), which are $\neg($ not $), \wedge($ and $)$, $\vee($ or $), \rightarrow$ (imply), \leftrightarrow (equivalent to),
- the parentheses (and).

The connective \neg is unary and the others are binary. A word, or an expression, is a finite sequence of elements of \mathcal{A}. The length of a word is equal to the number of symbols composing it. The set of words constructed with the help of alphabet \mathcal{A} is denoted by \mathcal{A}^{*}.

Concatenation is a composition rule defined on \mathcal{A}^{*} which associates with the two words u, v the word obtained by juxtaposing the sequence u with v : the new word is denoted by $u v$. A word u is an initial segment of a word v if a word w exists
such that $v=u w$. The relation defined on \mathcal{A}^{*} by " u is an initial segment of v " is an order relation.

Example. The sequences of symbols $\neg p,(\neg p \wedge(q \vee r))$ and $(p \wedge \vee q r)$ are words belonging to \mathcal{A}^{*}.
The word $(\neg p$ is an initial segment of $(\neg p \wedge(q \vee r))$.

From the logical point of view only some of the words of \mathcal{A}^{*}, are interesting: these are what we call formulas. In the previous example, only the first two expressions are formulas, in contrast to the last one.

DEFINITION 1.1. The set of propositional formulas, built with \mathcal{P}, is the smallest set \mathcal{F} such that:

- all propositional variables are in \mathcal{F},
- if $F \in \mathcal{F}$, then $\neg F \in \mathcal{F}$,
- if $F, G \in \mathcal{F}$, then $(F \wedge G) \in \mathcal{F},(F \vee G) \in \mathcal{F},(F \rightarrow G) \in \mathcal{F}$ and $(F \leftrightarrow G) \in \mathcal{F}$.

The set \mathcal{F} is well defined. There are sets satisfying these three conditions: for example, the set \mathcal{A}^{*} consisting of all words. Among all these sets, there is one set smaller than all the others: their intersection. This intersection is not empty because it contains the set \mathcal{P} of propositional variables. The set of formulas can also be characterized in another way, by using the induction principle.

Let P be a property depending on non-negative integers. If P satisfies:

- P is true for 0 (respectively for the non-negative integer n_{0}),
- if P is true for n, then it is true for $n+1$,
then P is true for all n (respectively, for all $n \geq n_{0}$).
DEFINITION 1.2. The sets \mathcal{F}_{n} are defined by induction on n :
- $\mathcal{F}_{0}=\mathcal{P}$,
- $\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup\left\{\neg F: F \in \mathcal{F}_{n}\right\} \cup\left\{(F \alpha G): F, G \in \mathcal{F}_{n}\right\}$ where α is $\wedge, \vee, \rightarrow$ or \leftrightarrow.

It is easy to see that the sequence $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is increasing (exercise).
Proposition 1.1. The set \mathcal{F} of propositional formulas is equal to $\bigcup_{n \in N} \mathcal{F}_{n}$.
Proof : The set $\bigcup_{n \in N} F_{n}$ satisfies the conditions of the definition of \mathcal{F} :

- all propositional variables are in \mathcal{F}_{0};
- if $F \in \mathcal{F}_{n}$, then $\neg F \in \mathcal{F}_{n+1}$;
- if $F, G \in \bigcup_{n \in N} \mathcal{F}_{n}$, then there exist n, m such that $F \in \mathcal{F}_{n}$ and $G \in \mathcal{F}_{m}$; if $p=\sup (n, m), F, G \in \mathcal{F}_{p}$ and the formulas $(F \wedge G),(F \vee G),(F \rightarrow G)$ and $(F \leftrightarrow G)$ are in \mathcal{F}_{p+1}.
Therefore, the set $\bigcup_{n \in N} \mathcal{F}_{n}$ contains \mathcal{F}, which is the smallest set satisfying these conditions. In order to obtain the inclusion in the opposite direction, it is sufficient to show that for every non-negative $n, \mathcal{F}_{n} \subset \mathcal{F}$. This property can be proved by induction on n :
- $\mathcal{F}_{0}=P \subset \mathcal{F}$;
- assume that $\mathcal{F}_{n} \subset \mathcal{F}$ by induction hypothesis. From the definition of \mathcal{F}_{n+1} and the fact that the set \mathcal{F} is closed under all connectives, it follows that $\mathcal{F}_{n+1} \subset \mathcal{F}$. This concludes the proof. \square

DEFINITION 1.3. The rank of a formula F is the smallest non-negative integer n such that $F \in \mathcal{F}_{n}$.

Example. The formula $F=(\neg p \wedge((q \vee r) \rightarrow s))$ has rank 3 .
p, q, r, s have rank 0 ,
$\neg p,(q \vee r)$ have rank 1,
$((q \vee r) \rightarrow s)$ has rank 2.
1.1.2. Proof by induction. In this section numerous results will have the form: let P be a property of formulas; then the set of all propositional calculus formulas having the property P is equal to \mathcal{F}. In order to prove these results, we will not use a reasoning by induction on non-negative integers but instead, a proof by induction on the formulas. This type of proof is justified by the following proposition:

PROPOSITION 1.2. Let P be a property of formulas, satisfying the following conditions:

- all propositional variables have the property P,
- if G is a formula with the property P, then the formula $\neg G$ has the property P,
- if G, H are formulas with the property P, then all formulas $(G \wedge H)$, $(G \vee H),(G \rightarrow H),(G \leftrightarrow H)$ have this property.
Then all propositional formulas have the property P.
Proof : Let \mathcal{E} be a set of formulas in \mathcal{F} with property P. In order to deduce the equality $\mathcal{F}=\mathcal{E}$ it is sufficient to show that $\mathcal{F} \subset \mathcal{E}$. According to the hypothesis, the set \mathcal{E} contains all propositional variables and is closed under the application of operators. Therefore it contains \mathcal{F}, which is the smallest set verifying these conditions.

The following proposition is a simple example of proof by induction on the set of propositional formulas and is left as an exercise.

PROPOSITION 1.3. Every formula has exactly the same number of opening and closing parentheses.
1.1.3. Decomposition of a formula. The following proposition provides an answer to the question: given a particular formula, are there different ways to decompose it in "simpler formulas"?

Proposition 1.4. Let F be a formula. Then F has one and only one of the following forms:
(1) a propositional variable,
(2) $\neg G$, where G is a formula,
(3) $(G \wedge H)$, where G, H are formulas,
(4) $(G \vee H)$, where G, H are formulas,
(5) $(G \rightarrow H)$, where G, H are formulas,
(6) $(G \leftrightarrow H)$, where G, H are formulas.

Furthermore, in cases 2, 3, 4, 5 and 6 , the formulas G, H are uniquely determined.
The existence of a decomposition is easily obtained from the definition of the set of formulas. The uniqueness is more difficult to establish and requires two intermediary results, which are stated in the exercises.

DEFINITION 1.4. A subformula of F is a formula which appears in the decomposition of F.

We define the notion of tree which will be used for the representation of the decomposition of a formula.

DEFINITION 1.5. A tree is a set T provided with an application $h: T \longrightarrow \mathbb{N}$ and a binary relation $P \subseteq T^{2}$ satisfying the following conditions :

- there is a unique element rof T, called the root, such that $h(x)=0$,
- for any element y of T, except the root, there is a unique element x such as $(x, y) \in P$, what we also note $P(x, y)$,
- for any $x \in T$, if $(x, y) \in P$, then $h(y)=h(x)+1$.

The elements of T are called nodes. For any $x \in T, h(x)$ is called the level of x. If $(x, y) \in P, x$ is said the predecessor or the father of y, and y a successor or a son of x. A node without successor is a leaf. The decomposition of formulas justifies the following method which allows one:

- to decide whether a given expression is a formula,
- in the case of a positive answer, to construct a decomposition tree for this formula, i.e. a tree whose nodes are labelled by subformulas which occur in the expression. If F is a propositional variable (case 1 of the decomposition), the corresponding node a is a leaf. In case 2 of the decomposition, the node a has one successor labelled by G. In cases 3,4,5 and 6 of the decomposition, the node a labelled by a formula F has two descendants nodes labelled by the formulas G and H.

Example. Is the following expression a formula?

$$
F=(((\neg p \leftrightarrow q) \vee \neg(r \wedge s)) \rightarrow p)
$$

F has the form $\left(F_{1} \rightarrow F_{2}\right)$ where $F_{2}=p$ is a propositional variable, F_{1} has the form $\left(F_{3} \vee F_{4}\right)$,
F_{3} has the form $\left(F_{5} \leftrightarrow F_{6}\right)$ where $F_{5}=\neg F_{7}, F_{6}=q$ and $F_{7}=p$ are propositional variables, F_{4} has the form $\neg F_{8}$ and F_{8} and is of the form $\left(F_{9} \wedge F_{10}\right)$, where $F_{9}=r$ and
$F_{10}=s$ are propositional variables.

Figure 1.1. A tree decomposition.

Hence the expression F is a formula. Furthermore, its tree decomposition shows how it is constructed. Propositional variables are the labels of the leaves and the subformulas are the labels of the nodes. The formula F is the label of the root of the tree. The tree decomposition of F is presented in the Figure 1.1.

Example. The formulas $(\neg p \leftrightarrow q),(r \wedge s)$ and p are subformulas of the formula F in the previous example.

1.2. Semantics

Semantics is defined as the interpretation of formulas in terms of their truth values (true, false). A valuation, that is a distribution of truth values on the set of propositional variables, allows the determination of the truth value of the formula. In what follows, $\mathbf{0}$ represents the value false and $\mathbf{1}$ the value true. We use iff as an abbreviation for if and only if.

DEFINITION 1.6. A valuation \mathcal{V} is a function from the set of propositional variables \mathcal{P} into $\{0,1\}$.

Proposition 1.5. Let \mathcal{V} be a valuation. There is a unique extension $\overline{\mathcal{V}}$ of \mathcal{V} on \mathcal{F} satisfying the following conditions:
(1) for all $p \in \mathcal{P}, \overline{\mathcal{V}}(p)=\mathcal{V}(p)$,
(2) if F is $\neg G$, then $\overline{\mathcal{V}}(F)=1$ iff $\overline{\mathcal{V}}(G)=0$,
(3) if F is $(G \wedge H)$, then $\overline{\mathcal{V}}(F)=1$ iff $\overline{\mathcal{V}}(G)=\overline{\mathcal{V}}(H)=1$,
(4) if F is $(G \vee H)$, then $\overline{\mathcal{V}}(F)=0$ iff $\overline{\mathcal{V}}(G)=\overline{\mathcal{V}}(H)=0$,
(5) if F is $(G \rightarrow H)$, then $\overline{\mathcal{V}}(F)=0$ iff $\overline{\mathcal{V}}(G)=1$ and $\overline{\mathcal{V}}(H)=0$,
(6) if F is $(G \leftrightarrow H)$, then $\overline{\mathcal{V}}(F)=1$ iff $\overline{\mathcal{V}}(G)=\overline{\mathcal{V}}(H)$.

Proof : The distribution $\overline{\mathcal{V}}$ is defined by induction on formulas.

- Case 1 gives the definition for propositional variables.
- If F is $\neg G$ and $\overline{\mathcal{V}}(G)$ is already defined (induction hypothesis), we put $\overline{\mathcal{V}}(F)=1$ if $\overline{\mathcal{V}}(G)=0$ and $\overline{\mathcal{V}}(F)=0$ otherwise.
- If F is $(G \wedge H)$ and $\overline{\mathcal{V}}(G), \overline{\mathcal{V}}(H)$ are already defined (induction hypothesis), we put $\overline{\mathcal{V}}(F)=1$ if $\overline{\mathcal{V}}(G)=\overline{\mathcal{V}}(H)=1$ and $\overline{\mathcal{V}}(F)=0$ otherwise.
The proofs for the other cases are similar: the values $\overline{\mathcal{V}}(G)$ and $\overline{\mathcal{V}}(H)$ allow one to define $\overline{\mathcal{V}}(F)$ satisfying conditions (4), (5) or (6), respectively. The function $\overline{\mathcal{V}}$ is well defined in a unique way according to the decomposition. The uniqueness of the extension of \mathcal{V} is left as an exercise: if we suppose that there are two extensions, it is easy to show by induction on formulas, that they are equal.

Example. The value of the formula $((p \rightarrow q) \wedge(q \vee r))$ for the valuation of \mathcal{V} defined by $\mathcal{V}(p)=\mathcal{V}(q)=0$ and $\mathcal{V}(r)=1$ is 1 .

One way to represent the conditions stated in the previous proposition is to construct a table giving the values of $\mathcal{V}(F)$, as a function of the different possible values of \mathcal{V}, from the immediate subformulas of F. It is easy to construct truth tables for the binary operators $\wedge, \vee, \rightarrow$:

G	H	$G \wedge H$	$G \vee H$	$G \rightarrow H$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

Henceforth, each valuation \mathcal{V} given on \mathcal{P} is extended to the set of all formulas, \mathcal{F}, and we also denote its extension by \mathcal{V}.
1.2.1. Tautologies. Equivalent formulas. The interpretation of formulas allows their classification: two formulas with the same interpretation will be grouped in the same class. A particularly interesting class is the class of formulas which are always true.

DEFINITION 1.7.

- A formula F is satisfied by a valuation \mathcal{V} if $\mathcal{V}(F)=1$.
- A tautology is a formula satisfied by all valuations.
- Two formulas F, G are said to be equivalent if for every valuation \mathcal{V}, $\mathcal{V}(F)=\mathcal{V}(G)$; we write $F \equiv G$.

Example. The following formulas are examples of tautologies:

$$
(p \rightarrow p)
$$

$$
\begin{gathered}
(p \rightarrow(q \rightarrow p)) \\
((p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))) \\
((\neg p \rightarrow q) \rightarrow((\neg p \rightarrow \neg q) \rightarrow p))
\end{gathered}
$$

The following pairs of formulas are examples of equivalences:

$$
\begin{gathered}
\neg \neg p \text { and } p \\
(p \rightarrow q) \text { and }(\neg p \vee q) \\
(p \leftrightarrow q) \text { and }((p \rightarrow q) \wedge(q \rightarrow p)) \\
(p \wedge(q \vee r)) \text { and }((p \wedge q) \vee(p \wedge r))
\end{gathered}
$$

We note that two formulas F, G are equivalent iff the formula $(F \leftrightarrow G)$ is a tautology. The binary relation \equiv defined on the set of formulas by: $F \equiv G$ iff F, G are equivalent, is an equivalence relation (exercise).
1.2.2. Logical consequence. From the point of view of semantics, one of the fundamental questions is to determine whether one formula is a consequence of a given set of formulas.

DEFINITION 1.8. Let Σ be a set of formulas and F a formula.

- A formula F is said to be a consequence of Σ if every valuation satisfying all formulas of Σ, also satisfies the formula F.
- A set of formulas Σ is said to be satisfiable if there exists a valuation which satisfies all formulas of Σ.

Example. The formula q is a consequence of the set $\{p,(p \rightarrow q)\}$.
The set of formulas $\{p,(p \rightarrow q), \neg q\}$ is not satisfiable.

Proposition 1.6. Any formula F is a consequence of the set of formulas Σ iff the set $\Sigma \cup\{\neg F\}$ is not satisfiable.
Proof: If every valuation satisfying Σ also satisfies F, then there is no valuation satisfying both Σ and $\neg F$. The converse is easily shown by contraposition: if there is a valuation satisfying Σ and not satisfying F, then this valuation satisfies both Σ and $\neg F$.
1.2.3. Value of a formula and substitution. The value of a formula, for example $((p \rightarrow q) \wedge(q \vee r))$ can be determined for any given valuation \mathcal{V}. But how can we calculate the truth value of a complex formula using truth values of simpler formulas? In this paragraph we answer this question: it is sufficient to compose truth values as in the case of propositional variables. In the first reading, it is possible to omit the general case treated within the theorem and its corollary. In fact, the study of properties stated in the following examples are sufficient for the construction of normal forms.

The notation $F\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ specifies that the formula F contains propositional variables among $p_{1}, p_{2}, \ldots, p_{n}$. The following proposition expresses a rather intuitive property: in order to compute the truth value of a formula, it is sufficient to check the values taken by the propositional variables involved in this formula.

PROPOSITION 1.7. Let $F\left(p_{1}, \ldots, p_{n}\right)$ be some formula and \mathcal{V} a valuation. Then the value $\mathcal{V}(F)$ depends only on the values \mathcal{V} on p_{1}, \ldots, p_{n}.

Proof : By induction on formulas.

- If F is a propositional variable p_{1}, the statement is true.
- Suppose that the values $\mathcal{V}(G), \mathcal{V}(H)$ only depend on those of \mathcal{V} on p_{1}, \ldots, p_{n} (induction hypothesis). If F is $\neg G$ then the property is equally true for F since $\mathcal{V}(F)$ only depends on those of $\mathcal{V}(G)$. If F is $(G \wedge H)$, the property is still true for F since $\mathcal{V}(F)$ only depends on $\mathcal{V}(G), \mathcal{V}(H)$. The proof is similar for all other cases.

DEFINITION 1.9. An occurrence of the variable p in some formula F is a position where it appears in F.

Let G be a formula. The formula obtained by the substitution of G for p in F, denoted $F(G / p)$, is the formula obtained by replacing all occurrences of p in F by the formula G.

DEFINITION 1.10. The formula $F(G / p)$ is defined by induction on formula F :

- if F is a propositional variable $p, F(G / p)$ is the formula G;
- if F is a propositional variable q distinct from $p, F(G / p)$ is the formula F;
- if F has the form $\neg H, F(G / p)$ is the formula $\neg H(G / p)$;
- if F has form $F_{1} \alpha F_{2}$, where α is a binary connective, $F(G / p)$ is the formula $F_{1}(G / p) \alpha F_{2}(G / p)$.

Example. The substitution of the formula $(q \rightarrow r)$ for the variable q in the formula $((p \rightarrow q) \wedge(q \vee r))$ is:

$$
((p \rightarrow(q \rightarrow r)) \wedge((q \rightarrow r) \vee r))
$$

Let F, G, H be some formulas. Suppose we know the values $\mathcal{V}(F), \mathcal{V}(G), \mathcal{V}(H)$. How could we, for example, determine the value of $\mathcal{V}(((F \rightarrow G) \wedge(G \vee H)))$? The following proposition answers this question.

Proposition 1.8. Let F, G be two formulas and \mathcal{V} a valuation whose value for G is known. The value of the formula $F(G / p)$ for the valuation \mathcal{V} is equal to the value of the formula F for a valuation \mathcal{V}^{\prime} satisfying: $\mathcal{V}^{\prime}(p)=\mathcal{V}(G)$ and $\mathcal{V}^{\prime}(q)=\mathcal{V}(q)$ for each q distinct from p.

Proof : The proof is by induction on formula F.

- If F is a propositional variable p, then the statement is true. If F is some variable q distinct from $p, F(G / p)$ is q and $\mathcal{V}^{\prime}(F)=\mathcal{V}(q)=\mathcal{V}(F)$.
- Assume that the property is true for the formula H, i.e.

$$
\mathcal{V}(H(G / p))=\mathcal{V}^{\prime}(H)
$$

If F has the form $\neg H$, then:

$$
\begin{gathered}
\mathcal{V}(F(G / p))=1 \text { iff } \mathcal{V}(H(G / p))=0 \\
\mathcal{V}^{\prime}(F)=1 \text { iff } \mathcal{V}^{\prime}(H)=0
\end{gathered}
$$

The induction hypothesis allows one to obtain the desired condition for F.

- Assume the property is true for formulas F_{1}, F_{2}. If F has the form $\left(F_{1} \wedge F_{2}\right)$, the values of $\mathcal{V}, \mathcal{V}^{\prime}$ in F will satisfy:

$$
\begin{gathered}
\mathcal{V}(F(G / p))=1 \text { iff } \mathcal{V}\left(F_{1}(G / p)\right)=\mathcal{V}\left(F_{2}(G / p)\right)=1 \\
\mathcal{V}^{\prime}(F)=1 \text { iff } \mathcal{V}^{\prime}\left(F_{1}\right)=\mathcal{V}^{\prime}(F)=1
\end{gathered}
$$

Once again, the induction hypothesis leads us to the desired conclusion. The proof is similar for the other binary connectives.

Corollary 1.1. Let $F, F^{\prime}, G, G^{\prime}$ be formulas and p a propositional variable.

- If the formula F is a tautology, then the formula $F(G / p)$ is also a tautology.
- If the formulas F and F^{\prime} are equivalent, then the formulas $F(G / p)$ and $F^{\prime}(G / p)$ are also equivalent.
- If the formulas G and G^{\prime} are equivalent, then the formulas $F(G / p)$ and $F\left(G^{\prime} / p\right)$ are also equivalent.

The proof is left as an exercise. The following examples are direct consequences of the corollary.

For every formula F, G, H, the following formulas are tautologies:
(1)

$$
\begin{gathered}
(F \rightarrow F) \\
(F \rightarrow(G \rightarrow F)) \\
((F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H)))
\end{gathered}
$$

(2) For every formula F, G, H, the following formulas are equivalent:

$$
\begin{gathered}
\neg \neg F \equiv F \\
(F \rightarrow G) \equiv(\neg F \vee G) \\
(F \leftrightarrow G) \equiv((F \rightarrow G) \wedge(G \rightarrow F))
\end{gathered}
$$

(3) If $F \equiv F^{\prime}$ and $G \equiv G^{\prime}$, then the following formulas are equivalent:

$$
\begin{aligned}
\neg F & \equiv \neg F^{\prime} \\
(F \wedge G) & \equiv\left(F^{\prime} \wedge G^{\prime}\right) \\
(F \vee G) & \equiv\left(F^{\prime} \vee G^{\prime}\right) \\
(F \rightarrow G) & \equiv\left(F^{\prime} \rightarrow G^{\prime}\right) \\
(F \leftrightarrow G) & \equiv\left(F^{\prime} \leftrightarrow G^{\prime}\right)
\end{aligned}
$$

The following equivalences of formulas express the main properties of connectives:
(1) commutativity:

$$
\begin{aligned}
& (F \wedge G) \equiv(G \wedge F) \\
& (F \vee G) \equiv(G \vee F)
\end{aligned}
$$

(2) associativity:

$$
\begin{aligned}
& (F \wedge(G \wedge H)) \equiv((F \wedge G) \wedge H) \\
& (F \vee(G \vee H)) \equiv((F \vee G) \vee H)
\end{aligned}
$$

(3) idempotence:

$$
\begin{aligned}
& (F \wedge F) \equiv F \\
& (F \vee F) \equiv F
\end{aligned}
$$

(4) De Morgan's rules:

$$
\begin{aligned}
& \neg(F \wedge G) \equiv(\neg F \vee \neg G) \\
& \neg(F \vee G) \equiv(\neg F \wedge \neg G)
\end{aligned}
$$

(5) distributivity:

$$
\begin{aligned}
& (F \wedge(G \vee H)) \equiv((F \wedge G) \vee(F \wedge H)) \\
& (F \vee(G \wedge H)) \equiv((F \vee G) \wedge(F \vee H))
\end{aligned}
$$

(6) absorption:

$$
\begin{aligned}
& (F \wedge(F \vee G)) \equiv F \\
& (F \vee(F \wedge G) \equiv F
\end{aligned}
$$

1.2.4. Complete systems of connectives. The following proposition introduces a set of connectives which allows to express all propositional formulas.
Proposition 1.9. Any propositional formula is equivalent to a formula constructed only with the connectives \neg and \wedge.
Proof : The proof is obtained by induction on the formulas. It is true for propositional variables. Assume the property is true for G, H, i.e. the formula G (respectively H) is equivalent to the formula G^{\prime} (respectively H^{\prime}) built only with the connectives \neg, \wedge.

- Let $F=\neg G$, so F is equivalent to $\neg G^{\prime}$, which is a formula built only with the connectives \neg, \wedge, according to the induction hypothesis.
- Let $F=(G \wedge H)$, so F is equivalent to $\left(G^{\prime} \wedge H^{\prime}\right)$, which is a formula built only with the connectives \neg, \wedge, according to the induction hypothesis.
- Let $F=(G \vee H), F \equiv\left(G^{\prime} \vee H^{\prime}\right)$. Using De Morgan's second rule and the fact that $K \equiv \neg \neg K$, we get that $F \equiv \neg\left(\neg G^{\prime} \wedge \neg H^{\prime}\right)$, which is a formula built only with the connectives \neg, \wedge.
- Let $F=(G \rightarrow H), F \equiv\left(G^{\prime} \rightarrow H^{\prime}\right), F \equiv\left(\neg G^{\prime} \vee H^{\prime}\right)$, which is equivalent to a formula built only with the connectives \neg, \wedge, , according to the previous case.
- Let $F=(G \leftrightarrow H), F \equiv\left(G^{\prime} \leftrightarrow H^{\prime}\right), F \equiv\left(\left(G^{\prime} \rightarrow H^{\prime}\right) \wedge\left(H^{\prime} \rightarrow G^{\prime}\right)\right)$, which is equivalent to a formula built only with the connectives \neg, \wedge, according to the previous case.
This concludes the proof.
Notice that the expression $F \equiv G$ is a relation between two formulas and is not a propositional formula!

DEFINITION 1.11. A set of connectives having the property stated in the above proposition for $\{\neg, \wedge\}$ is called a complete system.
From the previous result, it is easy to deduce that the systems of operators $\{\neg, \vee\}$, $\{\neg, \rightarrow\}$ are complete; the proof is left as an exercise.

1.3. Normal forms

Normal forms are special formulas such that any formula can be transformed into an equivalent normal form. We consider disjunctive and conjunctive normal forms.

1.3.1. Disjunctive and conjunctive normal forms.

DEFINITION 1.12. A literal is a propositional variable or the negation of a propositional variable.
DEFINITION 1.13. A disjunctive normal form is a disjunction ($F_{1} \vee F_{2} \vee \ldots \vee F_{k}$) of k formulas $(k \geq 1)$, where each formula $F_{i}(i=1,2, \ldots, k)$ is a conjunction $\left(G_{1} \wedge G_{2} \wedge \ldots \wedge G_{l}\right)$ of l literals $(l \geq 1)$.

Example. The following formulas are disjunctive normal forms:

$$
\begin{gathered}
((p \wedge q) \vee(\neg p \wedge \neg q)) \\
((p \wedge q \wedge \neg r) \vee(\neg p \wedge q)) \\
(p \wedge \neg q)
\end{gathered}
$$

DEFINITION 1.14. A conjunctive normal form is a conjunction $\left(F_{1} \wedge F_{2} \wedge \cdots \wedge\right.$ F_{k}) of k formulas $(k \geq 1)$, where each formula $F_{i}(i=1,2, \ldots, k)$ is a disjunction $\left(G_{1} \vee G_{2} \vee \cdots \vee G_{l}\right)$ of l literals $(l \geq 1)$.

Example. The following formulas are conjunctive normal forms:

$$
\begin{gathered}
((\neg p \vee q) \wedge(p \vee \neg q)) \\
((p \vee \neg q \vee r) \wedge(\neg p \vee r) \wedge(\neg r \vee \neg s)) \\
(\neg p \vee q)
\end{gathered}
$$

1.3.2. Functions associated to formulas. The set \mathcal{P} is now supposed to be finite: $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Thus there are 2^{n} distinct valuations. Each formula $F\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ defines a function f_{F} from the set of valuations $\{0,1\}^{\mathcal{P}}$ into $\{0,1\}$ which associates the value $\mathcal{V}(F)$ to each valuation \mathcal{V}. The following property is obvious.

Proposition 1.10. Two formulas F, G are equivalent iff their associated functions are equal.

COROLLARY 1.2. There are at most $2^{2^{n}}$ propositional formulas, pairwise nonequivalent, built with n variables.

Proof : Let \mathcal{F} / \equiv be the quotient of the set of formulas by the equivalence relation \equiv. We associate the function f_{F} to the equivalence class of some formula F. There are $2^{2^{n}}$ such functions because each one associates a valuation to $\{0,1\}$ and there are 2^{n} such valuations. This application is an injection and therefore there are at most $2^{2^{n}}$ non-equivalent formulas.

The following theorem claims that the function defined in the proof of the previous corollary is in fact a bijection.

THEOREM 1.1. Every function from $\{0,1\}^{\mathcal{P}}$ to $\{0,1\}$ can be represented by a formula $F\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, meaning that there is some formula $F\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ such that, for all valuations $\mathcal{V}, f(\mathcal{V})=\mathcal{V}(F)$.

Proof : The proof is by induction on the number of propositional variables n.

- If $n=1$, there are four functions from $\{0,1\}^{\mathcal{P}}$ to $\{0,1\}$: these functions can be represented by the formulas $p, \neg p,(p \vee \neg p),(p \wedge \neg p)$.
- Assume the property true for $n-1$ propositional variables.

Let $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and f be a function from $\{0,1\}^{\mathcal{P}}$ to $\{0,1\}$. Every valuation \mathcal{V}^{\prime} on $\left\{p_{1}, p_{2}, \ldots, p_{n-1}\right\}$ can be considered as a restriction of a valuation \mathcal{V} on $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Let the function f_{0}, respectively f_{1}, be the restriction of f to the valuation \mathcal{V} such that $\mathcal{V}\left(p_{n}\right)=0$, respectively $\mathcal{V}\left(p_{n}\right)=1: f_{0}, f_{1}$ are functions from the set of valuations defined on $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ to $\{0,1\}$ and are
represented by the formulas $G\left(p_{1}, \ldots, p_{n-1}\right)$ and $H\left(p_{1}, \ldots, p_{n-1}\right)$, according to the induction hypothesis. The function f can be represented by the formula:

$$
\left.\left(\neg p_{n} \wedge G\left(p_{1}, \ldots, p_{n-1}\right)\right) \vee\left(p_{n} \wedge H\left(p_{1}, \ldots, p_{n-1}\right)\right)\right)
$$

We conclude that any function from $\{0,1\}^{\mathcal{P}}$ to $\{0,1\}$ can be represented by a formula, whatever the number of propositional variables.

We obtain the existence of normal forms for all propositional formulas.

COROLLARY 1.3. Every formula is equivalent to a disjunctive normal form and to a conjunctive normal form.

Proof : As in the previous proof, we prove this corollary by induction on the number n of propositional variables.

- In the case $n=1$, we consider the formulas above, which are both disjunctive and conjunctive normal forms.
- Assume the property true for $n-1$ variables. Let f_{F} be the function associated to the formula $F\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. It is possible to construct a formula which represents f_{F}, as in the proof of the previous theorem. The formula F is equivalent to a formula of the form $\left(\neg p_{n} \wedge G\right) \vee\left(p_{n} \wedge H\right)$), where G, H are equivalent to disjunctive normal forms:

$$
\begin{gathered}
G \equiv\left(G_{1} \vee G_{2} \vee \ldots \vee G_{k}\right) \\
H \\
\equiv\left(H_{1} \vee H_{2} \vee \ldots \vee H_{l}\right) \\
\left.\left(\neg p_{n} \wedge G\right) \equiv\left(\neg p_{n} \wedge G_{1}\right) \vee\left(\neg p_{n} \wedge G_{2}\right) \vee \ldots \vee\left(\neg p_{n} \wedge G_{k}\right)\right)
\end{gathered}
$$

which is a disjunctive normal form,

$$
\left(p_{n} \wedge H\right) \equiv\left(\left(p_{n} \wedge H_{1}\right) \vee\left(p_{n} \wedge H_{2}\right) \vee \ldots \vee\left(p_{n} \wedge H_{l}\right)\right)
$$

which is also a disjunctive normal form. The formula F is then equivalent to the disjunction of these two disjunctive normal.
In order to obtain a conjunctive normal form, the induction hypothesis produces two conjunctive normal forms G and H. The equivalence used in this case is:

$$
F \equiv\left(\left(\neg p_{n} \vee H\right) \wedge\left(p_{n} \vee G\right)\right)
$$

and we obtain a conjunctive normal form for the formula F.
1.3.3. Transformation methods. In practice, two main methods are used to obtain a disjunctive or conjunctive normal form. The first method consists in transforming formulas by successive equivalences using the following rules, applied in this order:
(1) eliminate the connectives \rightarrow and \leftrightarrow by using the following equivalences:

$$
\begin{gathered}
(F \rightarrow G) \equiv(\neg F \vee G) \\
(F \leftrightarrow G) \equiv((\neg F \vee G) \wedge(F \vee \neg G))
\end{gathered}
$$

(2) push the negation as far inside as possible:

$$
\begin{aligned}
& \neg(F \wedge G) \equiv(\neg F \vee \neg G) \\
& \neg(F \vee G) \equiv(\neg F \wedge \neg G)
\end{aligned}
$$

(3) use the distributivity of \wedge and \vee :

$$
\begin{aligned}
& (F \wedge(G \vee H)) \equiv((F \wedge G) \vee(F \wedge H)) \\
& (F \vee(G \wedge H)) \equiv((F \vee G) \wedge(F \vee H))
\end{aligned}
$$

Example. Determine disjunctive and conjunctive normal forms of the formula $\neg(p \leftrightarrow(q \rightarrow r))$. The formula is transformed by successive equivalences:

$$
\begin{gathered}
\neg((p \rightarrow(q \rightarrow r)) \wedge((q \rightarrow r) \rightarrow p)) \\
\neg((\neg p \vee(\neg q \vee r)) \wedge(\neg(\neg q \vee r) \vee p)) \\
(\neg(\neg p \vee(\neg q \vee r)) \vee \neg(\neg(\neg q \vee r) \vee p)) \\
((p \wedge \neg(\neg q \vee r)) \vee((\neg q \vee r) \wedge \neg p)) \\
((p \wedge q \wedge \neg r)) \vee((\neg q \vee r) \wedge \neg p)) \\
((p \wedge q \wedge \neg r) \vee(\neg p \wedge \neg q) \vee(\neg p \wedge r))
\end{gathered}
$$

which is a disjunctive normal form.
Consider one of the formula above: $((p \wedge q \wedge \neg r)) \vee((\neg q \vee r) \wedge \neg p))$ and apply the distributivity. We obtain:

$$
\begin{gathered}
(((p \wedge q \wedge \neg r) \vee(\neg q \vee r)) \wedge((p \wedge q \wedge \neg r) \vee \neg p)) \\
((p \vee \neg q \vee r) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg r))
\end{gathered}
$$

which is a conjunctive normal form.

The second method to obtaining a disjunctive or conjunctive normal form equivalent to a given formula F, consists first in determining the associated function f_{F}. Then we can build a normal form G which represents the function f_{F} and which is equivalent to F :
(1) we determine the valuations \mathcal{V} such that $\mathcal{V}(F)=1$;
(2) to each valuation \mathcal{V}_{j} such that $\mathcal{V}_{j}(F)=1$, we associate a formula G_{j}, which is of the form $\left(e_{1} p_{1} \wedge e_{2} p_{2} \wedge \ldots \wedge e_{n} p_{n}\right)$, where for each $i=$ $1,2, \ldots, n, e_{i} p_{i}$ is p_{i} if $\mathcal{V}_{j}\left(p_{i}\right)=1$ and $e_{i} p_{i}$ is $\neg p_{i}$ if $\mathcal{V}_{j}\left(p_{i}\right)=0$;
(3) the formula G, obtained by taking the disjunction of the formulas G_{j}, is a disjunctive normal form.
It is easy to verify that the function associated with the formula G is equal to f_{F} Therefore G is equivalent to the given formula F.

Example. Let us apply this method to the formula F, from the previous example:

$$
\neg(p \leftrightarrow(q \rightarrow r))
$$

There are four valuations \mathcal{V} such that $\mathcal{V}(F)=1: \mathcal{V}_{1}=(1,1,0), \mathcal{V}_{2}=(0,1,1)$, $\mathcal{V}_{3}=(0,0,1), \mathcal{V}_{4}=(0,0,0)$, where we denote the valuation \mathcal{V} by $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ if $\mathcal{V}\left(p_{i}\right)=\epsilon_{i}$, for $i=1,2,3$. The obtained formula G is a disjunctive normal form:
$G=((p \wedge q \wedge \neg r) \vee(\neg p \wedge q \wedge r) \vee(\neg p \wedge \neg q \wedge r) \vee(\neg p \wedge \neg q \wedge \neg r))$

The construction of a conjunctive normal form for a given formula follows a similar method: we exchange systematically the roles between valuations giving value 1 and those giving value 0 , between propositional variables and negation of propositional variables, between disjunction and conjunction.
PROPOSITION 1.11. Determining a disjunctive normal (respectively conjunctive) form for F is equivalent to determining a conjunctive normal (respectively disjunctive) form for $\neg F$.

Proof : Assume that G is a disjunctive normal (respectively conjunctive) form for F. The formula $\neg F$ is equivalent to $\neg G$: if we apply De Morgan's rules to $\neg G$, we obtain a conjunctive (respectively disjunctive) normal form, equivalent to $\neg G$ and to $\neg F$.
The previous proposition express the duality between a formula and its negation, disjunction and conjunction, disjunctive and conjunctive normal forms.
1.3.4. Clausal form. Clausal form is an alternative presentation of conjunctive normal form, which is used in some automatic deduction methods.

DEFINITION 1.15.

- A clause C is a disjunction $\left(G_{1} \vee G_{2} \vee \ldots \vee G_{l}\right)$ of l formulas $(l \geq 1)$, where each $G_{j}(j=1,2, \ldots, l)$ is a literal.
- The propositional variables which appear in the clause C without negation are called positive variables; propositional variables preceded by a negation are called negative variables.

The following proposition is a direct consequence of the corollary on the existence of conjunctive normal form.

PROPOSITION 1.12. Every propositional formula is equivalent to a conjunction of clauses.

Clause C is equivalent to a clause of the form:

$$
\left(\neg a_{1} \vee \neg a_{2} \vee \ldots \vee \neg a_{n} \vee b_{1} \vee b_{2} \vee \ldots \vee b_{m}\right)
$$

where all $a_{i}(i=1,2, \ldots, n)$ and all $b_{j}(j=1,2, \ldots, m)$ are propositional variables. A clause which has at least one negative variable and one positive variable is also equivalent to a formula of the form:

$$
\left(\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right) \rightarrow\left(b_{1} \vee b_{2} \vee \ldots \vee b_{m}\right)\right)
$$

The notation (Γ, Δ) is often used as a representation of a clause $C: \Gamma$ is the set of all negative propositional variables in C and Δ the set of all positive variables in C. If Δ is reduced to a unique variable b_{1}, we have a Horn clause.

Example. The formula $\neg(p \leftrightarrow(q \rightarrow r))$ is equivalent to the conjunction of the following clauses:

$$
\begin{gathered}
C_{1}:(\neg q \vee p \vee r) \equiv(q \rightarrow(p \vee r)) \\
C_{2}:(\neg p \vee q) \equiv(p \rightarrow q)
\end{gathered}
$$

$$
C_{3}:(\neg p \vee \neg r)
$$

Only C_{2} is a Horn clause.

Among particular clauses we can distinguish the following three cases:
(1) a clause $C=(\Gamma, \Delta)$ is negative if $\Delta=\emptyset$, such as clause C_{3} for example;
(2) a clause $C=(\Gamma, \Delta)$ is positive if $\Gamma=\emptyset$;
(3) an empty clause, defined by $\Gamma=\Delta=\emptyset$.

The following properties are useful:
(1) The valuation \mathcal{V} satisfies a clause $C=(\Gamma, \Delta)$ iff there is some variable $p \in \Gamma$ such that $\mathcal{V}(p)=0$ or there is some variable $q \in \Delta$ such that $\mathcal{V}(q)=1$.
(2) The valuation \mathcal{V} does not satisfy a clause $C=(\Gamma, \Delta)$ iff for all variables $p \in \Gamma, \mathcal{V}(p)=1$ and for all variables $q \in \Delta, \mathcal{V}(q)=0$.
(3) The empty clause is satisfied by no valuation.
1.3.5. OBDD: Ordered Binary Decision Diagrams. OBDD's are important structures which represent boolean functions. In order to define these structures, we need basic notions on graphs.
1.3.5.1. Graphs. A directed graph G consists of a finite set V of vertices or nodes and a set E of edges between two vertices. The set E is a subset of $V \times V$ and defines a binary relation on V. Two nodes u and v are connected by an edge starting in u iff $(u, v) \in E$. The in-degree of a node v is the number of edges leading to v. Analogously, the out-degree of v is the number of edges starting in v. A node is called a sink if it has out-degree 0 . If the out-degree of v is larger than $0, v$ is called an internal node. A node is called a root if it has indegree 0 . If (u, v) is an edge, then u is called a predecessor of v, and v is called a successor of u. A path of length k is a sequence $u_{0}, u_{1}, \ldots, u_{k}$ of $k+1$ nodes where u_{i+1} is a successor of $u_{i}(i=0,1, \ldots, k-1)$. If $u_{0}=u_{k}$, the path is called cyclic. A graph is said acyclic if there does not exist a cyclic path.
1.3.5.2. Decision diagrams. Consider the boolean algebra on the set $\{0,1\}$, which is defined by the operations $+, \cdot,{ }^{-}$as follows:

$$
a+b=\max \{a, b\} \quad a \cdot b=\min \{a, b\} \quad \overline{0}=1 \quad \overline{1}=0
$$

In the sequel, the term $a \cdot b$ is abbreviated by $a b$.
DEFINITION 1.16. Let $<$ be a linear order on the set of variables x_{1}, \ldots, x_{n}. An ordered binary decision diagram (OBDD) with respect to the variable order $<$ is a directed acyclic graph with exactly one root, which satisfies the following properties:

- There are exactly two sinks, labelled by the constants 1 and 0 .
- Each non-sink node is labelled by a variable x_{i}, and has two outgoing edges which are labelled by 1 (1-edge) and 0 (0 -edge), respectively.
- The order, in which the variables appear on a path in the graph, is consistent with the variable order $<$, i.e. for each edge connecting a node labelled by x_{i} to a node labelled by x_{j}, we have $x_{i}<x_{j}$.

Nodes labelled by a variable are called internal nodes.
The variable of a node v is denoted by $\operatorname{var}(v)$. The successor node of a node v, which is determined by the 1 -edge, is denoted by $l(v)$ and the successor which is determined by the 0 -edge, is denoted by $r(v)$.

DEFINITION 1.17.

- The computation path of an input $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ is the path from the root to a sink in the OBDD, defined by the input, i.e. the computation path begins at the root, and in each node labelled by x_{i} the path follows the edge with label a_{i}.
- An OBDD represents a given boolean function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ if for any input $\bar{a} \in\{0,1\}^{n}$, the computation path of \bar{a} reaches the sink with label $f(a)$.

Figure 1.2. Two OBDDs for the function f.

Example. Let $<$ be the variable order $x_{1}<x_{2}<x_{3}$. Figure 1.2 shows two OBDD representations of the function:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1} \overline{x_{2}} \overline{x_{3}}+\overline{x_{1}} x_{2} x_{3}
$$

with respect to the variable order $<$. The 1 -edges use plain edges whereas the 0 -edges use dotted edges.

OBDDs in the sense of the previous definition are not uniquely determined. The notion of reduced $O B D D$ provides a canonical representation of boolean functions.
1.3.5.3. Reduced OBDDs. Two OBDDs are said isomorphic if they are isomorphic as labelled graphs, i.e. if there is a bijection between the set of vertices which preserves the 1 and $0-$ edges.

DEFINITION 1.18. An OBDD is called reduced if

- it does not contain a node v with $l(v)=r(v)$, and
- there does not exist a pair of nodes u, v such that the OBDDs rooted in u and v are isomorphic.

We now define two reduction rules in order to construct reduced OBDDs.
DEFINITION 1.19. The reduction rules on OBDDs are the following.

- Elimination rule: if the 1 -edge and the 0 -edge of a node u point to the same node v, then eliminate u, and redirect all incoming edges of u to v.
- Merging rule: if the internal nodes u and v are labelled by the same variable, their 1-edges lead to the same node, and their 0-edges lead to the same node, then eliminate one of the two nodes u, v and redirect all incoming edges of this node to the remaining one.

The following theorem justifies the use of reduction rules.
THEOREM 1.2. An OBDD is reduced if and only if none of the two reduction rules can apply.

Proof : If an OBDD is reduced, it is clear that none of the reduction rules can be applied.
Conversely, let P an OBDD to which neither of the reduction rules can be applied. Then P does not contain a node v with $l(v)=r(v)$. Assume that P contains a pair of distinct nodes u, v such that the subgraphs rooted in u and v are isomorphic.

If $l(u)=l(v)$ and $r(u)=r(v)$, then the merging rule can be applied and we obtain a contradiction.

If $l(u) \neq l(v)$, or $r(u) \neq r(v)$, then the two OBDDs rooted in the two distinct nodes $l(u)$ and $l(v)$, or $r(u)$ and $r(v)$, are isomorphic.

We apply again the previous case distinction to the nodes $l(u)$ and $l(v)$, or $r(u)$ and $r(v)$. As the subgraphs only depend on the variables which occur after $\operatorname{var}(u)$ in the order, the recursive process stops after at most n steps, where n is the number of variables in the original OBDD.

COROLLARY 1.4. For each variable order $<$, the reduced OBDD of a boolean function f with respect to $<$ is uniquely determined (up to isomorphism).

The proof of the previous result uses also the following lemma which is left as an exercise.
Lemma 1.1. Given a boolean function f, there is exactly one $O B D D$ of minimal size for f with respect to a variable order, up to isomorphism.
As a consequence of this lemma, any OBDD P for the boolean function f with respect to the variable order is isomorphic the minimal OBDD for f iff none of the reduction rules is applicable to P. An easy algorithm for transforming a given OBDD into a reduced OBDD for the same function: apply the reduction rules as long as possible.

1.4. Exercises

(1) Prove that the relation defined on the set of expressions of propositional logic " u is an initial segment of v " is an order relation.
(2) Prove that every formula has the same number of open and closed parentheses.
(3) Prove that the binary relation \equiv, defined on the set of formulas by: $F \equiv G$ iff F, G are equivalent, is an equivalence relation.
(4) Determine the tautologies among A, B, C, D and E.

$$
\begin{gathered}
(A \leftrightarrow(B \rightarrow C)) \leftrightarrow((A \wedge C) \vee(\neg(A \leftrightarrow B) \wedge \neg C)) \\
((A \rightarrow(B \vee E)) \wedge((C \wedge E) \rightarrow D)) \rightarrow((A \wedge C) \rightarrow(B \vee D)) \\
(((\neg A \rightarrow B) \rightarrow(\neg A \rightarrow C)) \wedge(B \rightarrow \neg C)) \rightarrow A \\
((A \wedge B) \rightarrow(C \vee D)) \leftrightarrow((A \rightarrow C) \vee(B \rightarrow D))
\end{gathered}
$$

(5) A simplified notation used in the propositional, or boolean, calculus, allows for shorter notations: $\neg p$ is written \bar{p}, \wedge is written . and \vee is written + . The formula $p_{1} \wedge\left(p_{2} \vee \neg p_{3}\right)$ is written as $p_{1} \cdot\left(p_{2}+\overline{p_{3}}\right)$. Let p_{1}, p_{2}, p_{3} be propositional variables.
(a) Let F be formula $\left(p_{1} \cdot p_{2} \cdot \overline{p_{3}}\right)+\left(p_{1} \cdot \overline{p_{2}} \cdot p_{3}\right)+\left(\overline{p_{1}} \cdot p_{2} \cdot p_{3}\right)$. Are the formulas F and $\neg F$ satisfiable? Are F and $\neg F$ tautologies?
(b) Find conjunctive normal forms and clausal forms for F and $\neg F$.
(c) Find a formula G such that the formula $(F \wedge G) \vee(\neg F \wedge \neg G)$ is a tautology.
(d) Let F_{1} be a formula obtained by substituting $\overline{p_{1}}$ for p_{1} in F. Is the formula F_{1} a consequence of F, and F a consequence of F_{1} ?
(6) Let G_{1}, G_{2}, G_{3} be the formulas: $p_{1}+p_{2}+p_{3}, p_{1} \cdot p_{2} \cdot \overline{p_{3}}, p_{1} \cdot \overline{p_{2}}+p_{3}$.

- Find all pairs of formulas, among G_{1}, G_{2} or G_{3}, such that one element of a pair is a consequence of the other element.
- Is the formula $G_{1} \vee G_{3}$ a consequence of $G_{1} \vee \neg G_{2}$?
(7) Show that the systems of connectives $\{\neg, \vee\},\{\neg, \rightarrow\}$ are complete, i.e. that every propositional formula is equivalent to a formula built only with the connectives \neg, \vee.
(8) Describe the second method for finding a disjunctive normal form and apply it to the formula $\neg(p \leftrightarrow(q \rightarrow r))$.
(9) Show the uniqueness of the decomposition of a formula. You can start by proving the following two results.

Lemma 1.1. If I is an initial segment of some formula F, then I has at least the same number of open and closed parenthesis. Furthermore if a formula F starts with an open parenthesis and I is an initial segment distinct from F, then I has strictly more open parenthesis than closed ones.

Lemma 1.2. Let F be a formula and I an initial segment of F. If I is itself a formula, then $I=F$.
(10) Let f be the boolean function defined by:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\overline{x_{2}} \overline{x_{4}}+x_{2}\left(x_{3}+\overline{x_{4}}\right)
$$

and $<$ the variable order $x_{1}<x_{2}<x_{3}<x_{4}$. Construct a reduced OBDD for f.
(11) Prove the existence of exactly one OBDD of minimal size for a given boolean function f with respect to the variable order, up to isomorphism.
(12) Deduce an algorithm for transforming a given OBDD into a reduced OBDD for the same boolean function.

