Part I

Point Estimation and Linear Regression






1 Fundamentals

In this chapter, a brief introduction into the theory of linear regression models
is given and a small numerical example is created, providing the opportunity
to pose some of the central problems. In addition, because of the relevance
for comparison of point estimators, an introduction into the basics of decision
theory is delivered.

1.1 Linear Models

A short description of the linear regression model and its representation in
matrix notation is given. Different types of linear models are introduced and
the process of analysis via linear models is discussed.

1.1.1 Application of Linear Models

In a scientific investigation one may often be inclined to formulate a hypoth-
esis about a linear relationship

y =01z + -+ Bprp

between a variable y on the one side and variables z1,...,2, on the other
side, making is possible to explain y via z1,...,2,. This can be quite useful
when values of 1, ...,z, are rather easy to obtain, while this is not the case
for the corresponding value of y. Then the above equation may be employed
for predicting the outcome of y given values z1,...,z,.

Although one may be able to specify such a hypothesis for different rea-
sons, the exact nature of the considered linear relationship will not be known,
or, in other words, the parameters 3i,..., 3, will be unknown. Information
about them can be drawn from a given set of observations of the variables y
and z1,...,Tp.

Example 1.1. Consider for a batch of cement the heat y evolving during the
hardening of the cement. Suppose that the batch consists of amounts of four
main ingredients denoted by =i, x2, x3, and x4. Now, suppose that it is
desired to predict the heat on the basis of the amount of one or more of the
ingredients. One possible hypothesis might be



4 1 Fundamentals

y = P+ Poxr + B3z,

postulating that the heat is a linear function of the two amounts of ingredients
x1 and x> (and a constant term). In order to obtain a formula for predicting
the heat for given z; and z,, information about ;1,2 and S5 is required.
This may be given in form of point estimates of the three parameters, using
the data from Table 1.1. It provides observations of the variable y (recorded
in calories per gram) and of the variables x1,...,zs (recorded in addition
percentages) for n = 13 batches. See also Appendix C for an analysis of this
data with the statistical-computing environment R. O

Table 1.1. Cement data, see [49, p. 647]

Batch Heat Ingredient 1 Ingredient 2 Ingredient 3 Ingredient 4

2 Yy 1 T2 T3 T4
1 785 7 26 6 60
2 743 1 29 15 52
3 1043 11 56 8 20
4 876 11 31 8 47
5 959 7 52 6 33
6 109.2 11 55 9 22
7 102.7 3 71 17 6
8 725 1 31 22 44
9 931 2 54 18 22
10 115.9 21 47 4 26
11 83.8 1 40 23 34
12 1133 11 66 9 12
13 109.4 10 68 8 12

In the above example we cannot expect that the heat is an exact linear
function of the amount of the two ingredients z; and x,. As a matter of
fact, in practice there will be an approzximate linear rather than an exact
linear relationship between the variables of interest. One may account for
this by adding a further non-observable variable, fancied as a collection of
small errors. Then the hypothesis is altered to an equation of the form

y=pixi+- -+ Bprp+e,

letting y not only depend on x1,...,z,, but also on € (the error variable),
being random but non-observable.
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If it is assumed that for given variables y and zi,...,z, the above hy-
pothesis is correct, then statements about the parameters i, ..., [, can be
derived, which should be as close as possible to the unknowns, but nonethe-
less can only be of stochastic nature. Such ‘statements’ may be given in form
of point estimates based on (say n) rows of observed values

(yl:wl,la .. 7x17p)7 R (yn;xn,la se :xn,p) -
The y1,...,y, are regarded as sample values of y, given fixed values
(11,--3T1p)s-- > (Tn1,---,Tn,p). Thus y; is the observed realization of a

random variable, while the observation z; ; is assumed to be non-stochastic.

In the literature on linear models, there is usually no notational distinction
between a realization y; and the corresponding random variable standing
behind the observation. The random variable y; satisfies

yi = Praig + -+ Bpwip + i

where ¢; is a random non-observable variable. It is obvious that if for a fixed 4
one has observed not only one but (infinitely) many realizations of y; for fixed

(®i1,...,T;p), then the corresponding errors should have equalized. Hence it
is assumed that the expectation of ¢; equals 0. Moreover, it is assumed that
all 1,...,¢&, have the same, possibly unknown, variance o2. Eventually, two

error variables ¢; and €y are assumed to be uncorrelated for i # k.
The n equations together with the assumptions about ¢; can be written
in matrix notation as

y=XpB+e, e~ (0,0°I,),

where

faary

Yy 11 ---T1,p €1

Yn Tp,1 --- Tnp En

In the following, this equation will be the considered description of a lin-
ear model. The variable y will be called dependent variable while the variables
z1,...,zp will be called independent variables. The vector y is the vector of
sample variables (each one fancied as a random observable copy of y given a
set of z-values), while X is the matrix comprising the values of the indepen-
dent variables.
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Ezample 1.2. In example 1.1 the observation vector y and the matrix X are
given as

78.5 1726
74.3 1129
104.3 11156
87.6 11131
95.9 1752
109.2 11155
y = | 102.7 and X=113T171
72.5 1131
93.1 1254
115.9 12147
83.8 11 40
113.3 11166
109.4 11068

The ordinary least squares estimator for 8 = (81, f2, #3)" is given by

~ 52.5774
B=(X'X)"'X'y=| 14683
0.6623

The estimated relationship, neglecting the error variable, is therefore

y = 52.5774+ 1.4683z,+ 0.6623x,
(2.2862) (0.1213)  (0.0459) °

where the numbers in brackets are the standard errors (see also Sect. 2.4.1).
This equation may be applied to predict the heat y for given z; and z,.
For example for z; = 15 and x5 = 50 the predicted heat is 107.72. See also
Appendix C for a more detailed analysis. O

1.1.2 Types of Linear Models

Depending on the type of variables z1, ..., zp, linear models can be classified
in the following way:

(1) Analysis of Variance Model. When the matrix X consists only of zeros
and ones, then the linear model will be called analysis of variance model.
In this case the variables z1,...,z, are qualitative.
If y; denotes the i-th measurement and x; denotes the j-th treatment,
then z; ; is either 1 or 0, depending on whether the i-th unit has received
the j-th treatment or not.

(2) Regression Model. If all variables zy,...,z, are quantitative, then the
model will be called regression model. The term ‘regression’ has originally
been introduced by Galton [42] in a paper on laws of heredity.
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In econometrics, one will usually be confronted with such variables (e.g.
when z; stands for the total income from trading and z, is the total
income from wages). If there exists one variable which is a constant equal
to 1 and all other variables are quantitative, then the model is called
regression with intercept.

(3) Analysis of Covariance Model. If some of the variables are (0,1) quali-
tative and others are quantitative, then the model is sometimes called
analysis of covariance model.

In this book we assume that the underlying model is a linear regression
model (with or without intercept). Nonetheless, every statement will be true
under any type of model which satisfies the required assumptions.

1.1.3 Proceeding with Linear Models

For investigating the relationship between variables via linear models, an
appropriate procedure is outlined by the following three stages:

Stage 1: Model Building. In a first step, the relationship one wishes to inves-
tigate must be specified. Having formulated a linear model equation

Yi=PBiTi1+ -+ BpTip e, t=1,...,n,

motivated from formal reasons, in a second step it should be clarified
whether there exists some evidence in favor or against the model as-
sumptions (model diagnostics). For example residual plots from computer
outputs may be used to find some indication in favor or against the as-
sumptions concerning the errors €;. If it is not sure whether a specific
variable x;, j € {1,...,p}, should be incorporated into the model, then
a test of the hypothesis Hy : 8; = 0 can be performed. In addition, sta-
tistical software packages (as for example S-PLUS or R, cf. [27, 40, 122])
can be used used to carry out a forward and/or backward variable elim-
ination process, based e.g. on Akaikes ‘An Information Criterion’ (AIC).
Other plots produced by such software will aid to find extreme values
(outliers and/or high leverage points), which could be worth eliminating
from the analysis. The stage of model building and diagnostics is rather
delicate and complicated, since there are many aspects to consider. One
should be aware, that most of the model assumptions cannot be proved,
but only be more or less supported by diagnostic methods. Chapter 6
gives a review on regression diagnostics.

Stage 2: Inference. If a certain model has been fixed, then the relation-
ship between the dependent variable y and the independent variables
Z1,...,%p can be examined. That is, statements about the unknown pa-
rameters (like point estimates) can be concluded from the observations.
In practice, this stage cannot always be clearly distinguished from Stage
1, since for model building/diagnostic purposes it is already required
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to derive statements about the unknowns. If Stage 1 is performed, then
usually some statistical knowledge about the relevant parameters will au-
tomatically be given. (For example testing Hy : 8; = 0 usually requires a
point estimate of (;.) In addition, inference under a given model might
lead to conclusions which question the choice of model, thus making it
necessary to return to Stage 1.

Stage 3: Prediction. Frequently, the ultimate goal of an analysis via linear
models is the prediction of y given some values (Z,.1,...,Zmp). Such a
prediction will be based on the results from Stages 1 and 2. The more
adequate the chosen model and the more precise the obtained estimates,
the better one can hope to predict y.

In the following Chapters 2 to 5 we assume that the stage of model build-
ing has been completed. Our interest focuses on inference about the unknown
regression parameters under a given model (Stage 2). Here we are mainly
interested in comparisons of the performance of different point estimators.
Chapter 6 gives a short review on regression diagnostic methods and Ap-
pendix C demonstrates the analysis of a linear regression model with the
statistical-computing environment R.

1.1.4 A Preliminary Example

The following numerical example will give an impression about the main
topic of this text, being the consideration of different estimators for regression
parameters and the appropriate evaluation of their performance.

The Model

Consider a linear regression model with p = 3 independent (explanatory)
variables and n = 12 observations, described by

Yi = P1xi1 + Bozin + Paxi3 + €4, t=1,...,12,

where E(g;) = 0, Var(g;) = o2 and Cov(g;,ex) = 0fori # k =1,...,12.
The 12 respective observations of the dependent and the three independent
variables are given in Table 1.2.

Table 1.2. Observed values of variables y and z1,z2,x3

1 1 2 3 4 5 6 7 8 9 10 11 12
y; [2.275 3.658 .9561 3.329 2.462 3.843 .8117 .9014 2.715 3.882 3.196 .7634
rin| 1 1 1 1 1 1 1 1 1 1 1 1
xi,2(2.965 2.839 3.466 2.538 1.993 3.670 1.011 2.972 3.504 1.872 2.160 3.218
x:,3|1.776 2.365 .1971 1.442 1.419 3.215 1.140 .3691 .3799 .9427 .7657 .3075
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Obviously, since z;; = 1 for each ¢, z; is the intercept variable. In matrix
notation we can write

y=XpB+e¢, e~ (0,0°I),

where the elements y; of y are random random variables for which obser-
vations are available from Table 1.2 and the elements z;; (i = 1,...,12,
Jj =1,2,3) of X are non-stochastic and determined by Table 1.2.

Different Estimators

Since the matrix X is of full column rank, the ordinary least squares estimator
for B exists and is given by

B=(X'X)'X'y.
By using the values from Table 1.2 we compute

B = (1.4570, —0.0233,0.8423)'

as the least squares estimate for the parameter vector 3.
An alternative estimator for 8 is the so-called ridge estimator, given by

Br=(X'X+k,) ' X'y, k>0.

We compute the scalar k from the formula

and obtain k = 1.2288. Then, the ridge estimate for 3 is

B, = (0.6715,0.2518,0.8242)".

As can be seen, the ridge estimator B  yields a fairly different estimate for
the first element 3, of the vector 8 compared to the ordinary least squares
estimator (. Similarly, the estimates for 3, are different, while the estimates
for B3 are almost the same.

As a second alternative one may consider the so-called shrinkage estimator

We compute ¢ from the formula

&2 tr[( X' X) 1]
0= — <=

BB
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and obtain ¢ = 0.6057. Then the shrinkage estimate for 3 is
B(0) = (0.9074, —0.0145, 0.5246)" .

As can be seen, the shrinkage estimator ,[A? (o) is designed such that it simply
multiplies the estimates of 81, #2 and 3 obtained from B by the same factor
(1+0.6057) =% = 0.6228 and thus shrinks the ordinary least squares estimates.
This is similar to the behavior of the Stein estimator (also called James-Stein
estimator, see [61]), given as

B =3 (p-2n-p &

Bs =B, v=1- = o~
> n-p+2 3'x'xp

We compute v = 0.9875 and obtain
Bg = (1.4387,—0.0230, 0.8317)'

as an estimate for 3. Since the computed factor 7 is close to 1, the estimates
from the Stein estimator B¢ hardly differ from the estimates from the ordinary

least squares estimator (3.

Observed Loss

The data in Table 1.2 is obtained as a result from a small simulation process,
where in a first step the values of z;1, x;» and z;3 had been fixed. Then
12 realizations of independent N(0, 1) distributed random variables e; have
been obtained by a random generator. The corresponding value of y; has been
computed from the model equation by using the vector

B =(0.2,04,0.7)" .

Hence, in distinction to a real-world application, the true parameter vector is
known, and we are able to compare the true values with the estimated ones.
Fig. 1.1 shows the vector B as a point in a 3-dimensional coordinate system
together with the estimates 8, B, and (p). The value of g is not shown,
since it cannot visually be distinguished from the least squares estimate ,[A?

Although, due to the graphic presentation, the differences in direction
of 31 are not easy to make out, it can be seen that the ridge estimate and
the shrinkage estimate are nearer to the true parameter(vector) than the
least squares estimate. We compute the squared distances from the respective
estimates to 4 = (0.2,0.4,0.7)’, and obtain

L=8-B8I”=(B-8)B-B)=1T794,

by = 1B — BII> = (Bi — B)'(Bx — B) = 0.2597 ,

Is = 1B(e) — BI* = (B(o) — B)'(B(e) — B) = 0.7030 ,
ly = ||Bs - Bl = (Bs - ﬂ)’(as - fB) = 1.7306 .
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0.6 ° true parameter
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Fig. 1.1. True parameter vector B = (0.2,0.4,0.7)" and least squares, ridge and
shrinkage estimates

We may interpret these squared distances as observed losses, which have to
be admitted when the respective estimator is chosen and 8 = (0.2,0.4,0.7)’
is the true parameter.

If we compare the values Iy, I3, [3 and 4, then we will conclude that the
observed loss of the ridge estimator 3, is distinctly smaller than the observed
loss of the least squares estimator ,Ei The shrinkage estimator B(Q) yields a
smaller loss compared to the loss of least squares, but a greater loss compared
to the loss of ridge. Even the Stein estimator Bg produces a smaller observed
loss than ,@ , although the difference is only marginal.

Risk

Of course, the observed loss of an estimator depends on the observed real-
ization of y (the sample value). If we wish to assess the loss of an estimator
B(y) independent of a given realization, then we can consider the average
loss

E[Bw) -8 Bw) -8)] -

Here we do not consider a specific estimate B (y) depending on the observed
value y, but the random vector B(y) depending on the random vector y. This
expected loss is usually called the risk of the estimator B (y) with respect to
3.

In the above situation an estimator can be called better than another,
if it has a smaller risk with respect to 8 = (0.2,0.4,0.7)". Of course, in
practice we do not know the true parameter vector, so we are interested in
risk comparisons which do not only hold for some fixed value of 3, but for
at least a certain set of possible values B € IR? and a certain set of possible
values 02 > 0. Clearly it would be most helpful to have risk inequalities
between estimators for 8 being valid for all possible parameter values 3, but
this will rarely turn out to be the case if we consider reasonable estimators.
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Some Questions

As we have demonstrated above, there are situations in which certain alter-
natives to the least squares estimator deliver smaller observed losses than 3.
This, however, does not imply that expected losses must behave similarly,
meaning that we cannot draw any reasonable conclusions about the behavior
of the respective estimators from the above example. Nonetheless, the above
results raise some questions:

— Is it possible that a better estimator than B exists for all possible 8 € IR?
and all 0% > 07 In other words, does there exist an estimator which makes
B inadmissible for estimating 87

— Do there exist different possibilities to define ‘better’? Are there different
reasonable losses and risks? R

— Do there exist estimators of 8 which are better than 3 for certain sets of
B € IR? and 0* > 07 In other words, do there exist estimators which turn
out to be admissible compared to 87

— If there existed such admissible estimators, under what conditions should
they be used?

— Can we find estimators which are admissible compared to any other esti-
mator? In such a case, we can never find a uniformly better estimator, i.e.
an estimator which is better for all 8 € IR” and all 02 > 0

Terms like ‘loss’, ‘risk’ or ‘admissibility’ are widely used in decision theory.
Therefore, before trying to give some answers to the above questions, we
present a short introduction into this theory.

1.2 Decision Theory and Point Estimation

Statistical decision theory has been established by Abraham Wald with a se-
ries of papers in the 1940s being combined 1950 in his famous book Statistical
Decision Functions [124]. Further contributions on this topic are for example
provided by Ferguson [38] and Berger [13].

1.2.1 Decision Rule

Suppose we have to reach a decision d depending on p unknown quan-
tities 61,...,6,. These quantities are combined in the parameter vector
0= (01,...,6,)". Then:

— the set of all possible parameter vectors @ is called parameter space and is
denoted by ©;

— the set of all possible decisions d is called decision space and is denoted by
D.
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Ezxample 1.3. Suppose that we want to decide whether to use a certain coin
for a game of chance or not. The set of decisions D consists of the two elements
‘use coin’ and ‘reject coin’. The decision depends on the unknown probability
p for the appearance of the event ‘face side’. Hence the parameter space is
0 =10,1]. O

To make a specific decision, claims about the unknown parameters
01,...,0, are required. To obtain such claims, a statistical experiment is
conducted, being designed such that some conclusions about the vector
0 are possible. More precisely, the experiment will yield an observation
vy = (y1,...,Yn)" of a random vector Y = (}7,...,Y,,)" whose distribution
depends on 0. Given a certain decision rule 0 and given the observation y, a
decision d is chosen out of the decision space D.

Definition 1.1. A mapping

0:R" — D
y =iy =d

which assigns each observed value y exactly one decision d is called decision
rule.

Since Y is a random vector, it is quite reasonable to demand the same
property for the function ¢, i.e. 6(Y") should be a random vector/variable,
too. Hence, the decision space D must come along with an appropriate o-
algebra D, so that (D, D) is a measurable space and 0 is (B", D) measurable,
where B" stands for the n-dimensional Borel algebra.

Assumption 1.1. In the following we will only consider decision rules § such
that 6(Y') is a random vector/variable.

Remark 1.1. In point estimation theory, the decision simply consists in ac-
cepting one of the possible values from ©. Thus D = © and decision rules §
are point estimators of 6.

Ezxample 1.4. We can transform the decision problem from Example 1.3 to a
point estimation problem simply by requiring a decision for a specific value
pin [0,1]. Then, D becomes D = © = [0, 1].

To obtain some information about the unknown p we can flip the coin 1000
times. Each time we note a 1 for the event ‘face side’ and a 0 otherwise. By
this, we get 1000 realizations y = (y1,...,%1000)" of n = 1000 independent
random variables Y = (}7,...,Y,,)’, each one being Bernoulli distributed
with parameter p.

Let the set of decision rules A be the set of all point estimators for p. We
choose the rule

)= 13
i=1

and come to the decision d(y) = £ 3 | y; = 38 = 0.516 (say). O
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1.2.2 Non-operational Decision Rule

Decision rules §(Y") are random variables/vectors which yield a decision from
the decision space D as soon as the sample value y has been observed. The
value y is the realization of the random vector Y whose distribution depends
on some unknown vector of parameters 6 € ©. Sometimes, the distribution
of Y does not only depend on the vector @ of interest, but also on some
additional unknown vector £ € =.

If we are solely interested in point estimation of the vector 8, then we can
consider functions

o(Y,§) ,

which should have been reasonable point estimators for @, if £& had been
known. But since this is not the case, these functions do not yield a specific
value from the parameter space © and hence are non-operational.

If we replace the vector £ in §(Y,€) by an appropriate point estimator
00(Y") of &, then we obtain an operational variant

6(Y,00(Y)) ,

which (given an appropriate choice of dg) yields a value from © when Y is
replaced by the sample value y.

Ezample 1.5. We wish to estimate the unknown variance o of a normally
distributed random variable. Suppose that an experiment delivers the real-
izations of n independent N (u,0o?) distributed random variables Y1, ...,Y,,
where neither u € IR nor o2 € (0, 00) are known. For some reasons it appears

that .
S (¥ - p)?
i=1

could be an appropriate ‘point estimator’ of o2. But since p is not known,
this ‘decision rule’ does not yield a specific value from (0,00) when we re-
place Y by its observation. Hence, by this procedure we cannot come to
the desired decision, so that §(Y,u) is not operational as a decision rule.
When we replace the unknown parameter p in & by the point estimator
5(Y)=Y =13" 'V, then we obtain

T n

o(Y,p) =

S|

n

1 —
S(Y)== Y, —Y)?

)= 30T
as an operational variant of §(Y, u). Note that §(Y) is a random variable
which yields a specific value from the parameter space © = (0, 00) of o2 when
the observed yi, ..., y, are given. This shows that in contrast to §(Y, u) the
function §(Y") can be called a point estimator. The two functions §(Y", u) for
known g and §(Y") do not necessarily have similar properties. For example,
if p is known, then §(Y, i) is unbiased for o2, while the operational variant
0(Y') is always biased. O
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Remark 1.2. The above example shows that there might exist situations when
it can be useful to consider a non-operational decision rule as the basis for
some operational rule.

In the following we will not use the terms ‘non-operational decision rule’ or
‘non-operational estimator’, since they comprise some kind of contradiction.
The term ‘non-operational” indicates that no decision can be made, while the
terms ‘decision rule’ or ‘estimator’ imply by definition that a specific decision
or estimate is assigned to a given sample value y. Moreover, if we extend non-
operational decision rules to functions not only depending on some unknown
& € =, but also on the parameter of interest 8 € ©, then the most appropriate
decision rule for 8 would be @ itself, which obviously is not very helpful. (Note
that the parameter 0 is in fact an element from the parameter space, but not
a specific value unless known and thus not a decision.)

1.2.3 Loss and Risk

A concomitant of any decision rule is a loss function, assigning a value to
the parameter 6 and the decision d = §(y). This value determines the extent
of loss we have to admit when @ is the true parameter and the decision
d = d(y) is taken. A loss function is usually designed such that the loss
is zero when the decision is correct, while it is growing with an increasing
level of incorrectness. The choice of a specific loss function depends on the
regarded decision problem.

Definition 1.2. A mapping
L:OxD—-1R,

where L(0,d) gives the loss when 0 is the true parameter and the decision d
is taken, is called loss function.

Assumption 1.2. In the following we only consider loss functions L such
that L(0,0(Y)) is a random variable (in the second component).

If an observation y is given and a specific value of @ is considered, then
the loss L(0,d(y)), arising when this specific value of 6 is the true parameter
and the decision d(y) is taken, can be computed (observed loss).

If we are interested in assessing a decision rule 6(Y’) independent of a
given realization of Y, then it is nearby to consider the average loss with
respect to all possible realizations of Y.

Definition 1.3. The expected loss
p(0,0) =E[L(6,6(Y))] ,

of a decision rule 6(Y') is called the risk of §(Y') when @ is the true parameter.
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Ezample 1.6. In Example 1.3 we can compute the loss of an estimator §(Y")
by using the function

L(p,6(Y)) = (3(Y) —p)* .
Clearly this loss function is a random variable in the second component. If p =
0.5 (say) had been the true parameter and 6(Y) had delivered the decision
0(y) = 0.5, then the observed loss would have been 0. The farther a decision
had been away from 0.5, the greater would have been the corresponding loss.
If we make the decision 6(y) = 0.516, as before, then the loss will be
L(0.5,0.516) = (0.516 —0.5)* = 0.000256 when p = 0.5 is the true parameter.

What about the loss independent of a given realization y? For our decision
rule §(Y) = L 3% | Y; with n = 1000 we have

E((Y))=p
and therefore
p(p,8) = E[L(p,6(Y)] = E [(6(Y) = p)°] = Var(§(Y)) = p(llogop) '

Hence p(0.5,d) = 0.00025 is the risk of 6 when p = 0.5 is the true parameter.
Of course we can determine the risk for every possible value p € [0, 1], see

also Fig. 1.2. O

Fig. 1.2. Risk of the decision rule Fig. 1.3. Risk of the decision rule

§(Y) = 15 2120 Y; in Example 1.6 5(Y) = 15 12 Vi (solid line) and
risk of §.(Y") (dotted line) in Example
1.7

1.2.4 Choosing a Decision Rule

In Example 1.6 we have considered only one decision rule to come to a decision
(point estimation of p). In many cases, however, we can choose between many
different decision rules to solve a specific decision problem. Then the problem
is to find the most appropriate one. A possible way is to compare the risks
of the respective rules for all possible values from the parameter space.
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Definition 1.4. Let (©,D,L,Y) denote a decision problem and let 6;(Y")
and 02(Y") be two decision rules. Then:

(i) The rule 6;(Y) is called uniformly not worse than the rule 5(Y") if
p(oa 61) < p(07 62)

is satisfied for all @ € ©.
(ii) The rule 6,(Y) is called uniformly better than the rule 62(Y) if 51(Y) is
uniformly not worse than §2(Y') and in addition

p(oaél) < p(ea 62)
for at least one 0 € O.

In general, the term ‘uniformly better’ could also be interpreted in the
sense that the risk of one rule is strictly smaller than the risk of another rule
for all possible values from the parameter space. From the above definition,
however, ‘uniformly better’ essentially means ‘uniformly not worse’, but ‘bet-
ter’ for at least one parameter. One may call §; (Y') uniformly strictly better
than 02(Y") if

p(e; 61) < p(ea 62)

for all @ € ©.

Ezample 1.7. Suppose that in Example 1.3 we have a second decision rule
04(Y") at hand with a risk function p(p, d.) as shown in Fig. 1.3 by the dotted
line. In this case the rule d, is a uniformly better estimator of p than 0. (The
risk of d, is strictly smaller than the risk of ¢ for all possible values of p,
except for p =0 and p = 1, where both risks are equal to zero.) ad

Note that in Fig. 1.3 the dotted risk line p(p,ds) is given by p(p,d.) =
p(1—p)/5000. Therefore, in fact, Fig. 1.3 actually does not show a comparison
of the risks of two decision functions given a single decision problem, but one
decision rule §(Y') = £ 3% | Y; given two decision problems (flipping a coin
n = 1000 times and flipping a coin n = 5000 times). The motivation for Fig.
1.3 is simply to show two visually distinct risk functions, one dominating the

other.

Remark 1.3. In the following we only consider the comparison of different
decision rules given a specific decision problem and not the comparison of
different decision problems. This also implies that we compare different de-
cision rules for a fixed sample size n.

Ezxample 1.8. Suppose that in Example 1.3 we wish to compare the two de-
cision rules

s
|

= 1 _nY +/n/4
(51(Y)_Y_E'1Yl and 02(Y) = ma—

(3
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for n = 1000. As noted before, the risk of §; is given by
p(l—p
p000) = B [(3:(¥) - py?] = 222
while the risk of 9 comes up to

d2) = 5(Y) —p)?l= — 2
(Problem 1.3). Here we neither have p(p, 61) < p(p,d2) nor p(p,d2) < p(p,d1)
for all values p € [0, 1], so that none of the two estimators is uniformly not

worse than the other, see also Fig. 1.4. O
Fig. 1.4. Risk of ¢; (parabola) and Fig. 1.5. Risk of ¢; (parabola) and
risk of d2 (horizontal line) in Example risk of d2 (horizontal line) in Example
1.8 for n = 1000 1.8 for n =10

In the above example none of the two decision rules §; and d5 is preferable
to the other on the basis of the squared error risk. However, we can see that
01 has a smaller risk for all those values of p which are not close to 0.5. Thus,
if we have no prior knowledge that p is somewhere near to 0.5, we are inclined
to use d; rather than d>. The situation had been quite different if the number
n would have been much smaller than n = 1000. In this case the risk of §> can
be seen to be smaller than the risk of §; for a broad range of values of p, see
Fig. 1.5, and one is then inclined to use J, as a decision function. This shows
that even in those cases when two estimators are compared with respect to
their risks and none of them turns out to be uniformly not worse (or better)
than the other, the risk comparison can give valuable information about the
decision rules in question, see also [19, p. 332].

1.2.5 Admissibility

The choice of a decision rule depends on the given loss and corresponding
risk function as well as on the set of given decision rules we can choose from.
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This set will be denoted by A in the following. If we have a set A; at hand,
then the most appropriate rule from this set can be different from the most
appropriate rule from another set As.

Ezample 1.9. If in a given decision problem (0, D, L,Y) the set A contains
the three decision rules §;(Y’), d2(Y) and d3(Y) with corresponding risk
functions as shown in Fig. 1.6, then none of the rules is uniformly better than
another. Hence we can say that in A = {6:(Y"),2(Y),05(Y)} all elements
are admissible with respect to the risk.

If, however, A contains the decision rules 6;(Y), d2(Y), d3(Y) as well as
a forth rule d4(Y") with risk functions as shown in Fig. 1.7, then 04(Y") is
uniformly better than each of the three others. If we can choose from this set
of decision rules, it is not reasonable to choose one of the rules §; (YY), 62(Y")
and 03(Y) when the risk is a criterion. Hence we can say that these three
rules are inadmissible in A = {01(Y),02(Y),95(Y),d4(Y)} with respect to

the risk. O
Fig. 1.6. Risks of the rules 6,(Y), Fig. 1.7. Risks of the rules 0:(Y),
62(Y) and 53(Y) (Sz(Y), 53(Y) and 64(Y)

Definition 1.5. Let us be given a decision problem (©,D,L,Y) and a set
of decision functions A. A decision rule 6o(Y) € A is called admissible in
A, if there does not exist a rule in A which is uniformly better than §o(Y).
Otherwise 6o(Y) is called inadmissible in A.

Remark 1.4. Admissibility is not a criterion for choosing a decision rule. An
admissible rule is not necessarily a reasonable rule.

Problem 1.3 gives an example for a hardly reasonable but nonetheless
admissible estimator in a set A. On the other hand, if we want to use a
specific decision rule which appears to be practical for some reason, then this
rule should be admissible within some set A, since otherwise there exists a
more practical (i.e. uniformly better) rule in this set.
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1.2.6 Squared Error Loss

Remark 1.1 implies that in point estimation problems the set of all possible
decisions D coincides with the set of of all possible parameters ©. In this case,
decision rules 6(Y") are point estimators of the unknown parameter vector 6,
i.e. functions of the random vector Y which assign an observation y of Y to a
specific value §(y) from the parameter space ©. In point estimation problems
we will assume that the p x 1 parameter vector 6 is real-valued.

A frequently used criterion to evaluate the performance of an estimator
0(Y') is the weighted squared error loss function

L(6,6(Y)) = (6(Y) = 0)’W((Y) - 0)
with corresponding weighted squared error risk
p(6,6) =E[(6(Y) —0)W((Y) - 6)] .

The p x p weight matrix W is assumed to be symmetric nonnegative definite.

Squared Error Loss as Distance

If W is a p x p symmetric nonnegative definite matrix, then the mapping

[|-llw : R — R
Tz - ||lz]|lw = vVae'We

satisfies the conditions of a vector seminorm, see Sect. A.3.4. If in addition
W is nonsingular, then ||-||w satisfies the conditions of a vector norm. Hence,
the weighted squared error loss is the squared distance between 6(Y') and 6
with respect to a vector (semi)norm || - ||w -

Different Weight Matrices

The application of weight matrices W # I, can sometimes be useful under
specific estimation problems. For example, W could be a diagonal matrix
with different weights on its main diagonal such that individual squared dis-
tances (6(Y); — 6;)? enter the total loss with higher or lower magnitude.

Different weight matrices can cause seriously different losses. For example
the observed unweighted squared error loss (W = I,) of an estimator d; can
be smaller than the observed unweighted squared error loss of an estimator
02, while this relation can be reversed when an alternative weight matrix
W # I, is used, see Problem 1.5.
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Weighted Squared Error Loss and Admissibility

Although the choice of the weight matrix W can be of great importance
when the performance of two estimators is compared, it turns out to be
reasonable to consider the choice W = I, when admissibility of an estimator
is investigated, see the following theorem. For this, it is assumed that the set
of decision rules A containing the estimators of a p x 1 parameter vector 6
satisfies

(50,(51€A = (50+A((51—(50)€A

for any p x p matrix A. Compare also Problems 1.7 and 1.8.

Theorem 1.1. Let us be given an estimation problem (0, L,Y) with weighted
squared error loss function L. If 6o(Y) is admissible for 0 in the case W =
I, then 60(Y) is admissible for @ in the case W = W, where W, is an
arbitrary p X p symmetric nonnegative definite matric.

Proof. For simplicity we will write ¢ to denote an estimator 6(Y") of 6.

Let do be admissible for § with W = I,. We assume that dp is not
admissible for @ with W = W, and show that this assumption leads to a
contradiction.

If §p is not admissible for @ in the case W = W, then there exists an
estimator d;, which is uniformly better than Jy in the case W = W . This
means that

(8, W.) = E[(5, — 0) W. (5, - 0)] — E[(60 — 6)'W.(6o — 0)]

is smaller than or equal to O for all @ € © and strictly smaller than 0 for at
least one 8 € O.
Let F := (1/Amax) W «, where Ajax denotes the largest eigenvalue of W,.

It follows that
<0 forall @€ ©

C(G’F){<0 for at least one @ € ©

Now, define
(5::(50+F((51 —(50) .

Then
E[(6 —0) (6 —6)]
=E[(0o + F(d1 — do) — 0)' (6o + F (1 — do) — 0)]
=E[((0o —0)" + (61 — 60)'F) ((d0 — ) + F (61 — do)]
=E[(6o—8) (do — 0)] + ¢,

where ¢ := E [((51 — (SO)IFZ((Sl — (50) + 2((51 — (So)IF((SO — 0)] . Since

' F’z < z'Fux
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is satisfied for all p x 1 vectors x (see Problem 1.6), it follows

E [(61 — 60)' F*(61 — do)] < E[(61 — 60)' F (61 — bo)] ,
see e.g. [79, p. 70]. Thus,

q < E[(61 — do) F(01 — o) + 2(61 — do)' F (0 — )] .

By some simple transformations it can be shown that the right-hand side of
this inequality equals ¢(8, F'). Therefore

E[(6-0)' (6 -0)] <E[(d—0)' (5 — )] + (6, F),
and
Covis < E[(6o — 0)' (o — @)] forall @ € ©
E[(0-6)(-06)] { < E[(6o — 0)' (6o — )] for at least one 8 € © °
This shows that 0 is uniformly better than dp in case W = I, which is a
contradiction to the assumed admissibility of dy in the case W = I,. Hence

do must also be admissible for the case W = W, which concludes the proof.
O

Remark 1.5. If W, is symmetric positive definite, then the assertion in the
above theorem can also be reversed: If 6o(Y") is admissible for € in the case
W = W,, then 6o(Y') is admissible for € in the case W = I, see Problem
1.9(b).

Remark 1.6. If we consider admissibility with respect to some weighted
squared error loss, then the relevant claims can be deduced from the un-
weighted case, irrespective of the choice of weight matrix.

1.2.7 Matrix Valued Squared Error Loss

According to Definition 1.2, a loss function takes its values in the set of real
numbers IR. In connection with estimating a p x 1 parameter vector 6, the
matriz-valued squared error loss function

L(6,6(Y)) = (0(Y) = 0)(5(Y) - 0)'
is often considered, taking its values in IRP*?. The corresponding risk is given

by
MSE(8,5) = E[(5(Y) — 8)(5(Y) — 0)] .

The i-th diagonal element of this matrix is the mean squared error
mse(0;,0(Y);) = E [(6(Y); — 6;)]
of the estimator 6(Y'); for the i-th element 6; of the vector 8, i = 1,...,p.
Furthermore, for any 8 € O, the trace
tr [W MSE(8,6)] = p(6,0) =E[(6(Y) — )W (5(Y) — 0)]

is the risk of 0(Y") with respect to the weighted squared error loss with weight
matrix W.
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Comparison of Estimators

If we use MSE(6,0) for a comparison of estimators, then the corresponding
previous definitions must be altered accordingly.

Definition 1.6. Let us be given an estimation problem (0, L,Y) with matriz-
valued squared error loss function L. Let §,(Y) and 62(Y) be two estimators
for 8. Then:

(i) The estimator 6, (YY) is called uniformly not worse than 32(Y), if the
symmetric matrix
MSE(8, 62) — MSE(8, 6,)

is nonnegative definite for all 6 € O,
(ii) The estimator 61(Y) is called uniformly better than d5(Y), if 01(Y) is
uniformly not worse than §5(Y') and in addition

MSE(8,6;) # MSE(8, d-)
for at least one 0 € O.

Note that some authors define 01(Y") to be uniformly better than J,(Y)
if the difference MSE(6, 62) — MSE(6, d1) is positive definite for all 8 € ©.
Correspondingly, we would then call 01(Y) wuniformly strictly better than
02(Y), similarly to the real-valued case. It is essential not to mix up
both definitions since they are not equivalent. Clearly, if the difference
MSE(@, ) — MSE(8, ¢;) is positive definite for some 8 € ©, then this differ-
ence is also nonnegative definite and in addition nonzero, but the converse is
not true, i.e. from ‘uniformly better’ in our sense does not necessarily follow
‘uniformly strictly better’.

Matrix Valued and Real Valued Risks

To denote the nonnegative definiteness of the symmetric matrix MSE(8, 62) —
MSE(8, ;) we will also write

MSE(8, 5,) <1, MSE(8, 5,) ,

where <g, is the Lowner partial ordering in the set of square matrices, see also
Sect. A.5. The following theorem, see [115], shows the connection between a
relationship of this type and a corresponding relationship between weighted
real-valued risks.

Theorem 1.2. For an arbitrary 0 € ©, the inequality
MSE(8,61) <1, MSE(8, é>)
is satisfied if and only if
E((6:(Y) — 0) W (5, (Y) — 0)] < E[(52(Y) — )W (5,(¥) — 0)]

is valid for every p X p symmetric nonnegative definite matriz W,
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Proof. For an arbitrary estimator §(Y") of @ we have
E[(0(Y) - 0)W((Y) — 6)]
= E[tr{W(3(Y) — 0)(6(Y) — 0)'}] = tr [W MSE(8,6(Y))] .
This shows
tr [W{MSE(0, 62) — MSE(0,01)}]
=E[(0:(Y) = 0)W (62(Y) — 0)] —E[(6:(Y) — 0) W (6:(Y) — 0)] ,
and the assertion follows from Theorem A.54. O
Note that in the above theorem, given 8 € O, it is not enough that
E[(0:1(Y) = 0)W (6:(Y) — )] < E[(52(Y) — 0) W (62(Y) — 6)]
for some symmetric nonnegative definite W to guarantee
MSE(6, 61) <1, MSE(6,6>) ,

but the real-valued inequality must hold for all weight matrices W to imply
the matrix-valued inequality.
Moreover, note that if for some 8 € © we have

MSE(0, 6;) <1, MSE(0, ), MSE(0,d;) # MSE(0,d) ,
then we do not necessarily have
E[(6L(Y) - ) W(5.(Y) - 8)] < E[(5:(Y) — 0) W (6,(Y) — 0)]
for an arbitrary p x p symmetric nonnegative definite matrix W.

Remark 1.7. If an estimator ; is uniformly not worse than Js with respect
to MSE(8, ¢), then it is always uniformly not worse than d, with respect to
an arbitrary real-valued weighted squared error risk. If an estimator §; is
uniformly better than J, with respect to MSE(@,d), then it is always uni-
formly not worse but not necessarily uniformly better than é, with respect to
an arbitrary real-valued weighted squared error risk.

Nonetheless, from the relation MSE(8, 01) <, MSE(8, d2) together with
MSE(6,d,) # MSE(0,02) we can always conclude that tr[MSE(0,4d;)] <
tr[MSE(0, 62)].

Remark 1.8. If an estimator d; is uniformly not worse/better than d, with
respect to MSE(0,J), then it is uniformly not worse/better with respect to
the real-valued unweighted squared error risk.



1.2 Decision Theory and Point Estimation 25
Comparison of Elements of Estimators
If for some 0 € O the inequality
MSE(8, ;) <1, MSE(8, J»)

holds true, then for every i € {1,...,p} it follows

E[(01(Y)i —6:)°] <E[(02(Y)i —6:)*] .
On the other hand, if for some 8 € © the relations

MSE(0,6;) <1, MSE(0,4,), MSE(8, ;) # MSE(8, d,)

hold true, then the inequality

E[(01(Y); —6:)%] <E[(62(Y): — 6,)?]

does not necessarily hold for every i € {1,...,p}. The latter would have been
only the case if the difference MSE(0,d2) — MSE(@, 6;) had been positive
definite.

Remark 1.9. If an estimator ; is uniformly not worse than Js with respect
to MSE(@, §), then each element of ¢; is uniformly not worse than the cor-
responding element of d» with respect to the usual mean squared error. If
an estimator J; is uniformly better than d, with respect to MSE(@, §), then
each element of §; is uniformly not worse but not necessarily uniformly better
than the corresponding element of §, with respect to the usual mean squared
error.

Admissibility of Estimators

According to Remark 1.8, for the comparison of two estimators, the matrix-
valued squared risk MSE(6, ) is a stronger criterion than the real-valued
unweighted squared error risk p(8,0) = tr[MSE(8, J)]. Nonetheless, with re-
gard to admissibility of estimators it is reasonable to consider the latter rather
than the former, as shown by the following theorem.

Theorem 1.3. If an estimator §o(Y') is admissible for @ with respect to
p(6,0) =E[(06(Y)—0)(6(Y) —0)], then 60(Y') is admissible for 0 with re-
spect to MSE(8, 6).

Proof. We assume that dp is admissible with respect to p(8,0) but not with
respect to MSE(0,6) in a set A, and show that this assumptions leads to a
contradiction.

If 09 € A is not admissible with respect to MSE(6, §), then there exists a
better estimator d; € A with respect to this criterion. By Definition 1.6, this
means that the difference
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D =E[(6 — 0)(0o — 0)'] —E[(01 — 0)(d1 — 6)]

is nonnegative definite for all 8 € © and nonzero for at least one 8 € ©. Now,
the trace of a nonnegative definite matrix is nonnegative and equals zero if
and only if the matrix is the zero matrix. Hence, 0 < tr(D) for all 8 € © and
0 # tr(D) for at least one 8 € ©. This implies

tr [E[(d1 — 0)(61 — 0)']] < tr [E[(do — 0)(do — 6)']]
for all @ € © and
tr [E[(01 — 0)(61 — 0)']] < tr [E[(do — 8)(d0 — 0)']]

for at least one @ € O. Since tr[MSE(8, 6)] = p(8, §), the two inequalities show
that d; is uniformly better than dy with respect to p(6,0). This contradicts
the assumption and shows that §o € A must also be admissible with respect
to MSE(6, 0). O

We have shown that if an estimator is admissible with respect to the real-
valued unweighted squared error loss, then it is also admissible with respect
to the matrix-valued squared error loss. The converse is not true in general,
i.e. there might exist an estimator which is admissible in some set A with
respect to the matrix-valued squared error risk MSE(6,d), but which is not
admissible in the same set A with respect to the real-valued unweighted
squared error risk p(0,d) = tr[MSE(8,0)].

1.2.8 Alternative Loss Functions

Traditionally, the previously described real-valued (weighted) squared error
loss and the matrix-valued squared error loss are considered for investigation
of the performance of an estimator §(Y') for a parameter vector 8 € ©.
Nomnetheless it is sometimes reasonable to take alternative loss functions into
account. To give an impression of the possibilities, we introduce some of these
functions in the following.

Vector Valued Squared Error Loss

The matrix-valued loss function L(6,6(Y)) = (6(Y) — 0)(6(Y) — 0)" might
be replaced by the vector-valued loss function

L(6,5(Y)) = dg[(6(Y) - 0)(6(Y) — )] ,

where dg(A) denotes the vector whose i-th element is the i-th element of
the main diagonal of the matrix A. Then the expected loss is given by
dg[MSE(8,0)], and a decision rule §;(Y") is called uniformly not worse than
a rule 95(Y) if the difference
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dg[MSE(8, 5,)] — dg[MSE(8, 6,)]
is a vector whose every element is nonnegative for all @ € ©. We may write
dg[MSE(8,6,)] < dg[MSE(8,4,)] VO € O .

If in addition dg[MSE(0,02(Y"))] # dg[MSE(0, 4, (Y)] for at least one 6 € O,
then 6;(Y") is called uniformly better than d(Y").

This criterion is stronger than p(0,d) = tr[MSE(@, )] but weaker than
MSE(8, ). For an arbitrary given 8 € 0 it follows

MSE(8, 1) <1, MSE(®, 6)

= dg[MSE(#, 6,)] < dg[MSE(8, d2)]
= tr[MSE(0, 1)] < tr[MSE(8, J>)] .

Similarly we can conclude
MSE(@, 6;) # MSE(6, 62)
= dg[MSE(6,6,)] # dg[MSE(8, 6)]
= tr[MSE(8, 0,)] # tr[MSE(@, d>)],

showing that the vector-valued square loss is in between the matrix-valued
and the real-valued squared error loss.

Alternative Distances as Loss Functions

As noted before, a real-valued weighted squared error loss gives the squared
distance between §(Y') and 6 with respect to a vector (semi)norm || - ||w. Of
course it is also possible to consider alternative measures of distance as loss
functions. For example we may consider the absolute distance

p

L(0,5(Y)) = Y 15(¥): 6] .

i=1
Another example is the mazimal distance
L(0,0(Y)) =max{|6(Y); — 0;|,i=1,...,p}.

Although such measures could be reasonable loss functions, they will, on
the whole, cause more mathematical difficulties than the usual squared error
distance and thus are rarely applied.

Balanced Loss Function

Suppose that the distribution of the random vector Y depends on 6 only via
E(Y') = 6. For this case Zellner [132] proposes a balanced loss function
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LO,5(Y)) =ally =5(Y)IP+ (1 -a)l0 -6(Y)|’, 0<a<l.

Here ||Y —6(Y)||* measures how good §(Y') fits Y. If we have an observation
y of Y, then ||y —6(y)||? gives the squared distance between the realization y
and the decision §(y). Given y, this function yields the same value irrespective
of @ € © Thus, standing alone, ||Y — §(Y)||? is not a loss function in our
sense. Therefore, the case a = 1 is excluded in the above definition.

The balanced loss function consists of two components. First, a measure of
goodness of fit ||Y —d(Y)||? with a relative weight «, and, second, a measure
of goodness of estimation ||@ —5(Y)||* with a relative weight 1 —a. The latter
is already known as the unweighted squared error loss of the estimator 6(Y")
for 6. Dey, Ghosh and Strawderman [29] study the performance of point
estimators with respect to the balanced loss function and compare it with
their performance under the unweighted squared error loss.

Asymmetric Loss Function

If we want to estimate a real-valued parameter 6, then
L(8,6(Y)) =b(3(Y) - 6)%, b>0,

is a squared loss of the point estimator §(Y'). Using this loss function, it
doesn’t matter whether the error

=6Y)—0

is positive or negative, i.e. over- and underestimation of the parameter 8 are
equally treated. Now it is easy to fancy a situation in which overestimation
(say) could do more harm than underestimation, e.g. when overestimation
is more expensive. To take this into account, one may consider asymmetric
loss functions, which assign more loss to overestimation than to the same
amount of underestimation (or vice versa). For example the so-called LINEX
loss function may be used, given as

L(B,6(Y)) =be*® —ad —1], a#0,b>0, &=05Y)—0,

cf. [131]. The two parameters a and b can be chosen according to a specific
problem. With the parameter b we can set an appropriate scale, while we can
use the parameter a to determine the shape of the function. Fig. 1.8 shows
the LINEX loss function for b = 0.5 and a = 1 depending on & = §(Y') — 6.

In this case overestimation of € yields a greater loss than underestimation.
If for example & = 3, then the loss comes up to L(6,6(Y)) = 8.0428, while
for & = —3 the loss is only L(6,6(Y)) = 1.0249, compare also Fig.1.8.

For small values of |a| the LINEX loss function is almost symmetric and
yields similar results as a corresponding squared loss function. For estimating
a vector of parameters @, one may use the LINEX loss to evaluate the loss
of the single elements #;, or one might consider the estimation of a linear
combination \'@, where A is a known vector.
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4
Phi
Fig. 1.8. LINEX loss function with b=0.5 and a =1

1.3 Problems

1.1. Let us be given p > 3 independent normally distributed random variables
Yi~N(u;,1),i=1,...,p. Let Y = (Y1,...,Y,) and p = (p1,...,pp)". Let
the loss of a decision rule §(Y) for estimating the parameter vector p be
L(p,0(Y)) = (6(Y) =)' (6(Y) — ) = 33, (0(Y )i — pua)*.

(a) Determine the risk of the estimator 6;(Y) =Y.

(b) Show that the risk of the estimator

(p—-2)

6(Y)=(1- 7

Y, Z=Y'Y,

is given as
p(p.d2) = p—(p—2)°E(1/2) .
[Hint: Use the identity E[(Y — )Y /Z] = (p —2)E(1/Z).]
(c) Compare both risks. What can be said?

1.2. Consider the situation from Problem 1.1 for the case p = 10. Let
y = (1.9665, .5456, 2.2983, .6172,1.9213, —2.1017, —.2727, 1.3510, 2.6029, 1.4598)’
be a given observation of Y.

(a) Compute the two possible decisions 0;(y) and Jdz(y) (estimates of w)
corresponding to the decision rules 6, (Y) and 65(Y") from Problem 1.1.

(b) Compute the observed losses of 6;(y) and d2(y) when p; = 1,7 =
1,...,10, are the true parameters.

(c) The i-th element of 01 (y) and d2(y) can respectively be seen as an esti-
mate of u;. Check whether each element of d2(y) has a smaller observed
loss than the corresponding element of d;(y) when p; = 1 is the true
parameter.
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1.3. Consider the situation from Example 1.3 for an arbitrary sample size n.
Assume that the set A contains the three rules

S _nY +/n/4
W) =T =23 % hy) ==
and (50,5(Y) =0.5.

(a) Determine the risks of d» and do.5.
(b) Is 60.5(Y) admissible in A = {§1(Y),2(Y),005(Y)}? (Plot the three
risk functions for n = 10.) Is dp.5(Y") a reasonable decision rule?

.,n, be n independent distributed random

1.4.Let Y; ~ N(u,1),i =1,..
= % >, Y; is admissible for p in the class

variables. Show that Y
A={6(Y):0(Y)=cY,ce R}
with respect to the loss function L(u,d(Y)) = (6(Y) — p)?.

1.5. Consider the situation from Problem 1.2 and compute the observed losses
of the estimates d;(y) and d2(y) when p; = 1,4 = 1,...,10 are the true
parameters. Use the weighted squared error loss function

L(0,6(Y)) = (6(Y) - 0)W((Y) - 0) ,
where
W = diag(0.01,0.46,0.01,0.46,0.01,0.01,0.01,0.01,0.01,0.01) .

1.6. (See the proof of Theorem 1.1) Let W be a p x p symmetric nonnegative
definite matrix. Let A5 denote the largest eigenvalue of W.

(a) Show that all eigenvalues of F = (1/Amax)W lie in the closed interval
[0, 1].
(b) Show that F' — F? is symmetric nonnegative definite.

[Hint: Use the spectral decomposition of W]
1.7. Explain why the condition
50,(51€A = (50+A((51—(50)€A

is necessary for the proof of Theorem 1.1. Explain in addition, why it is actu-
ally enough to demand the condition to be true only for symmetric matrices
A with all eigenvalues in [0, 1].

1.8. Is the condition
(50,(51€A = (50+A((51—(50)EA,

where A is an arbitrary p x p matrix, satisfied for the following sets of decision
rules?
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i) A={0(Y): 0(Y) =FY + f}, where F is a p x n matrix and f is a
p X 1 vector;

(i) A = {5(Y) : E[§(Y)] = 6}.

1.9. Let (©,L,Y) be an estimation problem with a weighted squared error
loss function L and symmetric nonnegative definite weight matrix W. Let
W . denote an arbitrary but fixed symmetric positive definite matrix.

(a) Show that if 0¢(Y) is admissible for 6 for the case W = W, then
WL/28,(Y) is admissible for W20 for the case W = I,. Note that
Wi/ % is the (uniquely determined) symmetric positive matrix satisfying
wilPwlilz —w,.

(b) Use part (a) and Theorem 1.1 to derive the following claim: If §o(Y") is
admissible for @ for the case W = W, then §,(Y) is admissible for 6
for the case W = I,

1.10. Show that
MSE(8,6) = Cov(6(Y)) + bias(d(Y)) bias(6(Y))",
where bias(6(Y)) = E(6(Y)) — 6.

1.11. Let 6;(Y") and 92(Y") be two decision rules such that the matrix-valued
inequality MSE(0,d,) <1, MSE(@, d5) is satisfied for all @ € ©. Show that
if for some given @ € © the difference MSE(@, 62) — MSE(0, 61) is positive
definite, then for this @ the following two statements hold true:

(i) E[(6:(Y)i —0:)?] < E [(02(Y); — 6;)?] for every i € {1,...,p}.
(i) E[0.(Y) — 0) W(5.(Y) - 8)] < E[3(Y) — ) W(5(Y) — )] for ev-
ery p X p symmetric positive definite matrix W.

1.12. Consider the situation from Problem 1.1. Check whether 6(Y) = 0 is
admissible for p in

A={§(Y): §(Y)=FY + f}

with respect to the unweighted squared error loss. Here F' denotes a p X p
matrix and f denotes a p x 1 vector.



