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Exercise 4.8.4. Interpret the constant c−1;2 and compute it.
[Answer: 1

72 tr(Λ−1)6].

In the examples above, the contribution cg;n of all genus g gluings of 2n
copies of 3-stars is a monomial in tr(Λ−(2k+1)) with rational coefficients. In
the next section, we will show that this is the case for all g and n.

4.9 A Sketch of Kontsevich’s Proof
of Witten’s Conjecture

In this section we discuss very briefly exciting connections of the Kontsevich
model with the one-matrix model on the one hand, and with the intersection
theory model on the other hand.

4.9.1 The Generating Function for the Kontsevich Model

The sample calculations in the previous section show that the contribution cg;n

of all genus g gluings of 2n copies of 3-stars is a monomial in tr(Λ−1), tr(Λ−3),
. . . . It is more convenient, however, to use a slightly different normalized
infinite sequence of independent variables: t0 = − tr(Λ−1), t1 = −1!! tr(Λ−3),
t2 = −3!! tr(Λ−5), . . . , ti = −(2i− 1)!! tr(Λ−2i−1), . . . .

Theorem 4.9.1 ([178]). The integral (4.6) is a formal power series in the
variables t0, t1, . . . with rational coefficients.

Let us denote this series by K(t0, t1, . . . ). We have already computed the
first few terms:

K(t0, t1, . . . ) = log
(

1 +
1
3!

t30 +
1
24

t1 +
25
144

t30t1 +
1
72

t60 + . . .

)
. (4.10)

Remark 4.9.2. The integral (4.7) can be easily interpreted as a formal power
series since each monomial in tr(Λ−1), tr(Λ−3), . . . appears in the integral
evaluation only a finite number of times. Equation (4.10) is valid for arbitrary
value of the dimension N . However, if we want to compute a specific coefficient
in this expansion, the value of N must be chosen sufficiently large.

Kontsevich’s proof of the Witten conjecture consists of two parts. First,
he shows that the coefficient of tl00 . . . tlss /(l0! . . . ls!) in the expansion of his
integral K(t0, t1, . . . ) in the variables ti coincides with the intersection number
〈τ l0

0 . . . τ ls
s 〉. This part of the proof is based on the study of the combinatorial

model for the moduli space of curves. The second part consists in verification
that the integral is a τ -function for the KdV hierarchy. This means, essentially,
that the second derivative ∂2K/∂t20 is a solution to the KdV equation. The
proof of this statement is achieved by treating the function K as a matrix
Airy function.
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4.9.2 The Kontsevich Model and Intersection Theory

A formal justification of the argument in this section requires the construc-
tion of a “minimal compactification” of the moduli space of smooth marked
curves (elaborated by Looijenga in [203]) and an analysis of circle bundles
over this compactification. The latter part is accurately written in the Ph.D.
thesis of D. Zvonkine [313]. Below, we simply outline the original Kontsevich’s
argument.

Consider the projection

π :Mcomb
g;n

∼=Mg;n × R
n
+ → R

n
+

of the combinatorial model to the second factor. This projection takes a
marked graph with a metric to the n-tuple of the lengths of the perimeters of
the marked points. Introduce the real 2-forms ωi defined only on open strata
of Mcomb

g;n by the following formulas:

ωi =
∑

d(le′/pi) ∧ d(le′′/pi),

where pi is the perimeter of the ith face, and e′, e′′ run over all pairs of dis-
tinct edges of the ith face, e′ preceding e′′ in some fixed order with a chosen
starting vertex. The 2-form ωi represents the class ψi. Indeed, fix a smooth
curve (X ;x1, . . . , xn) and take the canonical Jenkins–Strebel quadratic differ-
ential associated to the n-tuple p1, . . . , pn. Then vertical trajectories of this
quadratic differential through xi identify the perimeter of the ith face of the
corresponding embedded graph with the “spherized” cotangent line Li con-
sidered as a real plane (that is, the fiber punctured at the origin is projected
to the unit circle along the half-lines passing through the origin) at the ith
point. Now it is possible to represent the intersection numbers 〈τm1 . . . τmn〉
in terms of integrals of very explicit differential forms:

〈τm1 . . . τmn〉 =
∫

π−1(p̄)

n∏

i=1

ωmi

i

over any generic point p̄ ∈ R
n
+.

From now on we use the notation d for the complex dimension of Mg;n,
d = 3g − 3 + n. Introduce the volume form on (the open strata of) Mcomb

g;n :

Vol(λ1, . . . , λn) =
1
d!

Ωd ×
n∏

i=1

e−λipidpi,

where Ω = p2
1ω1 + · · ·+ p2

nωn and λi are real positive parameters.
Then the volume of Mcomb

g;n with respect to this volume form can be com-
puted in two ways: directly, under the projection to R

n
+, and summing the

volumes of all open cells. The first computation gives
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∫

Mcomb
g;n

Vol(λ1, . . . , λn) =
1
d!

∫

R
n
+

(∫

π−1(p̄)

Ωd

)
e−

∑
λipidp1 ∧ · · · ∧ dpn

=
∑

m1+···+mn=d

〈τm1 . . . τmn〉
m1! . . .mn!

∏

i

∫ ∞

0

p2mi

i e−λipidpi

=
∑

m1+···+mn=d

〈τm1 . . . τmn〉
n∏

i=1

(2mi)!
mi!

λ
−(2mi+1)
i

= 2d
∑

m1+···+mn=d

〈τm1 . . . τmn〉
n∏

i=1

(2mi − 1)!!

λ
(2mi+1)
i

.

The first computation is completed, and we start the second one. Consider
the open cell in Mcomb

g;n corresponding to a 3-valent embedded graph Γ . The
lengths l1, . . . , l|E(Γ )| of the edges of Γ form a set of coordinates on this cell.
In these coordinates, the volume form Vol(λ1, . . . , λn) can be rewritten as

VolΓ (λ1, . . . , λn) = 2d+|E(Γ )|−|V (Γ )|e−
∑

j lj λ̃jdl1 ∧ · · · ∧ dl|E(Γ )|.

Here j runs over the set of all edges of Γ , and λ̃j is the sum

λ̃j = λ− + λ+

of the two λ′s corresponding to the two faces of Γ adjacent to the jth edge.
Note that the two faces neighboring to an edge may coincide, and in this case
λ− = λ+. Obtaining the correct power of 2 in the last formula (and hence
showing that it is independent of the chosen cell) is a rather cumbersome task,
and we refer the reader to [178] for details. An immediate calculation gives

VolΓ (λ1, . . . , λn) =
|E(Γ )|∏

j=1

1
λ̃j

.

The contribution of a marked embedded graph to the total volume is pro-
portional to the inverse cardinality of the automorphism group of the graph,
whence summing over all 3-valent marked genus g embedded graphs with n
marked faces and multiplying by 2−d we obtain the main combinatorial iden-
tity

∑

m1+···+mn=d

〈τm1 . . . τmn〉
n∏

i=1

(2mi − 1)!!
λ2mi+1

i

=
∑

Γ

2−|V (Γ )|

|Aut(Γ )|

|E(Γ )|∏

j=1

2
λ̃j

. (4.11)

The main combinatorial identity is an identity between two rational func-
tions in variables λi. Making an arbitrary substitution of the form λi = Λki ,
1 ≤ ki ≤ N and summing the resulting identities over all such substitutions
one gets
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∑

m1+···+mn=d

〈τm1 . . . τmn〉
n∏

i=1

(2mi − 1)!! tr(Λ−(2mi−1))

=
∑

Γ

2−|V (Γ )|

|Aut(Γ )|

|E(Γ )|∏

j=1

2

Λ̃j

.

(4.12)

Here Λ̃j = Λ− + Λ+ and the sum on the right-hand side is taken over all
possible ways to color the faces of the graph Γ in N colors Λ1, . . . , ΛN . Recall
that Λ denotes the diagonal N ×N matrix with positive entries Λ1, . . . , ΛN .

The right-hand side of the last equation coincides with the matrix integral
expansion in the Kontsevich model, and we obtain the first part of the Kont-
sevich theorem: the generating function K of the Kontsevich model coincides
with the generating function F of the intersection model.

4.9.3 The Kontsevich Model and the KdV Equation

The second part of the proof consists in showing that the integral of the
Kontsevich model is a τ -function for the KdV-hierarchy, in other words, that
it obeys the Korteweg–de Vries equation.

Let
a(y) =

∫ ∞

−∞
ei( 1

3 x3−yx)dx

be the classical Airy function, i.e., the unique (up to a scalar factor) bounded
solution to the linear differential equation

a′′(y) + ya(y) = 0.

We are interested in the “asymptotic behavior” of this function as y → ∞.
An application of the stationary phase method (which must be justified in
this case) gives

a(y) ∼ e−
2i
3 y3/2

∫

U(y1/2)

ei( 1
3 x3+y1/2x2)dx + e

2i
3 y3/2

∫

U(−y1/2)

ei( 1
3 x3−y1/2x2)dx,

where the integration is carried out over arbitrary neighborhoods of the points
±y1/2.

Similar constructions are valid for the case of the matrix Airy function

A(Y ) =
∫

HN

ei( 1
3 tr H3−HY )dµ(H),

for a positive diagonal matrix Y . This function obeys the matrix Airy equation

∆A(Y ) + trY ·A(Y ) = 0,

where ∆ denotes the Laplace operator. Similarly to the 1-dimensional Airy
function, the matrix Airy function admits an asymptotic expansion as a sum
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of 2N expressions of the form

e−i 2
3 tr Y 3/2

∫
ei tr( 1

3 H3−H2Y 1/2)dµ(H) = e−i 2
3 tr Y 3/2

∫
ei tr 1

3 H3
dµY 1/2(H).

The sum is taken over all 2N quadratic roots Y 1/2 of the matrix Y , and the
integral is taken over a neighborhood of the origin in HN . As Y → ∞, the
integral can be replaced with that over the entire space HN , i.e., it becomes
the integral of the Kontsevich model for Λ = Y 1/2. The asymptotic expansion
of the latter we already know.

Another way to compute the matrix Airy function consists in the applica-
tion of formulas borrowed from [146] and [216]:

A(Y ) = cN∆(Yi)−1

∫

RN

n∏

i=1

∆(Xi)ei( 1
3 X3

i −XiYi)dXi

= cN
det(a(j−1)(Yi))

det(Y j−1
i )

,

where this time ∆ denotes the Vandermonde determinant. Here we made use
of the obvious identity

∫
ei(x3/3−xy)xj−1dx = (ia(y))(j−1).

The derivatives of the Airy function admit natural asymptotic expansions

a(j−1)(y) ∼
∑

y1/2

const ·y−3/4e−
2i
3 y3/2 · fj(y−1/2)

for some Laurent series fj(z) = z−j + · · · ∈ Q((z)). Substituting the last
formula into the expression for the matrix Airy function we obtain

A(Y ) =
∑

Y 1/2

const×e−
2i
3 tr Y 3/2

N∏

i=1

Y
−3/4
i · det(fj(Y

−1/2
i ))

det(Y j−1
i )

.

The last expression relates the matrix Airy function to the τ -function
corresponding to the subspace 〈f1, f2, . . . 〉 ⊂ C((z−1)), see Sec. 3.6.4. The
proposition and the argument in the end of that section complete the proof
of Witten’s conjecture.

∗ ∗ ∗

The main theorem established in this chapter permits to compute the
intersection indices for certain classes; but the structure of the cohomology
ring of the moduli spaces remains unknown. There also remains one more
Witten’s conjecture (it is discussed, in particular, in [178] and [202]), and
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though it is not apparent from its formulation, it is also related to embedded
graphs.

The general idea behind the notion of a moduli space is that of “the space
of parameters”. In this chapter we parametrized algebraic curves. It is no less
interesting to parametrize the pairs (X, f) where X is a curve and f is a
meromorphic function on X . The corresponding parameter spaces are called
Hurwitz spaces. The reader will find an introduction to this theory – from the
point of view of embedded graphs, to be sure – in the next chapter.


