
Software Exorcism:
A Handbook for
Debugging and
Optimizing
Legacy Code

BILL BLUNDEN

2344CfmCMP1.qxd 8/18/03 3:25 PM Page i

Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code
Copyright ©2003 by Bill Blunden

All rights reserved. No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN: 1-59059-234-4

Printed and bound in the United States of America 10987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Technical Reviewer: Doug Holland

Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft,
Julian Skinner, Martin Streicher, Jim Sumser, Karen Watterson, Gavin Wray, John
Zukowski

Assistant Publisher: Grace Wong

Copy Editor: Ami Knox

Production Manager: Kari Brooks

Compositor and Artist: Kinetic Publishing Services, LLC

Proofreader: Thistle Hill Publishing Services

Indexer: Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175
Fifth Avenue, New York, NY 10010 and outside the United States by Springer-Verlag
GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street,
Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email
info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither the
author(s) nor Apress shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

The medieval illustrations that appear on the cover and throughout this book were
taken from Devils, Demons, and Witchcraft: 244 Illustrations for Artists by Ernst and
Johanna Lehner (Dover Publications, ISBN: 0486227510) and were reprinted with per-
mission.

2344CfmCMP1.qxd 8/18/03 3:25 PM Page ii

321

CHAPTER 7

Final Words
of Advice

For the listener who’s enjoying my stuff, I would hope that they just take
everything they’re told by authority figures less seriously—not believe what
their parents say, what their teachers say, not believe clergymen, law
enforcement people, legislators, business leaders. Because they’re being
bullsh**ted at every corner.

—George Carlin, Inside Borders interview

Back in 1990, I took an introductory political science course taught by Theodore
Lowi and Ben Ginsberg. It was one of those classes where they crammed 500 stu-
dents into an auditorium. Class felt more like a circus than a lecture. I distinctly
remember the last day of class. Ginsberg walked up to the lectern and announced,
“Up until now, there probably hasn’t been anyone who has been out to get you. This
will change the minute you graduate and go out into the real world.”

2344C07CMP1.qxd 8/18/03 11:34 AM Page 321

Chapter 7

322

As far as I can tell, this was the only useful thing that I learned at Cornell
(contrary to popular belief, knowing all about quantum mechanics is not hor-
ribly practical). People who are paranoid have enemies that are imaginary.
Victims have enemies that they think are imaginary. Both groups of people
suffer from their delusions. The only meaningful distinction is that victims
tend to suffer more from their mistakes than paranoids.

For those of you about to enter the corporate landscape for the first time,
college graduates in particular, I would urge you to consider what Ginsberg
had to say. It may sound paranoid, but it’s not. Do not be fooled by the
cotton-candy fluff that the human resources people feed you, or the glossy
brochures that they pass out. There will be people who see you as a threat to
their jobs, managers who want to treat you like a disposable diaper, and dis-
gruntled workers who want to vent their frustration on you. In other words,
there will be people out to get you.

One of the themes that this book examines is the impact of human
behavior. While I have spent much of the book discussing technical issues,
I have also tried to address some of the social and environmental forces that
can influence the outcome of a software project. Most of the projects that
I have seen fail did not fail due to technical challenges. They failed because of
behavioral challenges: politics, infighting, witch-hunts, nepotism, backstab-
bing, and sabotage, just to name a few.

One of my primary motivations for writing this book has been to alert
newcomers so that they can learn to spot trouble before it ambushes them. If
I can prevent just one person from being victimized, then I will have accom-
plished my mission. Having said that, I would like to end this book with a few
words of advice—advice that I wish someone had given to me back in 1988.

7.1 Other Threats to Source Code Integrity

2344C07CMP1.qxd 8/18/03 11:34 AM Page 322

Final Words of Advice

323

One of the greatest and least talked about threats to the stability of your
source code is fashionable technology. Revamping a code base to cater to the
latest flavor of the month will waste more man-hours than any memory leak
or race condition. Once more, the return on investment is awful, because six
months later something new will come out. Engineers who chase after the
next big thing are constantly playing a game of catch-up, and it is a game they
can never win.

The most dangerous thing about adopting a fashionable technology is
that it tends to constrain your options. When some commercial software ven-
dor is marketing a new development technology, it’s in their best interest to
sell you something that anchors you to their platform. Anyone who’s worked
at a movie theater knows that it’s easier to gouge a customer for candy when
you have a captive audience. By putting the family heirloom (i.e., your code
base) in the hands of a third party, you are surrendering control of important,
long-term features like portability and flexibility.

Fashionable Technology: A Case Study

Let’s take a look at the evolution of Microsoft’s development technology. Back
in 1987, Windows 2.0 supported Dynamic Data Exchange (DDE), which was
basically an interprocess communication (IPC) mechanism that allowed appli-
cations to share data. The object linking and embedding (OLE) framework
replaced DDE. OLE was geared towards supporting document components
that could be cut and pasted between applications. OLE-related tools were first
made available to developers in 1991. Two years later, in 1993, OLE 2.0 was
released. OLE 2.0 objects were based on a core infrastructure known as the
Component Object Model (COM). As time passed, COM became a buzzword
in its own right, serving as a foundation for implementing software compo-
nents in general (not just those related to application documents).

In 1996, Microsoft introduced two new terms: DCOM and ActiveX.
ActiveX was a branding name used to describe COM components that pro-
vided interactive Web content. ActiveX was Microsoft’s response to Java
applets. DCOM was Distributed COM, a framework that allowed COM objects
on different machines to interact. DCOM was Microsoft’s response to CORBA,
through which Windows NT 4.0 supplied ORB-like services. DCOM had a cou-
ple of serious shortcomings that prevented it from being a serious threat to
CORBA, like the inability to support distributed transactions. Microsoft went
back to the drawing board and, in late 1997, announced the creation of
COM+, which was a merger of COM technology and the Microsoft Transaction
Server (MTS). With COM+, Microsoft seemed to be moving away from the
client-server topology of DCOM towards a Web-based, server-centric model.

In every case, going with Microsoft meant handcuffing your code to
Windows. Sure, there were attempts to provide support on Unix platforms,
but they were nothing more than token gestures. Microsoft proponents may
claim that the recent .NET initiative, with its virtual machine approach, offers

2344C07CMP1.qxd 8/18/03 11:34 AM Page 323

Chapter 7

324

more alternatives. After all, the nature of a virtual machine is that it can be
implemented anywhere, using any set of tools, just as long as the implemen-
tation obeys the virtual machine’s specification. I suspect, however, that
Microsoft’s common language runtime (CLR) is just a thinly veiled attempt to
counter the rising popularity of Java, which has done an admirable job of
offering true cross-platform support. In my opinion, Microsoft’s marketing
hype is paying lip service to portability, while at the same time quietly con-
veying the notion that .NET applications “run best on Windows.”

You’d pay to know what you really think.

—J.R. “Bob” Dobbs

Brainwashing 101

In the end, fashionable technology is a ruse, an excuse for you to spend
money. The big corporations want your cash, and they will tell you damn near
anything to get you to part with it. Everything that they say is tainted with this
ulterior motive.

Marketing hype can be very seductive. Even worse, it’s everywhere. Half
of the technical magazines that you see at the newsstand are nothing more
than oversized brochures. On a superficial level, the technical articles that you
read may seem like they are trying to “educate” you. The actual agenda is not
so philanthropic. This propaganda is intended to subliminally give you the
impression of what is “current.”

By bombarding you with the same acronym enough times, the media is
hoping to encourage the notion that “everyone” is moving to technology XYZ.
Their ability to convince people of this is what allows them to charge millions
of dollars for advertising space. In so many words, a technology is “current”
only because the corporate sponsors are paying them to make it look that way.

As a junior engineer in the early 1990s, I was like a kid in a candy store.
The release of Windows 3.1 was accompanied by a rash of slick, sexy-sounding
engineering technologies. There wasn’t a single new toolkit that I didn’t love.
At 20 years of age, I was very impressionable. I can recall looking down on all
of the veteran engineers and their suspicious attitude. They seemed like
crotchety old men who had fallen out of touch with the world. In reality, I was
the one who was out of touch.

The Real Issue

The salient issue is not “which solution is current;” this is just a trick that the
marketing people use to distract you. The real issue is about return on invest-
ment (ROI). It’s not about being trendy; it’s about getting the most bangs per
buck. Other than the research firms, like Gartner, Inc. or Forrester Research,

2344C07CMP1.qxd 8/18/03 11:34 AM Page 324

Final Words of Advice

325

Inc., none of the periodicals seems to pay homage to this topic. Why? The rea-
son that the software industry periodicals shy away from ROI is that their
corporate sponsors have expensive products that they want to sell you.

When a CIO decides to roll out a new platform, a venture that can make
or break some businesses, the last thing they are worried about is being in
fashion. Instead, they have their eyes on long-term financial repercussions.
They’re focused on satisfying business requirements, minimizing total cost of
ownership, availability, compatibility, and safeguarding against vendor lock-
in. As John Schindler, CIO of Kichler Lighting, put it, “If I caught a CIO reading
Byte magazine, I’d fire him.”

Your goal, as an engineer, should be to adopt this mindset and apply it to
software development. Don’t be a victim of marketing hype. Renovating sig-
nificant portions of your code base just to be fashionable is an expensive
waste of resources. Ask yourself: “What is this technology really going to buy
me? Am I going to get tangible benefits from this new technology, or am I just
following the rest of the herd?”

7.2 Maintaining a Paper Trail

When the proverbial crap hits the fan, the best way to defend yourself against
fallout, as I have stressed before, is to maintain a well-documented paper
trail. Concrete documentation can be used to assign responsibility, and
responsibility transforms into blame if a project heads south.

Some managers have been known to save their own skin by blaming
things on the other guy. A manager who was rooting and hollering for your
project last week, in a staff meeting, can suddenly turn around and stick
a shank in your back: “I knew those guys would screw it up, they wouldn’t lis-
ten to me. I told them it wouldn’t work.”

Quietly Keep Records

If you are going to maintain a paper trail, do so as inconspicuously as possi-
ble. This kind of record keeping can be serious business. People can get fired.
You don’t want to make your allies nervous, and at the same time you don’t
want to alert your enemies. Do all of your strategic thinking and analysis at
home. Granted, you will still have to collect and record information at work,
but there are steps you can take to minimize your footprints when you do.

If you need to huddle with team members to discuss a sensitive issue, go
to a bar or a restaurant or any other place in a remote area of town, and do it
there. Eavesdropping has been honed to a fine art among cube denizens
(which is one reason why managers have offices). Not to mention that a num-
ber of financial institutions are required to record telephone conversations to
guard against insider trading and disclosure violations.

2344C07CMP1.qxd 8/18/03 11:34 AM Page 325

Chapter 7

326

The Myth of Privacy

When I walked into my first software gig, there was a grizzled old-timer sitting
in the cube next to me. He had been with the company for almost 15 years.
He had some impressive hardware humming away in his cube, including
a fiber optic network connection. Yet, there he was, reading a cheap paper-
back novel when he could have been surfing the Internet. I was just a little
confused at how this technologically savvy early adopter could resist playing
with his toys. As I was to find out, he had his reasons . . .

This may sound a little too cloak-and-dagger, but the growing threat of
industrial espionage has led many software companies to closely monitor
their employees. The idea of privacy in the workplace is a myth. Everything
that your employer supplies you with (e.g., a computer, a network connection,
a chair, a desk, office supplies) is their property and they can do whatever they
want to with it. If they want to, your employer can install a keyboard logger on
your workstation to see what you’re typing in. They can also legally intercept
traffic that you send over the network. This includes e-mails, Web browser
downloads, and chat messages. In extreme cases, they can use remote desk-
top software or TEMPEST equipment to observe everything that you do in
real time.

WARNING The prevalence of IP snooping is one reason why e-mail can be
particularly dangerous. Don’t EVER e-mail anything at work unless you
feel comfortable with the whole world reading it.

If you want privacy at work, you’ll need to buy a laptop and bring it with
you. This laptop is your property, not theirs. They have no legal right to install
logging software on it. If you suspect that network traffic is being monitored,
for $150 you can buy a firewall appliance and set up a VPN tunnel between
your laptop and your home computer (assuming you have a home com-
puter). Depending on how your home LAN is set up, you can then reroute
incoming traffic from your laptop back out onto the Internet through your
home connection, and achieve a modicum of privacy.

NOTE I’m not sure what to tell you when it comes to TEMPEST equip-
ment. Most companies that manufacture EMF shielding products sell only
to the government.

2344C07CMP1.qxd 8/18/03 11:34 AM Page 326

Final Words of Advice

327

1. Mylene Mangalindan, “Larry Ellison’s Sober Vision,” The Wall Street Journal,
April 8, 2003

2. Thomas Topolinski and Joanne Correia, “Prediction 2003: Continued Challenges
for Software Industry,” Gartner Research, AV-18-8042, November 20, 2002

3. Ludwig Siegele, “At Your Service: Despite Early Failures, Computing Will Eventually
Become a Utility,” The Economist, May 16, 2003

The bottom line is this: if you are going to keep records so that you can
defend yourself later on, collect information unobtrusively and then process
it away from prying eyes.

7.3 History Repeats Itself

Silicon Valley is like Hollywood; everyone wants to be a movie star. Yet for
every company that makes it to an IPO, a thousand go down in flames.

—Howie Ernesti

In the aftermath of the dot-com bust, the outlook for the software industry
doesn’t seem very good. Some people are even claiming that the recent col-
lapse of the software industry is an omen of more far-reaching changes. For
example, in April 2003, Larry Ellison announced, “What’s going on . . . is the
end of Silicon Valley as we know it.”1

Ellison predicts that the software industry will mature, in the same way
that our steel industry did decades ago. The growing standardization of prod-
ucts will result in thinner profit margins, as larger companies rely on economies
of scale to squeeze out the smaller companies and gain dominant market
positions. To boost efficiency, the survivors will move operations overseas to
take advantage of cheaper labor.

There are those who agree, in part, with Ellison. In November 2002,
researchers at Gartner2 predicted that by the end of 2004, half of the world’s
software vendors will be acquired or be put out of business. IBM has already
embraced the idea of “grid computing,” where products are standardized to
the extent that they are more like utilities. In October 2002, Sam Palmisano
stated that IBM would be committing $10 billion towards “on-demand com-
puting,” which aims to turn software services into a commodity.3

Then again, Larry has been wrong in the past. In the previous chapter
I mentioned his failed Raw Iron initiative, which attempted to replace mono-
lithic database servers with appliances that used a microkernel OS. In the
mid-1990s, Ellison also backed two companies to build a “network computer,”
which would execute all of its programs on a remote service (i.e., essentially
the 1990s’ equivalent of the serial terminal). Neither of the two companies
succeeded.

2344C07CMP1.qxd 8/18/03 11:34 AM Page 327

Chapter 7

328

4. Ed Yourdon, Decline and Fall of the American Programmer (Prentice Hall, 1992.
ISBN: 0-132-03670-3)

The “New Economy” Hits Home

Ed Yourdon once predicted the demise of the American programmer.4 While
the fate of the entire industry has yet to be seen, I think that Ed has hit the
bull’s-eye (even if he was a little premature). The sad fact is that software engi-
neering in the U.S., as a career path, has become a quaint anachronism.

Look around you—how many 55-year-old software architects do you see?
If anything, software is a young man’s game. This is due to two reasons:

• The constantly shifting skill set

• The availability of cheaper substitutes

The skill set that you learn today can be completely supplanted within
a year. I remember taking the better part of six months to become comfortable
with DCOM, and then “poof,” it vanished off the radar as soon as the next fash-
ionable technology (i.e., COM+) appeared. This makes taking the time to
understand the latest tools a poor investment in the long run.

I know some older engineers who try to counter this by claiming, “Well,
I like to think that my years of experience give me a leg up when it comes to
the bigger picture of implementing a solid design and getting a stable product
out the door.” This may be true, but only as long as you understand the tech-
nology being used. All it takes is a year or two to get out of touch with the
industry, and that “big picture” explanation sounds more like an excuse for
not having to stay up to date. Before you know it, the junior engineers are
sneering at you as if you were a COBOL programmer. Hence, even the “big
picture” guys will have to relearn everything periodically to keep from looking
outmoded.

The short-lived utility of software engineering job skills is compounded
by the availability of cheaper substitutes. Every year a whole new batch of kid-
dies enter the workforce knowing the latest thing. My guess is that they would
be willing to do your job for a fraction of what you make. They don’t have
a mortgage, they don’t have children, and they’re too naive to be bothered by
working 15 hours a day. Most college graduates see pulling a 15-hour workday
as heroic, just like charging a machine gun nest (now you know why they
draft 18-year-olds).

Thus, software engineering is a great field to go into if you’re young.
Harried managers are always looking for new blood they can put to work
(ahem, exploit). However, after you have spent a few years building up your
market value, you will discover that you have morphed into a target for the
efficiency experts. If you decide to enter the workforce as a programmer, you
should do so with your eyes open. Like professional football, programming is

2344C07CMP1.qxd 8/18/03 11:34 AM Page 328

Final Words of Advice

329

5. Peter Engardio et al., “The New Global Job Shift,” Business Week, February 3, 2003

6. Ibid.

strictly a short-term occupation. Have an exit strategy in place so that your
transition out of programming is as smooth as your entrance.

The really big threat to the future of software engineering in the U.S.,
however, is not here at home. It’s overseas. The GNP per capita in India and
China is a fraction of what it is in the U.S. Not only that, but the emphasis
placed on education in these countries has produced an army of highly
trained engineers. This glut of relatively cheap labor is an awful temptation
for software vendors. With the availability of gigabit networking equipment,
teleconferencing, instant messaging, and e-mail, a branch office in another
country can seem like it’s right next door.

In 2002, Bank of America laid off 3,700 of its 25,000 IT and back-office
employees. That’s about 15 percent. In 2003, Bank of America will outsource
1,100 jobs to India.5 This is by no means an isolated incident. Hardware man-
ufacturers like Intel have been frantically hiring Chinese and Indian engineers,
with advanced degrees, to design new processors. Hewlett-Packard, for
instance, has 3,300 software engineers in India. Then there’s Microsoft. Over
the next three years, Microsoft will invest $400 million in India and $750 mil-
lion in China. Over a billion dollars of capital; think about that.

NOTE To give you an idea of how bleak things look: John C. McCarthy, an
analyst for Forrester Research, predicts that more than 3.3 million white-
collar jobs will leave the U.S. for other countries by 2015.6

We’ve seen this before. Decades ago, this happened to the U.S. steel
industry when the means of production moved overseas. History is repeating
itself. Only this time it’s the white-collar workers who are getting sold out.
Back then, political and business leaders proclaimed that the blue-collar
workers who lost their jobs would be retrained and redeployed in the IT
industry. As we all know, this never happened. What are they going to tell us
this time? If I may, I would suggest that you revisit the George Carlin quote
that I began the chapter with.

2344C07CMP1.qxd 8/18/03 11:34 AM Page 329

2344C07CMP1.qxd 8/18/03 11:34 AM Page 330

