
1. Introduction

Everyday we use computers whose architecture is in principle derived from
the models introduced more than half a century ago. Of course, our computers
exhibit more computing resources, operate faster, utilize deeper parallelism,
pipelining and virtualization and so on than former models could provide (as
seen in classical textbooks on computer architectures [68, 78, 170]). Computer
engineering, which deals with constructing computers and their applications,
is a well-established field as well as commercial business. Computer science
investigates the computational limits of computers as well as the limits of
various (sometimes impracticable) computational systems [59]. Recall that
computer science is primarily about two important things:

• the representation and processing of information,
• the complexity of computers and problems.

Modern (or post-modern) science and engineering have discovered that
the most interesting and important things appear at the borders of research
fields. Certainly, this is also the case for computers. We can mention some
typical “partners” of computer science and engineering: biology, medical
science, chemistry, physics, sociology, psychology, engineering of all types,
and so on. In most interactions of these fields computers were utilized to
“help” people from the “other” domains and to do hard mechanical work.
In recent years we have observed the development of approaches that do

something else. They are exploiting the other fields in order to change and
improve the fundamental architectonic concepts of computers. However, these
approaches originated in the minds of A. M. Turing, J. von Neumann, S. W.
McCulloch, W. Pitts, H. J. Bremermann, I. Rechenberg, L. Fogel, J. Holland,
R. Feynman, D. Deutsch and many others many years ago. They represent
attempts to go much deeper into nature in order to reveal its potential for
information processing and storage. They could lead to a significant increase
of our computational power. The principles can be embodied into software in
order to improve its quality. The real challenge is to change and redefine the
nature of computing hardware. It should have an impact not only on software
and hardware computational platforms but also on the application domain of
computers. Computer engineers have started to construct the systems which
we could only dream about a few years ago.



2 1 Introduction

1.1 Natural Computing

Natural computing is a term that is usually introduced to integrate the ap-
proaches where something unconventional and unorthodox for computers is
introduced into computer science and engineering. We try to understand
and harvest the computational power of nature in a more basic and direct
way than so far. Natural computing includes a number of research fields:
evolutionary computing, neural computing, fuzzy computing, cellular com-
puting, DNA computing, quantum computing, membrane computing and
some others. These approaches are characterized not only by the special way
in which the computation is performed but also by the special “hardware”
platforms where the computation is carried out. As this book mainly deals
with evolutionary computation and bioinspired hardware, the following sec-
tions are devoted to a bird’s eye view of the whole field. We can expect that
new computational models will be introduced in the near future, based on
principles we have never heard of in a computer context.

1.1.1 Soft Computing

Computer engineers have always been attracted by the design of intelligent
programs – programs which can solve problems without explicitly program-
ming solutions for these problems. A certain kind of success was achieved
by means of methods which borrowed some concepts from biology. A genetic
algorithm is a typical example [71]. In the 1960s J. Holland was one of the
people who discovered that Darwinian theory of evolution can be utilized to
provide a powerful way to perform optimization on a computer. He recogni-
zed evolution as a creative process, the essence of which is making something
out of nothing automatically. In this book, we will utilize this method for
design at the hardware level directly.
Traditional artificial intelligence has studied the possibilities of creating

programs and machines that can rival human abilities in some tasks by means
of heuristics, encapsulated knowledge, symbolic logic and many other me-
thods. In contrast, modern computational intelligence (or soft computing)
has explored the potential for creating intelligent machines by modeling the
behaviors and mechanisms that underlie biologically intelligent organisms. In
general we can identify the following sources of inspiration [12, 108, 172, 174]:

• Phylogeny concerns the temporal evolution of a genetic program, the hall-
mark of which is the evolution of a species. The emergence of living orga-
nisms is based upon the reproduction of the program (genotype), subject
to an extremely low error rate at the individual level. This ensures that the
identity of the offspring remains practically unchanged. However, mutation
and recombination give rise to new genetic material that is superfluous for
the survival of species and for their continuous adaptation to a changing
environment. The evolutionary algorithm is a basic model inspired by this



1.1 Natural Computing 3

process in computational intelligence [7, 8, 44, 121]. Note that the evolu-
tionary algorithm is a general term. A number of variants of the evolu-
tionary algorithm exist – genetic algorithms [56, 71], genetic programming
[95], evolutionary programming [46] and evolutionary strategy [156] are the
most well-known ones. It is more than evident that the field is very much
inspired by Dawkin’s popular books on evolution [31, 32].
• Embryology and ontogeny deal with the development of multicellular orga-
nisms. It is based on the successive division of the mother cell, with each
newly formed cell possessing a copy of the original genome, followed by a
specialization of the daughter cells in accordance with their surroundings.
We can mention cellular automata and Lindenmayer systems (L-systems)
as probably the most well-known computational models inspired by on-
togeny. Cellular automata were originated by Ulam and von Neumann in
the 1940s to provide a formal framework to study the behavior of complex
systems, especially the questions of whether computers can self-replicate.
Then properties such as reversibility, universality and emergent behavior
have been studied [173, 193, 219]. L-systems were intended to model cellu-
lar division; nowadays they are popular in many areas, including computer
graphics and theoretical computer science [59, 110].
• Epigenesis is the process emerging upon reaching a certain level of com-
plexity that permits the individual to integrate the vast quantity of inte-
ractions with the outside world and to learn. Epigenesis primarily includes
the nervous system, the immune system and the endocrine system. While
popular artificial neural networks are inspired by the nervous system [119],
there exist (not so widespread) computational systems based on the prin-
ciples of the immune system [29]. Note that the very first model of the
neuron was published by W. S. McCulloch and W. Pits in 1943. Practical
applicable learning algorithms were initially defined by D. Hebb in 1949.
• Other approaches are based on principles observable in human society,
colonies of interacting individuals or predator–prey conflicts. We have to
mention Artificial Life, in which artificial digital creatures with the features
we understand as the expression of life, live, see, die, reproduce, compete,
fight, emerge and so on in computers. The stuff of this life is nonorganic
matter, and its essence is information [108]. Artificial Life is devoted to the
creation and study of these lifelike organisms.

The above-listed models are often combined together. From a scientific
viewpoint, we can learn about biological principles via modeling of these
principles. From an engineering viewpoint, which is relevant for this book, we
can utilize the above-mentioned principles to design more powerful, adaptive,
effective and competitive engineering products.

1.1.2 Quantum Computing

Our world is quantum mechanical [34]. If computers become smaller, they will
operate in the world of quantum effects. R. Feynman asked whether quantum



4 1 Introduction

physics could be simulated on classical computers and vice versa in 1982. The
first step was done by Deutsch, who designed a (theoretically) physically rea-
lizable model for a quantum computer and developed its elementary theory
[33]. The challenge is to exploit quantum parallelism in practical applications.
It was shown that it is possible to factor integers and to compute discrete
logarithms in polynomial time on a quantum computer. These two important
problems of cryptography require exponential time on conventional compu-
ters. However, there is a problem with the scale of quantum computers. Only
a few bits are available for computation today. The open question remains as
to whether one can build a practically successful quantum computer [60].

1.1.3 DNA Computing

As shown originally by L. M. Adleman in 1994 [3], computation can be per-
formed on molecules directly. The best-studied molecules for this purpose to
date have been DNA [139] and bacteriorhodopsin [54]. While DNA compu-
ting is based on the massive parallelism of DNA strands and Watson–Crick
complementarity, the protein bacteriorhodopsin – which contains the light-
sensitive rhodopsin – offers the potential for optical computing. As with quan-
tum computing, the concept of DNA computing is well formalized [139, 224].
It could be beneficial for some specific tasks that require exponential time
on conventional computers. Here the problem is with the reliability of the
computational process and with the amount of DNA that must be supplied.

1.1.4 Membrane Computing

Membrane computing is another field related to biology. G. Paun initiated the
research on membrane computing in 1998. He was inspired by the structure
and functioning of the living cell and devised distributed parallel computing
models in the form of membrane systems [140]. Such computing devices ope-
rate with the regions defined by a membrane structure. The regions contain
multisets of objects which can evolve according to given evolution rules. The
rules are applied in a maximally parallel manner and nondeterministically.
The objects can interact and can pass through membranes. The computation
is defined as a transition from a configuration of a system to another configu-
ration. However, only software implementations exist. The formal approach
to membrane computing is based on the theory of P systems.

1.2 Bioinspired Hardware

The previous approaches have dealt with special sorts of hardware. In this
book we will consider only the devices which are currently available and
which belong to traditional and well-explored implementation platforms –
digital circuits.



1.2 Bioinspired Hardware 5

The methods of artificial intelligence have also supported hardware design
for a long time. However, ten years ago computational intelligence combined
with reconfigurable circuits gave rise to a new engineering field – biologically
inspired hardware – in which biological principles are used during the circuit
design phase or during the operational time of a physical electronic circuit.
Reconfigurable hardware is a special architecture whose function (physical
internal interconnection of elements) can be programmed from outside.
Nowadays we can identify several research areas including evolvable hard-

ware, embryonics, immunotronics, evolvable sensors or neural hardware in
which the usage of biological principles has led to the design of circuits that
are “better” than conventional circuits1 in terms of quality, implementation
cost, fault tolerance, learning and adaptability to a changing environment.
Combining evolutionary algorithms with reconfigurable circuits in the

areas of evolvable hardware (EHW) and evolutionary electronics has attracted
the greatest attention of designers in recent years. Embryonics (embryonic
electronics) tries to employ some of the developmental processes of multi-
cellular organisms to design fault-tolerant and robust circuits with features
such as self-repair and self-replication [114, 115]. Immunotronics (i.e. immu-
nological electronics) refers to the usage of the principles of immune systems
to implement fault tolerance and circuit protection [15, 29]. By neural hard-
ware we usually mean a hardware implementation of a model of the nervous
system [51, 136, 155].
It is natural to place all bioinspired systems introduced in the previous

paragraphs to the POE model, which was established for their classification
[172]. As seen in Fig. 1.1, P (phylogeny), O (ontogeny) and E (epigenesis)
indicate three orthogonal axes that define the space where the bioinspired
systems are situated. For instance, evolvable hardware occupies the P axis,
embryonics is on the O axis, and neural hardware and immunotronics take
place on the E axis. Systems that show a higher degree of hardware implemen-
tation and a deeper level of inspiration in biology are plotted upward along
a given axis. Combining two biological principles we define the PE plane, the
OE plane, and the PO plane. Finally, the development of an artificial neural
network, implemented on a self-replicating multicellular automaton whose
genome is subject to evolution constitutes a possible example situated in the
POE space [172].
We will mainly be interested in the evolutionary approach in this book.

Evolutionary electronics is a term that was introduced in 1997 to cover all the
applications of evolutionary techniques to electronic system design. Note that
evolutionary algorithms have already been applied to optimization problems
related to digital chip design (like placement, routing, and high-level synthesis
[35, 118, 175]) since the middle 1980s.

1 By conventional or traditional we mean a product or a design approach that is
carried out using common techniques that do not employ artificial intelligence.



6 1 Introduction

PE hardware

POE hardware

OE hardware

PO hardware

O

P

E

Fig. 1.1. The POE model for the classification of bioinspired systems (developed
in [172])

Evolvable hardware refers to the evolutionary design of electronic cir-
cuits directly at the hardware level. The concept will be explained in detail
in Chap. 4. For now we just say that the circuits are encoded in the chro-
mosomes of an evolutionary algorithm. The chromosomes are uploaded into
reconfigurable hardware and evaluated to obtain their quality (fitness). The
evolutionary algorithm generates new populations of circuits and when it is
terminated we obtain the target circuit.
Higuchi’s [69] and de Garis’s [49] papers are some of the first reports

where it is possible to find the term evolvable hardware explicitly. Although
the term adaptive hardware is sometimes considered as more suitable for the
method, the term evolvable hardware was chosen in the early 1990s because
it directly emphasizes the evolutionary approach, which is utilized to achieve
adaptation. Up to now, evolvable hardware has been successfully applied for
the design of a number of digital as well as analog circuits. Furthermore, on-
line evolution has enabled the emergence of high performance and adaptive
systems for the applications in which the problem specification is unknown
beforehand and can vary with time. In addition to the evolutionary circuit
design carried out in physical hardware, some authors regard the presence of
continual adaptation to an environment as the second crucial feature of evol-
vable hardware [172, 227]. This will be discussed in more detail in Sect. 4.5.3.
Recently, Miller has used the more general term evolvable matter to ad-

dress the usage of evolutionary algorithms for the design on any physical
reconfigurable platform (e.g. chemical) [127]. The idea behind the concept is
that applied voltages may induce physical changes that interact in unexpec-
ted ways with other distant voltage-inducted configurations in a rich physical
substrate. In other words, it should theoretically be possible to perform the
evolution directly in materio if the platform is configurable in some way. Mil-



1.3 Motivation for Research 7

ler and Downing reviewed this promising technology in [130]. Tour’s group
has presented a concrete working example – the Nanocell [205].
The authors of [172] concluded their report: “Looking (and dreaming)

toward the future, one can imagine nanoscale (bioware) systems becoming a
reality, which will be endowed with evolutionary, reproductive, regenerative,
and learning capabilities. Such systems could give rise to novel species which
will coexist alongside carbon-based organisms.”

1.3 Motivation for Research

The book is primarily devoted to digital evolvable hardware. Although some
circuits have been successfully evolved using evolvable hardware, the stan-
dard routine application of evolvable hardware is practically unexplored. The
problem is that designers do not perceive what evolvable hardware actually
means for a system in which evolvable hardware should be applied. We can
ask with a designer the following questions. Is evolvable hardware hardware
or software? How shall I integrate evolvable hardware to my system under de-
sign? Can I reuse evolvable hardware in some other applications? Does there
exist any general architecture or template which reflects a typical evolvable
hardware-based application? Why is it difficult to apply evolvable hardware
right now?
It is difficult to find a general answer. Furthermore, it seems that nobody

is noticeably interested in a conceptual approach now. We can only guess the
reasons for doing so: (1) evolvable hardware is a very young field and there is
still some space for experimental design approaches, (2) evolvable hardware
has not become commercially attractive yet, and (3) there are not widely ac-
cessible physical platforms suitable for the design of evolvable hardware-based
applications. Hence evolvable hardware remains an approach for a group of
experts who perform ad hoc application designs.
We argue that a conceptual approach more efficient than the ad hoc ap-

proach is important for evolvable hardware right now, since the first com-
mercial applications of evolvable hardware have been developed [70]. We can
observe that a component approach plays a dominant role for software as well
as for hardware design. Hence it seems natural to introduce the component
approach to evolvable hardware-based systems as well. The systematic appli-
cation of such an approach usually introduces a unified view on all systems
that are designed. Hence a semi-automatic design can be utilized for routine
application design. Recall that Stoica et al. mentioned three years ago that
“the path leads to the IP level and evolvable hardware solutions will become
an integrated component in a variety of systems that will thus have an evol-
vable feature” [182]. However, no other (implementation) details were given
there.
When a unified view on the evolvable hardware-based systems is establi-

shed, it is natural to apply formal methods in order to define the systems



8 1 Introduction

in terms of theoretical computer science and to investigate the properties of
the systems. Nothing is practically known about evolvable hardware (and
evolvable computational machines) from a theoretical viewpoint [227].
As we have noted, there is not a widely applicable hardware platform for

the design of evolvable hardware-based applications. Most research is carried
out on reconfigurable circuits like field programmable gate arrays, which are
not usually suitable for real-world applications of evolvable hardware because
of various problems, mainly to do with the method of reconfiguration. On
the other hand, these devices are relatively cheap in comparison with ASIC
designs. It would be beneficial to introduce an approach suitable for the
design of real-world applications of evolvable hardware in common FPGAs.
Now we can formulate the goals we would like to reach in this book. The

primary objective of the book is to show possible solutions to at least some
of the problems, which appear when we want to perform a routine design
of evolvable hardware-based applications using common FPGAs. The partial
goals are to:

1. introduce a component approach to evolvable hardware,
2. define an “evolvable system” and investigate its properties formally,
3. show the applicability of the component approach for the design of a pra-
ctical real-world application, and

4. introduce a method for the implementation of real-world applications of
evolvable hardware in common FPGAs.

In order to accomplish these objectives we start with the following intro-
ductory chapters on reconfigurable hardware and evolutionary algorithms,
which are essential prerequisites for the heart of the matter.



http://www.springer.com/978-3-540-40377-7


