
Introduction

The book presents some of the fundamental ideas of Logic for Computer Science.
It introduces classical notions of mathematical logic to computer scientists and the
new ideas brought by the theory of complexity. Given a problem, it is important
to know if there is an algorithmic solution, i.e. if the problem can be solved by
an automatic procedure based on a finite set of instructions. The classical notions
of mathematical logic, such as decidability, completeness and incompleteness are
used to answer this question. When an algorithmic solution exists, it is then im-
portant to know if there exists an efficient solution, i.e. an automatic procedure
which uses few resources such as time or space. Complexity theory introduces
notions such as NP-completeness, reductions, approximations which are used to
answer this refined question. We present these concepts from the viewpoint of
logic, called descriptive complexity and emphasize the roles of randomness and
approximation. The presentation is divided into three parts:

Part 1. Model theory and recursive functions. We introduce the basic model
theory of propositional, first order, inductive definitions and second order logic.
Then, we define recursive functions, show their equivalence with Turing com-
putable functions, prove the completeness of first order logic and the incomplete-
ness theorems.

Part 2. Descriptive complexity. The functions computable in polynomial time
are called effectively computable and can be defined as global recursive functions
on classes of finite ordered structures. Decision problems of other complexity
classes such as AC�NC�LOGSPACE�NLOGSPACE�NP�PH, have similar log-
ical characterizations and allow to view complexity questions as definability prob-
lems in logic. This approach is called descriptive as it is independent of any model
of computation.

Part 3. Approximation. Randomized algorithms in polynomial time define the
classBPP for decision problems which generalizes the classP and the class IP (In-
teractive proofs) for verification problems which generalizes the class NP. Other
models of verification include PCP (probabilistic checkable proofs) and property
testing. Some optimization problems and counting problems can also be approx-
imated according to their logical form. The PCP techniques allow one to prove
non-approximability results.

1

2 INTRODUCTION

The design of programming languages, query languages and specification lan-
guages follows many logical principles presented in the first part of the book. The
second part explains the relationship between the definitions of algorithms, queries,
properties of programs and their computational complexity. For many classical
tasks such as the verification of programs, optimization problems or counting prob-
lems, it is essential to first study the complexity of these problems. When the de-
gree of unfeasibility is too high, approximation techniques presented in the third
part of the book can be useful.

This book is based on two books by the same authors, in French: Logique et Fonde-
ments de l’Informatique, published in 1993 and Logique et Complexité, published
in 1996 (Editions Hermès, http://www.editions-hermes.fr). The first part is the
translation of some of the chapters of the first book, whereas the second and third
parts of the present book are translations of the second book with additional new
subjects. We will maintain: http://www.lri.fr/�mdr/logicbook/ for the corrections
of some of the exercises, remarks and updates.

Most of the presented material appears in the books: Computational complexity
by C. Papadimitriou [Pap94], Descriptive Complexity by N. Immerman [Imm99],
and Finite Model Theory by H. D. Ebbinghaus and J. Flum [EF91].

We wish to thank all our colleagues who helped us on the French books, in partic-
ular Stéphane Boucheron, Miklós Sántha and Avy Sharell. In addition, we thank
Mikaël Cozic, Miki Hermann, Isabelle Bril and our translator Elena Calude for
their contribution on this English version. We bear the responsibility for the errors
which remain in this book.

Part 1

Basic model theory and computability

CHAPTER 1

Propositional logic

Propositional logic, or propositional calculus, is an elementary mathematical sys-
tem that constitutes a minimal kernel common to all logical systems. It plays the
role of a simplified construction which will be generalized to more expressive sys-
tems. We study the construction of this language and its semantic interpretation,
i.e. the objects denoted by expressions of the language.

In the first section, we define the set of propositional formulas. The second section
is dedicated to the interpretation of formulas in terms of truth values (true, false).
This interpretation gives rise to notions of equivalent formulas and logical conse-
quence. The equivalence relation between formulas captures the main properties of
propositional logic. The normal forms are presented in the third section. Ordered
binary decision diagrams (OBDD) are defined in the fourth section. They provide
a data structure to represent boolean functions and are used in some verification
tools, such as model checkers.

1.1. Propositional language

The purpose of this section is to define the set of propositional formulas and to
show how this type of definition – present in all branches of mathematical logic –
can be used to study properties of formulas in a chosen language.

1.1.1. Construction of formulas. The propositional language is character-
ized by a collection of symbols, called alphabet A, which includes:

� a set P = fp� q� r� ���g, finite or countable, of symbols called propositional
variables,
� the set of connectives (or logical symbols), which are � (not), � (and),
� (or),� (imply),� (equivalent to),
� the parentheses (and).

The connective � is unary and the others are binary. A word, or an expression, is
a finite sequence of elements of A. The length of a word is equal to the number of
symbols composing it. The set of words constructed with the help of alphabetA is
denoted by A�.

Concatenation is a composition rule defined on A� which associates with the two
words u� v the word obtained by juxtaposing the sequence u with v: the new word
is denoted by uv. A word u is an initial segment of a word v if a word w exists

5

6 1. PROPOSITIONAL LOGIC

such that v � uw. The relation defined on A� by “u is an initial segment of v” is
an order relation.

Example. The sequences of symbols �p, ��p � �q � r�� and �p � �qr� are
words belonging to A�.
The word ��p is an initial segment of ��p � �q � r��.

From the logical point of view only some of the words ofA�, are interesting: these
are what we call formulas. In the previous example, only the first two expressions
are formulas, in contrast to the last one.

DEFINITION 1.1. The set of propositional formulas, built with P , is the smallest
set F such that:

� all propositional variables are in F ,
� if F � F , then �F � F ,
� if F�G � F , then �F � G� � F , �F � G� � F , �F � G� � F and
�F � G� � F .

The set F is well defined. There are sets satisfying these three conditions: for
example, the set A� consisting of all words. Among all these sets, there is one
set smaller than all the others: their intersection. This intersection is not empty
because it contains the set P of propositional variables. The set of formulas can
also be characterized in another way, by using the induction principle.

Let P be a property depending on non-negative integers. If P satisfies:

� P is true for � (respectively for the non-negative integer n�),
� if P is true for n, then it is true for n� �,

then P is true for all n (respectively, for all n 	 n�).

DEFINITION 1.2. The sets Fn are defined by induction on n:

� F� � P ,
� Fn�� � Fn
 f�F � F � Fng
 f�F � G� � F�G � Fng

where � is ����� or�.

It is easy to see that the sequence �Fn�n�N is increasing (exercise).

PROPOSITION 1.1. The set F of propositional formulas is equal to
S
n�N Fn.

Proof : The set
S
n�N Fn satisfies the conditions of the definition of F :

� all propositional variables are in F�;
� if F � Fn, then �F � Fn��;
� if F�G �

S
n�N Fn, then there exist n�m such that F � Fn and G � Fm; if

p � sup�n�m�, F�G � Fp and the formulas �F �G�, �F �G�, �F � G� and
�F � G� are in Fp��.

Therefore, the set
S
n�N Fn contains F , which is the smallest set satisfying these condi-

tions. In order to obtain the inclusion in the opposite direction, it is sufficient to show that
for every non-negative n, Fn � F . This property can be proved by induction on n:

1.1. PROPOSITIONAL LANGUAGE 7

� F� � P � F ;
� assume that Fn � F by induction hypothesis. From the definition of Fn�� and

the fact that the set F is closed under all connectives, it follows that Fn�� � F .

This concludes the proof.�

DEFINITION 1.3. The rank of a formula F is the smallest non-negative integer n
such that F � Fn.

Example. The formula F � ��p � ��q � r�� s�� has rank �.
p� q� r� s have rank �,
�p� �q � r� have rank �,
��q � r�� s� has rank �.

1.1.2. Proof by induction. In this section numerous results will have the
form: let P be a property of formulas; then the set of all propositional calculus
formulas having the property P is equal to F . In order to prove these results,
we will not use a reasoning by induction on non-negative integers but instead, a
proof by induction on the formulas. This type of proof is justified by the following
proposition:

PROPOSITION 1.2. Let P be a property of formulas, satisfying the following con-
ditions:

� all propositional variables have the property P ,
� if G is a formula with the property P , then the formula �G has the prop-

erty P ,
� if G�H are formulas with the property P , then all formulas �G � H�,
�G �H�, �G� H�, �G� H� have this property.

Then all propositional formulas have the property P .

Proof : Let E be a set of formulas in F with property P . In order to deduce the equality
F � E it is sufficient to show that F � E . According to the hypothesis, the set E contains
all propositional variables and is closed under the application of operators. Therefore it
contains F , which is the smallest set verifying these conditions. �

The following proposition is a simple example of proof by induction on the set of
propositional formulas and is left as an exercise.

PROPOSITION 1.3. Every formula has exactly the same number of opening and
closing parentheses.

1.1.3. Decomposition of a formula. The following proposition provides an
answer to the question: given a particular formula, are there different ways to
decompose it in “simpler formulas” ?

PROPOSITION 1.4. Let F be a formula. Then F has one and only one of the
following forms:

8 1. PROPOSITIONAL LOGIC

(1) a propositional variable,
(2) �G, where G is a formula,
(3) �G �H�, where G�H are formulas,
(4) �G �H�, where G�H are formulas,
(5) �G� H�, where G�H are formulas,
(6) �G� H�, where G�H are formulas.

Furthermore, in cases 2, 3, 4, 5 and 6, the formulasG�H are uniquely determined.

The existence of a decomposition is easily obtained from the definition of the set
of formulas. The uniqueness is more difficult to establish and requires two inter-
mediary results, which are stated in the exercises.

DEFINITION 1.4. A subformula of F is a formula which appears in the decompo-
sition of F .

We define the notion of tree which will be used for the representation of the de-
composition of a formula.

DEFINITION 1.5. A tree is a set T provided with an application h � T �� N and
a binary relation P � T � satisfying the following conditions :

� there is a unique element rofT, called the root , such that h�x� � �,
� for any element y of T , except the root, there is a unique element x such

as �x� y� � P , what we also note P �x� y�,
� for any x � T , if �x� y� � P , then h�y� � h�x� � �.

The elements of T are called nodes. For any x � T , h�x� is called the level of x. If
�x� y� � P , x is said the predecessor or the father of y, and y a successor or a son
of x. A node without successor is a leaf. The decomposition of formulas justifies
the following method which allows one:

� to decide whether a given expression is a formula,
� in the case of a positive answer, to construct a decomposition tree for

this formula, i.e. a tree whose nodes are labelled by subformulas which
occur in the expression. If F is a propositional variable (case 1 of the
decomposition), the corresponding node a is a leaf. In case 2 of the de-
composition, the node a has one successor labelled by G. In cases 3,4,5
and 6 of the decomposition, the node a labelled by a formula F has two
descendants nodes labelled by the formulas G and H .

Example. Is the following expression a formula?

F � ����p� q� � ��r � s��� p�

F has the form �F� � F�� where F� � p is a propositional variable,
F� has the form �F� � F��,
F� has the form �F� � F�� where F� � �F�, F� � q and F� � p are proposi-
tional variables,
F� has the form �F	 and F	 and is of the form �F
 � F���, where F
 � r and

1.2. SEMANTICS 9

F�� � s are propositional variables.

����p� q� � ��r � s��� p�

���p� q� � ��r � s��

��p� q�

�p
�� AA

q

�� ll
��r � s�

�r � s�

r
�� LL

s

�� cc
p

FIGURE 1.1. A tree decomposition.

Hence the expression F is a formula. Furthermore, its tree decomposition shows
how it is constructed. Propositional variables are the labels of the leaves and the
subformulas are the labels of the nodes. The formula F is the label of the root of
the tree. The tree decomposition of F is presented in the Figure 1.1.

Example. The formulas ��p� q�, �r�s� and p are subformulas of the formula
F in the previous example.

1.2. Semantics

Semantics is defined as the interpretation of formulas in terms of their truth val-
ues (true, false). A valuation, that is a distribution of truth values on the set of
propositional variables, allows the determination of the truth value of the formula.
In what follows, 0 represents the value false and 1 the value true. We use iff as an
abbreviation for if and only if.

DEFINITION 1.6. A valuationV is a function from the set of propositional variables
P into f�� �g.

PROPOSITION 1.5. Let V be a valuation. There is a unique extension V of V on F
satisfying the following conditions:

(1) for all p � P , V�p� � V�p�,
(2) if F is �G, then V�F � � � iff V�G� � �,
(3) if F is �G �H�, then V�F � � � iff V�G� � V�H� � �,
(4) if F is �G �H�, then V�F � � � iff V�G� � V�H� � �,

10 1. PROPOSITIONAL LOGIC

(5) if F is �G� H�, then V�F � � � iff V�G� � � and V�H� � �,
(6) if F is �G� H�, then V�F � � � iff V�G� � V�H�.

Proof : The distribution V is defined by induction on formulas.

� Case 1 gives the definition for propositional variables.
� If F is�G and V�G� is already defined (induction hypothesis), we put V�F � � �

if V�G� � � and V�F � � � otherwise.
� If F is �G�H� and V�G�, V�H� are already defined (induction hypothesis), we

put V�F � � � if V�G� � V�H� � � and V�F � � � otherwise.

The proofs for the other cases are similar: the values V�G� and V�H� allow one to define
V�F � satisfying conditions (4), (5) or (6), respectively. The function V is well defined in a
unique way according to the decomposition. The uniqueness of the extension of V is left
as an exercise: if we suppose that there are two extensions, it is easy to show by induction
on formulas, that they are equal. �

Example. The value of the formula ��p� q� � �q � r�� for the valuation of V
defined by V�p� � V�q� � � and V�r� � � is �.

One way to represent the conditions stated in the previous proposition is to con-
struct a table giving the values of V�F �, as a function of the different possible
values of V , from the immediate subformulas of F . It is easy to construct truth
tables for the binary operators ����� :

G H G �H G �H G� H
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Henceforth, each valuation V given on P is extended to the set of all formulas, F ,
and we also denote its extension by V .

1.2.1. Tautologies. Equivalent formulas. The interpretation of formulas al-
lows their classification: two formulas with the same interpretation will be grouped
in the same class. A particularly interesting class is the class of formulas which are
always true.

DEFINITION 1.7.

� A formula F is satisfied by a valuation V if V�F � � �.
� A tautology is a formula satisfied by all valuations.
� Two formulas F�G are said to be equivalent if for every valuation V ,
V�F � � V�G�; we write F G.

Example. The following formulas are examples of tautologies:

�p� p�

1.2. SEMANTICS 11

�p� �q � p��

��p� �q � r��� ��p� q�� �p� r���

���p� q�� ���p� �q�� p��

The following pairs of formulas are examples of equivalences:

��p and p

�p� q� and ��p � q�

�p� q� and ��p� q� � �q � p��

�p � �q � r�� and ��p � q� � �p � r��

We note that two formulas F�G are equivalent iff the formula �F � G� is a
tautology. The binary relation defined on the set of formulas by: F G iff F�G
are equivalent, is an equivalence relation (exercise).

1.2.2. Logical consequence. From the point of view of semantics, one of the
fundamental questions is to determine whether one formula is a consequence of a
given set of formulas.

DEFINITION 1.8. Let � be a set of formulas and F a formula.

� A formula F is said to be a consequence of� if every valuation satisfying
all formulas of �, also satisfies the formula F .
� A set of formulas � is said to be satisfiable if there exists a valuation

which satisfies all formulas of �.

Example. The formula q is a consequence of the set fp� �p� q�g.
The set of formulas fp� �p� q���qg is not satisfiable.

PROPOSITION 1.6. Any formula F is a consequence of the set of formulas � iff the
set �
 f�Fg is not satisfiable.

Proof : If every valuation satisfying � also satisfies F , then there is no valuation satisfy-
ing both � and �F . The converse is easily shown by contraposition: if there is a valuation
satisfying � and not satisfying F , then this valuation satisfies both � and �F . �

1.2.3. Value of a formula and substitution. The value of a formula, for ex-
ample ��p� q� � �q � r�� can be determined for any given valuation V . But how
can we calculate the truth value of a complex formula using truth values of simpler
formulas? In this paragraph we answer this question: it is sufficient to compose
truth values as in the case of propositional variables. In the first reading, it is pos-
sible to omit the general case treated within the theorem and its corollary. In fact,
the study of properties stated in the following examples are sufficient for the con-
struction of normal forms.

12 1. PROPOSITIONAL LOGIC

The notation F �p�� p�� ���� pn� specifies that the formula F contains propositional
variables among p�� p�� ���� pn. The following proposition expresses a rather intu-
itive property: in order to compute the truth value of a formula, it is sufficient to
check the values taken by the propositional variables involved in this formula.

PROPOSITION 1.7. Let F �p�� ���� pn� be some formula and V a valuation. Then the
value V�F � depends only on the values V on p�� ���� pn.

Proof : By induction on formulas.

� If F is a propositional variable p�, the statement is true.
� Suppose that the values V�G��V�H� only depend on those of V on p�� ���� pn

(induction hypothesis). If F is �G then the property is equally true for F since
V�F � only depends on those of V�G�. If F is �G � H�, the property is still
true for F since V�F � only depends on V�G��V�H�. The proof is similar for all
other cases.

�

DEFINITION 1.9. An occurrence of the variable p in some formula F is a position
where it appears in F .

Let G be a formula. The formula obtained by the substitution of G for p in F ,
denoted F �G�p�, is the formula obtained by replacing all occurrences of p in F by
the formula G.

DEFINITION 1.10. The formula F �G�p� is defined by induction on formula F :

� if F is a propositional variable p, F �G�p� is the formula G;
� if F is a propositional variable q distinct from p, F �G�p� is the formula
F ;
� if F has the form �H , F �G�p� is the formula �H�G�p�;
� if F has form F��F�, where � is a binary connective, F �G�p� is the

formula F��G�p��F��G�p�.

Example. The substitution of the formula �q � r� for the variable q in the
formula ��p� q� � �q � r�� is:

��p� �q � r�� � ��q � r� � r��

Let F�G�H be some formulas. Suppose we know the values V�F ��V�G��V�H�.
How could we, for example, determine the value of V���F � G� � �G � H���?
The following proposition answers this question.

PROPOSITION 1.8. Let F�G be two formulas and V a valuation whose value for G
is known. The value of the formulaF �G�p� for the valuationV is equal to the value
of the formula F for a valuation V � satisfying: V ��p� � V�G� and V ��q� � V�q�
for each q distinct from p.

Proof : The proof is by induction on formula F .

1.2. SEMANTICS 13

� If F is a propositional variable p, then the statement is true. If F is some variable
q distinct from p, F �G�p� is q and V��F � � V�q� � V�F �.
� Assume that the property is true for the formula H , i.e.

V�H�G�p�� � V ��H�

If F has the form �H , then:

V�F �G�p�� � � i� V�H�G�p�� � �

V ��F � � � i� V ��H� � �

The induction hypothesis allows one to obtain the desired condition for F .
� Assume the property is true for formulas F�� F�. If F has the form �F� � F��,

the values of V �V � in F will satisfy:

V�F �G�p�� � � i� V�F��G�p�� � V�F��G�p�� � �

V ��F � � � i� V ��F�� � V
��F � � �

Once again, the induction hypothesis leads us to the desired conclusion. The
proof is similar for the other binary connectives.

�

COROLLARY 1.1. Let F� F �� G�G� be formulas and p a propositional variable.

� If the formula F is a tautology, then the formula F �G�p� is also a tautol-
ogy.
� If the formulas F and F � are equivalent, then the formulas F �G�p� and
F ��G�p� are also equivalent.
� If the formulas G and G� are equivalent, then the formulas F �G�p� and
F �G��p� are also equivalent.

The proof is left as an exercise. The following examples are direct consequences
of the corollary.

For every formula F�G�H , the following formulas are tautologies:

(1)

�F � F �

�F � �G� F ��

��F � �G� H��� ��F � G�� �F � H���

(2) For every formula F�G�H , the following formulas are equivalent:

��F F

�F � G� ��F �G�

�F � G� ��F � G� � �G� F ��

14 1. PROPOSITIONAL LOGIC

(3) If F F � and G G�, then the following formulas are equivalent:

�F �F �

�F �G� �F � �G��

�F �G� �F � �G��

�F � G� �F � � G��

�F � G� �F � � G��

The following equivalences of formulas express the main properties of connectives:

(1) commutativity:

�F �G� �G � F �

�F �G� �G � F �

(2) associativity:

�F � �G �H�� ��F �G� �H�

�F � �G �H�� ��F �G� �H�

(3) idempotence:

�F � F � F

�F � F � F

(4) De Morgan’s rules:

��F �G� ��F � �G�

��F �G� ��F � �G�

(5) distributivity:

�F � �G �H�� ��F �G� � �F �H��

�F � �G �H�� ��F �G� � �F �H��

(6) absorption:

�F � �F �G�� F

�F � �F �G� F

1.3. NORMAL FORMS 15

1.2.4. Complete systems of connectives. The following proposition intro-
duces a set of connectives which allows to express all propositional formulas.

PROPOSITION 1.9. Any propositional formula is equivalent to a formula con-
structed only with the connectives � and �.

Proof : The proof is obtained by induction on the formulas. It is true for propositional
variables. Assume the property is true for G�H , i.e. the formula G (respectively H) is
equivalent to the formula G� (respectively H�) built only with the connectives ���.

� Let F � �G, so F is equivalent to �G�, which is a formula built only with the
connectives ���, according to the induction hypothesis.
� Let F � �G�H�, so F is equivalent to �G��H ��, which is a formula built only

with the connectives ���, according to the induction hypothesis.
� Let F � �G�H�, F � �G� �H ��. Using De Morgan’s second rule and the fact

that K � ��K, we get that F � ���G� � �H ��, which is a formula built only
with the connectives ���.
� Let F � �G � H�, F � �G� � H ��, F � ��G� �H ��, which is equivalent to

a formula built only with the connectives ����, according to the previous case.
� Let F � �G � H�, F � �G� � H ��, F � ��G� � H �� � �H � � G���, which

is equivalent to a formula built only with the connectives ���, according to the
previous case.

This concludes the proof. �

Notice that the expression F G is a relation between two formulas and is not a
propositional formula!

DEFINITION 1.11. A set of connectives having the property stated in the above
proposition for f���g is called a complete system.

From the previous result, it is easy to deduce that the systems of operators f���g,
f���g are complete; the proof is left as an exercise.

1.3. Normal forms

Normal forms are special formulas such that any formula can be transformed into
an equivalent normal form. We consider disjunctive and conjunctive normal forms.

1.3.1. Disjunctive and conjunctive normal forms.

DEFINITION 1.12. A literal is a propositional variable or the negation of a propo-
sitional variable.

DEFINITION 1.13. A disjunctive normal form is a disjunction �F��F�� ����Fk�
of k formulas (k 	 �), where each formula Fi (i � �� 	� ���� k) is a conjunction
�G� �G� � ��� �Gl� of l literals (l 	 �).

Example. The following formulas are disjunctive normal forms:

��p � q� � ��p � �q��

��p � q � �r� � ��p � q��

�p � �q�

16 1. PROPOSITIONAL LOGIC

DEFINITION 1.14. A conjunctive normal form is a conjunction �F� � F� � � � � �
Fk� of k formulas (k 	 �), where each formula Fi (i � �� 	� � � � � k) is a disjunction
�G� �G� � � � � �Gl� of l literals (l 	 �).

Example. The following formulas are conjunctive normal forms:

���p � q� � �p � �q��

��p � �q � r� � ��p � r� � ��r � �s��

��p � q�

1.3.2. Functions associated to formulas. The set P is now supposed to be
finite: P � fp�� p�� ���� png. Thus there are 	n distinct valuations. Each for-
mula F �p�� p�� ���� pn� defines a function fF from the set of valuations f�� �gP

into f�� �g which associates the value V�F � to each valuation V . The following
property is obvious.

PROPOSITION 1.10. Two formulas F�G are equivalent iff their associated func-
tions are equal.

COROLLARY 1.2. There are at most 	�
n

propositional formulas, pairwise non-
equivalent, built with n variables.

Proof : Let F� � be the quotient of the set of formulas by the equivalence relation
�. We associate the function fF to the equivalence class of some formula F . There
are ��

n

such functions because each one associates a valuation to f�� �g and there are
�n such valuations. This application is an injection and therefore there are at most ��

n

non-equivalent formulas. �

The following theorem claims that the function defined in the proof of the previous
corollary is in fact a bijection.

THEOREM 1.1. Every function f from f�� �gP to f�� �g can be represented by
a formula F �p�� p�� ���� pn�, meaning that there is some formula F �p�� p�� ���� pn�
such that, for all valuations V , f�V� � V�F �.

Proof : The proof is by induction on the number of propositional variables n.

� If n � �, there are four functions from f�� �gP to f�� �g: these functions can be
represented by the formulas p��p� �p � �p�� �p � �p�.
� Assume the property true for n	 � propositional variables.

Let P = fp�� p�� ���� png and f be a function from f�� �gP to f�� �g. Every val-
uation V � on fp�� p�� ���� pn��g can be considered as a restriction of a valuation
V on fp�� p�� ���� png. Let the function f�, respectively f�, be the restriction of
f to the valuation V such that V�pn� � �, respectively V�pn� � �: f�� f� are
functions from the set of valuations defined on fp�� p�� ���� png to f�� �g and are

1.3. NORMAL FORMS 17

represented by the formulas G�p�� ���� pn��� and H�p�� ���� pn���, according to
the induction hypothesis. The function f can be represented by the formula:

��pn �G�p�� ���� pn���� � �pn �H�p�� ���� pn�����

We conclude that any function from f�� �gP to f�� �g can be represented by a formula,
whatever the number of propositional variables. �

We obtain the existence of normal forms for all propositional formulas.

COROLLARY 1.3. Every formula is equivalent to a disjunctive normal form and to
a conjunctive normal form.

Proof : As in the previous proof, we prove this corollary by induction on the number n
of propositional variables.

� In the case n � �, we consider the formulas above, which are both disjunctive
and conjunctive normal forms.

� Assume the property true for n	 � variables. Let fF be the function associated
to the formula F �p�� p�� ���� pn�. It is possible to construct a formula which rep-
resents fF , as in the proof of the previous theorem. The formula F is equivalent
to a formula of the form ��pn �G� � �pn �H��, where G�H are equivalent to
disjunctive normal forms:

G � �G� �G� � ��� �Gk�

H � �H� �H� � ��� �Hl�

��pn �G� � ��pn �G�� � ��pn �G�� � ��� � ��pn �Gk��

which is a disjunctive normal form,

�pn �H� � ��pn �H�� � �pn �H�� � ��� � �pn �Hl��

which is also a disjunctive normal form. The formula F is then equivalent to the
disjunction of these two disjunctive normal.

In order to obtain a conjunctive normal form, the induction hypothesis produces two con-
junctive normal forms G and H . The equivalence used in this case is:

F � ���pn �H� � �pn �G��

and we obtain a conjunctive normal form for the formula F . �

1.3.3. Transformation methods. In practice, two main methods are used to
obtain a disjunctive or conjunctive normal form. The first method consists in trans-
forming formulas by successive equivalences using the following rules, applied in
this order:

(1) eliminate the connectives� and� by using the following equivalences:

�F � G� ��F �G�

�F � G� ���F �G� � �F � �G��

(2) push the negation as far inside as possible:

��F �G� ��F � �G�

��F �G� ��F � �G�

18 1. PROPOSITIONAL LOGIC

(3) use the distributivity of � and �:

�F � �G �H�� ��F �G� � �F �H��

�F � �G �H�� ��F �G� � �F �H��

Example. Determine disjunctive and conjunctive normal forms of the formula
��p� �q � r��. The formula is transformed by successive equivalences:

���p� �q � r�� � ��q � r�� p��

����p � ��q � r�� � ����q � r� � p��

����p � ��q � r�� � �����q � r� � p��

��p � ���q � r�� � ���q � r� � �p��

��p � q � �r�� � ���q � r� � �p��

��p � q � �r� � ��p � �q� � ��p � r��

which is a disjunctive normal form.
Consider one of the formula above: ��p� q ��r��� ���q � r���p�� and apply
the distributivity. We obtain:

���p � q � �r� � ��q � r�� � ��p � q � �r� � �p��

��p � �q � r� � ��p � q� � ��p � �r��

which is a conjunctive normal form.

The second method to obtaining a disjunctive or conjunctive normal form equiva-
lent to a given formula F� consists first in determining the associated function fF .
Then we can build a normal form G which represents the function fF and which is
equivalent to F :

(1) we determine the valuations V such that V�F � � �;
(2) to each valuation Vj such that Vj�F � � �, we associate a formula Gj ,

which is of the form �e�p� � e�p� � ��� � enpn�� where for each i �
�� 	� ���� n, eipi is pi if Vj�pi� � � and eipi is �pi if Vj�pi� � �;

(3) the formula G, obtained by taking the disjunction of the formulas Gj , is
a disjunctive normal form.

It is easy to verify that the function associated with the formula G is equal to fF
Therefore G is equivalent to the given formula F .

Example. Let us apply this method to the formula F , from the previous exam-
ple:

��p� �q � r��

There are four valuations V such that V�F � � �: V� � ��� �� ��, V� � ��� �� ��,
V� � ��� �� ��, V� � ��� �� ��, where we denote the valuation V by ���� ��� ���
if V�pi� � �i, for i � �� �� �. The obtained formula G is a disjunctive normal
form:

G � ��p � q � �r� � ��p � q � r� � ��p � �q � r� � ��p � �q � �r��

1.3. NORMAL FORMS 19

The construction of a conjunctive normal form for a given formula follows a simi-
lar method: we exchange systematically the roles between valuations giving value
� and those giving value �, between propositional variables and negation of propo-
sitional variables, between disjunction and conjunction.

PROPOSITION 1.11. Determining a disjunctive normal (respectively conjunctive)
form for F is equivalent to determining a conjunctive normal (respectively disjunc-
tive) form for �F .

Proof : Assume that G is a disjunctive normal (respectively conjunctive) form for F .
The formula �F is equivalent to �G : if we apply De Morgan’s rules to �G, we obtain a
conjunctive (respectively disjunctive) normal form, equivalent to �G and to �F . �

The previous proposition express the duality between a formula and its negation,
disjunction and conjunction, disjunctive and conjunctive normal forms.

1.3.4. Clausal form. Clausal form is an alternative presentation of conjunc-
tive normal form, which is used in some automatic deduction methods.

DEFINITION 1.15.
� A clause C is a disjunction �G� � G� � ��� � Gl� of l formulas (l 	 �),

where each Gj (j � �� 	� ���� l) is a literal.
� The propositional variables which appear in the clause C without nega-

tion are called positive variables; propositional variables preceded by a
negation are called negative variables.

The following proposition is a direct consequence of the corollary on the existence
of conjunctive normal form.

PROPOSITION 1.12. Every propositional formula is equivalent to a conjunction of
clauses.

Clause C is equivalent to a clause of the form:

��a� � �a� � ��� � �an � b� � b� � ��� � bm�

where all ai (i � �� 	� ���� n) and all bj (j � �� 	� ����m) are propositional variables.
A clause which has at least one negative variable and one positive variable is also
equivalent to a formula of the form:

��a� � a� � ��� � an�� �b� � b� � ��� � bm��

The notation �
��� is often used as a representation of a clause C :
 is the set of
all negative propositional variables in C and � the set of all positive variables in
C. If � is reduced to a unique variable b�, we have a Horn clause.

Example. The formula ��p� �q � r�� is equivalent to the conjunction of the
following clauses:

C� 	 ��q � p � r� � �q � �p � r��

C� 	 ��p � q� � �p� q�

20 1. PROPOSITIONAL LOGIC

C� 	 ��p � �r�

Only C� is a Horn clause.

Among particular clauses we can distinguish the following three cases:

(1) a clause C � �
��� is negative if � � �, such as clause C� for example;
(2) a clause C � �
��� is positive if
 � �;
(3) an empty clause, defined by
 � � � �.

The following properties are useful:

(1) The valuation V satisfies a clause C � �
��� iff there is some variable
p �
 such that V�p� � � or there is some variable q � � such that
V�q� � �.

(2) The valuation V does not satisfy a clause C � �
��� iff for all variables
p �
, V�p� � � and for all variables q � �, V�q� � �.

(3) The empty clause is satisfied by no valuation.

1.3.5. OBDD: Ordered Binary Decision Diagrams. OBDD’s are important
structures which represent boolean functions. In order to define these structures,
we need basic notions on graphs.

1.3.5.1. Graphs. A directed graph G consists of a finite set V of vertices or
nodes and a set E of edges between two vertices. The set E is a subset of V � V
and defines a binary relation on V . Two nodes u and v are connected by an edge
starting in u iff �u� v� � E. The in-degree of a node v is the number of edges
leading to v. Analogously, the out-degree of v is the number of edges starting in
v. A node is called a sink if it has out-degree �. If the out-degree of v is larger
than �, v is called an internal node. A node is called a root if it has indegree �. If
�u� v� is an edge, then u is called a predecessor of v, and v is called a successor of
u. A path of length k is a sequence u�� u�� � � � � uk of k � � nodes where ui�� is a
successor of ui (i � �� �� � � � � k� �). If u� � uk, the path is called cyclic. A graph
is said acyclic if there does not exist a cyclic path.

1.3.5.2. Decision diagrams. Consider the boolean algebra on the set f�� �g,
which is defined by the operations �� ��� as follows:

a� b � maxfa� bg a � b � minfa� bg � � � � � ��

In the sequel, the term a � b is abbreviated by ab.

DEFINITION 1.16. Let � be a linear order on the set of variables x�� � � � � xn.
An ordered binary decision diagram (OBDD) with respect to the variable order
� is a directed acyclic graph with exactly one root, which satisfies the following
properties:

� There are exactly two sinks, labelled by the constants � and �.
� Each non-sink node is labelled by a variable xi, and has two outgoing

edges which are labelled by � (�-edge) and � (�-edge), respectively.
� The order, in which the variables appear on a path in the graph, is con-

sistent with the variable order �, i.e. for each edge connecting a node
labelled by xi to a node labelled by xj , we have xi � xj .

1.3. NORMAL FORMS 21

Nodes labelled by a variable are called internal nodes.

The variable of a node v is denoted by var�v�. The successor node of a node v,
which is determined by the �-edge, is denoted by l�v� and the successor which is
determined by the �-edge, is denoted by r�v�.

DEFINITION 1.17.
� The computation path of an input a � �a�� � � � � an� � f�� �gn is the

path from the root to a sink in the OBDD, defined by the input, i.e. the
computation path begins at the root, and in each node labelled by xi the
path follows the edge with label ai.
� An OBDD represents a given boolean function f � f�� �gn �� f�� �g

if for any input a � f�� �gn, the computation path of a reaches the sink
with label f�a�.

1 0

x1

x2

x3 x3

x2

x3x3 x3

1 0

x1

x2

x3

x2

FIGURE 1.2. Two OBDDs for the function f .

Example. Let � be the variable order x� � x� � x�. Figure 1.2 shows two
OBDD representations of the function:

f�x�� x�� x�� � x�x�x�
 x�x� x�
 x�x�x�

with respect to the variable order �. The 1-edges use plain edges whereas the
0-edges use dotted edges.

OBDDs in the sense of the previous definition are not uniquely determined. The
notion of reduced OBDD provides a canonical representation of boolean functions.

1.3.5.3. Reduced OBDDs. Two OBDDs are said isomorphic if they are iso-
morphic as labelled graphs, i.e. if there is a bijection between the set of vertices
which preserves the � and �� edges�

DEFINITION 1.18. An OBDD is called reduced if

22 1. PROPOSITIONAL LOGIC

� it does not contain a node v with l�v� � r�v�, and
� there does not exist a pair of nodes u� v such that the OBDDs rooted in u

and v are isomorphic.

We now define two reduction rules in order to construct reduced OBDDs.

DEFINITION 1.19. The reduction rules on OBDDs are the following.

� Elimination rule: if the �-edge and the �-edge of a node u point to the
same node v, then eliminate u, and redirect all incoming edges of u to v.
� Merging rule: if the internal nodes u and v are labelled by the same

variable, their �-edges lead to the same node, and their �-edges lead to
the same node, then eliminate one of the two nodes u� v and redirect all
incoming edges of this node to the remaining one.

The following theorem justifies the use of reduction rules.

THEOREM 1.2. An OBDD is reduced if and only if none of the two reduction rules
can apply.

Proof : If an OBDD is reduced, it is clear that none of the reduction rules can be applied.

Conversely, let P an OBDD to which neither of the reduction rules can be applied. Then
P does not contain a node v with l�v� � r�v�. Assume that P contains a pair of distinct
nodes u� v such that the subgraphs rooted in u and v are isomorphic.

If l�u� � l�v� and r�u� � r�v�, then the merging rule can be applied and we obtain a
contradiction.

If l�u�
� l�v�, or r�u�
� r�v�, then the two OBDDs rooted in the two distinct nodes l�u�
and l�v�, or r�u� and r�v�, are isomorphic.

We apply again the previous case distinction to the nodes l�u� and l�v�, or r�u� and r�v�.
As the subgraphs only depend on the variables which occur after var�u� in the order, the
recursive process stops after at most n steps, where n is the number of variables in the
original OBDD. �

COROLLARY 1.4. For each variable order �, the reduced OBDD of a boolean
function f with respect to � is uniquely determined (up to isomorphism).

The proof of the previous result uses also the following lemma which is left as an
exercise.

LEMMA 1.1. Given a boolean function f , there is exactly one OBDD of minimal
size for f with respect to a variable order, up to isomorphism.

As a consequence of this lemma, any OBDD P for the boolean function f with
respect to the variable order is isomorphic the minimal OBDD for f iff none of
the reduction rules is applicable to P . An easy algorithm for transforming a given
OBDD into a reduced OBDD for the same function: apply the reduction rules as
long as possible.

1.4. EXERCISES 23

1.4. Exercises

(1) Prove that the relation defined on the set of expressions of propositional logic “u
is an initial segment of v” is an order relation.

(2) Prove that every formula has the same number of open and closed parentheses.
(3) Prove that the binary relation �, defined on the set of formulas by: F � G iff

F�G are equivalent, is an equivalence relation.
(4) Determine the tautologies among A�B�C�D and E.

�A� �B � C��� ��A � C� � ���A� B� � �C��

��A� �B � E�� � ��C � E�� D��� ��A � C�� �B �D��

����A � B�� ��A� C�� � �B � �C��� A

��A � B�� �C �D��� ��A� C� � �B � D��

(5) A simplified notation used in the propositional, or boolean, calculus, allows for
shorter notations: �p is written p, � is written � and � is written
. The formula
p���p���p�� is written as p���p�
p��. Let p�� p�� p� be propositional variables.
(a) Let F be formula �p��p��p��
 �p��p��p��
 �p��p��p��. Are the formulas

F and �F satisfiable? Are F and �F tautologies?
(b) Find conjunctive normal forms and clausal forms for F and �F .
(c) Find a formula G such that the formula �F �G����F ��G� is a tautology.
(d) Let F� be a formula obtained by substituting p� for p� in F . Is the formula

F� a consequence of F , and F a consequence of F�?
(6) Let G�� G�� G� be the formulas: p�
 p�
 p�� p��p��p�� p��p�
 p�.

� Find all pairs of formulas, among G�� G� or G�, such that one element of
a pair is a consequence of the other element.
� Is the formula G� �G� a consequence of G� � �G�?

(7) Show that the systems of connectives f���g, f���g are complete, i.e. that
every propositional formula is equivalent to a formula built only with the con-
nectives ���.

(8) Describe the second method for finding a disjunctive normal form and apply it
to the formula ��p� �q � r��.

(9) Show the uniqueness of the decomposition of a formula. You can start by prov-
ing the following two results.

LEMMA 1.1. If I is an initial segment of some formula F , then I has at least
the same number of open and closed parenthesis. Furthermore if a formula F
starts with an open parenthesis and I is an initial segment distinct from F , then
I has strictly more open parenthesis than closed ones.

LEMMA 1.2. Let F be a formula and I an initial segment of F . If I is itself
a formula, then I � F .

(10) Let f be the boolean function defined by:

f�x�� x�� x�� x�� � x� x�
 x��x�
 x��

and � the variable order x� � x� � x� � x�. Construct a reduced OBDD for
f .

(11) Prove the existence of exactly one OBDD of minimal size for a given boolean
function f with respect to the variable order, up to isomorphism.

(12) Deduce an algorithm for transforming a given OBDD into a reduced OBDD for
the same boolean function.

