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Linear System Representation: Models and
Equivalence

In this chapter, models used for system simulation and model-based control
design are presented. The treatment is focused on linear systems and the lin-
earised approximation of non-linear systems due to the necessary limitation in
space. As disturbance rejection is a key objective in many control applications,
disturbance models are also introduced.

2.1 Introduction: Objectives of Modelling

In the previous chapter, it was shown that the “ideal” control requires the
inversion of the plant model. Thus, any control structure will take advantage
of a good process model to compute the control action, even if the model is
not perfect.

In this book, process models are tools for designing the control system,
for simulating the behaviour of the controlled system, and for analysing its
properties and evaluating the goals’ achievement. Thus, their level of detail,
range of validity and presentation will be determined by their use.

For each application, control goal or design methodology, a given model
will be more or less suitable. Given a process, different models can be attached
to it, some of them being equivalent, but, in any case, all them should be
“coherent” [84].

For instance, for regulatory and tracking purposes, a CT/DT dynamic
model would be required, but for production optimisation or management a
simplified and aggregated model, or even a steady-state model, would be more
appropriate. For alarm treatment, a discrete-event model will represent the
evolution from one operating condition to the next, probably combined with
some regulatory actions.

State-based models will be extensively used in this book, due to their
relationship with first-principle models and their ease of computer implemen-
tation, as well as the availability of computer aided control system design
packages for them.
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Other than processes, signals should be also modelled. They can be consid-
ered as the output of processes (generators) with some particular properties.
In particular, deterministic disturbances (such as steps, ramps or sinusoidal
variations) can be modelled as the output of uncontrollable generators, and
stochastic disturbances will be mainly modelled by their mean and variance
properties.

2.2 Types of Models

As previously mentioned, based on the type of signals involved in the model
we can find models of different natures: CT, DT, discrete-event, hybrid or
stochastic models.

The usual CT and DT signals are functions of time, as defined in Appendix
A.1. Multivariable signals are composed by stacking a set of individual signals
in column vector form.

A binary or logical signal only takes two possible values, being synchronous
if changes are only allowed at predefined time instants or asynchronous if the
changes may happen at any moment.

Random variables and stochastic processes, being characterised by their
statistical properties, will be considered in a later section and in Appendix E.

Although different kinds of models can be defined, unless otherwise stated,
the hypothesis of Section 1.4, namely linearity, time-invariance and lumped
parameters (finite-dimensional system), will be assumed to hold.

A non-linear system is a broader (and more common) representation of
actual processes. The diversity of options and their specific and usually more
difficult mathematical treatment puts the study of non-linear systems out of
the scope of this book. Some simple cases will be outlined in Section 9.5.
non-linearity, time-variation and spatial variation will be accommodated by
control systems that are tolerant enough regarding modelling error.

Locality. The models usually only represent the relationship between incre-
ments of the variables around a given operating point. This is quite usual in
modelling non-linear systems if we are interested in their approximate lin-
earised behaviour around an equilibrium point. In general, non-linear models
are better suited to modelling the global behaviour of a process, relating ab-
solute values of the variables.

Variables. Based on the kind of variables involved, we can define: in-
put/output or external models, and state variables or internal models. In the
case of external models, we can also consider the so-called black-box models,
where only the input and output variables are involved, or white-box models,
where the internal structure of the process is somehow represented.

Methodology. The last distinction can be also related to the approach fol-
lowed to obtain the model. If the basis of the process operation is known,
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its dynamical behaviour can be expressed by balance and fundamental equa-
tions, leading to a first-principle model . If, on the other hand, this fundamental
behaviour is unknown or the resulting equations would be too detailed and
complicated, and it is possible to experiment with the process, its response
to some excitation can be used to get an experimental model representing its
input/output behaviour, without any reference to what happens internally.

2.3 First-principle Models: Components

Let us consider the following illustrative example.

Example 2.1 (First-principle modelling). Let us consider a continuous-flow stirred
tank reactor (CSTR)1, where a first-order exothermic reaction A → B happens, with
a cooling jacket [89]. We have a rough model of the CSTR, knowing that due to the
entrance of a flow rate input stream, Fo, with Cao concentration of component A,
at a temperature To, there is an internal level, h, temperature, T , and component
A concentration, Ca, and there is an outlet flow rate, F , at temperature T and
concentration Ca. This can be represented by the block shown in Figure 2.1, where
the cooling jacket water flow, Fj , enters at temperature Tjo, leaving at temperature
Tj , and the total jacket volume, Vj , is fixed.

Tj0 , Qj0

T0 , C , Q0

LT
TT

VC1

VC2

A B C , Ta

T(t)

Q, T, Ca

Q, Tj j

a0

Figure 2.1. CSTR reactor

If all the processes inside the reactor are known, the following set of equations can
be written:

1. Total mass balance:
dV

dt
= Fo − F (2.1)

2. Mass balance on component A:

d(V Ca)

dt
= FoCao − FCa − αV Cae−

E
RT (2.2)

where R is the perfect gas constant and α is the pre-exponential factor from the
Arrhenius law, and E is an activation energy.

1 The work about this process has been carried out in collaboration with M. Perez
[101].
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3. Energy balance in the reactor:

dT

dt
=

FoTo − FT

V
+

Hα

ρcp
Cae−

E
RT − UA

ρcpV
(T − Tj) (2.3)

where H is the reaction heat, ρ and cp are the density and heat capacity respec-
tively of the inlet and outlet streams, U is the overall heat transfer coefficient
through the jacket, A is the transfer area.

4. Energy balance in the jacket:

dTj

dt
=

Fj

Vj
(Tjo − Tj) +

UA

ρjcpjVj
(T − Tj) (2.4)

where ρj and cpj are the density and heat capacity respectively of the cooling
stream.

In this way, a set of non-linear differential equations represents the CSTR dynamics.

Simplifications. If we were only interested in the reactor components evolution,
or the reaction were isothermal, the energy-balance equations would be missing:

dV

dt
= Fo − F

d(V Ca)

dt
= (FoCao − FCa) − αV Cae−

E
RT (2.5)

Temperature variations, if any, would amount to having time-variance in the pa-
rameters on the reduced model.

If interest were focused on long-term production, only the static relation among
the variables would be relevant. Then, for given input constant values, if the opera-
tion is stable, an equilibrium point will be reached and a set of (algebraic) equations
will model the steady-state behaviour. Steady-state equations are obtained by set-
ting to zero all derivatives (as magnitudes are constant):

F = Fo; Fo(Cao − Ca) − αV Cae−
E

RT = 0

Fo

V
(To − T ) +

Hα

ρcp
Cae−

E
RT − UA

ρcpV
(T − Tj) = 0 (2.6)

Fj

Vj
(Tjo − Tj) +

UA

ρjcpjVj
(T − Tj) = 0

Similar to the reactor equations, basic equations describing the elements’
phenomena can be used. We distinguish between static elements, leading to
algebraic equations, or dynamic elements.

Static elements. Examples of static behaviour are, for instance:

• resistors: V = IR,
• wall heat transmission: Q12 = k(T1 − T2),
• springs: f = K(l − l0),
• outlet flow: F12 = k

√
h,

• pipes: F = k(P1 − P2),
• viscous friction: f = kv,
• balances, such as:

–
∑

fi = 0, the total force applied to a body,



2.3 First-principle Models: Components 21

–
∑

Fi = 0, the net flow in a pipe junction if there is no storage, or
–

∑
Vi = 0 the total voltage drop in a loop, and so on.

The meaning of the different constants and parameters is clear for those in-
troduced in the respective field. Some of these expressions are approximations
of non-linear relationships (friction, spring, resistor) but some others, like the
tank outlet flow, are explicitly non-linear. Under some circumstances, a linear
approximation will be possible.

Dynamic elements. Dynamic elements are those where the involved vari-
ables are not related instantaneously but in different times or by time incre-
ments. For instance, accummulative or delay components, such as:

• capacitors (dV
dt = 1

C I) and coils (dI
dt = 1

LV ),
• heat storage: dT

dt = 1
MCe

(Qin − Qout),
• mass storage: dV

dt = 1
M (Fin − Fout),

• motion equations: acceleration dv
dt = 1

M Ftot, dω
dt = 1

I Tres, or velocity dx
dt =

v, dφ
dt = ω for linear or angular motions,

• chemical reactions: dx
dt = f(xi, T ), as previously used, where the product

composition evolves with time,
• transportation belt: mout(t) = min(t − τ),
• stack or queue systems: n(k + 1) = n(k) +

∑
ui(k).

We must notice that these relationships (and many others) are similar, leading
to a component behaviour that is common to some of them. These analogies
allow for a unified treatment of any dynamical system without much relevance
of the supporting technology. It should be pointed out that the last dynamic
equation is slightly different, as the time is discrete and the variables are
assumed to be integers. We will see more of that later on.

Basic equations. The equation

dy(t)
dt

= αu(t) (2.7)

represents the storage of u, α being a scaling constant to deal with the ap-
propriate measurement units of y and u. In fact, the same relationship can be
written as:

y(t) = α

∫ t

0

u(τ) dτ + y(0)

The equivalent DT equations would be, respectively:

y(k + 1) − y(k) = αu(k) y(k) = α
k−1∑
i=0

ui + y(0) (2.8)

In DT it is also very easy to represent some delays such as:
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y(k) = u(k − d) (2.9)

where d is the number of time delay intervals in this relationship.
These storage and delay equations are the basic dynamic equations and

will be the kernel in defining the state space model in the next section.

2.4 Internal Representation: State Variables

A process is composed of a number of interconnected elements as described
above. In order to completely define a process model, we must get the same
number of independent equations as internal variables, allowing theoretically
the computation of the internal variables given the external input, u(t).

Some of the equations in the model will be dynamic and some of them will
be algebraic. By substitution, some equations can be removed. A so-called
normalised representation can be obtained by removing the algebraic equa-
tions and manipulating the rest of them to be expressed as storage equations
(2.7) or (2.8).

State equation. If all the dynamic equations are first-order differential equa-
tions, they can be arranged in a normalised way. Denoting by state variables
the storage variables previously defined, the process model could be sum-
marised by the so-called state equation:

dx(t)
dt

= f(x(t), u(t), t) (2.10)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector and f is an n-
dimensional vector of non-linear functions. The argument t explicitly indicates
the possibility of being time-varying functions. This system representation is
denoted as being an n-order system.

Output equation. If the output variables, y ∈ R
p, are not the state vari-

ables, they will be related to them, and possibly also the inputs, by the (al-
gebraic) output equation:

y(t) = g(x(t), u(t), t) (2.11)

where g is a p-dimensional vector of non-linear functions. The set of state and
output equations is denoted as a system realisation or normalised state space
representation.

Example 2.2. Looking at the equations in Example 2.1, let us rewrite the model as
state equations. Only Equation (2.2) should be transformed into:

dCa

dt
=

Fo(Cao − Ca)

V
− αCae−

E
RT

the rest of the equations, (2.1), (2.3) and (2.4), constituting a fourth-order system
with states (V , Ca, T , Tj).
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For DT processes, the state and output equations will be, respectively:

x(k + 1) = f(x(k), u(k), k) (2.12)
y(k) = g(x(k), u(k), k) (2.13)

where the argument k stands for the integer instant of time.
The delay element, (2.9), in CT models requires an infinity of state

variables to be represented (all the past input values), leading to infinite-
dimensional systems. Some approximations are usually done, (2.42).

However, in a DT process, if the time delay is a multiple of the period,
it will admit a simplified treatment introducing as many delayed variables as
delay intervals. For instance, for d = 2, y(k) = u(k − 2) is equivalent to:

x1(k + 1) = x2(k); x2(k + 1) = u(k); y(k) = x1(k) (2.14)

The Concept of State

The previously defined state variables have a number of interesting properties:

• memory. They summarise the past history of the process,
• state as internal variables. They are not directly connected to the

input, but their derivatives (in DT, future values) as well as any other
process variable can be expressed as a function of these and the inputs,

• minimality. There is a minimum number of state variables so that the
process internal model cannot be further reduced by removing any internal
variable; otherwise, the dynamic equations will be of an order higher than
one,

• non-uniqueness. Any set of n-independent internal variables, not directly
connected to the input, represents the system. By independent we mean
each one representing a different storage process.
If the set vector x(t) is a state vector, any variable vector x̄(t) such that

x(t) = T x̄(t) (2.15)

T being an n-square regular matrix, is also a state vector.
Indeed, knowing x(t), the new state can be computed as x̄(t) = T−1x(t)
and viceversa (2.15). The T -matrix represents a linear state transformation
or a similarity transformation. The transformation of Equation 2.10 yields:

dx̄

dt
= T−1f(T x̄(t), u(t), t)

so it is also a normalised representation.
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2.5 Linear Models and Linearisation

As previously mentioned, most of our study is referred to linear, time-invariant
(LTI) systems. For this kind of systems, the state equation (2.10) is simplified:
the time variable is no more an argument (time-invariance) and the functions
f express linear combinations of the state and input variables. Thus:

dx1
dt = a11x1 + a12x2 + · · · + a1nxn + b11u1 + · · · + b1mum

...
dxn

dt = an1x1 + an2x2 + · · · + annxn + bn1u1 + · · · + bnmum

(2.16)

or, in matrix form
ẋ(t) = Ax(t) + Bu(t) (2.17)

Similarly, for the output equation (2.11), it would be:

y1 = c11x1 + c12x2 + · · · + c1nxn + d11u1 + · · · + d1mum

· · ·
yp = cp1x1 + cp2x2 + · · · + cpnxn + dp1u1 + · · · + dpmum

(2.18)

or, in matrix form:
y(t) = Cx(t) + Du(t) (2.19)

The state space model involves the four matrices (A,B,C,D) having the
following dimensions and meaning:

• A, the n×n system matrix, represents the internal interconnection among
state variables,

• B, the n×m input matrix, represents the input-to-state direct connection,
• C, the p × n output matrix, represents the state-to-output direct connec-

tion, and
• D, the p × m coupling matrix, represents the input-to-output direct con-

nection or input/output coupling.

So, in total, the number of parameters is n2 +n×m+p×n+p×m. A system
will be denoted by the 4-tuple shorthand notation Σ := (A,B,C,D).

It is easy to show that under a similarity transformation such as (2.15),
the new equivalent state space model will be (Ā, B̄, C̄, D̄), being:

Ā = T−1AT ; B̄ = T−1B; C̄ = TC; D̄ = D (2.20)

and the new state and output equations:

˙̄x = Āx̄ + B̄u

y = C̄x̄ + Du

Some transformations are of special interest for deriving or emphasising some
properties of the representation, denoted as canonical representations, usually
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reducing the number of significant parameters. For instance, if the eigenvalues
of A are distinct, it is possible to find a matrix T such that Ā = Λ is diagonal
(or, in a general case, a Jordan canonical form). Appendix B details some
essential definitions and properties regarding matrices.

If we want to make a distinction between manipulated and disturbance
inputs, a generalised state space model can be expressed by:

ẋ(t) = Ax(t) + Bu(t) + Bdd(t) (2.21)
y(t) = Cx(t) + Du(t) + Ddd(t) (2.22)

where d ∈ R
q is a q-dimensional vector of disturbances.

Equilibrium points. Under some conditions, the non-linear model (2.10
and 2.11) can be approximated by a linear one, in particular, around an
equilibrium point. For a constant value of the input vector, u0, an equilibrium
point is defined as the state vector (set of variables), x0, solution of:

0 = f(x, u0) (2.23)

It is worth noting that for the same input u0 there may be one, none or
many solutions of (2.23), and thus, there will be the corresponding number
of equilibrium points.

Any other process variable will reach a steady-state value. For instance,
the output vector will be:

y0 = g(x0, u0) (2.24)

Note that the equilibrium point can be stable or unstable. Further detail will
be given later.
Linearisation. If the vector functions in the non-linear model, f and g, are
continuous and derivable at an equilibrium point (x0, u0), a linearised model
can be attached to the process by means of a truncated Taylor series expansion
of these functions.

For small input amplitudes, the second and higher-order terms are negli-
gible, and an approximate linearised process model in the form (2.17)–(2.19)
can be derived:

˙̄x = Ax̄ + Bū; ȳ = Cx̄ + Dū

where x̄ = x − x0 and ū = u − u0 represent the variable increments around
the equilibrium point, and the elements of the corresponding matrices are the
Jacobian components of the non-linear functions:

aij =
∂fi

∂xj
(xo, uo) i, j = 1, . . . , n (2.25)

bij =
∂fi

∂uj
(xo, uo) i = 1, . . . , n j = 1, . . . , m (2.26)

cij =
∂gi

∂xj
(xo, uo) i = 1, . . . , p j = 1, . . . , n (2.27)

dij =
∂gi

∂uj
(xo, uo) i = 1, . . . , p j = 1, . . . , m (2.28)
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Remark 2.3. If the process evolves to another equilibrium point, the linearised
model parameters change. If the variation in the variables is large enough to
invalidate the higher-order terms’ truncation, the linear model is not valid
anymore.

Example 2.4. Let us consider the CSTR of Example 2.1. Assume a constant volume
inside the reactor (Fo = F ), as well as the nominal conditions and parameters in
Table 2.1.

Table 2.1. Reactor notation and steady-state variables.

V ariable Description V alue

Ca0 Input concentration (kmol A/m3) 8

V Reactor volume (m3) 1.36

To Inlet flow temperature (K) 294.7

Vj Jacket volume (m3) 0.085

α Arrhenius exponential factor (h−1) 7.08 × 1010

E Activation energy (kJ/kmol) 69815

U Heat transmission coeff. (kJ/hm2K) 3065

A Heat transmission surface (m2) 23.22

Tjo Cooling water input temperature (K) 294.7

R Perfect gas constant (kJ/kmolK) 8.314

H Reaction heat (kJ/kmol) 69815

cp Thermal capacity (kJ/kg·K) 3.13

cpj Water thermal capacity (kJ/kg·K) 4.18

r Reactive and product density (kg/m3) 800

rj Water density (kg/m3) 1000

Substituting the data in the table into (2.2)–(2.4), the particular model is:

d(Ca)

dt
=

Fo

1.36
(8 − Ca) − 7.08 × 1010Cae−8397.3/T

dT

dt
=

Fo

1.36
(294.7 − T ) + 197.4 × 1010Ca.e−8397.3/T − 20.8987(T − Tj)

dTj

dt
=

Fj

0.085
(294.7 − Tj) + 200.3076(T − Tj)

Thus, the state equation with x = [Ca T Tj ]
′, and u = [F Fj ]

′] would be:

ẋ1 = f1(x, u) = 0.7353u1(8 − x1) − 7.08 × 1010x1e
−8397.3/x2

ẋ2 = f2(x, u) = 0.7353u1(294.7 − x2) + 197.4 × 1010e−8397.3/x2 − 20.90(x2 − x3)

ẋ3 = f3(x, u) = 11.76u2(294.7 − x3) + 200.31(x2 − x3)

The operating point is defined assigning, for instance, the inlet flow Fo = 1.13
m3/h and cooling flow in the jacket Fj = 1.41 m3/h. Thus, the operating point,
denoted by xs, can be computed by solving the above system equation, making the
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left-hand derivative terms null as in (2.6). Due to the non-linearity, in this case there
are three equilibrium points. One of the options is:

xs = [Cas Ts Tjs]
T = [4.031 333.6 331.4]T

The Jacobian elements, aij = ∂fi
∂xj

(xs, us), of the linearised model can be easily

computed. For instance, the first linearised equation is:

dx̄1

dt
= −(0.7353u1s + 7.08 × 1010e−8397.3/x2s)x̄1

+(−7.08 × 1010x1se
−8397.3/x2s

8397.3

x2
2s

)x̄2 + 0.7353(8 − x1s)ū1

Proceeding with all the elements, the following linear model is obtained:

A =


−1.705 −0.2519 0

23.088 −28.71 20.9
0 −200.3 −216.89


 ; B =


 2.918 0

−28.6 0
0 −415.29




Using the Matlab� command2 ss, assuming C = I, that is, all the state compo-
nents are measurable, and putting D = 0, the state space representation is created:

sys=ss(A,B,C,D)

The individual matrices can be retrieved as sys.a, sys.b, etc., if needed.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: gradient,diff,ss.

Remark 2.5. A linearised model can also be obtained around a nominal tra-
jectory. If the system input is defined in a time interval, u0(t),∀t ∈ [ti, tf ],
and the nominal state trajectory is given by x0(t), a linearised model can be
attached to this nominal trajectory by relating the variations of the trajectory
with respect to variations of the nominal input. Nevertheless, the linearised
model would be, generally, time-varying, as the linear model will change with
the state3.

A good example of this situation is a web treatment station, quite common
in the plastic, paper, metallurgical and many other industrial sectors. The web
is transferred from a coil to another one through the treatment area. The basic
goal is to control the rotational speed of the leading shaft as well as the position
of the tensional arm to keep a constant web velocity and tension. Under
nominal operating conditions, the diameter and inertia of the leading coil are
increasing with time, thus the nominal values of the parameters change. The
nominal shaft speed is time-varying to keep the web velocity constant, and a
linearised model can be obtained around this reference.
2 All the commands in this book refer to Matlab� version 5.3.
3 In fact, the Jacobian coefficients in (2.25) would be like: aij(t) = ∂fi

∂xj
(xo(t), uo(t)).
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Advantages and drawbacks. The state space representation has the fol-
lowing advantages:

• it may be obtained by the process behaviour description, as realised with
the reactor example, with an immediate physical interpretation, if so de-
rived,

• it presents separately the input effect and the measurement system,
• it is valid for linear and most non-linear systems,
• it can also represent the action of external disturbances (they are just

treated as non manipulated inputs),
• it provides the full (internal) description of the process, allowing the linking

of the model with the internal structure,
• there is a bunch of control system design approaches based on this repre-

sentation,
• it is valid for SISO and MIMO systems, with many common properties.

One key point in the MIMO case is that a complex system of interactions
is described with the minimal set of independent variables.

But also, some drawbacks should be taken into account:

• the model may be over-parameterised with respect to other representa-
tions,

• it is not unique and it may be unnecessarily complicated (i.e., over-
dimensioned), if irrelevant physical phenomena are modelled or a non-
minimal representation is used,

• the frequency response is not easily connected with the parameters of the
model,

• delays cannot be modelled in the normalised representation, only approx-
imately, by (2.43).

Anyway, it will be shown that it is possible to get this representation from
any other, and to transform it to any other as well, at least in the linear case.

Discrete Models

If instead of differential equations the process is defined by difference equa-
tions, a discrete state space model can be used. In this case, the state and
output equations are, respectively:

x(k + 1) = Ax(k) + Bu(k) (2.29)
y(k) = Cx(k) + Du(k) (2.30)

Linearisation. Equilibrium points in non-linear discrete systems are cal-
culated by replacing all instances of a particular variable, x (with different
delays), with an equilibrium value, x0. For time-invariant DT systems, the
equilibrium points are given by the solutions to:

x0 = f(x0, u0); y0 = g(x0, u0) (2.31)
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Once the (non-linear) equilibrium points are calculated, linearisation is
carried out obtaining the Jacobian, as in the CT case.

2.6 Input/Output Representations

In the previous section, we have built up a model by connecting the compo-
nents according to the system structure, but it is also possible to look at the
process as an m-input/p-output information processor. If only these variables
are used, the system representation will be composed of a set of p-differential
equations of order 1 or greater, as an extension of the differential equation
model of a SISO system. An example of this is:

ÿ1 + 2ẏ1 − y2 = 0.3u̇1 + u1 (2.32)
ẏ1 + ÿ2 = 2.5u2

This is a linear time-invariant CT two-input-two-output (TITO) system.
Again, these differential equations could be non-linear and time-variant (even
partial differential equations can be considered to represent distributed pa-
rameter systems or ∞-dimensional systems). For simplicity, we will assume
the above equation system is formed by linear differential equations with con-
stant coefficients.

2.6.1 Polynomial Representation

The Laplace transform (Appendix A) can be applied to the equation system,
(2.32). If the terms involving the initial condition vanish or cancel, that is, if
the initial variable values correspond to an equilibrium point of the system,
an algebraic equation system on the Laplace variable, s, is obtained:

s2y1(s) + 2sy1(s) − y2 = 0.3su1(s) + u1(s)
sy1(s) + s2y2(s) = 2.5u2(s)

If the terms related to the same variable are put together, the model can be
expressed by the following matrix equation:(

(s2 + 2s) −1
s s2

)(
y1(s)
y2(s)

)
=

(
(0.3s + 1) 0

0 2.5

)(
u1(s)
u2(s)

)
(2.33)

In a generic MIMO system, the model would be:

D(s)y(s) = N(s)u(s) (2.34)

where D(s) and N(s) are polynomial matrices, with dimensions p × p and
p × m respectively, whose elements are polynomials on the s variable. This
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new model, (2.34), is called the differential operator model, as a result of
the use of the s-variable, or polynomial representation. Instead of the four
real matrices (A,B,C,D) needed in the state space representation, only two
matrices (D,N) represent the system, although their elements are polynomials
(see Appendix B.6).

For a given system, the polynomial representation is not unique. In fact,
if P (s) is a square, p × p, regular polynomial matrix, the process may be
modelled by the new pair (D̄, N̄), being:

P (s)D(s) y(s) = P (s)N(s)u(s); ⇒ D̄(s) y(s) = N̄(s)u(s)

Example 2.6. A trivial example would be, in (2.33), to multiply by:

P (s) =

(
1 0
−1 (s + 2)

)

leading to an alternative representation of the same system with:

D̄(s) =

(
(s2 + 2s) −1

0 s2(s + 2) + 1

)
; N̄(s) =

(
(0.3s + 1) 0
−(0.3s + 1) 2.5(s + 2)

)

The polynomial representation of DT models is similar, using the z-
variable.

Advantages and drawbacks. The polynomial representation also presents
some properties. Among the advantages:

• it relates the input and output variables,
• it may be used to describe subsystems,
• it may be obtained by linearisation of a set of non-linear differential equa-

tions,
• there are some ad hoc approaches to designing control systems based on

polynomial operators,
• the number of parameters is lower than in the state space model.

However:

• it is not unique,
• it is not easy to handle (requiring symbolic computation and matrix in-

versions),
• it does not allow for easy autonomous system analysis (free response),
• it is only valid for linear systems.

2.6.2 Transfer Matrix

From (2.34), assuming D(s) is invertible (i.e., the p-differential equations are
independent), the output can be expressed as a function of the input:

y(s) = D−1(s)N(s)u(s) = G(s)u(s) (2.35)
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The rational matrix, G(s) = D−1(s)N(s), dimension p×m, is denoted as
the process transfer matrix , and its elements are quotients of polynomials (see
Section B.6). It is a function of the Laplace variable, s, and can be considered
as an operator analogous to transfer functions in SISO systems. This is one
of the most attractive properties of this representation.

Example 2.7. In the example, (2.32), it is easy to obtain:

(
y1

y2

)
=

(
(s2 + 2s) −1

s s2

)−1 (
(0.3s + 1) 0

0 2.5

) (
u1

u2

)

and, for instance, using the Mathematica� language:

GG=Inverse[{{s^2+2s,-1},{s,s^2}}].{{0.3s+1,0},{0,2.5}}

it yields: (
y1

y2

)
=

(
s(0.3s+1)

s3+2s2+1
2.5

s4+2s3+s
−(0.3s+1)

s3+2s2+1
2.5s+5

s3+2s2+1

) (
u1

u2

)
(2.36)

In this case, the system is represented by one p × m matrix, G(s), whose
elements are rational functions. For instance:

Gi,j(s) =
yi(s)
uj(s)

∣∣∣∣
u(s)k=0,∀k �=j

(2.37)

is the SISO transfer function between the input, uj , and the output, yi. That
is, the Laplace transform of the i-output over that of the j-input, assuming
that the rest of the inputs as well as the initial condition terms are null.

In general, p ≤ m. That is, the number of output (controlled) variables is
lower than the number of input (manipulated) variables. If p = m, G(s) is a
square matrix and some matrix operations will be allowed.

Again, the internal structure of the process is lost and this representation
only provides information about the effect of the inputs in the outputs. If
disturbances are considered, the model can be extended to become:

y(s) = Gp(s)u(s) + Gd(s)d(s) (2.38)

where d(s) is the Laplace transform of the vector of disturbances. Similarly,
the element Gdi,j(s) is the transfer function between the j-disturbance and
the i-output. Equation (2.38) is equivalent to (2.21) and (2.22).

Discrete case. The discrete transfer matrix representation of a general DT
process, equivalent to (2.38), is expressed by:

y(z) = Gp(z)u(z) + Gd(z)d(z) (2.39)
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Advantages and drawbacks. The transfer matrix representation presents
a number of advantages:

• it relates the input and output variables,
• it may be used as an operator to combine subsystems,
• it is unique (except for common factors in the rational elements, to be

reduced),
• there are some ad hoc approaches to designing control systems based on

this model structure,
• the number of parameters is minimised,
• its elements represent one-input to one-output connections, allowing ex-

perimental identification and partial model validation. Although it is out
of the main scope of this book, its importance should be stressed. Some
options for these tasks are outlined in Appendix A.4),

• in the same way, it shows up the interactions among different inputs and
outputs,

• delays can be considered.

However:

• the elements are rational functions (including exponential terms if delays
are considered),

• some global system properties, easily derived from the state matrix A, do
not appear so clearly,

• it does not allow for the autonomous system analysis,
• it is only valid for linear systems.

Example 2.8. The internal representation of the CSTR, Example 2.4, is converted
into a transfer matrix by the Matlab� command tf (or zpk to get it in factorised
form), as shown in the following example:

sys=ss(A,B,C,D); G=tf(sys); Gp=zpk(sys)

TF from input 1 to output... From input 2 to output...

2.918 (s+57.43)(s+190.6) 2186.3814

#1: ---------------------------- #1: ----------------------------

(s+1.83) (s+54.36) (s+191.1) (s+1.83)(s+54.36)(s+191.1)

-28.6 (s+216.9)(s-0.6506) -8679.561 (s+1.705)

#2: ---------------------------- #2: ----------------------------

(s+1.83)(s+54.36)(s+191.1) (s+1.83)(s+54.36)(s+191.1)

5728.58 (s-0.6506) -415.29(s+28.49)(s+1.922)

#3: ---------------------------- #3: ----------------------------

(s+1.83)(s+54.36)(s+191.1) (s+1.83)(s+54.36)(s+191.1)

Matlab�: Some commands implementing algorithms related to the contents of this
section are: ss,tf,zpk,ss2tf,tf2ss.
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Systems with Time Delay

Transportation phenomena, among others, introduce pure time delays in the
relation between variables. If:

y(t) = u(t − τ) (2.40)

y(t) is a delayed version of signal u(t). In fact, if y(t) is the output and
u(t) is the input of a system, this is a distributed process and the general
mathematical treatment of this kind of system is rather complicated.

On the other hand, the Laplace transform is easy to apply because:

L[y(t)] = e−sτu(s)

In a delayed system, if the delays appear at either the input or output signals,
it is quite common to model it by a transfer matrix.

Example 2.9 (MIMO experimental identification). A mixing process (see Sec-
tion 5.8.2 on page 162 for description and analysis of steady-state behaviour) has
an intermediate buffer tank, a solvent valve and a pure-product valve. Outputs of
interest are concentration (C, %) and flow (F , l/s). The experimental response of
both outputs to a 10% valve opening on each valve is depicted in Figure 2.2.
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Figure 2.2. Mixing process: step response

Applying experimental identification (Section A.4), the following transfer func-
tions can be approximately determined, targeting a widely-used first-order plus delay
type of model:
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F

VA
=

5e−0.08s

0.52s + 1
;

F

VS
=

5e−0.08s

0.52s + 1
;

C

VA
=

1.5e−0.06s

0.17s + 1
;

C

VS
=

−1.45e−0.06s

0.17s + 1

also depicted in the above figure in thicker line. Hence, the experimental transfer
function matrix is:

G(s) =

(
5e−0.08s

0.52s+1
5e−0.08s

0.52s+1
1.5e−0.06s

0.17s+1
−1.45e−0.06s

0.17s+1

)
(2.41)

It is difficult to know if the initial response, heavily masked by noise, includes a delay
or it is caused by high-order dynamics. So, there are fundamental issues regarding
quality of the model, signal-to-noise ratio, etc. that may determine the success of
multivariable control strategies based on this crudely approximate model: Chapter
8 is devoted to them.

Unfortunately, the delays do not always appear in such a neat form as
in the above example because there are internal and crossed delays and the
elements of the transfer matrix can also be complicated4.

A general approach to deal with time delays is to use the Padé approxima-
tion, converting the exponential into an approximated rational form. Based
on the exponential approximation:

e−τs =
e−

τ
2 s

e
τ
2 s

=
1 − τ

2 s + τ2

8 s2 + . . .

1 + τ
2 s + τ2

8 s2 + . . .
(2.42)

the first-order approximation is:

e−τs ≈ 1 − τ
2 s

1 + τ
2 s

(2.43)

Higher-order approximations are more accurate but introduce additional com-
plexity into the model.

For DT representations, (2.9), if the time delay, τ , is a multiple of the time
interval in the elements of the sequence, τ = dT , it can be transformed into a
shift, or, in Z-transform, to multiply by the term z−d, see Appendix A.3.

Transfer Matrix Poles and Zeros

The elements of the transfer matrix are rational functions of the Laplace
variable, s. For a transfer function, g(s) = n(s)

d(s) , poles and zeros are the roots
of n(s) and d(s) respectively (Appendix A.2.1).

The concept of pole and zero can also be defined for MIMO systems.
Given a transfer matrix, extract the common denominator

G(s) =
N(s)
d(s)

4 For instance, the closed-loop sensitivity function (4.5) of a SISO delayed system
G = e−s(s + 1) with proportional control k = 4 is (1 + kG)−1 = s+1

(s+1)+4e−s , so

e−s cannot be extracted as a factor.
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where N(s) is a polynomial matrix and d(s) is a polynomial. Assume for
simplicity that it has only single roots, d(s) =

∏n
i=1(s − pi). These are the

poles of the system. In order to determine the pole’s multiplicity, decompose
G(s) into partial fractions by decomposing each element, nij

d(s) =
∑n

l=1
αij,l

s−pl
.

Thus, by suitably arranging αij , l in matrix form, we can express:

G(s) =
n∑

l=1

Nl

s − pl
; rank(Nl) = nl

Then, the matrix rank nl is the multiplicity of the pole pl.
Assume a square system, m = p for simplicity. In most cases, G(s) is

regular, i.e., rank(G(s)) = m for almost all s. The MIMO system transfer
matrix zeros are the values zi such that rank(G(zi)) < m.

Let us consider the following trivial examples:

Example 2.10.

G(s) =

( −1
s(s+1)

1
s

−1
s

1
s(s+1)

)
=

( −1
s

+ 1
s+1

1
s−1

s
1
s

+ 1
s+1

)
(2.44)

G(s) =
1

s(s + 1)

( −1 s + 1
−(s + 1) 1

)
=

1

s

(−1 1
−1 1

)
+

1

s + 1

(
1 0
0 −1

)
(2.45)

Thus, s = −1 is a double pole and s = 0 is a single one. There are three poles at
p = 0,−1,−1. For s → 0, the transfer matrix

lim
s→0

G(s) = lim
s→0

( −1
s

1
s−1

s
1
s

)

loses the rank in one order. Thus, there is a zero at s = 0.

Example 2.11.

G(s) =

(
s+1

s
−2
s−1

s
1
s

)
=

(
1 0
0 0

)
+

(
1 2
−1 1

)
s

Thus, s = 0 is a double pole; z = −1 is a local zero for g11, but it is not a multi-
variable zero, because rank(G(−1)) = 2. On the other hand, it is easy to check that
there is a multivariable zero at z = 1.

In the next chapter, a more complete treatment of poles and zeros in MIMO
systems, for any representation, is presented.

2.7 Systems and Subsystems: Interconnection

Between a detailed internal representation and a pure black-box one, a system
may be represented by the interconnection of a number of subsystems. If the
model of each element is known, a global model can be obtained.

For example, in a control system, at least, two subsystems will always be
considered: the plant to be controlled and the controller. The structure of each
one may be also decomposed into a number of subsystems.
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Figure 2.3. Series, parallel and feedback interconnection

2.7.1 Series, Parallel and Feedback Connection

Let us consider the basic subsystem interconnections. Let us define two sub-
systems, in state space and transfer matrix form:

Σi :
ẋi = Aixi + Biui

yi = Cixi + Diui
; yi(s) = Gi(s)ui(s) i = 1, 2 (2.46)

Assuming appropriate dimensions in the input and output vectors, ui, yi, a
global system may be arranged with joint state vector, x = [xT

1 xT
2 ]T , and its

equation for each interconnection will be discussed.

Series connection. Also denoted by cascade connection. The input/output
vectors to each subsystem in Figure 2.3(a) are:

y = y2; u = u1; u2 = y1

This results in the global state space system:

ẋ =
(

A1 0
B2C1 A2

)
x +

(
B1

B2D1

)
u (2.47)

y = [D2C1 C2]x + D2D1u (2.48)

and, in transfer matrix form:

y(s) = G2(s)G1(s)u(s) (2.49)

Parallel connection. The interconnection in Figure 2.3(b) is represented
by:

y = y1 + y2; u1 = u2 = u

This results in the global system:

ẋ =
(

A1 0
0 A2

)
+

(
B1

B2

)
u

y = [C1 C2]x + (D1 + D2)u
; y(s) = (G1(s) + G2(s))u(s) (2.50)
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Feedback connection. Figure 2.3(c). In this case, there is a loop and a
summation point. Assuming an external input, v, null input/output coupling
in the forward path (D1 = 0) and negative feedback, the input/output vectors
are:

y = y1; u1 = v − y2; u2 = y1

This results in y(s) = G1(s)e(s) = G1(s)(r − G2(s)y), so the global system
can be written as:

ẋ =
(

A1 − B1D2C1 −B1C2

B2C1 A2

)
+

(
B1

0

)
v

y = (C1 0)x
(2.51)

y(s) = (I + G1(s)G2(s))−1G1(s)v(s) (2.52)

In the last transfer matrix equation, the summation sign would be negative
for positive feedback.

A system may be composed of a number of such interconnections, leading
to a complex model, where also disturbances can be present. In these examples
of interconnection, the ease of use of the transfer matrix as an operator is
clearly illustrated.

Remark 2.12. In this and any other MIMO case, special care must be taken
with block-diagram operations, as the matrix product is not commutative,
contrary to the SISO case.

2.7.2 Generalised Interconnection

G

M

u1

u2

y1

y2

GG

MM

Figure 2.4. General interconnections

The interconnection between subsystems can be expressed in a general
framework by just using two subsystems in a unique loop as in Figure 2.4
(left), where the subsystem in the feedback has a transfer matrix M , and the
one in the upper subsystem is suitably partitioned into four blocks, G11, G12,
G21 and G22. In this framework, the equations are:

u2 = My2 = M(G21u1 + G22u2) ⇒ u2 = (I − MG22)−1MG21u1 (2.53)
y1 = G11u1 + G12u2 =

(
G11 + G12(I − MG22)−1MG21

)
u1 (2.54)
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Example 2.13. If G =

(
0 I

Σ1 0

)
the result is: y1 = MΣ1u1, i.e., the series connec-

tion.

If G =

(
Σ1 I
I 0

)
the result is: y1 = (Σ1 + M)u1, i.e., the parallel connection.

If G =

(
I −I
I −I

)
Σ1 the result is the feedback connection. Indeed, in this case,

(2.54) has as TF matrix Σ1 − Σ1(I + MΣ1)
−1MΣ1. As:

(I + MΣ1)
−1MΣ1 + (I + MΣ1)

−1 = (I + MΣ1)
−1(MΣ1 + I) = I (2.55)

the output transfer matrix can be expressed as Σ1−Σ1(I− (I +MΣ1)
−1) = Σ1(I +

MΣ1)
−1. Applying the push-through rule (B.5), Equation (2.52) is obtained.

In this way, by including in G not only the system equations but also the
interconnection structure, many control problems of engineering significance
can be cast as the block-diagram in Figure 2.4 (left). G is then called the
generalised plant , one of its subsystems being the actual plant. Indeed, this
formulation allows us to deal with open-loop, closed-loop and other set-ups
in a unified way, including performance specifications, and also allowed a
significant theoretical breakthrough in the 1980s (see Sections 4.5.3 and 7.4).
This block-diagram and Equation (2.54), where the block-diagram has been
simplified by ellimination of u2 and y2, are denoted as a lower linear fractional
transformation (LFT), and the transfer matrix in (2.54) is usually represented
in shorthand form as FL(G,M).

The diagrams at the right of the referred figure present an even more gen-
eral form of interconnection denoted as Redheffer star product, where each
block has two input and two output vectors. It is easy to verify the correspon-
dence to the previous models if appropriate elements of their transfer matrices
are chosen. For instance, for

G =
(

0 G2

I 0

)
; M =

(
G1 0
0 0

)

the serial connection, (2.47), is also obtained. And similarly, the parallel and
feedback connections can be represented. The LFT diagram is a particular
case of the star product, if only M11 �= 0, such as the M above.

The Matlab� command lft allows us to compute transfer matrices of
systems described in an LFT or star-product structure. In particular, the
expression sys=lft(P,K,nu,ny) connects the first “nu” outputs of K to the
last “nu” inputs of P , and the last “ny” outputs of P to the first “ny” inputs
of K. The resulting system model, sys, maps the remaining inputs to the
remaining outputs. If nu and ny are omitted, the system with lower input and
output vector dimensions is assumed to be M in the LFT block-diagram.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: lft,feedback,connect,starp,series,parallel.
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2.8 Discretised Models

Discretised (sampled) signals. Although the physical variables involved
in a process are mainly CT, in order to process them on a computer, to
simulate the process behaviour or to design a digital controller, approximate
DT models are required. In general, attached to a CT signal, a DT sequence
can be defined by just taking the sampled values at some given time instants.
For a regular sampling period, T , the elements of the sequence are yk =
y(kT ), k = 0, 1, 2, . . . . If the unit time delay is expressed by the delay
operator, z−1, these sampled-data (SD) signals are represented by using the
Z-transform (Appendix A).

These sampled-data signals, under a fast enough sampling pattern, keep
most of the information carried by the CT signal. Shannon sampling theorem
[95] states that the sampling frequency must be twice the frequency up to
which significant content is present in the CT signal.

DT process models. Similarly, a DT model of the CT process (or a sampled-
data model) can be derived. It will approximate the process behaviour relating
the involved variables. However, some warnings should be needed in this case:

• the attached DT model is an approximation of the CT process behaviour.
Depending on the approximation criteria, the following situations may
appear:
– the CT model and the SD model have a similar time-response to a

given input signal (impulse, step, ramp, ... ),
– the CT model and the SD model have a similar frequency-response in

a range of frequencies,
– the CT model and the SD model have a similar mathematical ap-

pearance (by substituting the time derivative by increments ratio, for
instance).

• the intersampling behaviour may be rather different. Caution should be
taken about the information lost from the input signal,

• the DT model parameters will change if the sampling period is changed.

The most usual and common discretisation is based on the use of a digital
computer, leading to regular sampling characterised by a period T , together
with a constant holding of the input during the same period. To get an SD-
equivalent model of the process, the simplest discretisation approaches are
based on the approximation of the derivative operator. There are many options
to implement this approximation:

• Euler. For each derivative term, the following approximation is imple-
mented:

ẋ ≈ ∆x

∆t
≈ xk+1 − xk

T
(2.56)

provided T is small enough. This approach can be also applied to non-
linear systems. The equation (2.10) is transformed into:
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dx(t)
dt

= f(x(t), u(t), t) → xk+1 = xk + Tf(xk, uk, k) (2.57)

The DT model will relate the DT signals. For this purpose, dealing with
linear systems, the sequences are represented by their Z-transform. To get
the Euler-discretisation of a CT transfer matrix, the Laplace variable, s,
is replaced by:

s =
1 − z−1

T

• forward operator. In a similar way, a CT transfer matrix can be ap-
proximated by replacing the Laplace variable, s, by:

s =
z − 1

T

• bilinear transformation. Among the possible variations of the previous
approximations, if the Laplace variable is replaced by:

s =
2
T

1 − z−1

1 + z−1
(2.58)

the transformed DT model will be stable if and only if the source CT model
is so, which is indeed of interest. This is a useful discretisation approach,
although it is only valid for linear systems5.

In the next chapter, for LTI systems and based on the solution of the state
equation, exact (step response) SD models will be also derived. Non-regular
sampling may be considered, leading to more complex DT representations
(Section 9.4).

2.9 Equivalence of Representations

All the representations of the same process should be coherent. If they re-
late to the same variables, they should be equivalent. Thus, given the state
space model or the polynomial operator, the transfer matrix should be eas-
ily obtained. In fact, by applying the Laplace transform to Equations (2.17)
and (2.19), assuming that the initial condition terms are null, the following
equivalence is obtained:

sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s)

5 For computer simulation of non-linear systems, an approximate equivalent is the
mid-point discretisation formula:

xk+1 = xk + Tf(xk + T/2f(xk, uk),
uk + uk+1

2
)
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y(s) = [C(sI − A)−1B + D]u(s) = G(s)u(s)

Thus:
G(s) = [C(sI − A)−1B + D] (2.59)

Based on this equivalence, as

(sI − A)−1 =
adj(sI − A)
det(sI − A)

the poles of G(s) are the eigenvalues of A (solution of the characteristic equa-
tion det(sI − A) = 0).

An interesting representation for (sI −A)−1 can be derived if this matrix
is expanded in series I + As + As2 + . . . :

G(s) = D + CBs−1 + CABs−2 + CA2Bs−3 + . . . =
∞∑

i=0

His
−i (2.60)

Also, for DT systems:

G(z) = D+C(zI−A)−1B = D+CBz−1+CABz−2+. . . =
∞∑

i=0

Hiz
−i (2.61)

Hi are denoted as Haenkel parameters or coefficients. In this DT representa-
tion, Hi is the impulse response at time i, because y(z) = G(z) if u(z) = 1.

The reverse transformation is not so easy. First, the state representa-
tion is not unique, thus there will be many internal representations for the
same input/output model. Second, some of these representations may be over-
dimensioned and so useless, spurious, internal variables will be included. One
option would be to use the concept of memory or accumulation attached to
the state variables and try to define them in this way. Another alternative is
to attach a state variable to each process pole.

To properly deal with this issue, some knowledge about the process struc-
ture and properties should be available. This is the subject of the next chapter
(Section 3.7.5), and thus the reverse transformation is postponed, with only
a very simple example being presented now.

Example 2.14. Let us consider the 2×2 transfer matrix of Example 2.10. Based on
the partial fraction decomposition, let us assign the state variable, x1, to the pole at
the origin and the variables x2 and x3 to those related to the pole at −1. A possible
state space representation would be:

ẋ1 = −u1 + u2; ẋ2 = −x2 + u1; ẋ3 = −x3 − u2

y1 = x1 + x2; y2 = x1 + x3

That is:

A =


 0 0 0

0 −1 0
0 0 −1


 ; B =


−1 1

1 0
0 1


 ; C =

(
1 1 0
1 0 1

)
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Also, the transfer matrix may be extended to become:

G(s) =

(
0 1
−1 2

)
s−1 +

(−1 0
0 −1

)
s−2 +

(
1 0
0 1

)
s−3 + . . .

From (2.35), the relationship between the transfer matrix and the polyno-
mial representations is clear:

G(s) = D−1(s)N(s)

Again, the reverse is not unique and many options are possible.

2.10 Disturbance Models

Disturbances are non-manipulated inputs to the process. They are generated
elsewhere but affect the process behaviour and are signals coming from an-
other processes.

2.10.1 Deterministic Signals

If the structure of these processes, denoted as generators, is known, the distur-
bances are said to be deterministic. For instance, polynomial disturbances can
be considered as being generated by a chain of integrators. The initial condi-
tion of each integrator will determine one of the parameters of the polynomial
signal. For instance:

• constant signals, y = a1, are generated by:

ẋ1 = 0; x1(0) = a1; y(t) = x1(t)

• ramp signals, such as y(t) = a1 + a2t, by:

ẋ1 = x2; ẋ2 = 0; x1(0) = a1; x2(0) = a2; y(t) = x1(t)

and, in general, polynomial signals, such as

y(t) =
i=n∑
i=1

ai

(i − 1)!
ti−1

are generated by:

ẋ1 = x2; ẋ2 = x3; . . . ; ẋn = 0
y = x1

where ai = xi(0), and n! denotes the factorial of n.
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Discrete disturbances. If the generators are built up with accumulators
instead of integrators, DT signals can be generated. For instance, with:

x1(k + 1) = x1(k) + x2(k); x2(k + 1) = x2(k) + x3(k); . . .

xn(k + 1) = xn(k); y(k) = x1(k)

the output is given by:

y(k) = x1(0) + kx2(0) +
k(k − 1)

2
x3(0) + . . . =

n∑
i=1

(
k

i − 1

)
xi(0)

Similar expressions can be obtained for exponential or sinusoidal signals.
The most common deterministic signals are summarised in Table 2.2. Dis-

turbance randomness can be inserted if random impulse inputs, ψ, are as-
sumed at time t.

Table 2.2. Generation of deterministic disturbances

CT DT

Steps d(t)
def
= A dk

def
= A

ḋ = ψ dk+1 = dk + ψk

Ramps d
def
= at + b dk

def
= ak + b

ẋ =

(
0 1
0 0

)
x + ψ xk+1 =

(
1 1
0 1

)
xk + ψk

d = [1 0]x d = [1 0]x

Sinusoidal d
def
= A sin(ωt + B) dk

def
= A sin(ωTk + B)

ẋ =

(
0 1

−ω2 0

)
x + ψ xk+1 =

(
cos ωT sin ωT
− sin ωT cos ωT

)
xk + ψk

d = [1 0]x d = [1 0]x

Example 2.15. It is easy to show that, with the system defined by:

ẋ = a.x; x(0) = x0; y = x

the signal y(t) = x0e
at is generated. Similarly, by:

ẋ1 = x2; ẋ2 = w2x1; x1(0) = A sin(ϕ); x2(0) = A cos(ϕ)

y = x1

the signal y(t) = A sin(wt + ϕ) is generated.

2.10.2 Randomness in the Signals

It frequently happens that the model of the process generating the external
signals is very complex or unknown. In this case, it is easier to characterise
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the signals by their stochastic properties. They can also be considered as
the output of stochastic generators or as the filtered response of an original
stochastic signal. These disturbances may appear at the output (as measure-
ment noise), at the input or at the state level. Let us briefly describe these
types of variables:

• measurement noise. The output of the sensor system is affected by a
number of random variables from which no information is available, such
as device drifts or interference from other devices. The main goal would be
to filter, reduce or cancel the noise, getting a clean measurement to feed
the monitoring or control system,

• stochastic inputs. They affect the process behaviour as external variables
and they are unavoidable. If we consider the positioning of an antenna,
the force of the wind will present such a characteristic,

• internal noise. These are the most complicated disturbances and, in some
cases, they can be modelled by assuming stochastic parameters in the
process models. A way of dealing with this situation is by considering
uncertainties in the model or in the variables. An introduction to the
available tools is presented in Chapter 8.

In a general sense, the control goals under stochastic disturbances will be: to
filter the measurement noise or output disturbances, to attenuate or cancel
the input disturbances, probably by measuring them if it is possible, and to
assure some performances under process noise, due to uncertainties in models
or disturbances.

In order to characterise the stochastic signals, some basic statistic concepts
and measurements about random variables should be remembered. Some of
them are random variables, distribution and density functions, mean, variance,
covariance, correlation, statistical independence and linear regression, among
others. A short review of these concepts is included in Appendix E, where
special attention is paid to the multivariable case.

2.10.3 Discrete Stochastic Processes

A signal, of which the value at any time instant is a random variable, is called
a stochastic process. A discrete stochastic process is a sequence of random
variables and can also be obtained as a result of sampling a CT stochastic
process.

In the following, only discrete stochastic processes are considered. Their
main properties are related to those of the random variables in the sequence, as
well as their interaction. Let us review the most common (simplified) models
of stochastic processes.

White noise. White noise (WN) is the simplest stochastic process, {εk}.
The discrete random variables in the sequence are zero-mean (E(εk) = 0),
and independent of each other. If their variance is E(ε2

k) = σ2
k, the covariance

between samples j and k is:
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σjk =

{
σ2

k j = k

0 j �= k
(2.62)

Due to the independence among variables, the knowledge of the current or
past values in a sequence is useless for determining the future values. In this
sense, WN cannot be compensated for or predicted.

If there is some kind of relationship among the variables, that is, if the
random variables in the sequence are not independent, some additional infor-
mation is available and the “noise” treatment may be easier. The rest of the
stochastic processes are denoted as coloured noise. Some of them are easily
modelled.

Random walk (drift). This can be considered as an accumulated white
noise:

vk+1 = vk + εk; εk is WN (2.63)

Thus, the difference between two consecutive variables is WN. Their covari-
ance can be expressed by:

σ2
k(k+1) = E(vkvk+1) = E(vk(vk + εk)) = E(v2

k) + E(vkεk) = σ2
k

Coloured noise (general model). A general model of coloured noise can
be represented as the output of a dynamic (DT) process:

xk+1 = Axk + εk

vk = Cxk
(2.64)

where εk is a WN. Thus, based on the past and current values of the {v(k)}
sequence, some information about the future values can be estimated.

Similarly, if the noise is disturbing a DT process which has, in addition,
manipulated inputs, the equations equivalent to (2.21) and (2.22) would be:

xk+1 = Axk + Buk + Bdvk

yk = Cxk + Duk + Ddwk
(2.65)

where vk and wk are white noises with covariance matrices V and W respec-
tively. Usually, D = 0 and Dd = I, wk being the measurement noise and vk

the process noise.

Input/output models

Other than the internal representation above, a monovariable stochastic pro-
cess may be represented by a difference equation or, alternatively, using the
general concept of the Z-transform of a sequence, it can be also expressed by
an input/output model such as:

v(z) = Gn(z)ε(z) εk is WN (2.66)

It is worth mentioning some typical representations that are rather com-
mon in literature [30, 84]:



46 2 Linear System Representation: Models and Equivalence

• Moving-Average (MA). The signal is obtained as a weighted sum of current
and past inputs:

y(k) =
n∑

i=0

biε(k − i)

• Auto-Regressive (AR). The weighted sum of the signal is a random noise:

y(k) +
n∑

i=1

aiy(k − i) = ε(k)

• Auto-Regressive-Moving-Average (ARMA). This is a combination of the
two above,

y(k) +
n∑

i=1

aiy(k − i) =
n∑

i=0

biε(k − i)

• External-Auto-Regressive-Moving-Average (ARMAX). In this case, there
is also a manipulated input, u(k), leading to:

y(k) +
n∑

i=1

aiy(k − i) =
n∑

i=0

biu(k − i) +
n∑

i=0

ciε(k − i) (2.67)

However, the state space representation will be pursued in this book for
disturbance rejection control designs, as all the above models can be expressed
in a form similar to (2.64) or (2.65).

2.11 Key Issues in Modelling

As has been emphasised in this chapter, the model of a process is a partial
representation of its behaviour. In this sense, the model we are interested in
is a model suitable for designing the control system. Thus, the selection of the
model and the modelling approach depends on the final goal:

• the details of the model are determined by the control goals. Static, low-
frequency range, autonomous, DT or hybrid models are examples of op-
tions,

• the variables and relationships selected to build the model will depend on
the effects we are interested in in our study. Some variables can be deleted
or treated as disturbances if they are not so relevant, or they can become
crucial if their particular effect has to be modelled,

• the control design methodology will recommend, or even determine, the
type of representation,

• the knowledge and/or availability of the process to get actual data will
allow for theoretical or experimental modelling techniques,

• the accuracy and complexity of the model will depend on the control re-
quirements.



2.12 Case Study: The Paper Machine Headbox 47

How do we obtain a model? As a summary, two main approaches can be
followed:

• first-principle (internal) model. Leading to (detailed) non-linear mod-
els, with physical insight into the variables and equations, and a number
of parameters to be determined. Techniques of model reduction may need
to be applied,

• experimental modelling (Appendix A.4). By comparing the behaviour
of the plant to that of some predefined models and structures, the models’
parameters can be estimated, leading to (simple) approximate linearised
models, being usually input/output representations. This approach is suit-
able for modelling disturbances if historical records of them are available.

According to the model purpose and the analysis of its properties, a change
in the representation frame, its complexity, its range of validity or the number
of involved variables may be suggested. Thus, the modelling phase should be
revisited in the control design process, to enhance the available model to better
fulfill the control requirements, the final goal in our study.

2.12 Case Study: The Paper Machine Headbox

The purpose of the headbox is to deliver a uniform and stable jet velocity
profile in both cross and machine directions to form the paper sheet, Figure
2.5. The stock flows into the headbox chamber controlled by a valve. The top

q

p

h

v

Figure 2.5. Headbox simple schema

of this chamber is filled with compressed air to dampen pressure pulsations.
The airflow is also controlled by an input valve. The stock is homogenised in
this chamber and it flows through the slice channel to the wire.

2.12.1 Simplified Models

First-principle. A very simple first-principle model can be derived by mass
balances.

Stock balance in the headbox:

A(h)
dh(t)

dt
= q(t) − S(t)v(t)
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where h is the stock level, in m, A is the headbox section, in m2, q is the stock
inflow, in kg/s, S is the slice lip section, in m2, and v is the stock exit speed,
in m/s.

The stock exit speed due to the total “head pressure” H, in m, is: v(t) =√
2gH(t); H(t) = h(t) + p(t)
The air compression is assumed to be isothermal, thus p(t)Va(t) = const,

where p is the air pressure, in equivalent stock height (m) and Va is the volume
of air in m3.

Air pressure variations are due to air net inlet flow and volume reduction,
thus:

dp(t)
dt

= λ(Pa(t) − p(t)) − κ
dh

dt

where λ is the chamber dynamics inverse time constant, in s−1, Pa is the
source air pressure, in equivalent stock height, in m, and κ is a compression
adimensional constant.

The slice lip exit area is manipulated by an external motor. In this sim-
plified model, it is assumed constant or slowly-varying.

In this simple model, the head and pressure can be chosen as state vari-
ables, whereas the manipulated variables could be the stock inlet flow and the
source pressure, leading to the state model:

ḣ = −S

A

√
2g(h + p) +

1
A

q

ṗ = κ
S

A

√
2g(h + p) − λp − κ

1
A

q + λPa

Experimental. By applying steps at the inputs at an operating point, the
elements of an approximate transfer matrix may be estimated. Additional
transportation flow delays between the stock valve and the headbox chamber
input may be realised. This can be done on the real plant or on a simulated
model. This could result in a transfer matrix model obtained as in Example
2.9: [

h
v

]
=




e−s

1 + s
−1

1 + 0.5s
e−s

(1 + s) (1 + 2s)
0.2 + s

(1 + 0.5s) (1 + 2s)


[

q
Pa

]

Discrete model

From the first-principle non-linear state space representation, a simple DT
model may be obtained by the Euler approximation of the two state variable
derivatives.

Alternatively, from the experimental model above, the following discreti-
sation approximations can be obtained:
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1) Discrete transfer matrix. To get a discrete model, it could be easy
to discretise each element of the transfer matrix, assuming a zero-order hold
(ZOH) device in the input and a regular sampling period, T , at the output. If
this period is assumed to be T = 0.5 s, the time delay of 1 s, will be equivalent
to two delay units, z−1. That is, Z[e−s] = z−2.

Taking care of the delays, the Matlab� command Gd=c2d(G,.5,’zoh’)
returns the DT transfer matrix:

G(z) =




0.3935
z2(z − 0.6065)

−0.6321
z − 0.3679

0.0489z + 0.0381
z2(z − 0.6065)(z − 0.7788)

0.2908z − 0.2628
(z − 0.3679)(z − 0.7788)


 (2.68)

2) State representation based on physical variables. From this DT
transfer matrix, grouping the common poles by rows or columns, the block-
diagram in Figure 2.6 can be drawn.

x1 x2 x3

x4

x5

v

h

Sum1

Sum

Gain1

Gain

Fdt3

Fdt2

Fdt1

FdtDelay1Delay

Pa

q

Figure 2.6. DT Block-diagram of the headbox (where F ≡ q)

Then, a state variable can be directly assigned to each first-order block
(Fdt2 and Fdt3 share the same one), leading to the internal representation:

x1(z) =
1

z
q(z) → x1(k + 1) = q(k)

x2(z) =
1

z
x1(z) → x2(k + 1) = x1(k)

x3(z) =
1

z − 0.6065
x2(z) → x3(k + 1) = x2(k) + 0.6065x3(k)

x4(z) =
1

z − 0.3679
Pa(z) → x4(k + 1) = 0.3679x4(k) + Pa(k)

x5(z) = 0.0489z + 0.0381
z − 0.7788 x3(z) + 0.2908z − 0.2628

z − 0.7788 x4(z)

(z − 0.7788) x5(z) = (0.0489z + 0.0381) x3(z) + (0.2908z − 0.2628) x4(z)

x5(k + 1) = 0.7788x5(k) + 0.0489x3(k + 1) + 0.0381x3(k)

+0.2908x4(k + 1) − 0.2628x4(k)
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and rearranging the last equation:

x5(k + 1) = 0.7788x5(k) + 0.0489 [x2(k) + 0.6065x3(k)] + 0.0381x3(k)

+0.2908 [0.3679x4(k) + Pa(k)] − 0.2628x4(k)

x5(k + 1) = 0.7788x5(k) + 0.0489x2(k) + 0.0678x3(k) − 0.1559x4(k) + 0.2908Pa(k)

The output equation would be:

h(k) = 0.3935x3(k) − 0.6321x4(k)

v(k) = x5(k)

Altogether, the state representation is:{
x(k + 1) = Afx(k) + Bfu(k)
y(k) = Cfx(k) + Dfu(k)

Af =




0 0 0 0 0
1 0 0 0 0
0 1 0.6065 0 0
0 0 0 0.3679 0
0 0.0489 0.0678 −0.1559 0.7788


 ; Bf =




1 0
0 0
0 0
0 1
0 0.2908


 ; (2.69)

Cf =

[
0 0 0.3935 −0.6321 0
0 0 0 0 1

]
; Df =

[
0 0
0 0

]

2.12.2 Elaborated Models

An in-depth model has been developed at the Pulp and Paper Centre (Univer-
sity of British Columbia, Vancouver, Canada), reported in [127]. To express
the dynamics of the upper chamber, the interconnected liquid and gas-flow
systems are considered. A mass-balance equation for the stock and the stock
flow out of the headbox can be obtained by applying:

dh

dt
= q − CsS

√
2ghj − 2So

√
2
(p − p0)

ρw
A (2.70)

where hj is the head at the slice lip, in m, Cs is the valve-sizing coefficient, So

is the area of overflow valve opening, in m2, p0 is the atmospheric pressure,
in m, and ρw is the density of stock, in Kg/m−3.

A mass-balance equation for the air using the pressure density relationship
gives the following equation in terms of pressure:

dp

dt
=

kp0

ρ0

(
p

p0

) (k−1)
k

[
qi − qe

Va
+

ρ0A( p
p0

)
1
k

dh
dt

Va

]
(2.71)
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where ρ0 is the air density, in kg/m−3, κ is the specific heat ratio, qi and qe

are the air inflow into the upper chamber and outflow through the bleed valve,
in kg/s.

To write the equation which governs the rate of change of the head at the
slice lip, hj , the headbox inlet head, hi, and the friction head loss, hf , are
considered. The following equation is obtained:

dhj

dt
=

√
2ghj

L
[H − hj − hf ] (2.72)

where L is the constant of the slice channel, in meters, and hf is the friction
head loss.

The stock level, h, in the headbox, the airpad pressure, p, and the head at
the slice lip, hj , are chosen as the state variables.

The stock inflow, q, the gas flow, qe, defining the net air inflow and the
slice lip area, S, are treated as inputs.

The headbox dynamics can thus be represented by a third-order non-linear
dynamical system. The model is characterised by a number of construction-
dependent parameters (A, Va, So, hf and Cds) as well as some fundamental
physical parameters (k, p0, ρ0, ρw and g). The values of q, qi−qe or Sj depend
upon the operating point. Knowing the design details of the headbox and the
operating point, all these variables could be calculated quite easily.

The three equations are highly coupled. Equation (2.70) shows that if the
input stock flowrate increases, the liquid level increases. This in turn increases
the airpad pressure and the total head. This increases the outgoing stock flow.
There is thus a self-regulating effect in the system.

Equation (2.71) shows that the airpad pressure will return to its original
value when the equilibrium point is reached. Any deviation in the level will
thus be contributing to the total head.

Changing the air output area changes the air outflow, affecting both the
level and the pressure inside the airpad. An increase in the slice opening will
produce a decrease in the level, airpad pressure and the total head.

The most important control problem for a headbox is to maintain constant
jet velocity and to have a good dynamic behaviour when changing the grades.
We must consider as disturbances the external pressure of air and flow inlet,
as well as the consistency of the stock or physical characteristics of the flow
resistance.

In spite of the model complexity due to non-linearities, the model order is
reduced to 3, which is even lower than the experimental one obtained in the
last chapter.

Linearisation. The previous non-linear model is useful for simulating and
studying the dynamic behaviour of the headbox. To design control strate-
gies, it is always convenient to have linearised models which approximate the
non-linear dynamics for small disturbances around a steady-state point. In
[127], the following linearised model is obtained for some given parameters
and operating conditions, using the Matlab� command linmod.
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A =


 0 −0.00083 −0.03

0 −0.08849 −1.041610
9.1371 9.1371 −8.883063


 ; C =


 1 0 0

0 1 0
0 0 1


 (2.73)

B =


 0.47597 0 −0.048587

14.03999 −0.00162 −1.433194
0 0 −57.9134


 ; D =


 0 0 0

0 0 0
0 0 0




The eigenvalues of the system matrix A are (−0.0005,−10.3254,−0.9950).
Thus, the system has a very slow mode with a time constant of about 512 s
and two fast modes with time constants of less than a second.


