
Prefaces

Preface to the English Edition

An entire generation of mathematicians has grown up during the time be-
tween the appearance of the first edition of this textbook and the publication
of the fourth edition, a translation of which is before you. The book is famil-
iar to many people, who either attended the lectures on which it is based or
studied out of it, and who now teach others in universities all over the world.
I am glad that it has become accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university
students and teachers specializing in mathematics and natural sciences, and
at all those who wish to see both the rigorous mathematical theory and
examples of its effective use in the solution of real problems of natural science.

Note that Archimedes, Newton, Leibniz, Euler, Gauss, Poincaré, who are
held in particularly high esteem by us, mathematicians, were more than mere
mathematicians. They were scientists, natural philosophers. In mathematics
resolving of important specific questions and development of an abstract gen-
eral theory are processes as inseparable as inhaling and exhaling. Upsetting
this balance leads to problems that sometimes become significant both in
mathematical education and in science in general.

The textbook exposes classical analysis as it is today, as an integral part
of the unified Mathematics, in its interrelations with other modern mathe-
matical courses such as algebra, differential geometry, differential equations,
complex and functional analysis.

Rigor of discussion is combined with the development of the habit of
working with real problems from natural sciences. The course exhibits the
power of concepts and methods of modern mathematics in exploring spe-
cific problems. Various examples and numerous carefully chosen problems,
including applied ones, form a considerable part of the textbook. Most of the
fundamental mathematical notions and results are introduced and discussed
along with information, concerning their history, modern state and creators.
In accordance with the orientation toward natural sciences, special attention
is paid to informal exploration of the essence and roots of the basic concepts
and theorems of calculus, and to the demonstration of numerous, sometimes
fundamental, applications of the theory.
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For instance, the reader will encounter here the Galilean and Lorentz
transforms, the formula for rocket motion and the work of nuclear reac-
tor, Euler’s theorem on homogeneous functions and the dimensional analysis
of physical quantities, the Legendre transform and Hamiltonian equations
of classical mechanics, elements of hydrodynamics and the Carnot’s theo-
rem from thermodynamics, Maxwell’s equations, the Dirac delta-function,
distributions and the fundamental solutions, convolution and mathematical
models of linear devices, Fourier series and the formula for discrete coding
of a continuous signal, the Fourier transform and the Heisenberg uncertainty
principle, differential forms, de Rham cohomology and potential fields, the
theory of extrema and the optimization of a specific technological process,
numerical methods and processing the data of a biological experiment, the
asymptotics of the important special functions, and many other subjects.

Within each major topic the exposition is, as a rule, inductive, sometimes
proceeding from the statement of a problem and suggestive heuristic consider-
ations concerning its solution, toward fundamental concepts and formalisms.
Detailed at first, the exposition becomes more and more compressed as the
course progresses. Beginning ab ovo the book leads to the most up-to-date
state of the subject.

Note also that, at the end of each of the volumes, one can find the list
of the main theoretical topics together with the corresponding simple, but
nonstandard problems (taken from the midterm exams), which are intended
to enable the reader both determine his or her degree of mastery of the
material and to apply it creatively in concrete situations.

More complete information on the book and some recommendations for
its use in teaching can be found below in the prefaces to the first and second
Russian editions.

Moscow, 2003 V. Zorich
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by a thread of length l and oscillating near the surface of the earth, where ϕ0 is the
initial displacement angle).

g) Find a formula P = c
√
mr/F for the period of revolution of a body of mass

m held in a circular orbit by a central force of magnitude F .

h) Use Kepler’s law (P1/P2)2 = (r1/r2)3, which establishes for circular orbits a
connection between the ratio of the periods of revolution of planets (or satellites)
and the ratio of the radii of their orbits, to find, as Newton did, the exponent α in
the law of universal gravitation F = Gm1m2

rα .

8.4 The Basic Facts of Differential Calculus
of Real-valued Functions of Several Variables

8.4.1 The Mean-value Theorem

Theorem 1. Let f : G → R be a real-valued function defined in a region
G ⊂ R

m, and let the closed line segment [x, x + h] with endpoints x and
x + h be contained in G. If the function f is continuous at the points of the
closed line segment [x, x + h] and differentiable at points of the open interval
]x, x+h[, then there exists a point ξ ∈]x, x+h[ such that the following equality
holds:

f(x + h) − f(x) = f ′(ξ)h . (8.53)

Proof. Consider the auxiliary function

F (t) = f(x + th)

defined on the closed interval 0 ≤ t ≤ 1. This function satisfies all the hy-
potheses of Lagrange’s theorem: it is continuous on [0, 1], being the compo-
sition of continuous mappings, and differentiable on the open interval ]0, 1[,
being the composition of differentiable mappings. Consequently, there exists
a point θ ∈]0, 1[ such that

F (1) − F (0) = F ′(θ) · 1 .

But F (1) = f(x + h), F (0) = f(x), F ′(θ) = f ′(x + θh)h, and hence the
equality just written is the same as the assertion of the theorem. ��

We now give the coordinate form of relation (8.53).
If x = (x1, . . . , xm), h = (h1, . . . , hm), and ξ = (x1 + θh1, . . . , xm + θhm),

Eq. (8.53) means that



456 8 Differential Calculus in Several Variables

f(x + h) − f(x) = f(x1 + h1, . . . , xm + hm) − f(x1, . . . , xm) =

= f ′(ξ)h =
( ∂f

∂x1 (ξ), . . . ,
∂f

∂xm
(ξ)

)



h1

· · ·
hm


 =

= ∂1f(ξ)h1 + · · · + ∂mf(ξ)hm

=
m∑

i=1

∂if(x1 + θh1, . . . , xm + θhm)hi .

Using the convention of summation on an index that appears as both
superscript and subscript, we can finally write

f(x1 + h1, . . . , xm + hm) − f(x1, . . . , xm) =
= ∂if(x1 + θh1, . . . , xm + θhm)hi , (8.54)

where 0 < θ < 1 and θ depends on both x and h.

Remark. Theorem 1 is called the mean-value theorem because there exists
a certain “average” point ξ ∈]x, x + h[ at which Eq. (8.53) holds. We have
already noted in our discussion of Lagrange’s theorem (Subsect. 5.3.1) that
the mean-value theorem is specific to real-valued functions. A general finite-
increment theorem for mappings will be proved in Chap. 10 (Part 2).

The following proposition is a useful corollary of Theorem 1.

Corollary. If the function f : G → R is differentiable in the domain G ⊂ R
m

and its differential equals zero at every point x ∈ G, then f is constant in the
domain G.

Proof. The vanishing of a linear transformation is equivalent to the vanishing
of all the elements of the matrix corresponding to it. In the present case

df(x)h = (∂1f, . . . , ∂mf)(x)h ,

and therefore ∂1f(x) = · · · = ∂mf(x) = 0 at every point x ∈ G.
By definition, a domain is an open connected set. We shall make use of

this fact.
We first show that if x ∈ G, then the function f is constant in a ball

B(x; r) ⊂ G. Indeed, if (x + h) ∈ B(x; r), then [x, x + h] ⊂ B(x; r) ⊂ G.
Applying relation (8.53) or (8.54), we obtain

f(x + h) − f(x) = f ′(ξ)h = 0 · h = 0 ,

that is, f(x + h) = f(x), and the values of f in the ball B(x; r) are all equal
to the value at the center of the ball.

Now let x0, x1 ∈ G be arbitrary points of the domain G. By the con-
nectedness of G, there exists a path t �→ x(t) ∈ G such that x(0) = x0 and
x(1) = x1. We assume that the continuous mapping t �→ x(t) is defined on
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the closed interval 0 ≤ t ≤ 1. Let B(x0; r) be a ball with center at x0 con-
tained in G. Since x(0) = x0 and the mapping t �→ x(t) is continuous, there
is a positive number δ such that x(t) ∈ B(x0; r) ⊂ G for 0 ≤ t ≤ δ. Then, by
what has been proved, (f ◦ x)(t) ≡ f(x0) on the interval [0, δ].

Let l = sup δ, where the upper bound is taken over all numbers δ ∈ [0, 1]
such that (f ◦ x)(t) ≡ f(x0) on the interval [0, δ]. By the continuity of the
function f

(
x(t)

)
we have f

(
x(l)

)
= f(x0). But then l = 1. Indeed, if that were

not so, we could take a ball B
(
x(l); r

) ⊂ G, in which f(x) = f
(
x(l)

)
= f(x0),

and then by the continuity of the mapping t �→ x(t) find ∆ > 0 such that
x(t) ∈ B

(
x(l); r

)
for l ≤ t ≤ l + ∆. But then (f ◦ x)(t) = f

(
x(l)

)
= f(x0) for

0 ≤ t ≤ l + ∆, and so l 
= sup δ.
Thus we have shown that (f ◦x)(t) = f(x0) for any t ∈ [0, 1]. In particular

(f◦x)(1) = f(x1) = f(x0), and we have verified that the values of the function
f : G → R are the same at any two points x0, x1 ∈ G. ��

8.4.2 A Sufficient Condition for Differentiability
of a Function of Several Variables

Theorem 2. Let f : U(x) → R be a function defined in a neighborhood
U(x) ⊂ R

m of the point x = (x1, . . . , xm).
If the function f has all partial derivatives ∂f

∂x1 , . . . , ∂f
∂xm at each point of

the neighborhood U(x) and they are continuous at x, then f is differentiable
at x.

Proof. Without loss of generality we shall assume that U(x) is a
ball B(x; r). Then, together with the points x = (x1, . . . , xm) and
x + h = (x1 + h1, . . . , xm + hm), the points (x1, x2 + h2, . . . , xm +
hm), . . . , (x1, x2, . . . , xm−1, xm + hm) and the lines connecting them must
also belong to the domain U(x). We shall use this fact, applying the La-
grange theorem for functions of one variable in the following computation:

f(x + h) − f(x) = f(x1 + h1, . . . , xm + hm) − f(x1, . . . , xm) =
= f(x1 + h1, . . . , xm + hm) − f(x1, x2 + h2, . . . , xm + hm) +

+ f(x1, x2 + h2, . . . , xm + hm)−f(x1, x2, x3 + h3, . . . , xm + hm) + · · · +
+ f(x1, x2, . . . , xm−1, xm + hm) − f(x1, . . . , xm) =

= ∂1f(x1 + θ1h1, x2 + h2, . . . , xm + hm)h1 +
+ ∂2f(x1, x2 + θ2h2, x3 + h3, . . . , xm + hm)h2 + · · · +
+ ∂mf(x1, x2, . . . , xm−1, xm + θmhm)hm .

So far we have used only the fact that the function f has partial derivatives
with respect to each of its variables in the domain U(x).

We now use the fact that these partial derivatives are continuous at x.
Continuing the preceding computation, we obtain
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f(x + h) − f(x) = ∂1f(x1, . . . , xm)h1 + α1h1 +
+∂2f(x1, . . . , xm)h2 + α2h2 + · · · +
+∂mf(x1, . . . , xm)hm + αmhm ,

where the quantities α1, . . . , αm tend to zero as h → 0 by virtue of the
continuity of the partial derivatives at the point x.

But this means that

f(x + h) − f(x) = L(x)h + o(h) as h → 0 ,

where L(x)h = ∂1f(x1, . . . , xm)h1 + · · · + ∂mf(x1, . . . , xm)hm . ��
It follows from Theorem 2 that if the partial derivatives of a function

f : G → R are continuous in the domain G ⊂ R
m, then the function is

differentiable at that point of the domain.
Let us agree from now on to use the symbol C(1)(G; R), or, more simply,

C(1)(G) to denote the set of functions having continuous partial derivatives
in the domain G.

8.4.3 Higher-order Partial Derivatives

If a function f : G → R defined in a domain G ⊂ R
m has a partial derivative

∂f
∂xi (x) with respect to one of the variables x1, . . . , xm, this partial derivative
is a function ∂if : G → R, which in turn may have a partial derivative
∂j

(
∂if

)
(x) with respect to a variable xj .

The function ∂j(∂if) : G → R is called the second partial derivative of f
with respect to the variables xi and xj and is denoted by one of the following
symbols:

∂jif(x),
∂2f

∂xj∂xi
(x) .

The order of the indices indicates the order in which the differentiation is
carried out with respect to the corresponding variables.

We have now defined partial derivatives of second order.
If a partial derivative of order k

∂i1···ik
f(x) =

∂kf

∂xi1 · · · ∂xik
(x)

has been defined, we define by induction the partial derivative of order k + 1
by the relation

∂ii1···ik
f(x) := ∂i

(
∂i1···ik

f
)
(x) .

At this point a question arises that is specific for functions of several vari-
ables: Does the order of differentiation affect the partial derivative computed?
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Theorem 3. If the function f : G → R has partial derivatives

∂2f

∂xi∂xj
(x) ,

∂2f

∂xj∂xi
(x)

in a domain G, then at every point x ∈ G at which both partial derivatives
are continuous, their values are the same.

Proof. Let x ∈ G be a point at which both functions ∂ijf : G → R and
∂jif : G → R are continuous. From this point on all of our arguments are
carred out in the context of a ball B(x; r) ⊂ G, r > 0, which is a convex
neighborhood of the point x. We wish to verify that

∂2f

∂xi∂xj
(x1, . . . , xm) =

∂2f

∂xj∂xi
(x1, . . . , xm) .

Since only the variables xi and xj will be changing in the computations
to follow, we shall assume for the sake of brevity that f is a function of two
variables f(x1, x2), and we need to verify that

∂2f

∂x1∂x2 (x1, x2) =
∂2f

∂x2∂x1 (x1, x2) ,

if the two functions are both continuous at the point (x1, x2).
Consider the auxiliary function

F (h1, h2) = f(x1 + h1, x2 + h2) − f(x1 + h1, x2) − f(x1, x2 + h2) + f(x1, x2) ,

where the displacement h = (h1, h2) is assumed to be sufficiently small,
namely so small that x + h ∈ B(x; r).

If we regard F (h1, h2) as the difference

F (h1, h2) = ϕ(1) − ϕ(0) ,

where ϕ(t) = f(x1 + th1, x2 + h2) − f(x1 + th1, x2), we find by Lagrange’s
theorem that

F (h1, h2) = ϕ′(θ1) =
(
∂1f(x1 + θ1h

1, x2 + h2) − ∂f(x1 + θ1h
1, x2)

)
h1 .

Again applying Lagrange’s theorem to this last difference, we find that

F (h1, h2) = ∂21f(x1 + θ1h
1, x2 + θ2h

2)h2h1 . (8.55)

If we now represent F (h1, h2) as the difference

F (h1, h2) = ϕ̃(1) − ϕ̃(0) ,

where ϕ̃(t) = f(x1 + h1, x2 + th2) − f(x1, x2 + th2), we find similarly that

F (h1, h2) = ∂12f(x1 + θ̃1h
1, x2 + θ̃2h

2)h1h2 . (8.56)



460 8 Differential Calculus in Several Variables

Comparing (8.55) and (8.56), we conclude that

∂21f(x1 + θ1h
1, x2 + θ2h

2) = ∂12f(x1 + θ̃1h
1, x2 + θ̃2h

2) , (8.57)

where θ1, θ2, θ̃1, θ̃2 ∈]0, 1[. Using the continuity of the partial derivatives at
the point (x1, x2), as h → 0, we get the equality we need as a consequence of
(8.57).

∂21f(x1, x2) = ∂12f(x1, x2) . ��
We remark that without additional assumptions we cannot say in general

that ∂ijf(x) = ∂jif(x) if both of the partial derivatives are defined at the
point x (see Problem 2 at the end of this section).

Let us agree to denote the set of functions f : G → R all of whose partial
derivatives up to order k inclusive are defined and continuous in the domain
G ⊂ R

m by the symbol C(k)(G; R) or C(k)(G).
As a corollary of Theorem 3, we obtain the following.

Proposition 1. If f ∈ C(k)(G; R), the value ∂i1...ik
f(x) of the partial deriva-

tive is independent of the order i1, . . . , ik of differentiation, that is, remains
the same for any permutation of the indices i1, . . . , ik.

Proof. In the case k = 2 this proposition is contained in Theorem 3.
Let us assume that the proposition holds up to order n inclusive. We shall

show that then it also holds for order n + 1.
But ∂i1i2···in+1f(x) = ∂i1

(
∂i2···in+1f

)
(x). By the induction assumption

the indices i2, . . . , in+1 can be permuted without changing the function
∂i2···in+1f(x), and hence without changing ∂i1···in+1f(x). For that reason it
suffices to verify that one can also permute, for example, the indices i1 and
i2 without changing the value of the derivative ∂i1i2···in+1f(x).

Since
∂i1i2···in+1f(x) = ∂i1i2

(
∂i3···in+1f

)
(x) ,

the possibility of this permutation follows immediately from Theorem 3. By
the induction principle Proposition 1 is proved. ��
Example 1. Let f(x) = f(x1, x2) be a function of class C(k)(G; R).

Let h = (h1, h2) be such that the closed interval [x, x + h] is contained in
the domain G. We shall show that the function

ϕ(t) = f(x + th) ,

which is defined on the closed interval [0, 1], belongs to class C(k)[0, 1] and
find its derivative of order k with respect to t.

We have

ϕ′(t) = ∂1f(x1 + th1, x2 + th2)h1 + ∂2f(x1 + th1, x2 + th2)h2 ,

ϕ′′(t) = ∂11f(x + th)h1h1 + ∂21f(x + th)h2h1 +
+ ∂12f(x + th)h1h2 + ∂22f(x + th)h2h2 =

= ∂11f(x + th)(h1)2 + 2∂12f(x + th)h1h2 + ∂22f(x + th)(h2)2 .
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These relations can be written as the action of the operator (h1∂1 + h2∂2):

ϕ′(t) = (h1∂1 + h2∂2)f(x + th) = hi∂if(x + th) ,

ϕ′′(t) = (h1∂1 + h2∂2)2f(x + th) = hi1hi2∂i1i2f(x + th) .

By induction we obtain

ϕ(k)(t) = (h1∂1 + h2∂2)kf(x + th) = hi1 · · ·hik∂i1···ik
f(x + th)

(summation over all sets i1, . . . , ik of k indices, each assuming the values 1
and 2, is meant).

Example 2. If f(x) = f(x1, . . . , xm) and f ∈ C(k)(G; R), then, under the
assumption that [x, x + h] ⊂ G, for the function ϕ(t) = f(x + th) defined on
the closed interval [0, 1] we obtain

ϕ(k)(t) = hi1 · · ·hik∂i1···ik
f(x + th) , (8.58)

where summation over all sets of indices i1, . . . , ik, each assuming all values
from 1 to m inclusive, is meant on the right.

We can also write formula (8.58) as

ϕ(k)(t) = (h1∂1 + · · · + hm∂m)kf(x + th) . (8.59)

8.4.4 Taylor’s Formula

Theorem 4. If the function f : U(x) → R is defined and belongs to class
C(n)

(
U(x); R

)
in a neighborhood U(x) ⊂ R

m of the point x ∈ R
m, and the

closed interval [x, x + h] is completely contained in U(x), then the following
equality holds:

f(x1 + h1, . . . , xm + hm) − f(x1, . . . , xm) =

=
n−1∑
k=1

1
k!

(h1∂1 + · · · + hm∂m)kf(x) + rn−1(x; h) ,

where

rn−1(x;h) =

1∫

0

(1 − t)n−1

(n − 1)!
(h1∂1 + · · · + hm∂m)nf(x + th) dt .

(8.60)

(8.61)

Equality (8.60), together with (8.61), is called Taylor’s formula with in-
tegral form of the remainder.

Proof. Taylor’s formula follows immediately from the corresponding Taylor
formula for a function of one variable. In fact, consider the auxiliary function

ϕ(t) = f(x + th) ,
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which, by the hypotheses of Theorem 4, is defined on the closed interval
0 ≤ t ≤ 1 and (as we have verified above) belongs to the class C(n)[0, 1].

Then for τ ∈ [0, 1], by Taylor’s formula for functions of one variable, we
can write that

ϕ(τ) = ϕ(0) +
1
1!

ϕ′(0)τ + · · · +
1

(n − 1)!
ϕ(n−1)(0)τn−1 +

+

1∫

0

(1 − t)n−1

(n − 1)!
ϕ(n)(tτ)τn dt .

Setting τ = 1 here, we obtain

ϕ(1) = ϕ(0) +
1
1!

ϕ′(0) + · · · +
1

(n − 1)!
ϕ(n−1)(0) +

+

1∫

0

(1 − t)n−1

(n − 1)!
ϕ(n)(t) dt . (8.62)

Substituting the values

ϕ(k)(0) = (h1∂1 + · · · + hm∂m)kf(x) (k = 0, . . . , n − 1) ,

ϕ(n)(t) = (h1∂1 + · · · + hm∂m)nf(x + th) ,

into this equality in accordance with formula (8.59), we find what Theorem
4 asserts. ��

Remark. If we write the remainder term in relation (8.62) in the Lagrange
form rather than the integral form, then the equality

ϕ(1) = ϕ(0) +
1
1!

ϕ′(0) + · · · +
1

(n − 1)!
ϕ(n−1)(0) +

1
n!

ϕ(n)(θ) ,

where 0 < θ < 1, implies Taylor’s formula (8.60) with remainder term

rn−1(x;h) =
1
n!

(h1∂1 + · · · + hm∂m)nf(x + θh) . (8.63)

This form of the remainder term, as in the case of functions of one variable,
is called the Lagrange form of the remainder term in Taylor’s formula.

Since f ∈ C(n)
(
U(x); R

)
, it follows from (8.63) that

rn−1(x;h) =
1
n!

(h1∂1 + · · · + hm∂m)nf(x) + o
(‖h‖n

)
as h → 0 ,

and so we have the equality
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f(x1 + h1, . . . , xm + hm) − f(x1, . . . , xm) =

=
n∑

k=1

1
k!

(h1∂1 + · · · + hm∂m)kf(x) + o
(‖h‖n

)
as h → 0 , (8.64)

called Taylor’s formula with the remainder term in Peano form.

8.4.5 Extrema of Functions of Several Variables

One of the most important applications of differential calculus is its use in
finding extrema of functions.

Definition 1. A function f : E → R defined on a set E ⊂ R
m has a local

maximum (resp. local minimum) at an interior point x0 of E if there exists
a neighborhood U(x0) ⊂ E of the point x0 such that f(x) ≤ f(x0) (resp.
f(x) ≥ f(x0)) for all x ∈ U(x0).

If the strict inequality f(x) < f(x0) holds for x ∈ U(x0) \ x0 (or, respec-
tively, f(x) > f(x0)), the function has a strict local maximum (resp. strict
local minimum) at x0.

Definition 2. The local minima and maxima of a function are called its local
extrema.

Theorem 5. Suppose a function f : U(x0) → R defined in a neighborhood
U(x0) ⊂ R

m of the point x0 = (x1
0, . . . , x

m
0 ) has partial derivatives with respect

to each of the variables x1, . . . , xm at the point x0.
Then a necessary condition for the function to have a local extremum at

x0 is that the following equalities hold at that point:

∂f

∂x1 (x0) = 0, . . . ,
∂f

∂xm
(x0) = 0 . (8.65)

Proof. Consider the function ϕ(x1) = f(x1, x2
0, . . . , x

m
0 ) of one variable de-

fined, according to the hypotheses of the theorem, in some neighborhood of
the point x1

0 on the real line. At x1
0 the function ϕ(x1) has a local extremum,

and since
ϕ′(x1

0) =
∂f

∂x1 (x1
0, x

2
0, . . . , x

m
0 ) ,

it follows that ∂f
∂x1 (x0) = 0.

The other equalities in (8.65) are proved similarly. ��
We call attention to the fact that relations (8.65) give only necessary but

not sufficient conditions for an extremum of a function of several variables.
An example that confirms this is any example constructed for this purpose
for functions of one variable. Thus, where previously we spoke of the function
x �→ x3, whose derivative is zero at zero, but has no extremum there, we can
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now consider the function

f(x1, . . . , xm) = (x1)3 ,

all of whose partial derivatives are zero at x0 = (0, . . . , 0), while the function
obviously has no extremum at that point.

Theorem 5 shows that if the function f : G → R is defined on an open
set G ⊂ R

m, its local extrema are found either among the points at which f
is not differentiable or at the points where the differential df(x0) or, what is
the same, the tangent mapping f ′(x0), vanishes.

We know that if a mapping f : U(x0) → R
n defined in a neighborhood

U(x0) ⊂ R
m of the point x0 ∈ R

m is differentiable at x0, then the matrix of
the tangent mapping f ′(x0) : R

m → R
n has the form




∂1f
1(x0) · · · ∂mf1(x0)

. . . . . . . . . . . . . . . . . . . . . . .

∂1f
n(x0) · · · ∂mfn(x0)


 . (8.66)

Definition 3. The point x0 is a critical point of the mapping f : U(x0) → R
n

if the rank of the Jacobi matrix (8.66) of the mapping at that point is less
than min{m, n}, that is, smaller than the maximum possible value it can
have.

In particular, if n = 1, the point x0 is critical if condition (8.65) holds,
that is, all the partial derivatives of the function f : U(x0) → R vanish.

The critical points of real-valued functions are also called the stationary
points of these functions.

After the critical points of a function have been found by solving the
system (8.65), the subsequent analysis to determine whether they are extrema
or not can often be carried out using Taylor’s formula and the following
sufficient conditions for the presence or absence of an extremum provided by
that formula.

Theorem 6. Let f : U(x0) → R be a function of class C(2)
(
U(x0); R

)
de-

fined in a neighborhood U(x0) ⊂ R
m of the point x0 = (x1

0, . . . , x
m
0 ) ∈ R

m,
and let x0 be a critical point of the function f .

If, in the Taylor expansion of the function at the point x0

f(x1
0 + h1, . . . , xm

0 + hm)

= f(x1
0, . . . , x

m
0 ) +

1
2!

m∑
i,j=1

∂2f

∂xi∂xj
(x0)hihj + o(‖h‖2)(8.67)

the quadratic form
m∑

i,j=1

∂2f

∂xi∂xj
(x0)hihj ≡ ∂ijf(x0)hihj (8.68)
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a) is positive-definite or negative-definite, then the point x0 has a local
extremum at x0, which is a strict local minimum if the quadratic form (8.68)
is positive-definite and a strict local maximum if it is negative-definite;

b) assumes both positive and negative values, then the function does not
have an extremum at x0.

Proof. Let h 
= 0 and x0 + h ∈ U(x0). Let us represent (8.67) in the form

f(x0 + h) − f(x0) =
1
2!

‖h‖2




m∑
i,j=1

∂2f

∂xi∂xj
(x0)

hi

‖h‖
hj

‖h‖ + o(1)


 , (8.69)

where o(1) is infinitesimal as h → 0.
It is clear from (8.69) that the sign of the difference f(x0 + h) − f(x0)

is completely determined by the sign of the quantity in brackets. We now
undertake to study this quantity.

The vector e =
(
h1/‖h‖, . . . , hm/‖h‖)

obviously has norm 1. The
quadratic form (8.68) is continuous as a function h ∈ R

m, and therefore
its restriction to the unit sphere S(0; 1) = {x ∈ R

m
∣∣ ‖x‖ = 1} is also contin-

uous on S(0; 1). But the sphere S is a closed bounded subset in R
m, that is,

it is compact. Consequently, the form (8.68) has both a minimum point and
a maximum point on S, at which it assumes respectively the values m and
M .

If the form (8.68) is positive-definite, then 0 < m ≤ M , and there is
a number δ > 0 such that |o(1)| < m for ‖h‖ < δ. Then for ‖h‖ < δ
the bracket on the right-hand side of (8.69) is positive, and consequently
f(x0 + h) − f(x0) > 0 for 0 < ‖h‖ < δ. Thus, in this case the point x0 is a
strict local minimum of the function.

One can verify similarly that when the form (8.68) is negative-definite,
the function has a strict local maximum at the point x0.

Thus a) is now proved.
We now prove b).
Let em and eM be points of the unit sphere at which the form (8.68)

assumes the values m and M respectively, and let m < 0 < M .
Setting h = tem, where t is a sufficiently small positive number (so small

that x0 + tem ∈ U(x0)), we find by (8.69) that

f(x0 + tem) − f(x0) =
1
2!

t2(m + o(1)) ,

where o(1) → 0 as t → 0. Starting at some time (that is, for all sufficiently
small values of t), the quantity m+o(1) on the right-hand side of this equality
will have the sign of m, that is, it will be negative. Consequently, the left-hand
side will also be negative.
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Similarly, setting h = teM , we obtain

f(x0 + teM ) − f(x0) =
1
2!

t2(M + o(1)) ,

and consequently for all sufficiently small t the difference f(x0 + teM )−f(x0)
is positive.

Thus, if the quadratic form (8.68) assumes both positive and negative
values on the unit sphere, or, what is obviously equivalent, in R

m, then in
any neighborhood of the point x0 there are both points where the value of
the function is larger than f(x0) and points where the value is smaller than
f(x0). Hence, in that case x0 is not a local extremum of the function. ��

We now make a number of remarks in connection with this theorem.

Remark 1. Theorem 6 says nothing about the case when the form (8.68) is
semi-definite, that is, nonpositive or nonnegative. It turns out that in this
case the point may be an extremum, or it may not. This can be seen, in
particular from the following example.

Example 3. Let us find the extrema of the function f(x, y) = x4 + y4 − 2x2,
which is defined in R

2.
In accordance with the necessary conditions (8.65) we write the system

of equations 



∂f

∂x
(x, y) = 4x3 − 4x = 0 ,

∂f

∂y
(x, y) = 4y3 = 0 ,

from which we find three critical points: (−1, 0), (0, 0), (1, 0).
Since

∂2f

∂x2 (x, y) = 12x2 − 4 ,
∂2f

∂x∂y
(x, y) ≡ 0 ,

∂2f

∂y2 (x, y) = 12y2 ,

at the three critical points the quadratic form (8.68) has respectively the form

8(h1)2 , −4(h1)2 , 8(h1)2 .

That is, in all cases it is positive semi-definite or negative semi-definite. The-
orem 6 is not applicable, but since f(x, y) = (x2 − 1)2 + y4 − 1, it is obvious
that the function f(x, y) has a strict minimum −1 (even a global minimum)
at the points (−1, 0), and (1, 0), while there is no extremum at (0, 0), since
for x = 0 and y 
= 0, we have f(0, y) = y4 > 0, and for y = 0 and sufficiently
small x 
= 0 we have f(x, 0) = x4 − 2x2 < 0.
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Remark 2. After the quadratic form (8.68) has been obtained, the study of
its definiteness can be carried out using the Sylvester7 criterion. We recall

that by the Sylvester criterion, a quadratic form
m∑

i,j=1
aijx

ixj with symmetric

matrix 


a11 · · · a1m

. . . . . . . . . . . .

am1 · · · amm




is positive-definite if and only if all its principal minors are positive; the form
is negative-definite if and only if a11 < 0 and the sign of the principal minor
reverses each time its order increases by one.

Example 4. Let us find the extrema of the function

f(x, y) = xy ln(x2 + y2) ,

which is defined everywhere in the plane R
2 except at the origin.

Solving the system of equations




∂f

∂x
(x, y) = y ln(x2 + y2) +

2x2y

x2 + y2 = 0 ,

∂f

∂y
(x, y) = x ln(x2 + y2) +

2xy2

x2 + y2 = 0 ,

we find all the critical points of the function

(0,±1) ; (±1, 0) ;
(

± 1√
2e

,± 1√
2e

)
;

(
± 1√

2e
,∓ 1√

2e

)
.

Since the function is odd with respect to each of its arguments individu-
ally, the points (0,±1) and (±1, 0) are obviously not extrema of the function.

It is also clear that this function does not change its value when the signs
of both variables x and y are changed. Thus by studying only one of the
remaining critical points, for example,

( 1√
2e

, 1√
2e

)
we will be able to draw

conclusions on the nature of the others.
Since

∂2f

∂x2 (x, y) =
6xy

x2 + y2 − 4x3y

(x2 + y2)2
,

∂2f

∂x∂y
(x, y) = ln(x2 + h2) + 2 − 4x2y2

(x2 + y2)2
,

∂2f

∂y2 (x, y) =
6xy

x2 + y2 − 4xy3

(x2 + y2)2
.

7 J. J. Sylvester (1814–1897) – British mathematician. His best-known works were
on algebra.
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at the point
( 1√

2e
, 1√

2e

)
the quadratic form ∂ijf(x0)hihj has the matrix

(
2 0
0 2

)
,

that is, it is positive-definite, and consequently at that point the function has
a local minimum

f
( 1√

2e
,

1√
2e

)
= − 1

2e
.

By the observations made above on the properties of this function, one
can conclude immediately that

f
(

− 1√
2e

,− 1√
2e

)
= − 1

2e

is also a local minimum and

f
( 1√

2e
,− 1√

2e

)
= f

(
− 1√

2e
,

1√
2e

)
=

1
2e

are local maxima of the function. This, however, could have been verified
directly, by checking the definiteness of the corresponding quadratic form.
For example, at the point

( − 1√
2e

, 1√
2e

)
the matrix of the quadratic form

(8.68) has the form ( −2 0
0 −2

)
,

from which it is clear that it is negative-definite.

Remark 3. It should be kept in mind that we have given necessary conditions
(Theorem 5) and sufficient conditions (Theorem 6) for an extremum of a
function only at an interior point of its domain of definition. Thus in seeking
the absolute maximum or minimum of a function, it is necessary to examine
the boundary points of the domain of definition along with the critical interior
points, since the function may assume its maximal or minimal value at one
of these boundary points.

The general principles of studying noninterior extrema will be considered
in more detail later (see the section devoted to extrema with constraint). It is
useful to keep in mind that in searching for minima and maxima one may use
certain simple considerations connected with the nature of the problem along
with the formal techniques, and sometimes even instead of them. For example,
if a differentiable function being studied in R

m must have a minimum because
of the nature of the problem and turns out to be unbounded above, then
if the function has only one critical point, one can assert without further
investigation that that point is the minimum.
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Example 5. Huygens’ problem. On the basis of the laws of conservation of
energy and momentum of a closed mechanical system one can show by a
simple computation that when two perfectly elastic balls having mass m1
and m2 and initial velocities v1 and v2 collide, their velocities after a central
collision (when the velocities are directed along the line joining the centers)
are determined by the relations

ṽ1 =
(m1 − m2)v1 + 2m2v2

m1 + m2
,

ṽ2 =
(m2 − m1)v2 + 2m1v1

m1 + m2
.

In particular, if a ball of mass M moving with velocity V strikes a mo-
tionless ball of mass m, then the velocity v acquired by the latter can be
found from the formula

v =
2M

m + M
V , (8.70)

from which one can see that if 0 ≤ m ≤ M , then V ≤ v ≤ 2V .
How can a significant part of the kinetic energy of a larger mass be com-

municated to a body of small mass? To do this, for example, one can insert
balls with intermediate masses between the balls of small and large mass:
m < m1 < m2 < · · · < mn < M . Let us compute (after Huygens) how the
masses m1, m2,. . . , mn should be chosen to that the body m will acquire
maximum velocity after successive central collisions.

In accordance with formula (8.70) we obtain the following expression for
the required velocity as a function of the variables m1, m2, . . . , mn:

v =
m1

m + m1
· m2

m1 + m2
· · · · · mn

mn−1 + mn
· M

mn + M
· 2n+1V . (8.71)

Thus Huygens’ problem reduces to finding the maximum of the function

f(m1, . . . , mn) =
m1

m + m1
· · · · · mn

mn−1 + mn
· M

mn + M
.

The system of equations (8.65), which gives the necessary conditions for
an interior extremum, reduces to the following system in the present case:





m · m2 − m2
1 = 0 ,

m1 · m3 − m2
2 = 0 ,

. . . . . . . . . . . . . . . . . . . . .

mn−1 · M − m2
n = 0 ,

from which it follows that the numbers m, m1, . . . , mn, M form a geometric
progression with ratio q equal to n+1

√
M/m.
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The value of the velocity (8.71) that results from this choice of masses is
given by

v =
( 2q

1 + q

)n+1
V , (8.72)

which agrees with (8.70) if n = 0.
It is clear from physical considerations that formula (8.72) gives the max-

imal value of the function (8.71). However, this can also be verified formally
(without invoking the cumbersome second derivatives. See Problem 9 at the
end of this section).

We remark that it is clear from (8.72) that if m → 0, then v → 2n+1V .
Thus the intermediate masses do indeed significantly increase the portion of
the kinetic energy of the mass M that is transmitted to the small mass m.

8.4.6 Some Geometric Images Connected
with Functions of Several Variables

a. The Graph of a Function and Curvilinear Coordinates Let x,
y, and z be Cartesian coordinates of a point in R

3 and let z = f(x, y) be a
continuous function defined in some domain G of the plane R

2 of the variables
x and y.

By the general definition of the graph of a function, the graph of the
function f : G → R in our case is the set S =

{
(x, y, z) ∈ R

3
∣∣(x, y) ∈ G, z =

f(x, y)
}

in the space R
3.

It is obvious that the mapping G
F−→ S defined by the relation (x, y) �→(

x, y, f(x, y)
)

is a continuous one-to-one mapping of G onto S, by which one
can determine every point of S by exhibiting the point of G corresponding
to it, or, what is the same, giving the coordinates (x, y) of this point of G.

Thus the pairs of numbers (x, y) ∈ G can be regarded as certain coordi-
nates of the points of a set S – the graph of the function z = f(x, y). Since
the points of S are given by pairs of numbers, we shall conditionally agree to
call S a two-dimensional surface in R

3. (The general definition of a surface
will be given later.)

If we define a path Γ : I → G in G, then a path F ◦ Γ : I → S auto-
matically appears on the surface S. If x = x(t) and y = y(t) is a parametric
definition of the path Γ , then the path F ◦ Γ on S is given by the three
functions x = x(t), y = y(t), z = z(t) = f

(
x(t), y(t)

)
. In particular, if we set

x = x0 + t, y = y0, we obtain a curve x = x0 + t, y = y0, z = f(x0 + t, y0) on
the surface S along which the coordinate y = y0 of the points of S does not
change. Similarly one can exhibit a curve x = x0, y = y0 + t, z = f(x0, y0 + t)
on S along which the first coordinate x0 of the points of S does not change.
By analogy with the planar case these curves on S are naturally called coor-
dinate lines on the surface S. However, in contrast to the coordinate lines in
G ⊂ R

2, which are pieces of straight lines, the coordinate lines on S are in
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general curves in R
3. For that reason, the coordinates (x, y) of points of the

surface S are often called curvilinear coordinates on S.
Thus the graph of a continuous function z = f(x, y), defined in a domain

G ⊂ R2 is a two-dimensional surface S in R
3 whose points can be defined by

curvilinear coordinates (x, y) ∈ G.
At this point we shall not go into detail on the general definition of a

surface, since we are interested only in a special case of a surface – the graph
of a function. However, we assume that from the course in analytic geometry
the reader is well acquainted with some important particular surfaces in R

3

(such as a plane, an ellipsoid, paraboloids, and hyperboloids).

b. The Tangent Plane to the Graph of a Function Differentiability of
a function z = f(x, y) at the point (x0, y0) ∈ G means that

f(x, y) = f(x0, y0) + A(x − x0) + B(y − y0) +

+o
(√

(x − x0)2 + (y − y0)2
)

as (x, y) → (x0, y0) , (8.73)

where A and B are certain constants.
In R

3 let us consider the plane

z = z0 + A(x − x0) + B(y − y0) , (8.74)

where z0 = f(x0, y0). Comparing equalities (8.73) and (8.74), we see that the
graph of the function is well approximated by the plane (8.74) in a neigh-
borhood of the point (x0, y0, z0). More precisely, the point

(
x, y, f(x, y)

)
of

the graph of the function differs from the point
(
x, y, z(x, y)

)
of the plane

(8.74) by an amount that is infinitesimal in comparison with the magni-
tude

√
(x − x0)2 + (y − y0)2 of the displacement of its curvilinear coordinates

(x, y) from the coordinates (x0, y0) of the point (x0, y0, z0).
By the uniqueness of the differential of a function, the plane (8.74) pos-

sessing this property is unique and has the form

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0) . (8.75)

This plane is called the tangent plane to the graph of the function z = f(x, y)
at the point

(
x0, y0, f(x0, y0)

)
.

Thus, the differentiability of a function z = f(x, y) at the point (x0, y0)
and the existence of a tangent plane to the graph of this function at the point(
x0, y0, f(x0, y0)

)
are equivalent conditions.

c. The Normal Vector Writing Eq. (8.75) for the tangent plane in the
canonical form

∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0) − (

z − f(x0, y0)
)

= 0 ,
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z z z

y y y

x x x
a. b. c.

z = x2 + y2

z = −x2 + y2
z = −x2 − y2

Fig. 8.1.

we conclude that the vector
(∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0),−1

)
(8.76)

is the normal vector to the tangent plane. Its direction is considered to be the
direction normal or orthogonal to the surface S (the graph of the function)
at the point

(
x0, y0, f(x0, y0)

)
.

In particular, if (x0, y0) is a critical point of the function f(x, y), then
the normal vector to the graph at the point

(
x0, y0, f(x0, y0)

)
has the form

(0, 0,−1) and consequently, the tangent plane to the graph of the function at
such a point is horizontal (parallel to the xy-plane).

The three graphs in Fig. 8.1 illustrate what has just been said.
Figures 8.1a and c depict the location of the graph of a function with

respect to the tangent plane in a neighborhood of a local extremum (min-
imum and maximum respectively), while Fig. 8.1b shows the graph in the
neighborhood of a so-called saddle point.

d. Tangent Planes and Tangent Vectors We know that if a path Γ :
I → R

3 in R
3 is given by differentiable functions x = x(t), y = y(t), z = z(t),

then the vector
(
ẋ(0), ẏ(0), ż(0)

)
is the velocity vector at time t = 0. It is a

direction vector of the tangent at the point x0 = x(0), y0 = y(0), z0 = z(0)
to the curve in R

3 that is the support of the path Γ .
Now let us consider a path Γ : I → S on the graph of a function z =

f(x, y) given in the form x = x(t), y = y(t), z = f
(
x(t), y(t)

)
. In this

particular case we find that

(
ẋ(0), ẏ(0), ż(0)

)
=

(
ẋ(0), ẏ(0),

∂f

∂x
(x0, y0)ẋ(0) +

∂f

∂y
(x0, y0)ẏ(0)

)
,

from which it can be seen that this vector is orthogonal to the vector (8.76)
normal to the graph S of the function at the point

(
x0, y0, f(x0, y0)

)
. Thus

we have shown that if a vector (ξ, η, ζ) is tangent to a curve on the surface S
at the point

(
x0, y0, f(x0, y0)

)
, then it is orthogonal to the vector (8.76) and

(in this sense) lies in the plane (8.75) tangent to the surface S at the point
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in question. More precisely we could say that the whole line x = x0 + ξt,
y = y0 + ηt, z = f(x0, y0) + ζt lies in the tangent plane (8.75).

Let us now show that the converse is also true, that is, if a line x = x0+ξt,
y = y0 + ηt, z = f(x0, y0) + ζt, or what is the same, the vector (ξ, η, ζ), lies
in the plane (8.75), then there is a path on S for which the vector (ξ, η, ζ) is
the velocity vector at the point

(
x0, y0, f(x0, y0)

)
.

The path can be taken, for example, to be

x = x0 + ξt , y = y0 + ηt , z = f(x0 + ξt, y0 + ηt) .

In fact, for this path,

ẋ(0) = ξ , ẏ(0) = η , ż(0) =
∂f

∂x
(x0, y0)ξ +

∂f

∂y
(x0, y0)η .

In view of the equality

∂f

∂x
(x0, y0)ẋ(0) +

∂f

∂y
(x0, y0)ẏ(0) − ż(0) = 0

and the hypothesis that

∂f

∂x
(x0, y0)ξ +

∂f

∂y
(x0, y0)η − ζ = 0 ,

we conclude that (
ẋ(0), ẏ(0), ż(0)

)
= (ξ, η, ζ) .

Hence the tangent plane to the surface S at the point (x0, y0, z0) is formed
by the vectors that are tangents at the point (x0, y0, z0) to curves on the
surface S passing through the point (see Fig. 8.2).

n
v

S

Fig. 8.2.

This is a more geometric description of the tangent plane. In any case,
one can see from it that if the tangent to a curve is invariantly defined (with
respect to the choice of coordinates), then the tangent plane is also invariantly
defined.
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We have been considering functions of two variables for the sake of visu-
alizability, but everything that was said obviously carries over to the general
case of a function

y = f(x1, . . . , xm) (8.77)
of m variables, where m ∈ N.

At the point
(
x1

0, . . . , x
m
0 , f(x1

0, . . . , x
m
0 )

)
the plane tangent to the graph

of such a function can be written in the form

y = f(x1
0, . . . , x

m
0 ) +

m∑
i=1

∂f

∂xi
(x1

0, . . . , x
m
0 )(xi − xi

0) ; (8.78)

the vector ( ∂f

∂x1 (x0), . . . ,
∂f

∂xm
(x0),−1

)

is the normal vector to the plane (8.78). This plane itself, like the graph of
the function (8.77), has dimension m, that is, any point is now given by a set
(x1, . . . , xm) of m coordinates.

Thus, Eq. (8.78) defines a hyperplane in R
m+1.

Repeating verbatim the reasoning above, one can verify that the tangent
plane (8.78) consists of vectors that are tangent to curves passing through
the point

(
x1

0, . . . , x
m
0 , f(x1

0, . . . , x
m
0 )

)
and lying on the m-dimensional surface

S – the graph of the function (8.77).

8.4.7 Problems and Exercises

1. Let z = f(x, y) be a function of class C(1)(G; R).
a) If ∂f

∂y
(x, y) ≡ 0 in G, can one assert that f is independent of y in G?

b) Under what condition on the domain G does the preceding question have an
affirmative answer?

2. a) Verify that for the function

f(x, y) =






xy x
2−y2
x2+y2 , if x2 + y2 �= 0 ,

0 , if x2 + y2 = 0 ,

the following relations hold:

∂f

∂x∂y
(0, 0) = 1 �= −1 =

∂2f

∂y∂x
(0, 0) .

b) Prove that if the function f(x, y) has partial derivatives ∂f
∂x

and ∂f
∂y

in some

neighborhood U of the point (x0, y0), and if the mixed derivative ∂2f
∂x∂y

(or ∂2f
∂y∂x

)

exists in U and is continuous at (x0, y0), then the mixed derivative ∂2f
∂y∂x

(resp.
∂2f
∂x∂y

) also exists at that point and the following equality holds:

∂2f

∂x∂y
(x0, y0) =

∂2f

∂y∂x
(x0, y0) .
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3. Let x1, . . . , xm be Cartesian coordinates in R
m. The differential operator

∆ =
m∑

i=1

∂2

∂xi2
,

acting on functions f ∈ C(2)(G; R) according to the rule

∆f =
m∑

i=1

∂2f

∂xi2
(x1, . . . , xm) ,

is called the Laplacian.
The equation ∆f = 0 for the function f in the domain G ⊂ R

m is called
Laplace’s equation, and its solutions are called harmonic functions in the domain G.

a) Show that if x = (x1, . . . , xm) and

‖x‖ =

√√√√
m∑

i=1

(xi)2 ,

then for m > 2 the function
f(x) = ‖x‖− 2−m

2

is harmonic in the domain R
m \ 0, where 0 = (0, . . . , 0).

b) Verify that the function

f(x1, . . . , xm, t) =
1

(2a
√
πt)m

· exp
(

− ‖x‖2

4a2t

)
,

which is defined for t > 0 and x = (x1, . . . , xm) ∈ R
m, satisfies the heat equation

∂f

∂t
= a2∆f ,

that is, verify that ∂f
∂t

= a2
m∑

i=1

∂2f

∂xi2 at each point of the domain of definition of the

function.

4. Taylor’s formula in multi-index notation. The symbol α := (α1, . . . , αm) con-
sisting of nonnegative integers αi, i = 1, . . . ,m, is called the multi-index α.

The following notation is conventional:

|α| := α1 + · · · + αm ,

α! := α1! · · ·αm! ;

finally, if a = (a1, . . . , am), then

aα := aα1
1 · · · aαm

m .

a) Verify that if k ∈ N, then

(a1 + · · · + am)k =
∑

|α|=k

k!
α1! · · ·αm!

aα1
1 · · · aαm

m ,
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or
(a1 + · · · + am)k =

∑

|α|=k

k!
α!
aα ,

where the summation extends over all sets α = (α1, . . . , αm) of nonnegative integers

such that
m∑

i=1
αi = k.

b) Let

Dαf(x) :=
∂|α|f

(∂x1)α1 · · · (∂xm)αm
(x) .

Show that if f ∈ C(k)(G; R), then the equality

∑

i1+···+im=k

∂i1···ikf(x)hi1 · · ·hik =
∑

|α|=k

k!
α!
Dαf(x)hα ,

where h = (h1, . . . , hm), holds at any point x ∈ G.

c) Verify that in multi-index notation Taylor’s theorem with the Lagrange form
of the remainder, for example, can be written as

f(x+ h) =
n−1∑

|α|=0

1
α!
Dαf(x)hα +

∑

|α|=n

1
α!
Dαf(x+ θh)hα .

d) Write Taylor’s formula in multi-index notation with the integral form of the
remainder (Theorem 4).

5. a) Let Im = {x = (x1, . . . , xm) ∈ R
m

∣∣∣ |xi| ≤ ci, i = 1, . . . ,m} be an m-
dimensional closed interval and I a closed interval [a, b] ⊂ R. Show that if the
function f(x, y) = f(x1, . . . , xm, y) is defined and continuous on the set Im×I, then
for any positive number ε > 0 there exists a number δ > 0 such that |f(x, y1) −
f(x, y2)| < ε if x ∈ Im, y1, y2 ∈ I, and |y1 − y2| < δ.

b) Show that the function

F (x) =

b∫

a

f(x, y) dy

is defined and continuous on the closed interval Im.

c) Show that if f ∈ C(Im; R), then the function

F(x, t) = f(tx)

is defined and continuous on Im × I1, where I1 = {t ∈ R

∣∣∣ |t| ≤ 1}.

d) Prove Hadamard’s lemma:

If f ∈ C(1)(Im ; R) and f(0) = 0, there exist functions g1, . . . , gm ∈ C(Im; R)
such that

f(x1, . . . , xm) =
m∑

i=1

xigi(x1, . . . , xm)



8.4 Real-valued Functions of Several Variables 477

in Im, and in addition

gi(0) =
∂f

∂xi
(0) , i = 1, . . . ,m .

6. Prove the following generalization of Rolle’s theorem for functions of several
variables.

If the function f is continuous in a closed ball B(0; r), equal to zero on the
boundary of the ball, and differentiable in the open ball B(0; r), then at least one of
the points of the open ball is a critical point of the function.

7. Verify that the function

f(x, y) = (y − x2)(y − 3x2)

does not have an extremum at the origin, even though its restriction to each line
passing through the origin has a strict local minimum at that point.

8. The method of least squares. This is one of the commonest methods of processing
the results of observations. It consists of the following. Suppose it is known that
the physical quantities x and y are linearly related:

y = ax+ b (8.79)

or suppose an empirical formula of this type has been constructed on the basis of
experimental data.

Let us assume that n observations have been made, in each of which both
x and y were measured, resulting in n pairs of values x1, y1;. . . ;xn, yn. Since the
measurements have errors, even if the relation (8.79) is exact, the equalities

yk = axk + b

may fail to hold for some of the values of k ∈ {1, . . . , n}, no matter what the
coefficients a and b are.

The problem is to determine the unknown coefficients a and b in a reasonable
way from these observational results.

Basing his argument on analysis of the probability distribution of the magnitude
of observational errors, Gauss established that the most probable values for the
coefficients a and b with a given set of observational results should be sought by
use of the following least-squares principle:

If δk = (axk + b) − yk is the discrepancy in the kth observation, then a and b
should be chosen so that the quantity

∆ =
n∑

k=1

δ2k ,

that is, the sum of the squares of the discrepancies, has a minimum.

a) Show that the least-squares principle for relation (8.79) leads to the following
system of linear equations
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




[xk, xk]a+ [xk, 1]b = [xk, yk],

[1, xk]a+ [1, 1]b = [1, yk],

for determining the coefficients a and b. Here, following Gauss, we write [xk, xk] :=
x1x1 + · · · + xnxn, [xk, 1] := x1 · 1 + · · · + xn · 1, [xk, yk] := x1y1 + · · · + xnyn, and
so forth.

b) Write the system of equations for the numbers a1, . . . , am, b to which the
least-squares principle leads when Eq. (8.79) is replaced by the relation

y =
m∑

i=1

aix
i + b,

(or, more briefly, y = aix
i + b) between the quantities x1, . . . , xm and y.

c) How can the method of least squares be used to find empirical formulas of
the form

y = cxα1
1 · · ·xαn

n

connecting physical quantities x1, . . . , xm with the quantity y?

d) (M. Germain.) The frequency R of heart contractions was measured at dif-
ferent temperatures T in several dozen specimens of Nereis diversicolor. The fre-
quencies were expressed in percents relative to the contraction frequency at 15◦ C.
The results are given in the following table.

Temperature, ◦ C Frequency, % Temperature, ◦ C Frequency, %

0 39 20 136
5 54 25 182
10 74 30 254
15 100

The dependence of R on T appears to be exponential. Assuming R = AebT ,
find the values of the constants A and b that best fit the experimental results.

9. a) Show that in Huygens’ problem, studied in Example 5, the function (8.71)
tends to zero if at least one of the variables m1, . . . ,mn tends to infinity.

b) Show that the function (8.71) has a maximum point in R
n and hence the

unique critical point of that function in R
n must be its maximum.

c) Show that the quantity v defined by formula (8.72) is monotonically increas-
ing as n increases and find its limit as n → ∞.

10. a) During so-called exterior disk grinding the grinding tool – a rapidly rotating
grinding disk (with an abrasive rim) that acts as a file – is brought into contact
with the surface of a circular machine part that is rotating slowly compared with
the disk (see Fig. 8.3).

The disk K is gradually pressed against the machine part D, causing a layer
H of metal to be removed, reducing the part to the required size and producing
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∆
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Fig. 8.3.

a smooth working surface for the device. In the machine where it will be placed
this surface will usually be a working surface. In order to extend its working life,
the metal of the machine part is subjected to a preliminary annealing to harden
the steel. However, because of the high temperature in the contact zone between
the machine part and the grinding disk, structural changes can (and frequently
do) occur in a certain layer ∆ of metal in the machine part, resulting in decreased
hardness of the steel in that layer. The quantity ∆ is a monotonic function of the
rate s at which the disk is applied to the machine part, that is, ∆ = ϕ(s). It is
known that there is a certain critical rate s0 > 0 at which the relation ∆ = 0 still
holds, while ∆ > 0 whenever s > s0. For the following discussion it is convenient
to introduce the relation

s = ψ(∆)

inverse to the one just given. This new relation is defined for ∆ > 0.
Here ψ is a monotonically increasing function known experimentally, defined

for ∆ ≥ 0, and ψ(0) = s0 > 0.
The grinding process must be carried out in such a way that there are no

structural changes in the metal on the surface eventually produced.
In terms of rapidity, the optimal grinding mode under these conditions would

obviously be a set of variations in the rate s of application of the grinding disk for
which

s = ψ(δ) ,

where δ = δ(t) is the thickness of the layer of metal not yet removed up to time t,
or, what is the same, the distance from the rim of the disk at time t to the final
surface of the device being produced. Explain this.

b) Find the time needed to remove a layer of thickness H when the rate of
application of the disk is optimally adjusted.

c) Find the dependence s = s(t) of the rate of application of the disk on time

in the optimal mode under the condition that the function ∆
ψ�−→ s is linear:

s = s0 + λ∆.

Due to the structural properties of certain kinds of grinding lathes, the rate
s can undergo only discrete changes. This poses the problem of optimizing the
productivity of the process under the additional condition that only a fixed number
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n of switches in the rate s are allowed. The answers to the following questions give
a picture of the optimal mode.

d) What is the geometric interpretation of the grinding time t(H) =
H∫

0

dδ
ψ(δ) that

you found in part b) for the optimal continuous variation of the rate s?

e) What is the geometric interpretation of the time lost in switching from the
optimal continuous mode of variation of s to the time-optimal stepwise mode of
variation of s?

f) Show that the points 0 = xn+1 < xn < · · · < x1 < x0 = H of the closed
interval [0, H] at which the rate should be switched must satisfy the conditions

1
ψ(xi+1)

− 1
ψ(xi)

= −
(

1
ψ

)′
(xi)(xi − xi−1) (i = 1, . . . , n)

and consequently, on the portion from xi to xi+1, the rate of application of the disk
has the form s = ψ(xi+1) (i = 0, . . . , n).

g) Show that in the linear case, when ψ(∆) = s0 + λ∆, the points xi (in part
f)) on the closed interval [0, H] are distributed so that the numbers

s0
λ
<
s0
λ

+ xn < · · · < s0
λ

+ x1 <
s0
λ

+H

form a geometric progression.

11. a) Verify that the tangent to a curve Γ : I → R
m is defined invariantly relative

to the choice of coordinate system in R
m.

b) Verify that the tangent plane to the graph S of a function y = f(x1, . . . , xm)
is defined invariantly relative to the choice of coordinate system in R

m.

c) Suppose the set S ⊂ R
m×R

1 is the graph of a function y = f(x1, . . . , xm) in
coordinates (x1, . . . , xm, y) in R

m×R
1 and the graph of a function ỹ = f̃(x̃1, . . . , x̃m)

in coordinates (x̃1, . . . , x̃m, ỹ) in R
m × R

1. Verify that the tangent plane to S is
invariant relative to a linear change of coordinates in R

m × R
1.

d) Verify that the Laplacian ∆f =
m∑

i=1

∂2f

∂xi2 (x) is defined invariantly relative to

orthogonal coordinate transformations in R
m.

8.5 The Implicit Function Theorem

8.5.1 Statement of the Problem and Preliminary Considerations

In this section we shall prove the implicit function theorem, which is impor-
tant both intrinsically and because of its numerous applications.

Let us begin by explaining the problem. Suppose, for example, we have
the relation

x2 + y2 − 1 = 0 (8.80)

between the coordinates x, y of points in the plane R
2. The set of all points

of R
2 satisfying this condition is the unit circle (Fig. 8.4).


