
1

Introduction

The common feature of model-oriented, model-based, and model-driven soft-
ware development methods is to use models of the system under development
as abstract representations of its desired properties. Models are used to deter-
mine the structure and behaviour of the system and to analyse its properties
before it is realised in a deployed implementation. Also, for the maintenance
and evolution of a system models are better suited as information sources
than code or executables, which can only be inspected by running them. At
least for larger projects, the usage of models for the construction, analysis,
and evolution of systems is nowadays widely accepted as best practice.

Due to the complexity of large software systems, however, different kinds
of models have to be constructed for these purposes. They represent different
views of the system, corresponding to the different perspectives of the people
involved in the process, and different formal aspects of the system, such as
structure vs. behaviour, logical vs. technical design, or other classifications.
In order to support this decomposition of the development process into var-
ious viewpoints, different languages and methods for the construction of the
models are used, which offer those features that are needed for the definition
of these views. Thus, whenever the complexity of the development process
is reduced by using viewpoint models, this results in increased complexity
of the models. Different languages are used, different aspects are specified,
and different paradigms underlie these specifications, which necessarily lead
to heterogeneous models.

The heterogeneous viewpoint models are conceptually kept together by
being models of one and the same system. However, at least during the de-
velopment phase, the system only exists as an idea, as an object of discourse.
Therefore the development process must offer other means to tie the models
together. It must be possible for instance to state whether or how elements
of different viewpoint models correspond to each other and to check whether
models are consistent with each other during the development. Since the sys-
tem is not yet available, these issues must be directly addressed at the level of
the models. Such a conceptual integration, which provides the means to con-

2 1 Introduction

sider a collection of models as one model of a system, is a necessary component
of any development process that incorporates viewpoint models. In order to
retain the benefits of the decomposition into viewpoint models, however, in-
tegration must not rely on the concrete construction of one integrated model,
but provide the means to run a model-based development with a collection of
viewpoint models as if these were one model.

Although the integration must be achieved at the level of the models with-
out explicit reference to the system, integration is inherently a semantic issue.
Correspondence of model elements means that these elements refer to the
same element or part of the system, i.e., they have the same meaning. Con-
sistency means that models are free of contradictions, which holds if and only
if there is at least one system that conforms to all models. This means that
there must be one common semantic interpretation of the viewpoint models.
Thus, to introduce a model integration approach first the semantic concepts
have to be made precise. Based on this, syntactic representations and concrete
methods can be defined that would become part of an integrated model-based
development method.

In the following sections the viewpoint model of systems development, the
conceptual integration, and the reference model approach that is introduced
here are discussed in more detail.

1.1 The Viewpoint Model of Software Systems
Development

The viewpoint model of software systems development comprises two major
aspects: model-based development on the one hand and viewpoints on the
other. The first one means that the software development should be based on
models; that is, before and beyond the implementation abstract models of the
system that is to be developed are constructed in order to have an abstract
representation of the required structure, functionality, and properties of the
system. These models allow one to state features and properties accurately
without delving into the implementation details of programming languages,
or even without giving a solution of how these properties can be achieved.

As mentioned above, this usage of models as a necessary abstraction layer
in the development process for larger software systems is nowadays generally
accepted. Appropriate languages and notation for the construction of models
are offered by a variety of methods. The Unified Modeling Language (UML,
see [UML03, BRJ98]) for example provides a family of visual languages for
the modelling of object-oriented systems. It is a result of the unification and
standardisation of notation that had been introduced earlier within different
streams of object-oriented development methods. The standard that is used
in its current version UML 1.5 here (see [UML03]) describes the syntax of the
language formally in a boot-strapping manner, using class diagrams with con-
straints for the description of the language that itself contains class diagrams

1.1 The Viewpoint Model of Software Systems Development 3

and constraints. The semantics of the language is defined in natural language;
the search for formal semantics of the whole language or parts of it is an on-
going research effort. Nevertheless, UML has already led to great unification
within the field of object-oriented modelling concepts, and to widespread use
of viewpoint models for the development of software systems.

But also more formal specification techniques are used to construct ab-
stract models of software systems, such as the model-based techniques B
[Abr96] and Z [Spi88, Spi92], process specification calculi like CCS [Mil89]
and CSP [Hoa85], or the many variants of Petri nets [Pet62, Rei85, PR91].
Within the formal specification techniques a further distinction can be made
between specification formalisms that formally define and clarify elementary
notions of specification, including their formal syntax and semantics, and for-
mal methods that are based on specification formalisms but have an elaborate
concrete syntax and offer a method for the development of models. The model-
based set-theoretic method VDM [Jon86, HW89] for example comes with an
explicit development method, and object-oriented extensions of Z like Object-
Z [DRS95, Smi00] introduce elaborate presentation and structuring concepts
from object-oriented design. Also, the process specification formalisms CCS
and CSP have been extended to formal methods, for instance in the process
specification languages LOTOS [LOT87, Bri89] and ELOTOS [Que98]. Obvi-
ously, there is no clear frontier between specification formalisms and formal
methods, but both can be distinguished from the more pragmatic software
modelling or specification techniques and languages like UML, where syntac-
tic extension is more important than precise formal semantics.

It is important to realise that for any model-based development process
the models are not only auxiliary means in the early development phases
before the real implementation of the system. On the contrary, they serve
as adequate, readable information sources during the whole maintenance and
evolution process. They have to be maintained as documentation of the system
since important properties of the system and design decisions in its develop-
ment process are most clearly documented by the models. Thus any further
development of the system should be based on these abstract descriptions
rather than on their realisation in the programming language code or the
executable artefacts, where the desired structure will be hard to detect. In
this way models help to reduce the complexity of developing and maintaining
software systems by the abstraction of details.

The second main feature of the viewpoint model is that models are not
developed for the system in its entirety, but, with each model, only a certain
aspect or view of the system is represented. A class diagram for example only
models the static structure of a system without giving information about its
dynamic behaviour, use cases model the main functionality without revealing
the structure of the system or the realisation of this functionality, process
calculi focus on the temporal ordering of actions, neglecting the data types,
etc. The consequence of focusing on designated viewpoints is of course that
each model yields only a partial specification of the system, because all aspects

4 1 Introduction

that are not concerned with this viewpoint are also not specified or constrained
by this model.

The different viewpoints that are addressed in a modelling process may
arise from different classifications. For instance, the different people taking
part in the system’s development play different roles and thus have different
interests and expertise. Domain experts, software developers, system engi-
neers, process managers, and clients for example need different information
about the system and require different abstractions. Another classification
that is based on the formal structural properties of systems and models in-
stead of their envisaged usage is induced for example by the different UML
diagram languages. These viewpoints essentially concern the static structure,
the dynamic behaviour, both within and in between objects, and the imple-
mentation and deployment of the system. Yet another classification has been
defined in the Reference Model of Open Distributed Processing RM-ODP
[ODP, Lin91], which can be seen as one of the main sources of the viewpoint
model altogether. It introduces five designated viewpoints that should be ad-
dressed when developing open distributed systems. Clearly, this particular
feature of ODP is relevant for all system developments and not restricted to
open distributed systems. The five viewpoints of the RM-ODP are the

enterprise viewpoint, the overall view of the system’s purpose and aims,
its agents and its policies;

information viewpoint, the information model of the system;
computation viewpoint, the view of the system as a set of interacting ob-

jects, adhering to the system’s policies and realising its flow of information;
engineering viewpoint, the abstract machine view of the system, compris-

ing its (technical) interaction mechanisms; and the
technology viewpoint, the configuration of software and hardware objects.

These viewpoints are of course mutually related, but no temporal order of
their development is implied, as opposed to the software development phases
of analysis, design, implementation, and test. In the ODP standard it is em-
phasised, moreover, that each of the viewpoint modellings should be supported
by an adequate language, i.e., a language that allows the representation of the
desired features directly without artificial encodings. Furthermore, these lan-
guages should be as formal as possible to allow for precise modelling and
support the formal checking of properties with corresponding tool support.

Viewpoints contribute to the separation of concerns in the software de-
velopment and thus yield a reduction in its complexity orthogonal to the
contribution of the model-based approach.

The different classifications of viewpoints mentioned above are indepen-
dent of each other to a large extent. This means, for example, that both
software developers and domain experts are interested in information mod-
els, or that class, sequence, and state diagrams are used in the computational
viewpoint. On the other hand, some combinations may be useless or excluded,
so that the matrix of viewpoint classifications might have some empty entries.

1.2 Integration of Specifications 5

Finally it is important to separate viewpoints as understood here from other
decomposition or abstraction means. The decomposition of systems into man-
ageable parts like components, modules, or classes for example is orthogonal
to the concept of viewpoints, and raises completely different integration ques-
tions than the one of viewpoints (cf. the discussion in [BSBD99]). Furthermore,
the view concept of databases that yields restricted views of complex data or
object compounds is conceptually different from the viewpoint concept in soft-
ware systems development, although technically similar integration questions
may be addressed.

1.2 Integration of Specifications

Being accepted as an essential contribution to the rational development of soft-
ware systems, the viewpoint model on the other hand immediately prompts
the question on the relationships of the different models, especially since these
may be given in very different languages, and even based on completely dif-
ferent modelling paradigms. There are, obviously, semantic relationships that
have to be taken into consideration and clarified before syntactic support
for the integration of viewpoint specifications can be developed (Semantics
first!). As a slogan, the situation arising from the viewpoint approach could
be formulated as: ‘Many people use many languages to develop many models
of many views of one system.’

How can it be assured that indeed one system is modelled? The problem
can be divided into two parts. The first one concerns the conceptual integra-
tion of models, which clarifies how different models can be considered as one
model of a system. A model may for instance supplement the information given
by another model, i.e., it can be considered as a refinement, making the first
model more concrete by adding further details or further aspects that have
not yet been addressed. The sequence and collaboration diagrams of UML for
example refine the information given via the use cases by making explicit the
dynamic interactions of the objects that realise the functionality specified by
the use cases. State diagrams add information on the dynamic intra-object
behaviour to class diagrams that only specify their static structure etc.

In contrast with this supplementation models may also deliver mutually
overlapping information, where the same aspect of a system is concerned, but
seen from different points of view. To use UML models again as examples,
sequence diagrams model the interaction of objects realising certain scenar-
ios, i.e., requirements on the objects. Statechart diagrams on the other hand
model the intra-object behaviour, i.e., the capabilities of the objects. The
semantic demand is then to check whether the objects—according to their
statechart diagrams—are able to satisfy the requirements stated in the se-
quence diagrams. As opposed to the supplementation case discussed above,
where models can hardly be inconsistent with each other, the semantic cor-

6 1 Introduction

respondences in the case of overlapping models are much more involved and
require a deeper and more precise semantic analysis.

The conceptual integration of models thus means to establish correspon-
dences between model elements that express semantic relationships.

The second part of the problem concerns the consistency of the given
models, i.e., intuitively, the question whether the set of models is free of con-
tradictions. In the logical sense consistency means to have a common model or
a common semantic interpretation. Before going into this discussion, however,
a brief deviation concerning the usage of the terms model and specification is
necessary at this point.

In the discussion above the term model has been used as usual in soft-
ware engineering or computer science in general, where a model is an abstract
representation of something made by somebody for some specific purpose
(as defined in [Ste93b]). A model thus represents or describes something, a
structure, a behaviour, etc., which is different from the model itself. A class
diagram for example does not represent a class diagram, but possible states
of objects. This distinction is made explicit in mathematical logic, where the
(semantic) entities that are represented are called models, in contrast with the
representing (syntactic) entities that are called specifications. Thus, beyond
other distinctions that could be made, a software engineering model is a spec-
ification from the logical point of view, whereas the logical (model-theoretic)
model does not have a common designation in software engineering, except
perhaps the ‘meaning’ (or semantics) of the model. For that reason, and be-
cause to a large extent the terms model and specification are used as synonyms
in computer science, I prefer to use the term specification instead of model in
the sense of system modelling, and the term interpretation instead of model
in the logical sense of a semantic entity.

Coming back to the question of the consistency of specifications, i.e., the
absence of contradictions, its logical characterisation is given as follows. A set
of specifications is consistent if there is a common model of all specifications.
The problem with this definition in the context of heterogeneous specification
languages is that the categories of models for different specification languages
are often disjoint by definition, whence two specifications written in these
languages may never be consistent, independently of their semantic content
and intention. For example, the models of algebraic data type specifications
are algebras (see for instance [EM85, BHK89, LEW96]), and the models of
Petri nets are reachability graphs [Pet62, Rei85], processes, or occurrence nets
[RG83, DMM89], or event structures [Win88a], depending on the chosen level
of abstraction. Thus even if the data type of, say, lists is specified algebraically
and some of its operations are expressed by Petri nets, the strict definition
of consistency would in this case always lead to the conclusion that they are
inconsistent, because an algebra is neither a reachability graph nor a process,
nor even an event structure.

For that reason other definitions of consistency have been suggested. For
example, a set of specifications may be considered as consistent if there is a

1.2 Integration of Specifications 7

common (physical) implementation of all of them. This rephrases the origi-
nal definition by replacing ‘common model’ with ‘common implementation’,
but has the disadvantage that, in spite of its pragmatic flavour, this condi-
tion will be hard if not impossible to check. Viewpoint specifications have
been introduced to deal with complex situations in the development of large
systems, thus checking for consistency in this sense would amount to finish-
ing the entire development first. A more concise approach to consistency in
the context of the viewpoint model, especially the ODP viewpoints, has been
developed in [BSBD99, BD99, BBDS99, BBD+00].1 Different types of con-
sistency checks are distinguished, like inter- and intra-language consistency
and global vs. binary consistency, and further types of consistency checks
are introduced that may depend on the specific relationships of the specifi-
cations, according to their roles in the development process and the different
relations to the target system. The major contribution concerning the defi-
nition of consistency in this approach is to replace the common model and
the common implementation suggested by the other definitions by ‘having
a common refinement or a common development’. In order to support this
approach development relations are investigated and presented in a univer-
sal formal framework that allows the study of consistency at a very general
level, corresponding to the overall aims of the ODP standard. Whereas the
formalisation of intra-language consistency checks, i.e., checks for specifica-
tions written in one language, is treated adequately, the inter-language check
is more constrained and based on a translation between specific languages, Z
and LOTOS in this case ([DBBS96]), which is not entirely satisfactory. The
translation is too schematic to deal with language-specific modelling decisions
and different modelling styles within one language. Recall also that for con-
sistency checks of heterogeneous specifications correspondences need to be
established first, which may depend on a specific comparison with other spec-
ifications, and usually cannot be obtained automatically. A fixed consistency
check as in the mentioned approach does not offer the necessary flexibility for
this purpose.

The approach to the integration and consistency checking of heterogeneous
specifications introduced here claims to be as general as the consistency ap-
proach discussed, but is much more flexible, because it is based entirely on the
semantics of the specifications. The basic contribution is indeed given by the
definition of a common semantic domain that serves to interpret all languages
that are used to construct specifications, whence each of the languages obtains
its global semantics by referring to this domain. For this reason the seman-
tic domain constructed here is called a reference model for the integration of
specifications. With its usage the original logical definition of consistency can
be taken up again; that means a set of specifications is consistent if there is a
common interpretation of all specifications of the set in the reference model.
1 See also http://www.cs.ukc.ac.uk/research/groups/tcs/openviews/.

8 1 Introduction

In Figure 1.1 an example of an integration via a reference model is de-
picted. A small sample of a system is described by different specifications: a
programming language construct, a class diagram with only one class, a state-
chart, and an algebraic Petri net. The class defines the structure, given by the

x

f(x)

sq(x) sq(x) sq(x)

C

x: int = 2

sq(r:int):int

/ x:=2, i:=1

[i<4]
/ sq(x);i:=i+1

for i=1 to 3
x:=2

 do x := sq(x)
post r=(r@pre) * (r@pre)

2

x=4x=2 x=16 x=256

Fig. 1.1. A common interpretation of different descriptions by one formal model

integer attribute x and the operation sq of type int. Additionally it specifies
an initial value x = 2 for x and a postcondition r = (r@pre) × (r@pre) for
the operation, formulated in the object constraint language OCL of UML (see
[WK98, UML03]). The expression r@pre denotes the value of the parameter
r before application of the operation. Beyond the pure structure, the be-
haviour is thus also partly specified by the class. It does not specify, however,
when and how the operation should be applied. The program loop and the
statechart specify the behaviour in very similar ways. Both the data states,
given by the values of the attribute, and the control flow are modelled via
variables whose values are manipulated. In addition to the implicit structure
information given by the operations and the predicates that are applied to
the variables, the dynamic behaviour is specified: the sq-operation is applied
three times in sequence. The main difference between the two descriptions is
that the program is textual whereas the statechart is mixed graphical and
textual. Note that not only does the implicit typing of x in the program loop
and the statechart overlap with the information given in the class, but so does
its initialisation value. On the other hand, there is no information given about
the effect of the operation sq on the variable x. Only its name indicates its

1.2 Integration of Specifications 9

intended meaning. Finally, the algebraic Petri net models the same dynamic
behaviour on the same structure in a slightly different way. Instead of intro-
ducing a new variable such as i in the other specifications, the control flow is
specified here via an additional place. It holds three tokens that are consumed
when applying the function f , i.e., f is applied three times. The effect of f
is also not specified in the Petri net. Relating it to the sq-operation specified
in the class diagram adds the information given in its postcondition to the
Petri net. That means the integration of the partial viewpoint specifications
enriches them mutually.

Using the reference model the consistency of these four specifications can
be shown by stating one common model in the reference model as the semantic
interpretation of all of them. This interpretation is depicted in the centre of
Figure 1.1. There are four states containing the actual values of the static
entity x, connected by three transitions labelled by the operation application
sq(x). This model is an admissible interpretation of the operational semantics
of the program loop and the statechart, abstracting from the control flow
variable i, and, analogously, it represents the operational semantics of the
algebraic Petri net when interpreting the function f as f(x) = x2. Moreover,
it represents the possible behaviour of an object of the class. Thus the four
specifications have a common interpretation, whence they are consistent.

Since the class does not specify the dynamic behaviour it obviously ad-
mits a set of models in the reference model, whereas the other specifications
are usually understood as describing a single behaviour. Nevertheless, the lat-
ter can also be interpreted in different ways. The behaviour of the function
f in the Petri net for instance is not specified in the net, whence it can be
interpreted arbitrarily as long as no further information is given. The deci-
sion for the interpretation f(x) = x2 is determined by a comparison with
the class diagram that contains a postcondition for the operation the func-
tion f might correspond to. Similarly, the variables x and i in the statechart
and the program loop are treated differently in the model: x is interpreted
as a static entity, whereas i is resolved into the dynamics. Obviously, this
distinction is influenced by the comparison with the information given in the
class diagram again, which only contains the attribute x. This shows that the
semantic interpretation of a specification for consistency checking and inte-
gration may depend on the interpretation of the other ones considered within
this test. These local decisions about the interpretation have to be taken into
account of course when different groups of specifications are compared. This
discussion again supports the statement made above: that consistency checks
cannot be entirely automated, but require context-dependent correspondence
information.

Further, the consistency check of the four specifications in the example
already contained an implicit integration in the sense of a model correspon-
dence. The syntactic entity x in all four specifications refers to the same item
in the semantic interpretation, which yields the correspondence of the spec-
ifications at these points. This is a very simple correspondence induced by

10 1 Introduction

identical names, but in general correspondences may be much more complex
and will hardly rely on the identity of accidentally chosen local names. The
operation sq in the class, the statechart, and the program loop here corre-
spond to the function f of the Petri net, and the three black tokens of the
Petri net correspond to the loop condition for i = 1 to 3 in the program
fragment, and the combination of the initialisation i := 1 and the condition
[i < 4] of the loop transition in the statechart.

1.2.1 Admissible Interpretations, Correspondences, and
Consistency

Taking into account the above-mentioned incompleteness of viewpoint specifi-
cations that is due to their partial view of the system, a more general concep-
tion of integration is achieved. Instead of immediately searching for a com-
mon interpretation in the reference model, the following three steps in an
integration process based on a common reference model are methodologically
distinguished and treated explicitly.

Admissible interpretations The elements of the reference model are mod-
els of systems that cover all relevant aspects. Since a viewpoint specifica-
tion constrains only one aspect of a system, it admits a set of interpre-
tations in the reference model. The first step in an integration consists
of the determination of the sets of admissible interpretations of the indi-
vidual specifications. This may be induced by the language used for the
construction of the specifications, for instance if these are formal specifi-
cations with formal semantics, but it might also depend on the usage, the
application domain, etc. In Figure 1.2 sets of admissible interpretations
are shown as subsets of the reference model, indicated by the arrows from
the specifications.

Correspondences The viewpoint specifications may be developed within
different name spaces, address different parts or scopes of the system, refer
to different granularities w.r.t. behaviour and structure, and use different
means to specify corresponding information. These semantic correspon-
dences have to be made explicit for the integration. Within the reference
model correspondences appear as transformations of the sets of admissible
interpretations. System models, as elements of the reference model, may
be projected onto common parts or scopes of the system, or adjusted to
a common level of granularity, etc.

Consistency In order to check the consistency of the specifications, after
their admissible interpretations have been determined and the correspon-
dences have been declared, the intersection of the correspondingly trans-
formed sets of admissible interpretations is considered. If it is empty the
specifications are inconsistent w.r.t. the considered interpretations and
correspondences. If there is more than one interpretation in the intersec-
tion the collection of specifications is still incomplete, i.e., the information

1.2 Integration of Specifications 11

given w.r.t. the considered level of granularity is still not sufficient. If there
is exactly one model in the intersection the specifications are consistent
and complete in this sense; that means, w.r.t. the interpretations and the
explicit correspondences considered in this integration.

This complete view of the integration of viewpoint specifications by the trans-
formation and intersection of sets of admissible interpretations is illustrated
on another small example in Figure 1.2. A class diagram, a statechart dia-

reference model as
semantic domain

[odd(a)]

m
init

[even(a)] / d.k
/ self.m’

interpretations
admissible
sets of

post a = 2 a@pre*

c : C

m

d : D

k

C

k

D

m’

m

a : int

Fig. 1.2. Integration of viewpoint specifications by sets of admissible interpreta-
tions, transformations, and intersection

gram, and a sequence diagram are shown that together specify a (very small)
system. The class diagram defines the structure of the objects and, by the
constraint that defines the postcondition for the operation m in C, one aspect
of their behaviour. The state machine specifies the simple reactive behaviour
of the objects of the class. It is assumed that the state machine is associated
with the the class C, one correspondence that is not explicit in the figure.
This kind of correspondence is defined in the UML meta model for example
as the context of the state machine, and realised for instance by hyperlinks
in modelling tools. Finally, the sequence diagram specifies one interaction of
objects of the classes C and D. For the integration all three specifications are
interpreted by the full sets of system models that are admissible interpreta-
tions of the specifications. The class diagram for instance does not constrain
the sequences of steps the objects can perform; that means all sequences of

12 1 Introduction

executions of the operations may occur (or not occur) in a semantic interpre-
tation of the class diagram. On the other hand, the statechart diagram and
the sequence diagram do not constrain or specify the side effects of the opera-
tions on the data states of the objects or whether operations are deterministic
or not. All interpretations w.r.t. these aspects are admissible.

In the second step of the integration the correspondences of the specifi-
cations have to be considered. For this example we assume that equal names
have equal meanings, i.e., C, D, a, m, and m′ denote the same class, attribute,
and operations respectively in all specifications. Furthermore, as mentioned
above, the state machine is considered to specify the behaviour of objects of
class C. Such a single name space might not always be assumed. In a larger
development names may be chosen locally and only in the integration of the
specifications do the correspondences between the name spaces have to be de-
clared. As shown in the examples in the following chapters these need not be
one-to-one correspondences of names, but more complex constructions might
be required, mapping, for instance, names to descriptions.

A further correspondence relates the scopes of the three specifications. The
class diagram specifies arbitrary collections of objects, the statechart diagram
specifies the behaviour of a single object of class C, and the sequence diagram
specifies one desired behaviour of linked objects of classes C and D respec-
tively. Thus to compare and integrate their semantics appropriate projections
have to be applied first that map the system models in the respective sets
of interpretations to the same portion of the system. For example, all system
models associated with the class and sequence diagram can be projected onto
systems with exactly one object of class C.

An analysis of the intersection of the transformed sets of admissible inter-
pretations of the three specifications then shows in which way they supple-
ment each other. Obviously, in this example the intersection contains more
than one system. On the one hand, the specifications do not contradict each
other, which means that there is at least one common interpretation. On the
other hand, neither the initial value of the attribute a nor the side effects of
the operations m′ and k are specified in any diagram, which means that they
can still be consistently defined in different ways. Thus there is more than one
common interpretation of the three specifications.

Considering now the class diagram and the state machine together yields
that, due to the postcondition for m stated in the class diagram, only the
left transition from the second state (the one with the guard even(a)) in the
state machine can be executed. This implies that, due to the state machine
this time, each object of class C can perform at most one macro-step: If m is
called the object calls the operation k at object d and then terminates.

In Figure 1.3 some possible interpretations of the class and the state ma-
chine diagrams are sketched. The class diagram interpretations in these sam-
ples contain two objects, one of class C and one of class D. The state machine
interpretations contain one object of class C, but these also refer to operations
from class D. For the comparison the class diagram interpretations must now

1.2 Integration of Specifications 13

be projected onto systems representing a single object c of class C. On the
other hand, the transition labels of the state machine interpretations must
be projected onto the operations of class C. Only one system remains in the
intersection of the transformed sets. This not only shows by its existence the
consistency of the two diagrams, but incorporates and integrates the informa-
tion spread over the two viewpoint specifications.

Taking into account the scenario specified by the sequence diagram then
shows that the operation m will be called at least one time. Combining this
with the information given by the state machine yields that the first message
of the scenario can only be sent if the object c is in its initial state and has
never done anything else before. Note that the sequence diagram describes ar-
bitrary incomplete scenarios, i.e., ones that might not occur at the beginning
of the life cycle of an object. That means, considered individually, it admits
interpretations that contain the specified sequence of steps, but it also admits
other steps before or after this sequence. In this example the sequence dia-
gram does not add further information to the other two specifications. The
integration, however, shows that the state machine together with the class
correctly implements the scenario.

The results of such an analysis could be used to refine and develop the
individual specifications, for instance by cancelling the right branch of the
state machine’s transition and adding the information on the initiality of c to
the sequence diagram as an OCL constraint (c.oclInState(init)). This could be
enhanced later on, when the initial value of the attribute a is known. However,
the reflection of the results of the conceptual integration onto the specifications
obviously depends very much on the languages they are given in. Since the
overall integration approach introduced here is language independent, the
reflection cannot be developed systematically in the general framework. For
this purpose concrete languages or families of languages would have to be
investigated in detail.

1.2.2 Language- and Method-Independent Integration

In the examples discussed just now viewpoint specifications have been com-
pared and integrated out of context, i.e., without asking for their position or
role in a development process. In fact, the viewpoint concept can be employed
in many different ways in different contexts. Beyond being independent of
specific modelling or specification languages, the viewpoint approach itself is
also independent of any particular method that would state how to develop
and use the viewpoint models. Instead, it can be deployed with a variety of
methods, just as it can be instantiated with a variety of languages.

A strictly hierarchical method for instance would not only prescribe which
viewpoints have to be specified, but also give an order for their development
and rules that state how new viewpoint models are to be constructed based
on the given ones. The advantage of such a strict hierarchy is that integration
and consistency aspects can be incorporated and fixed in the method and

14 1 Introduction

m’

m

object c
projection to

mm / d.k

/ m’

m

intersection

class diagram interpretations

mm

state machine interpretations

of class C
operations
events that are
projection to

d : Dc : C

m

m’

k

m / d.k

c’ : Cc : C

m’mm

Fig. 1.3. Semantic integration of the class and the statechart diagram

need not be considered anew in each individual development. On the other
hand, this does not allow deviations from the fixed order of development steps
and thus limits the flexibility of both the development and the maintenance
or evolution process. And if models are used continuously to support the
system’s evolution, new notation probably will have to be taken into account
at some point and require an integration with that used so far. This concerns

1.2 Integration of Specifications 15

especially the integration of new components whose specification might not
conform to the same strict development method and might not be given in
the same notation.

Less strict methods allow at least different starting points for the devel-
opment process. For example, instead of requiring either the structure or the
behaviour of the system to be specified first, both views may be considered ini-
tially independently of each other. UML-based software development methods,
for example Catalysis [DW98] and the development method for component-
based systems presented in [CD00], support this flexibility. The models devel-
oped for the different views then have to be integrated at some stage. Thus
the integration problem occurs again, although in a less drastic form since the
basic conceptual relationships of the models are already determined by the
method.

An entirely liberal approach, where all viewpoints are equivalent, is sup-
ported by the RM-ODP. It stresses that no order should be prescribed on the
specification of the viewpoints. This allows for example the integration of as-
sets, i.e., models that have been developed before, and the flexible adaptation
of the development to the given requirements. Obviously, the integration task
occurs here in its most general form, since even the viewpoint specification
languages are not fixed.

Heterogeneous specifications and the corresponding need for integration
also arise in processes where stakeholders are used to employ specific no-
tation that is established in their domains. Developing software for embed-
ded systems for example involves specifications of software systems, given for
instance in a UML notation like statechart diagrams, and specifications of
programmable machines, given for instance in the IEC 61131-3 language Se-
quential Function Charts [SFC]. A flexible method should support the usage
of both languages and add integration mechanisms instead of forcing the users
to agree on one of the languages.

In order not to constrain the application of the integration approach unnec-
essarily, methodological questions as well as specific languages are separated
here completely from the semantics of integration. (Separation of concerns is
as important in theory design as it is in systems design.) That means that
viewpoint specifications are considered independently of their envisaged us-
age in a development process and independently of the language that is used
for their construction. The contribution of the proposal thus amounts to a
framework at a meta level that delivers the fundamental notions and con-
cepts. For an application-specific usage, given by a definite set of viewpoints,
the corresponding concrete viewpoint specification languages, and a method
for the concerned development process, significant instantiation effort is still
required. The generality of the approach, however, allows one to use, adapt,
or specialise the proposed integration framework in any method that is based
on viewpoints, or takes into account heterogeneous models and specifications
for any other reason. Of course, the full generality of the concepts introduced
here might not be completely exploited in a specific instantiation, due to its

16 1 Introduction

constraints on the viewpoints, the languages, and the usage of viewpoint spec-
ifications. The proposed integration framework serves as a foundation for the
development of such methods.

1.3 Requirements of Reference Models and Their Usage

General requirements of the internal structure of a reference model for the
integration of heterogeneous specifications can be stated immediately. First
of all, the reference model must supply formal system models as elements that
serve as semantic interpretations of the specifications. On the one hand this
means that it must be possible to represent the structure and the behaviour
of the specified systems with the system models. On the other hand it must
be possible to adjust the granularity of the interpretation according to the
desired degree of abstraction. This may be induced by the specification level
(more abstract or more concrete specification) or by its scope (larger or smaller
system, subsystem, component, object, etc.).

Second, there must be relations expressing the development of system mod-
els in order to trace modelling decisions made within iterative development
steps. To operationalise the developments, there should be operations that
allow the constructive development of more refined or more abstract views or
versions of given system models.

Finally, orthogonal to the dimension of the development, there must be
composition operations that allow the construction of larger, more complex
system models from given ones. Defining the composition by operations in
the mathematical sense means two things. First, it has to be defined how sys-
tem models can be connected in order to compose them, i.e., the definition of
relations on their structures and behaviours must be supported. These rela-
tions of the system models represent the architecture of the composed system.
Second, the result of executing the composition operation has to be defined.
That means the system model representing the whole composed system of
interconnected models has to be given. This second requirement implies com-
positionality in the sense of structural transparency: a composition of local
system models can be considered as a single system model again, and thus
the internal structure of the system can be hidden.

Note that this does not mean that the result of the composition always
has to be computed. Structured systems—architectures—may be retained in a
development stage as connected system models (as defined in the first part of
the definition of an operation). The second part of the operation’s definition,
the computation of its result, only offers the possibility to consider the inter-
connected models as a single model again, which may be computed whenever
desired.

The two dimensions of development and composition must be brought
together by checking the compositionality of developments. This means condi-
tions must be stated that guarantee that local developments of system models

1.4 The Transformation Systems Reference Model 17

can be composed in the same way as the system models themselves and that
this yields a global development of the whole system that comprises the local
developments conservatively.

As mentioned above, the intended usage of a reference model is to map
viewpoint specifications to it in order to compare and integrate them seman-
tically. This can be achieved in a uniform way by considering the specification
languages and mapping them to the reference model. That just means to de-
fine their semantics in terms of the elements, relations, and operations of the
reference model. If the formal semantics of a language is already defined then
the redefinition in the reference model must be shown to be compatible with
the given one. In general the two definitions will not coincide, because the
structure of the elements of a reference model will be much richer than the
one used before, due to the generality of the reference model. But it must
be possible to recover the original semantics from its redefinition. It is not
the idea of the reference model approach to define completely new, ‘better’
semantics with better properties. (Although a criticism of the language de-
sign or the semantics definitions may arise from their reconstruction in the
reference model.) If the semantics of the languages has been defined only in-
formally, a reference model may help to formalise them further by offering its
elements and its structure as formal semantic objects. (This depends of course
on the formality of the reference model itself.) Furthermore, languages may
lack some of the structure or the properties of a reference model, for instance
appropriate composition operations, development relations, or compositional-
ity properties. Then the corresponding feature of the reference model might be
reflected to the language by seeking syntactic representations in terms of the
language or by appropriate extensions of the desired features. Analogously, the
reference model may be used to investigate which of the operations support
which compositionality properties.

1.4 The Transformation Systems Reference Model

In this section a first informal survey of transformation systems and their
usage as a reference model for the integration of heterogeneous software spec-
ifications is given. The presentation proceeds along the requirements stated
above in order to demonstrate how the different dimensions and features are
covered in this approach.

A specific property of the transformation systems reference model is that it
is fully formal, i.e., the elements, relations, and operations are defined math-
ematically. This allows us to give precise definitions, to state its properties
explicitly, and to prove them. On the other hand, the correspondence of the
mathematical constructions and the software specification concepts has to be
established, which can be achieved only at an informal level. For that reason a
large part of the book is devoted to examples, explanations, and discussions.
Thus beyond the formal definitions of the reference model its basic notions

18 1 Introduction

and constructs are analysed and explained at an informal level. This allows
us to carry over the integration method also to applications that cannot (or
should not) be handled entirely at the formal level.

1.4.1 Transformation Systems

The elements of the transformation systems reference model represent the
static structure and the dynamic behaviour of systems via a two-level struc-
ture. The behaviour of a system is modelled by a transition system, given
by a set of abstract control states and transitions between these states (first
level). The control states demarcate reference points to the systems, i.e., these
are the states at which the systems can be inspected and accessed. The in-
ternal structure of a control state, i.e., the corresponding state of the data,
is attached to the control state as a label, given in the second level. All data
states of a transformation system adhere to the same static structure, but
may be different instances of course. That means that the static structure
is the schema of which the data states are instances. The other part of the
second level consists of the labels for the transitions of the transition system.
Whereas a transition from one control state to another one only states that it
is possible to pass from the first state to the second one, the transition label
indicates which actions are performed in this step. Actions might be assign-
ments, method calls, passive actions like events, input and output actions,
etc. Using an action or a set of actions as the label of one transition means
that no inspection or access to the data state is possible in between the initial
and the final state of the transition. In particular, invariants need not hold in
between and no other communication may take place during the step.

A transformation system—an element of the reference model—is thus an
extended version of a labelled transition system (LTS), where not only the
transitions but also the states are labelled. LTSs are traditionally used for
the definition of operational semantics for all kinds of languages and systems,
like imperative and functional programming languages, process and data type
specification languages, and others. Therefore transition systems are also cho-
sen here as formal models of the behaviour part, representing the smallest
common denominator of semantic models for this aspect. Defining the labels
of transitions and states appropriately and choosing the right transition sys-
tem allows a flexible adjustment of this structure to the forms required by the
different integration tasks.

The data states attached to the control states have been introduced as
instances of one schema representing their common static structure. In the
simplest case the schema is given by a list of typed static entities like the
attributes of a class, program variables declared in some program, or the vari-
ables of a Z schema, for example. The corresponding instances (data states)
are given by type-compatible bindings of these entities to values, i.e., elements
of the corresponding types. That means a data state is given by a list of values.
Making the types and their data type structure explicit leads to the definition

1.4 The Transformation Systems Reference Model 19

of data states as algebras. (This relates the transformation system approach
to the states-as-algebras approaches, see [ABR99]). In addition to the data
type signature there are then constants in the (static structure) signature, cor-
responding to the syntactic entities, such as attributes, variables, etc. Each
algebra of such a signature is thus given by a data type or a collection of data
types and a set of designated elements of these types. The latter represent the
actual values of the static entities.

The usage of algebras then allows further generalisations, as for exam-
ple parameterised constants like attributes of array types, which are pro-
gramming language encodings of finite functions. (See for instance [CD00],
where parameterised attributes for the specification of components and in-
terfaces with UML are advocated.) Since data types are usually partial, and
attributes/variables need not always be defined, partial algebras are used im-
mediately as data states within transformation systems. They have essentially
the same theory as total algebras (see [Bur86, Rei87, CGW95]). Finally, since
the definition of transformation systems as elements of the reference model
does not really depend on the choice of the labels, a generic (institution-
independent) definition is given as a further generalisation that allows the
usage of arbitrary data type models as data states, like first- or higher order
logic structures, or order-sorted algebras, for example.

Analogous to the labelling of the control states, the transitions on the first
level are labelled by sets of actions on the second level. The interpretation
of these actions—as observations, method applications, operation calls, ac-
tions, events (passive actions), or whatever—is left open and must be taken
into account when different models are compared. A set of actions attached
to a transition is interpreted as the occurrence of all actions of the set in
between the initial and the final state of this step. According to the interpre-
tation of control states given above, no state inspection is possible between
the initial and the final state of a transition. Thus there is no order on the
actions attached to one transition, nor is it assumed that they occur at the
same time. As for the control states there is also a generic version of actions,
corresponding to the generic specification framework (institution) of the data
state models. This allows for instance the incorporation of guards or composed
actions, or distinctions of events and actions as in statecharts. For more techni-
cal reasons, implied by the generality of the transformation systems reference
model, transitions are labelled furthermore by a second component, a track-
ing relation, that keeps track of the identity of data elements through state
changes. (Tracking relations correspond to the partial tracking functions of
D-oids introduced in [AZ93, AZ95].)

A transition t leading from a state c to a state d, written t : c→ d, is thus
associated with three labels: the data states C and D attached to the control
states c and d respectively, and the pair T = (act t,∼t) given by the action set
act t and the tracking relation ∼t attached to t. Thus a transition t : c → d
can also be seen as a data state transformation T : C ⇒ D. This point of
view, which distinguishes transformation systems from ordinary labelled tran-

20 1 Introduction

sition systems most clearly and is also predominant in the states-as-algebras
approaches, was decisive for the designation transformation systems.

In Figure 1.4 a transformation system is shown that models the possible
behaviour of a point object that moves erratically on a 3× 3 grid. The static
structure of the system is given by two attributes x and y of type {1, 2, 3},
representing the coordinates of the point and their values. The data states are
given accordingly by the nine possible different values of the attributes. The
transformations are interpretations of the applications of the parameterless
move-action. The underlying transition system is given by the nine states,

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 0
y = 1

x = 1
y = 1

x = 2
y = 1

x = 0
y = 2

x = 1
y = 2

x = 2
y = 2

move

move

move move

move

move

move

move movemove

move

move

move move

movemove

move movemovemove

move

move

move

move

Fig. 1.4. A transformation system representing a point object moving on a grid

depicted by the rectangles, and the twenty-four transitions, depicted by the
arrows. Data states and actions are given by the labels in and at the rectangles
and arrows respectively.

1.4.2 Development Operations and Relations

The development of transformation systems is supported in the reference
model in two ways. First, there are development operations that allow the
construction of more abstract or more concrete systems from given ones. Ac-
cording to the two-level structure of transformation systems—the transition
system level representing the dynamic behaviour and the label level corre-
sponding to the static structure—the operations may be used to reduce or to
refine the behaviour and the structure. Reduction and refinement or extension
on the two levels can be combined arbitrarily. The behaviour can be restricted
to certain actions, i.e., the other ones are excluded, or further steps can be
added extending the behaviour. Analogously, only (public) parts of the data
structure may be shown (i.e., private parts may be hidden), or further (in-
ternal, private) structure may be added. Furthermore, single actions or steps

1.4 The Transformation Systems Reference Model 21

in one system may be refined by composed steps (transactions) in another
system, and static functions may be refined or implemented by compositions
of static functions of the refining type. For example, an attribute Name:String
may be refined by the composition concat(Title,LastName,’,’,FirstName) in
another specification. In the opposite direction this yields the means to de-
fine interfaces of systems in the sense of more abstract views. Note that these
interfaces are semantic elements, too, and that they represent not only static
structure information like interfaces in class diagrams, but also behaviour in-
formation.

From a less operational point of view development relations are more ad-
equate than development operations. For this reason they are also provided
in the reference model. Given two transformation systems it can be checked
with these development relations if and how one of these systems can be seen
as a development of the other one. Developments are so general as to include
refinements, implementations of one transformation system by another one,
and interfaces as views as mentioned above. The development relations are a
generalisation of the development operations in the sense that the application
of a development operation always yields a system which is in development
relation with the old one.

In Figure 1.5 for example the static structure of the grid-point system is
refined by adding a new attribute next that determines the direction in which
the point can move. This refinement corresponds to an inheritance in a class
diagram: the static structure may be enlarged and the behaviour may be rede-
fined. In this case, the behaviour is restricted to only one possibility per state.
Also in the context of process specifications, the reduction of non-determinism
is an important refinement technique, leading from abstract specifications that
allow non-determinism to concrete, deterministic implementations. Implemen-
tations, as a further development relation, may also require additional internal
structure, represented as a refinement by extension at the structure level.

x = 0
y = 0

next = right

x = 1
y = 0

next = right

x = 2
y = 0

next = up

x = 0
y = 1

next = up

x = 1
y = 1

next = left

x = 2
y = 1

next = left

x = 0
y = 2

next = right

x = 1
y = 2

next = right

x = 2
y = 2

move

move

move

move

next =

move

move

move move

Fig. 1.5. A transformation system representing deterministic moves on a grid

22 1 Introduction

1.4.3 Composition

Analogous to the development of transformation systems, their composition
is based on composition operations for the two levels, transition systems (dy-
namic behaviour) and data state and action labels (static structure). As stated
in the requirements above, the composition of systems is based on relations
that describe how the local components are connected. For transformation
systems these are given by two relations. A synchronisation relation on the
transition systems expresses which states of the local systems can be entered
simultaneously and which steps of the local systems can be performed simul-
taneously. An identification relation on the static structure expresses which
parts of the local static structures are shared by the local systems, and thus
identified in the global view. The synchronisation relation does not presume
that the local systems are synchronised by a global system clock. Instead,
transformation systems allow the formal synchronisation of transitions also
with states, modelling situations where one component performs its actions
whereas the other one remains idle in its state. Since one transition may be
related to several transitions or states of the other component, synchronisa-
tion means that the transition may be synchronised with one of the related
transitions or states. If there is exactly one related transition or state these
must be synchronised.

Consider for example two systems M1 and M2, each of which performs two
consecutive steps t1, t

′
1 (in M1) and t2, t

′
2 (in M2) respectively (see Figure 1.6,

where only the transition system level of the two transformation systems is
shown). Consider first the case where M1 and M2 are completely independent
of each other, i.e., all states of M1 and M2 can coexist and all transitions of
M1 and M2 can take place together in one global step of the composed system.
This is expressed by the full synchronisation relation, i.e., each transition and
state of M1 is related to each transition and state of M2. Then the composed
system is able to perform the local steps in any order, including single and
parallel executions, as shown in the centre of Figure 1.6.

To express that t1 must be synchronised with t2, while t′1 and t′2 may still
be synchronised with each other or with the corresponding states, the syn-
chronisation relation shown in Figure 1.7 has to be given. Then the global
system behaves as shown by the dashed arrows in Figure 1.6. The steps de-
picted by the solid arrows are excluded because they consist of pairs that are
not in the synchronisation relation of Figure 1.7.

With the identification relation the sharing of common (static) data types
can be expressed, such as interchange data or pervasive types, shared variables
as in the access to a common store, or shared actions like the input/output
actions of process calculi. In Figure 1.8 for example the two components M1

and M2 share a variable, which is called x in M1 and a in M2, and each one has
a private variable, y and b, respectively. This is expressed by the identification
relation x id a on the signatures {x, y : int} for M1 and {a, b : int} for M2. As
indicated in the transformation systems, M1 has writing access to x, whereas

1.4 The Transformation Systems Reference Model 23

M1

π1�� M1 ⊗ M2

π2 �� M2

c1

t1

��

(c1, c2)

(t1,c2)

�����
��
��
��

(t1,t2)

�
�
�

���
�
�

(c1,t2)

����
��

��
��

�
c2

t2

��

(c′1, c2)

(t′1,c2)

����
��
��
��

(t′1,t2)

��

(c′1,t2)

����
��

��
��

�
(c1, c

′
2)

(t1,c′2)

�����
��
��
��

(t1,t′2)

��

(c1,t′2)

���
��

��
��

�

c′1

t′1

��

(c′′1 , c2)

(c′′1 ,t2) ���
��

��
��

�
(c′1, c

′
2)

(t′1,c′2)

��� �
�
�
�

(t′1,t′2)

�
�
�

���
�
�

(c′1,t′2)

���
�

�
�

�
(c1, c

′′
2)

(t1,c′′2)����
��
��
��

c′2

t′2

��

(c′′1 , c′2)

(c′′1 ,t′2) ���
�

�
�

�
(c′1, c

′′
2)

(t′1,c′′2)��� �
�
�
�

c′′1 (c′′1 , c′′2) c′′2

Fig. 1.6. Synchronisation of two systems

M2 can only read a. In its first step it observes that the value of a has been
changed.

The global data states of the composed system M1 ⊗M2 are then given
by a superposition of the local ones. Shared parts are identified, i.e., they
are represented only once in the global state, whereas the local parts are
kept apart, i.e., they are added disjointly. This yields the global data states
in the upper row of Figure 1.8. The actions of a step in the global system
are given by the unions of the local action sets, where again names that are
related via the identification relation are identified. As mentioned above, this

c1

t1

��

����������� c2

t2

��

������������

c′1

t′1

��

�����������

������������ c′2

t′2

��
c′′1 �����������

������������
c′′2

	 	 	 	 	 	 	 	 	 	 	 	

												

������������

Fig. 1.7. A synchronisation relation on two transition systems

24 1 Introduction

M1 x M2

obs(xa) , xa:=xa+1 y:=xa, b:=xa

M1

obs(a)
b=2
a=2b:=a

b=0
a=2

b=0
a=1

M2

x:=x+1 y:=xx=2

π2π1

id.rel.

x id a

y=0
x=1

y=2
x=2

y=0

xa=2

b=2
y=2

b=0
y=0
xa=1 xa=2

b=0
y=0

Fig. 1.8. Composition of transformation systems

sharing (identification) as well as keeping apart local parts of the structure
does not depend on the names chosen in the local specifications. Instead, the
identification relations are used to express arbitrary correspondences between
the elements or derived elements of the local structures.

Synchronisation and identification relation need not be binary but may
connect arbitrary numbers of local systems. Together they describe the con-
nection of local systems, i.e., the architecture. This corresponds to the first
part of the definition of composition operations as discussed in Section 1.3.
The result of a composition, i.e., the global system seen as one transforma-
tion system again, is then given by the tuples of synchronous steps of the local
systems and the corresponding superpositions of their data states and action
sets as discussed above. In Figures 1.6 and 1.8 such global views have already
been shown.

The abstraction mechanisms mentioned in the discussion of the develop-
ment relations can also be used to obtain more asynchronous forms of be-
haviour composition. In Figure 1.9 for example several sequences of steps in
the local components are encapsulated by introducing interfaces. Synchronis-
ing these abstract steps means designating the corresponding control states
in the local systems as synchronisation points, but not constraining the local
behaviour in between these points. The global behaviour induced by the syn-
chronisation of the first and the second steps of the two interfaces is then given
by two global steps. In the first one the first three steps of the left concrete
system are performed and—asynchronously—the first two steps of the right
concrete system are performed. At this point a synchronisation takes place.
Then the last two steps of the left system and the last step of the right system
are performed, again asynchronously. As opposed to the direct synchronisa-

1.4 The Transformation Systems Reference Model 25

tion (including synchronisations with states) there is no global state of the
asynchronous system during the execution of the local actions that constitute
one global step.

asynchronous composition
global view of the

local concrete systems

interfaces

Fig. 1.9. Asynchronous composition of two systems

The structural transparency achieved by computing the result of a com-
position operation, i.e., the representation of a composition of systems by a
single transformation system as its global view, also allows the representation
of refinements and developments at the architectural level. The direct com-
position of two systems by a synchronisation and an identification relation
for example can be refined by first introducing interfaces for the encapsula-
tion of local steps and then composing these more abstract views as discussed
above. Since both sides, the direct composition and the asynchronous compo-
sition via the interfaces, can be considered as single transformation systems
in turn, the definition of the development relations for structured systems can
be reduced to the basic unstructured case discussed above. That means the
asynchronously composed system is a development of the directly composed
system if their global views are in a development relation.

Moreover, also due to the structural transparency, the architecture of the
data states and the architecture of the behavioural components need not coin-
cide. If, for example, two processes with different behaviours exchange complex
data, then the architecture of the behaviour (the two linked processes) is com-
pletely different from the architecture of the data, which may be composed of
many substructures (see Figure 1.10).

1.4.4 Granularity

The examples discussed above might have led to the impression that the repre-
sentation of software systems or components as transformation systems in the
reference model might be rather low level. In fact, however, the granularity of
the formal model can be chosen arbitrarily according to the level of abstrac-
tion required for a specific view and offered by the corresponding specification
technique. The reference model itself is entirely open w.r.t. modelling decisions
concerning the granularity. That means the distinction between static data

26 1 Introduction

communicating
processes

p2p1

body

complex structured
data

element

container

key

header

Fig. 1.10. Different architectures of behaviour and data

types and dynamic operations with side effects, and the distribution of the
structure and the behaviour into local transformation systems in a concrete
model are induced by the given specifications and specification techniques.
They are not prescribed by the reference model.

Consider as an example the assignment of a result of a database query to
an attribute of some object. If the purpose of the specification is just to state
that this value is bound to the attribute, the whole query and the assignment
can be considered as one data state of the system. The database query is then
modelled as a static function within a static data type and the state is char-
acterised by the equation attr = query(par 1, . . . , parn). Thus, in this case,
the query is identified with its result, as in the mathematical set-theoretic
understanding of a function, which is a very high abstraction. If, however, the
dynamic behaviour of the query has to be modelled, for instance its execution
inside the database management system, the transition system level of trans-
formation systems has to be used, too. Then the single steps are modelled by
transitions and the data states now also may contain further internal vari-
ables to store intermediate results and control information. Finally, it could
be necessary to consider also the architecture level, for example if the internal
structure of the database management system needs to be considered or if
the query is sent by a mediator to several databases. Then the local dynamics
and data structures are coordinated by a specific component, sitting on top
of the other ones.

The representation of one scenario may thus use the static data type level
alone, a single transformation system, or a set of interconnected transfor-
mation systems. This depends only on the desired granularity of the overall
modelling.

1.5 Organisation of the Book 27

1.5 Organisation of the Book

In the following chapter first the formal definitions of transformation systems
are introduced, comprising the basic notions of control states, transitions, data
states, and transformations. Their intended meaning and usage is shown in a
series of examples. In Chapter 3 the properties of transformation systems are
classified and investigated, introducing abstract syntactic means to formulate
such properties. These refer to the notions introduced above: data invariants
refer to data states, transformation rules refer to data state transformations,
and control flow properties refer to the whole control flow level, possibly even
including their labels. The development operations and relations are intro-
duced in Chapter 4. They are also based on the structure of transformation
systems introduced in the first chapter. Data states and transformations can
be developed by adding or refining structure, or by hiding some parts, or,
dually, making only designated parts visible. The behaviour can be developed
by decreasing or increasing the non-determinism, adding or constraining be-
havioural capabilities, or refining steps by sequential or parallel composition
of steps. Also the relation of developments and properties of transformation
systems as discussed in Chapter 3 is presented in this chapter. That is, it is
investigated what kinds of properties are preserved by which kinds of devel-
opment steps, and, conditions are given that guarantee the preservation of
certain properties by the corresponding development steps.

In Chapter 5 composition operations are introduced. Their definition also
refers to the two-level structure of transformation systems. As discussed in
Section 1.3, the first part of a composition of systems consists of their inter-
connection. This is given by an identification relation that addresses the data
states and action sets and a synchronisation relation on the control states
and transitions. The result of the application of a composition operation is
given by an integration of composition operations for the data states and
transformations on the one hand and transition systems on the other. Be-
yond the compositionality in the sense of structural transparency as discussed
above, this also yields compositional semantics (see Section 5.4). That means
the composition operations on the abstract syntactical level of transformation
systems induce compositions at the associated semantic entities. The relations
to the different kinds of properties of transformation systems are expressed as
conditions for the compositionality of properties (Section 5.5), the ones to the
development relations as compositionality of developments (Section 5.6). The
former guarantees that the properties of components that can be expressed
in their local languages are preserved by a composition, i.e., in the result-
ing global system the property also holds. Compositionality of developments
means that local development steps of the components of a system induce a
global development step of the system that contains the local ones, provided
the local developments are compatible with the connection of the components.

An application of the integration approach to semi-formal software speci-
fications is discussed in Chapter 6. Different UML models—class, statechart,

28 1 Introduction

and sequence diagrams—are considered and analysed as viewpoint specifica-
tions. Their integration first requires them to be interpreted formally in the
domain of transformation systems. Due to the complexity of the languages
and the informal definition of their semantics, this obviously can be done
only by examples. Moreover, the treatment will include certain assumptions
on the intended meaning of the language constructs used, according to the
idea of admissible interpretations. Since the idea of the chapter is just to
demonstrate the integration approach and not to define a complete integrated
UML semantics, this suffices, however. On the basis of the transformation sys-
tem semantics the conceptual integration is then discussed. Different kinds of
transformations of the semantics are presented that relate the specifications
according to their relation to the global system specification. The transforma-
tions make possible the mutual adjustment of the specifications w.r.t. their
name spaces, their structures, their levels of granularity, and their scopes, i.e.,
the parts of the system they address. These transformations thus define the
syntactic and semantic correspondences of the specifications.

In Chapter 7 a conclusion and a short summary of the main concepts are
given and possible further applications to concrete languages and method-
ological support are discussed. Then related approaches are discussed and
compared with the transformation system approach. Finally some method-
ological issues are discussed that were crucial both for the development and
the presentation of the transformation system approach.

http://www.springer.com/978-3-540-40257-2

