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Foundations

This chapter’s two parts develop key ideas from two fields, the intersection of
which is the topic of this book. Section 1.1 develops principles underlying the
use and analysis of Monte Carlo methods. It begins with a general descrip-
tion and simple examples of Monte Carlo, and then develops a framework for
measuring the efficiency of Monte Carlo estimators. Section 1.2 reviews con-
cepts from the theory of derivatives pricing, including pricing by replication,
the absence of arbitrage, risk-neutral probabilities, and market completeness.
The most important idea for our purposes is the representation of derivative
prices as expectations, because this representation underlies the application
of Monte Carlo.

1.1 Principles of Monte Carlo

1.1.1 Introduction

Monte Carlo methods are based on the analogy between probability and vol-
ume. The mathematics of measure formalizes the intuitive notion of probabil-
ity, associating an event with a set of outcomes and defining the probability of
the event to be its volume or measure relative to that of a universe of possible
outcomes. Monte Carlo uses this identity in reverse, calculating the volume
of a set by interpreting the volume as a probability. In the simplest case, this
means sampling randomly from a universe of possible outcomes and taking
the fraction of random draws that fall in a given set as an estimate of the set’s
volume. The law of large numbers ensures that this estimate converges to the
correct value as the number of draws increases. The central limit theorem
provides information about the likely magnitude of the error in the estimate
after a finite number of draws.

A small step takes us from volumes to integrals. Consider, for example,
the problem of estimating the integral of a function f over the unit interval.
We may represent the integral
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α =
∫ 1

0

f(x) dx

as an expectation E[f(U)], with U uniformly distributed between 0 and 1.
Suppose we have a mechanism for drawing points U1, U2, . . . independently
and uniformly from [0, 1]. Evaluating the function f at n of these random
points and averaging the results produces the Monte Carlo estimate

α̂n =
1
n

n∑
i=1

f(Ui).

If f is indeed integrable over [0, 1] then, by the strong law of large numbers,

α̂n → α with probability 1 as n → ∞.

If f is in fact square integrable and we set

σ2
f =

∫ 1

0

(f(x) − α)2 dx,

then the error α̂n −α in the Monte Carlo estimate is approximately normally
distributed with mean 0 and standard deviation σf/

√
n, the quality of this

approximation improving with increasing n. The parameter σf would typically
be unknown in a setting in which α is unknown, but it can be estimated using
the sample standard deviation

sf =

√√√√ 1
n − 1

n∑
i=1

(f(Ui) − α̂n)2.

Thus, from the function values f(U1), . . . , f(Un) we obtain not only an esti-
mate of the integral α but also a measure of the error in this estimate.

The form of the standard error σf/
√

n is a central feature of the Monte
Carlo method. Cutting this error in half requires increasing the number of
points by a factor of four; adding one decimal place of precision requires
100 times as many points. These are tangible expressions of the square-root
convergence rate implied by the

√
n in the denominator of the standard error.

In contrast, the error in the simple trapezoidal rule

α ≈ f(0) + f(1)
2n

+
1
n

n−1∑
i=1

f(i/n)

is O(n−2), at least for twice continuously differentiable f . Monte Carlo is
generally not a competitive method for calculating one-dimensional integrals.

The value of Monte Carlo as a computational tool lies in the fact that its
O(n−1/2) convergence rate is not restricted to integrals over the unit interval.
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Indeed, the steps outlined above extend to estimating an integral over [0, 1]d

(and even �d) for all dimensions d. Of course, when we change dimensions we
change f and when we change f we change σf , but the standard error will still
have the form σf/

√
n for a Monte Carlo estimate based on n draws from the

domain [0, 1]d. In particular, the O(n−1/2) convergence rate holds for all d. In
contrast, the error in a product trapezoidal rule in d dimensions is O(n−2/d) for
twice continuously differentiable integrands; this degradation in convergence
rate with increasing dimension is characteristic of all deterministic integration
methods. Thus, Monte Carlo methods are attractive in evaluating integrals in
high dimensions.

What does this have to do with financial engineering? A fundamental im-
plication of asset pricing theory is that under certain circumstances (reviewed
in Section 1.2.1), the price of a derivative security can be usefully represented
as an expected value. Valuing derivatives thus reduces to computing expecta-
tions. In many cases, if we were to write the relevant expectation as an integral,
we would find that its dimension is large or even infinite. This is precisely the
sort of setting in which Monte Carlo methods become attractive.

Valuing a derivative security by Monte Carlo typically involves simulating
paths of stochastic processes used to describe the evolution of underlying
asset prices, interest rates, model parameters, and other factors relevant to
the security in question. Rather than simply drawing points randomly from
[0, 1] or [0, 1]d, we seek to sample from a space of paths. Depending on how
the problem and model are formulated, the dimension of the relevant space
may be large or even infinite. The dimension will ordinarily be at least as large
as the number of time steps in the simulation, and this could easily be large
enough to make the square-root convergence rate for Monte Carlo competitive
with alternative methods.

For the most part, there is nothing we can do to overcome the rather slow
rate of convergence characteristic of Monte Carlo. (The quasi-Monte Carlo
methods discussed in Chapter 5 are an exception — under appropriate con-
ditions they provide a faster convergence rate.) We can, however, look for
superior sampling methods that reduce the implicit constant in the conver-
gence rate. Much of this book is devoted to examples and general principles
for doing this.

The rest of this section further develops some essential ideas underly-
ing Monte Carlo methods and their application to financial engineering. Sec-
tion 1.1.2 illustrates the use of Monte Carlo with two simple types of option
contracts. Section 1.1.3 develops a framework for evaluating the efficiency of
simulation estimators.

1.1.2 First Examples

In discussing general principles of Monte Carlo, it is useful to have some simple
specific examples to which to refer. As a first illustration of a Monte Carlo
method, we consider the calculation of the expected present value of the payoff




