
Learn VB .NET Through
Game Programming

Matthew Tagliaferri

1143CFMCMP1.qxd 7/8/03 4:55 PM Page i

Learn VB .NET Through Game Programming
Copyright ©2003 by Matthew Tagliaferri

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-114-3

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Mike Burgess

Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft, Julian
Skinner, Martin Streicher, Jim Sumser, Karen Watterson, Gavin Wray, John Zukowski

Assistant Publisher: Grace Wong

Project Managers: Laura Cheu and Nate McFadden

Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks

Production Editor: Janet Vail

Proofreader and Indexer: Carol Burbo

Compositor: Kinetic Publishing Services, LLC

Artist: Dina Quan

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

1143CFMCMP1.qxd 7/8/03 4:55 PM Page ii

279

CHAPTER 8

Using DirectX

YOU MAY NOT HAVE NOTICED, but the drawing speed in some of the previous games
was a bit slow—okay, maybe more than a bit slow. The slowdown was most notice-
able in the NineTiles game from Chapter 3, “Understanding Object-Oriented
Programming from the Start.” In fact, I was originally going to add an opening ani-
mation sequence that showed all the tiles flipping over simultaneously, but this
turned out to be too slow.

If you do some Google research on speed issues, you’ll find that the bitmap
rendering in the Graphics Device Interchange, Plus (GDI+) classes isn’t quite
ready for prime time. There are reports of unnecessary palette and color transfor-
mations going on behind the scenes when using the GDI+ classes for drawing.
Trying to correct the problem by changing the color depth of the source bitmaps
does nothing to speed up the drawing to any great degree.

Fortunately, for most of the games discussed to this point, blazing-fast
bitmap rendering speed isn’t necessary. The games should run at an acceptable
speed. If you continue on the game-development track and create bigger and
more complicated games, this speed will most likely become a barrier at some
point, though. You have three ways to get around the graphics speed trap:

• Stop writing games until Microsoft addresses some of the GDI issues.

• Drop back down to the Win32 application programming interface (API) for
graphics drawing (bitblt, stretchblt, and so on).

• Move over to DirectX drawing.

Obviously, the first option is no fun at all (plus, the book would have to end
right here!). The second option is possible, but don’t you get a slight feeling of
failure when you have to stop using a cool new language and return to old
habits? Plus, using the bitblt function could get tricky with all the device han-
dles and such.

The third option sounds like the best choice by default. DirectX is a huge set
of multimedia functionality built into the Windows operating system. It has got-
ten both bigger and better with each new release, and the latest release, DirectX 9,
is no exception. DirectX 9 includes a managed class interface for the .NET devel-
oper. In other words, drawing using the DirectX classes is scarcely more difficult
than drawing using the GDI+ classes. Thus, you’ll break the speed barrier.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 279

Chapter 8

280

Installing DirectX 9

A version of DirectX is installed with every version of Windows, but the erstwhile
developer needs the DirectX software development kit (SDK) to program to the
DirectX libraries. You can find the SDK at http://www.microsoft.com/windows/
directx/default.aspx. After downloading and installing it, you’ll find a DXSDK

folder on your C: drive packed full o’ DirectX goodness. The huge help file might
be the first thing you want to peruse, or you can dig right into the sample pro-
grams, which are available in Visual Basic .NET, C#, or C++.

NOTE DirectX 9 is a large enough API that one could write an
entire book about the library. In fact, someone has. Check out .NET
Game Programming with DirectX 9.0 by Alexandre Santos Lobao
and Ellen Hatton (Apress, 2003).

This chapter focuses on one aspect of DirectX, known as DirectDraw. This
functionality creates fast bitmap graphics, which is what needs to improve in the
old games. In this chapter, you’ll learn about DirectDraw through two example
programs. The first is a “do-one-thing” program that simply introduces the con-
cepts and renders a bunch of graphics to the screen to prove the speed of the
DirectX library. The second program puts the concepts together to create the
bulk of an arcade game.

Understanding DirectDraw Basics

The sample solution DirectXDemo demonstrates displaying bitmap images to
the screen using the DirectX API. In a good display of conservation, it recycles
one of the graphics from a prior project, the three-dimensional die. To demon-
strate the speed of the DirectX API, this demo displays 250 spinning dice in
random locations on the screen, as shown in Figure 8-1.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 280

Using DirectX

281

Figure 8-1. Spinning dice aplenty

DirectX drawing is based on the concept of surfaces. A surface is both
a source for bitmap data and a destination. The DirectXDemo application uti-
lizes three surfaces:

• The source bitmap

• The “screen” surface (also called the front surface)

• The back buffer surface, or back surface

DirectDraw achieves smooth animation by performing all drawing to a hid-
den surface, the back buffer, and then swapping the position of the front and
back surfaces once rendering is complete. As a developer, you don’t need to keep
track of which surface is being displayed, however—all drawing always happens
on the back buffer.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 281

Chapter 8

282

DirectX 9 encapsulates all of the functionality of a DirectDraw surface inside
a .NET Framework managed class called (obviously enough) Surface. This class
resides in the Microsoft.DirectX.DirectDraw namespace, which becomes avail-
able in Visual Studio .NET after installing the DirectX 9 SDK.

The other important class you’ll use in a simple DirectDraw application is
the Device class. The Device class encapsulates the capabilities of the system
upon which the program is running.

Initializing a DirectDraw Application

Getting a DirectDraw application ready for rendering using the DirectX 9 man-
aged classes requires setting up a Device instance and the front and back surfaces
used for rendering. Listing 8-1 shows some private form variables and the initial-
ization routine used in the demo application.

Listing 8-1. Setting Up a DirectDraw Application

Private Const WID As Integer = 1024

Private Const HGT As Integer = 768

Private FDraw As Microsoft.DirectX.DirectDraw.Device

Private FFront As Microsoft.DirectX.DirectDraw.Surface

Private FBack As Microsoft.DirectX.DirectDraw.Surface

Private Sub InitializeDirectDraw()

Dim oSurfaceDesc As New SurfaceDescription

Dim oSurfaceCaps As New SurfaceCaps

Dim i As Integer

FDraw = New Microsoft.DirectX.DirectDraw.Device

FDraw.SetCooperativeLevel(Me, _

Microsoft.DirectX.DirectDraw._

CooperativeLevelFlags.FullscreenExclusive)

FDraw.SetDisplayMode(WID, HGT, 16, 0, False)

With oSurfaceDesc

.SurfaceCaps.PrimarySurface = True

.SurfaceCaps.Flip = True

.SurfaceCaps.Complex = True

.BackBufferCount = 1

FFront = New Surface(oSurfaceDesc, FDraw)

1143C08CMP1.qxd 7/8/03 4:55 PM Page 282

Using DirectX

283

oSurfaceCaps.BackBuffer = True

FBack = FFront.GetAttachedSurface(oSurfaceCaps)

FBack.ForeColor = Color.White

.Clear()

End With

FNeedToRestore = True

End Sub

The InitializeDirectDraw procedure begins by creating an instance of
a DirectDraw Device class and sets what’s known as the cooperative level. The
cooperative level specifies to the operating system the performance requirements
of your application. Intensive games will want to use the FullscreenExclusive
level used here, meaning that the application will create a full-screen window
(unrelated to any form in the application) upon which the drawing will happen.

Next, the SetDisplayMode method sets the resolution of the window. The sam-
ple program creates a 1024�768 window using 16-bit color.

The remainder of the procedure defines the device as having one back buffer
and then initializes the front and back surfaces. The front surface, FFront, is instanti-
ated by calling the constructor and passing the Device variable to it. The back buffer,
FBack, is retrieved by calling a method on the front surface (GetAttachedSurface). The
last line within the With block clears the surface. Finally, a Boolean variable named
FNeedToRestore is set to True, which tells the class that all of the DirectX surfaces
require restoration before drawing can happen.

The program now has destination surfaces, but it still needs a source surface
to store the die bitmap that contains the animated frames. You need to import
the die bitmap into the solution as in Chapter 1, “Developing Your First Game.”
Listing 8-2 contains the code that loads this bitmap into a DirectDraw surface.

TIP Don’t forget to change the Build Action property on any
bitmaps in your solution to Embedded Resource.

Listing 8-2. Loading Bitmaps into Surface Instances

Private FDieSurf As Microsoft.DirectX.DirectDraw.Surface

Public Sub RestoreSurfaces()

Dim oCK As New ColorKey

Dim a As Reflection.Assembly = _

System.Reflection.Assembly.GetExecutingAssembly()

1143C08CMP1.qxd 7/8/03 4:55 PM Page 283

Chapter 8

284

FDraw.RestoreAllSurfaces()

If Not FDieSurf Is Nothing Then

FDieSurf.Dispose()

FDieSurf = Nothing

End If

FDieSurf = New Surface(a.GetManifestResourceStream(_

"DirectXDemo.dicexrot.bmp"), New SurfaceDescription, FDraw)

FDieSurf.SetColorKey(ColorKeyFlags.SourceDraw, oCK)

End Sub

The Surface class takes a resource stream as its first parameter. This is
the same way that a GDI+ Bitmap class loads a resource that’s embedded in
the solution. The second parameter is a SurfaceDescription class instance.
This class contains properties that can describe the surface (you can see
another SurfaceDescription class being used in Listing 8-1 to describe some
aspects of the front and back screen surfaces). For loading bitmaps, the sur-
face description properties aren’t needed because the attributes of the surface
are retrieved from the attributes of the bitmap itself. Thus, the surface con-
structor in Listing 8-2 creates a blank, default SurfaceDescription with no
specified properties.

The last line in Listing 8-2 sets the color key for the surface. A color key spec-
ifies one or more colors that are to be treated as transparent when rendering.
Because no such color assignment happens in Listing 8-2, the ColorKey object
named oCK declares pure black (RGB color 0, 0, 0) as the transparent color. This
program uses black because the background of the dice bitmap is also black.

Note that the surfaces of your application may be “lost” and require restora-
tion. This is especially true in windowed DirectDraw applications (as opposed to
full-screen applications) that can lose focus. Because of this possibility, the main
drawing loop of the program needs to check that the device is ready before it can
actually draw. Once the device comes back from a “not ready” state, the source
bitmaps need to be re-created. This is why the method in Listing 8-2 is called
RestoreSurfaces as opposed to a name that connotes a one-time load such as
LoadSurfaces.

Creating the Drawing Loop

The drawing in the sample program happens in a method named DrawFrame.
Listing 8-3 shows the majority of this routine, along with the Form_Load and
Form_KeyUp events.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 284

Using DirectX

285

Listing 8-3. The DrawFrame Method

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Me.Cursor.Dispose()

InitializeDirectDraw()

SetupDice

While Me.Created

DrawFrame()

End While

End Sub

Private Sub DrawFrame()

If FFront Is Nothing Then Exit Sub

'can't draw now, device not ready

If Not FDraw.TestCooperativeLevel() Then

FNeedToRestore = True

Exit Sub

End If

If FNeedToRestore Then

RestoreSurfaces()

FNeedToRestore = False

End If

FBack.ColorFill(0)

< drawing code removed>

Try

FBack.ForeColor = Color.White

FBack.DrawText(10, 10, "Press escape to exit", False)

FFront.Flip(FBack, FlipFlags.DoNotWait)

Catch oEX As Exception

Debug.WriteLine(oEX.Message)

Finally

Application.DoEvents()

End Try

End Sub

1143C08CMP1.qxd 7/8/03 4:55 PM Page 285

Chapter 8

286

Private Sub Form1_KeyUp(ByVal sender As Object, _

ByVal e As System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyUp

If e.KeyCode = Keys.Escape Then

Me.Close()

End If

End Sub

The Form_Load event runs the initialization method that has already been dis-
cussed and then calls the DrawFrame method over and over in a loop. The loop
continues to run as long as the Created property on the current form is set to True.
One other interesting thing that happens in the Form_Load event is the disposal of
the form’s cursor so that it isn’t visible on the game surface. Getting rid of the cur-
sor is as easy as invoking its Dispose method.

The DrawFrame method does some checking before any drawing happens to
make sure everything is in the correct state for drawing. The first check makes
sure the front surface exists. If it doesn’t exist, then there would be no destina-
tion surface to display to the user, so the draw loop exits immediately. The next
test happens by calling TestCooperativeLevel on the Device object. If this method
returns False, then the device isn’t ready to draw, so again the draw loop exits. In
addition, a form-level Boolean variable named FNeedToRestore is set, which indi-
cates that the dice source surface object needs to be re-created.

Once the TestCooperativeLevel method returns True, drawing is almost ready
to begin. If the FNeedToRestore variable is True, then the source bitmaps are loaded
(or reloaded) by calling RestoreSurfaces. With this, everything is ready for the
drawing to commence.

The first task performed is clearing the back buffer to black and using the
ColorFill method on the Surface object. The code immediately after the ColorFill
method is where the actual dice drawing takes place (but I’ve removed that code
so that the focus is on the structure of the drawing loop itself).

The remainder of the DrawFrame method happens inside of an exception han-
dler so that any errors are dealt with in a graceful manner. First, some text is
drawn into the upper-left corner of the back buffer, indicating that the user can
hit the Escape key to stop the application. Then, the back buffer is copied to the
front buffer by calling the Flip method on the Surface class. Flip is actually an
inaccurate description inherited from previous versions of DirectDraw, where
two surfaces were in fact actually swapped, serving as back buffers and then
front buffers in alternate frames. The method actually copies the contents of one
Surface class to the other.

The Catch portion of the exception handler writes the error to the Debug win-
dow so that the developer can inspect it later, and the Finally portion calls an
Application.DoEvents so that Windows messages can process normally. Without
this DoEvents, the application wouldn’t be able to intercept keystrokes, including
the keystroke meant to shut down the application.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 286

Using DirectX

287

Finally, the KeyUp event handler for the form detects the pressing of the Escape
key and closes the main form when detected. This stops all drawing and exits the
application.

Setting Up the Dice Drawing

Taking a quick inventory, the program now has the capability to set up a full-screen
DirectDraw surface and draws a black screen with the text Press escape to exit in
the upper-left corner. A dice bitmap also loads into a Surface instance, but it isn’t
actually drawn anywhere yet. All that remains is the code to track a bunch of
dice and to draw them onto the screen.

Create a class named SimpleDie, shown in Listing 8-4, to keep track of each
die object. It’s referred to as “simple” because the code contains no capability to
move around on the screen; each die simply spins in place.

Listing 8-4. Class to Keep Track of One Die on the Screen

Public Class SimpleDie

Private FLocation As Point

Private FFrame As Integer

Public Sub New(ByVal p As Point)

FLocation = p

End Sub

ReadOnly Property pLocation() As Point

Get

Return FLocation

End Get

End Property

Public Sub Draw(ByVal FDest As Surface, ByVal FSource As Surface)

Dim oRect As Rectangle

oRect = New Rectangle((FFrame Mod 6) * 72, (FFrame \ 6) * 72, 72, 72)

FDest.DrawFast(FLocation.X, FLocation.Y, FSource, oRect, _

DrawFastFlags.DoNotWait Or DrawFastFlags.SourceColorKey)

FFrame = (FFrame + 1) Mod 36

End Sub

End Class

1143C08CMP1.qxd 7/8/03 4:55 PM Page 287

Chapter 8

288

This class stores only two pieces of information—a screen coordinate that’s
passed into the class constructor and a private Frame variable that’s incremented as
each frame is drawn. The sole method on the class is the Draw method, which takes
two DirectDraw Surface instances as parameters: the source image and the destina-
tion. This Draw method calculates a source rectangle based on the current frame
and then uses a DrawFast method on the DirectDraw Surface class to transfer that
part of the source surface to itself. The DrawFast method takes as parameters a coor-
dinate pair (the place the bitmap should be drawn on the destination), the source
surface, a rectangle that represents the portion of the source surface to copy, and
some flags that can specify some additional functionality. In this case, the flags
specify to use the color key of the source surface when drawing to determine trans-
parency and to draw as quickly as possible by indicating the DoNotWait flag.

The demonstration program shows the speed of DirectDraw as compared to
GDI+ drawing, so it should display lots of dice on the screen at the same time.
The program is written in such a way that the number of dice displayed is a con-
stant that you can easily change. You can store the information for the 250 die
object instances using an ArrayList to store as many class instances as you want.
Listing 8-5 shows the SetupDice method and the modified DrawFrame method with
the code in place to draw the dice.

Listing 8-5. Initializing 250 SimpleDie Object Instances

Private FDice As ArrayList

Private Const NUMDICE As Integer = 250

Private Sub SetupDice()

Dim d As SimpleDie

Dim r As New Random

FDice = New ArrayList

Do While FDice.Count < NUMDICE

d = New SimpleDie(New Point(r.Next(0, WID - 72), r.Next(0, HGT - 72)))

FDice.Add(d)

Loop

End Sub

Private Sub DrawFrame()

Dim d As SimpleDie

<code removed>

1143C08CMP1.qxd 7/8/03 4:55 PM Page 288

Using DirectX

289

FBack.ColorFill(0)

For Each d In FDice

d.Draw(FBack, FDieSurf)

Next

Try

FBack.ForeColor = Color.White

FBack.DrawText(10, 10, "Press escape to exit", False)

FFront.Flip(FBack, FlipFlags.DoNotWait)

Catch oEX As Exception

Debug.WriteLine(oEX.Message)

Finally

Application.DoEvents()

End Try

End Sub

As you can see, you can modify the number of dice shown by altering only
the constant definition NUMDICE. For instance, I cranked it up to 1,000, and it was
still much faster than my GDI+ experiments in the early days of designing the
NineTiles game. The SetupDice method creates random locations in the horizon-
tal range of 0 and the width of the screen, minus the width of the die frame, and
the vertical range of 0 to the height of the screen, minus the height of a die frame.

CAUTION DirectDraw doesn’t effectively handle drawing “off the
edges” of a surface, so you’ll have do some math to keep from trying
to draw at coordinates less than 0 or greater than the width of the
destination surface.

Finally, the bitmap data for the die isn’t stored in the die class. When it’s time
to draw the die, the source surface data is passed into the class for drawing. You
would obviously not create an identical surface instance for each die class—it
would be random access memory (RAM) suicide to store the die frames bitmap
in memory 250 times. The next example also uses this approach, where sprites
with the same appearance look outside of themselves to get their sprite data.

Building an Arcade Game

With DirectDraw capabilities so easily within the grasp of the Visual Basic pro-
grammer, you’ll now write an arcade game and get some sprites interacting on

1143C08CMP1.qxd 7/8/03 4:55 PM Page 289

Chapter 8

290

Figure 8-2. SpaceRocks, ahoy!

the screen. The arcade game is called SpaceRocks, and it involves a little spaceship
floating around on the screen and shooting at some asteroids. (Sound familiar?
Not to me, either.) Figure 8-2 shows a stirring game of SpaceRocks in action.

The structure of this game isn’t unlike the structure of the DirectXDemo
program previously described, but there’s one further level of abstraction
between this program and the last. In the previous program, much of the cod-
ing happened at the form level, such as the storage of the DirectDraw Device
and Surface variables and the Dice object array. In SpaceRocks, a reusable
class named dxWorld sets up the DirectDraw surface and device objects and
handles the basic functions such as clearing the back buffer to black and flip-
ping the back buffer to the front. Think of this as the generic game class; any
future games you write will be subclasses of this class. Listing 8-6 shows por-
tions of the dxWorld class (with some already-discussed elements removed).

1143C08CMP1.qxd 7/8/03 4:55 PM Page 290

Using DirectX

291

Listing 8-6. The Ancestor Class for Future Games, dxWorld

Public MustInherit Class dxWorld

Private FFrm As Form

Private FNeedToRestore As Boolean = False

Protected oRand As New Random

Protected oDraw As Microsoft.DirectX.DirectDraw.Device

Protected oFront As Microsoft.DirectX.DirectDraw.Surface

Protected oBack As Microsoft.DirectX.DirectDraw.Surface

Protected oJoystick As Microsoft.DirectX.DirectInput.Device

Public Sub New(ByVal f As Form)

MyBase.New()

FFrm = f

FFrm.Cursor.Dispose

AddHandler FFrm.KeyDown, AddressOf FormKeyDown

AddHandler FFrm.KeyUp, AddressOf FormKeyUp

AddHandler FFrm.Disposed, AddressOf FormDispose

InitializeDirectDraw()

InitializeJoystick()

InitializeWorld()

Do While FFrm.Created

DrawFrame()

Loop

End Sub

Protected Overridable Sub FormDispose(ByVal sender As Object, _

ByVal e As System.EventArgs)

If Not (oJoystick Is Nothing) Then

oJoystick.Unacquire()

End If

End Sub

1143C08CMP1.qxd 7/8/03 4:55 PM Page 291

Chapter 8

292

ReadOnly Property WorldRectangle() As Rectangle

Get

Return New Rectangle(0, 0, WID, HGT)

End Get

End Property

'override for better keyboard handling

Protected MustOverride Sub FormKeyDown(ByVal sender As Object, _

ByVal e As System.Windows.Forms.KeyEventArgs)

'override for better keyboard handling

Protected Overridable Sub FormKeyUp(ByVal sender As Object, _

<similar to prior discussion, removed>

End Sub

Private Sub InitializeDirectDraw()

<similar to prior discussion, removed>

End Sub

'override to set up your world objects

Protected MustOverride Sub InitializeWorld()

'override when bitmaps have to be reloaded

Protected Overridable Sub RestoreSurfaces()

oDraw.RestoreAllSurfaces()

End Sub

Private Sub DrawFrame()

<similar to prior discussion, removed>

End Sub

'override. put all your drawing in here.

Protected Overridable Sub DrawWorldWithinFrame()

Try

oBack.ForeColor = Color.White

oBack.DrawText(10, 10, "Press escape to exit", False)

Catch oEX As Exception

Debug.WriteLine(oEX.Message)

End Try

End Sub

End Class

The constructor for the dxWorld class takes a form as a parameter, and this
form is dynamically assigned event handlers for its KeyUp, KeyDown, and Dispose

1143C08CMP1.qxd 7/8/03 4:55 PM Page 292

Using DirectX

293

events. The form used as the parameter for this class needs to have almost no
code in it at all, except for the code that sets up an instance of this dxWorld class
(actually, an instance of a descendant of the dxWorld class because dxWorld itself
is declared MustInherit). As shown in Listing 8-7, creating an instance of this
game on the form happens in four lines of code on an empty form.

Listing 8-7. Creating a New dxWorld Instance

Public Class fMain

Inherits System.Windows.Forms.Form

Dim FWorld As dxWorld.dxWorld

Private Sub fMain_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

FWorld = New dxWorld.dxSpaceRocks(Me)

End Sub

End Class

All of the important variables in the dxWorld class are declared as protected
so that they’ll be accessible in the descendant classes. This includes the Surface
variables for the front and back surface and the DirectDraw Device object. There’s
also a Random object instance set up so that random numbers can be generated
from anywhere inside the class or its descendants.

Setting Up a Joystick

You might also notice a variable named oJoystick, which is of type
Microsoft.DirectX.DirectInput.Device. Yes, the new game class will be able to
handle joystick input as well as keyboard input. Getting the joystick ready hap-
pens in the InitializeJoystick method on the dxWorld class, as shown in
Listing 8-8.

Listing 8-8. The InitializeJoystick Method

Private Sub InitializeJoystick()

Dim oInst As DeviceInstance

Dim oDOInst As DeviceObjectInstance

1143C08CMP1.qxd 7/8/03 4:55 PM Page 293

Chapter 8

294

'get the first attached joystick

For Each oInst In Manager.GetDevices(_

DeviceClass.GameControl, EnumDevicesFlags.AttachedOnly)

oJoystick = New Microsoft.DirectX._

DirectInput.Device(oInst.InstanceGuid)

Exit For

Next

If Not (oJoystick Is Nothing) Then

oJoystick.SetDataFormat(DeviceDataFormat.Joystick)

oJoystick.SetCooperativeLevel(FFrm, _

Microsoft.DirectX.DirectInput. _

CooperativeLevelFlags.Exclusive Or _

Microsoft.DirectX.DirectInput.CooperativeLevelFlags.Foreground)

' Set the numeric range for each axis to +/- 256.

For Each oDOInst In oJoystick.Objects

If 0 <> (oDOInst.ObjectId And _

CInt(DeviceObjectTypeFlags.Axis)) Then

oJoystick.Properties.SetRange(ParameterHow.ById, _

oDOInst.ObjectId, New InputRange(-256, +256))

End If

Next

End If

End Sub

InitializeJoystick retrieves the first game control device that it finds attached
to the machine and then sets the range of all Axis objects within that joystick to
have a range from –256 to +256. The standard game pad will have an x-axis and
a y-axis; some three-dimensional controllers, such as SpaceBall, may have an
x-axis, y-axis, and z-axis to be defined. Based on Listing 8-8, all axis objects asso-
ciated with the joystick will be found and have their range set.

You’ll see the code that shows how to poll the joystick for data and use it to
update the game state later in the section “Setting Up the Ship Control Code.”
You first need to see how to set up the game elements themselves.

Creating the dxSprite Class

The base information to keep track of an object on the screen is stored in a class
named dxSprite, as shown in Listing 8-9. This class is somewhat similar in struc-
ture to the SimpleDie class defined for the DirectXDemo project.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 294

Using DirectX

295

Listing 8-9. The dxSprite Class Interface

Public MustInherit Class dxSprite

Public Event GetSurfaceData(ByVal sender As dxSprite, _

ByRef oSource As Microsoft.DirectX.DirectDraw.Surface, _

ByRef oRect As Rectangle)

Property Location() As PointF

Property Size() As Size

Overridable Property Frame() As Integer

ReadOnly Property BoundingBox() As Rectangle

ReadOnly Property WorldBoundingBox() As Rectangle

Property pShowBoundingBox() As Boolean

ReadOnly Property Center() As PointF

Public MustOverride Sub Move()

Public Sub Draw(ByVal oSurf As Microsoft.DirectX.DirectDraw.Surface)

End Class

Much of the definition of this class is straightforward and doesn’t require
explanation. There are a few members, however, that do require a bit of clarifica-
tion. The GetSurfaceData event is used as a callback so that the sprite class doesn’t
have to store surface (source bitmap) data directly. The reason you might not
want to store surface data with the sprite was hinted at in the DirectXDemo appli-
cation earlier. First, a game might contain dozens (hundreds?) of instances of the
same sprite, and you certainly don’t want to store multiple copies of the same
bitmap data in each individual sprite instance.

Second, a single object may have several bitmaps to represent it depending
on the state in which it might be. For the SpaceRocks game, for example, the
ship object has three possible sprites: a ship with a fire trail, a ship without
a trail, and an exploding ship for when it gets hit by a rock.

Using an event to retrieve the proper sprite based on the state of the object
in question helps to decouple the sprite class from the game class. Note that
there’s nothing directly relevant to an arcade space-shooting-rock-type game in
the class definition shown in Listing 8-9. The goal is to keep the dxSprite class
generic enough to reuse in different projects (but you’ll be creating SpaceRocks-
specific subclasses for this game).

The Draw method of the sprite class is also nonstandard. As mentioned ear-
lier in the chapter, DirectDraw doesn’t take kindly to copying surfaces off the edge
of the destination surface. The copy fails miserably, in fact, and crashes the pro-
gram. Even if this crash is handled gracefully with a structure exception handler,

1143C08CMP1.qxd 7/8/03 4:55 PM Page 295

Chapter 8

296

Figure 8-3. Two sprites partially off the left side of the screen. The gray area must
be clipped, and only the white area should be drawn.

the sprite “winks” out of existence as it reaches the edge of the destination sur-
face instead of smoothly scrolling off the screen.

You must do some nasty rectangle manipulation to fix this problem. If you
want to draw a ship partially off the left side of the screen, for example, then the
program has to clip off the left side of the sprite and draw only the right portion of
the rectangle on the left side. If the ship sprite is moving left, then each frame will
clip more and more of the left side of the ship until it disappears. Figure 8-3 shows
a sprite off the left side of the screen. The gray area is the area to be clipped.

The nasty clipping math must also adjust the bounding boxes of each sprite.
The bounding box represents a rectangle that surrounds the sprite and helps to
test for collision between two sprites that might hit each other (the ship with
a rock, for example). There are two representations of the bounding box stored
for each sprite. One is declared in sprite coordinates, meaning that the upper-left
corner in this bounding box is usually 0, 0. The second bounding box representa-
tion is stored in world coordinates, meaning that the upper-left corner is usually
the same as the sprite’s Location property (the location on the screen).
Listing 8-10 shows a portion of the Draw method.

Listing 8-10. A Portion of the Draw Method

Public Sub Draw(ByVal oSurf As Microsoft.DirectX.DirectDraw.Surface)

Dim oSource As Microsoft.DirectX.DirectDraw.Surface

Dim oRect As Rectangle

Dim oPt As Point

Dim iDiff As Integer

1143C08CMP1.qxd 7/8/03 5:07 PM Page 296

Using DirectX

297

RaiseEvent GetSurfaceData(Me, oSource, oRect)

If oSource Is Nothing Then

Exit Sub

Else

Try

FWBB = Me.BoundingBox 'start w/ normal bbox

'start at the location

oPt = New Point(System.Math.Floor(Location.X), _

System.Math.Floor(Location.Y))

If oPt.X < 0 Then

'draw partial on left side

oRect = New Rectangle(oRect.Left - oPt.X, oRect.Top, _

oRect.Width + oPt.X, oRect.Height)

If oPt.X + FWBB.Left < 0 Then

FWBB = New Rectangle(0, FWBB.Top, _

FWBB.Width + (oPt.X + FWBB.Left), FWBB.Height)

Else

FWBB = New Rectangle(FWBB.Left + oPt.X, FWBB.Top, _

FWBB.Width, FWBB.Height)

End If

oPt.X = 0

End If

<lots of other rectangle-clipping code removed>

'should never happen, just in case

If oRect.Width <= 0 Or oRect.Height <= 0 Then Return

'offset the bounding box by the world coordinates

FWBB.Offset(oPt.X, oPt.Y)

'draw the sprite

oSurf.DrawFast(oPt.X, oPt.Y, oSource, oRect, _

DrawFastFlags.DoNotWait Or DrawFastFlags.SourceColorKey)

1143C08CMP1.qxd 7/8/03 4:55 PM Page 297

Chapter 8

298

'draw the bounding box

If Me.pShowBoundingBox Then

oSurf.ForeColor = Color.Red

oSurf.DrawBox(FWBB.Left, FWBB.Top, FWBB.Right, FWBB.Bottom)

End If

Catch oEx As Exception

Debug.WriteLine("--------------------------------------")

Debug.WriteLine(oEx.Message)

End Try

End If

End Sub

Creating the dxSpaceRocks Class

The SpaceRocks game is implemented in the class named dxSpaceRocks, which is
a descendant of the dxWorld class. This class contains the classes that store all of
the game objects, including the ship, the rocks, and any bullets currently flying
around. The rocks and bullets are stored in a different way because there can be
multiple instances of these classes in the game at one time. The player’s ship is
always a lone instance, so the class that contains the ship information has
a much different structure.

Setting Up the Game Class

Listing 8-11 shows the declaration of the game class and the instantiation of the
private variables that track all the game objects.

Listing 8-11. The dxSpaceRocks Class with the Game Object Class Definition and
Initialization Code

Public Class dxSpaceRocks

Inherits dxWorld

Private FShip As dxShipSprite

Private FRocks As dxRockCollection

Private FBullets As dxBulletCollection

Protected Overrides Sub InitializeWorld()

Dim oRand As New Random

1143C08CMP1.qxd 7/8/03 4:55 PM Page 298

Using DirectX

299

FShip = New dxShipSprite

FShip.Location = New PointF(100, 100)

FShip.Size = New Size(96, 96)

FShip.pShowBoundingBox = False

FRocks = New dxRockCollection

FRocks.pShowBoundingBox = False

FBullets = New dxBulletCollection

FBullets.pShowBoundingBox = False

End Sub

Protected Overrides Sub RestoreSurfaces()

MyBase.RestoreSurfaces()

FShip.RestoreSurfaces(oDraw)

FRocks.RestoreSurfaces(oDraw)

FBullets.RestoreSurfaces(oDraw)

End Sub

<code removed>

End Class

The rock and bullet storage classes are collections, and their class names refer
to them as such. The ship class, however, is a direct descendant of the dxSprite
class, so its initialization is a bit different from the other two.

The procedure RestoreSurfaces, if you’ll recall, is called when bitmap surface
objects have to be re-created. Because the game class itself isn’t storing any source
surface objects, each game class has its own RestoreSurfaces method, and this
method is called from the game’s method of the same name. This procedure was
originally declared as protected and Overrideable in the base dxWorld class, which
gives you the ability to access it and override it in the subclass.

Setting Up the Game Class Drawing and Movement

Drawing for all descendants of the dxWorld class happens by overriding the pro-
tected method DrawWorldWithinFrame. Listing 8-12 shows that method.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 299

Chapter 8

300

Listing 8-12. The DrawWorldWithinFrame Method

Protected Overrides Sub DrawWorldWithinFrame()

Dim p As New Point((WID / 2) - 40, 10)

MyBase.DrawWorldWithinFrame()

'joysticks don't generate events, so we update the ship

'based on joystick state each turn

UpdateShipState()

FShip.Move()

FRocks.Move()

FBullets.Move()

FBullets.Draw(oBack)

FShip.Draw(oBack)

FRocks.Draw(oBack)

FBullets.BreakRocks(FRocks)

oBack.ForeColor = Color.White

Select Case FShip.Status

Case ShipStatus.ssAlive

oBack.DrawText(p.X, p.Y, "Lives Left: " & _

FShip.LivesLeft, False)

If FRocks.CollidingWith(FShip.WorldBoundingBox, _

bBreakRock:=False) Then

FShip.KillMe()

End If

Case ShipStatus.ssDying

oBack.DrawText(p.X, p.Y, "Oops.", False)

Case ShipStatus.ssDead

If FShip.LivesLeft = 0 Then

oBack.DrawText(p.X, p.Y, "Game Over", False)

Else

oBack.DrawText(p.X, p.Y, _

"Hit SpaceBar to make ship appear " + _

"in middle of screen", False)

End If

End Select

End Sub

1143C08CMP1.qxd 7/8/03 4:55 PM Page 300

Using DirectX

301

The DrawWorldWithinFrame method runs once per every “clock tick” of the
game engine. It controls both object movement and object drawing. At the start
of the method is a call to a procedure named UpdateShipState. This procedure
(described next) changes the state of the ship based on what joystick buttons are
being pressed. Then, the program calls a Move method on the ship class and the
rock and bullet collections. The Move method updates the position of every game
object based on its current location, the direction it’s traveling, and the speed at
which it’s traveling.

Once all the game objects have been moved, the Draw method of the three
game class objects is called, passing in the variable that holds the back buffer
DirectDraw surface. You’ve already seen the Draw method for the dxSprite class
(with all the rectangle clipping logic), and the Draw method on the collection classes
simply calls the Draw method for each dxSprite in their respective collections.

The remainder of the DrawWorldWithinFrame method handles the drawing of
a text message at the top of the screen based on the current state of the player’s
ship. The game will report the number of lives the player has left, report a simple
Oops as the ship explodes because of collision with a rock, give instructions on
how to make the ship reappear if the user has lives left, or report Game Over if no
lives remain. One other task is handled within this Case statement, and that’s the
collision check between the ship and the rocks (the CollidingWith method on the
FRocks variable).

Setting Up the Ship Control Code

The remainder of the dxSpaceRocks class handles ship movement via keyboard or
joystick. Listing 8-13 shows this code.

Listing 8-13. Ship Movement Code for the dxSpaceRocks Class

Public Class dxSpaceRocks

Inherits dxWorld

Private FLeftPressed As Boolean = False

Private FRightPressed As Boolean = False

Private FUpPressed As Boolean = False

Private FSpacePressed As Boolean = False

<some code removed>

Protected Overrides Sub FormKeyDown(ByVal sender As Object, _

ByVal e As System.Windows.Forms.KeyEventArgs)

1143C08CMP1.qxd 7/8/03 4:55 PM Page 301

Chapter 8

302

Select Case e.KeyCode

Case Keys.Left

FLeftPressed = True

Case Keys.Right

FRightPressed = True

Case Keys.Up

FUpPressed = True

Case Keys.Space

FSpacePressed = True

Case Keys.B

FShip.pShowBoundingBox = Not FShip.pShowBoundingBox

FRocks.pShowBoundingBox = Not FRocks.pShowBoundingBox

FBullets.pShowBoundingBox = Not FBullets.pShowBoundingBox

End Select

End Sub

Protected Overrides Sub FormKeyUp(ByVal sender As Object, _

ByVal e As System.Windows.Forms.KeyEventArgs)

MyBase.FormKeyUp(sender, e)

Select Case e.KeyCode

Case Keys.Left

FLeftPressed = False

Case Keys.Right

FRightPressed = False

Case Keys.Up

FUpPressed = False

End Select

End Sub

Private Sub UpdateShipState()

Dim oState As New JoystickState

Dim bButtons As Byte()

Dim b As Byte

Dim p As PointF

If Not oJoystick Is Nothing Then

Try

oJoystick.Poll()

1143C08CMP1.qxd 7/8/03 4:55 PM Page 302

Using DirectX

303

Catch oEX As InputException

If TypeOf oEX Is NotAcquiredException Or _

TypeOf oEX Is InputLostException Then

Try

' Acquire the device.

oJoystick.Acquire()

Catch

Exit Sub

End Try

End If

End Try

Try

oState = oJoystick.CurrentJoystickState

Catch

Exit Sub

End Try

'ship is turning if x axis movement

FShip.IsTurningRight = (oState.X > 100) Or FRightPressed

FShip.IsTurningLeft = (oState.X < -100) Or FLeftPressed

FShip.ThrustersOn = (oState.Y < -100) Or FUpPressed

'any button pushed on the joystick will work

bButtons = oState.GetButtons()

For Each b In bButtons

If (b And &H80) <> 0 Then

FSpacePressed = True

Exit For

End If

Next

Else

FShip.IsTurningRight = FRightPressed

FShip.IsTurningLeft = FLeftPressed

FShip.ThrustersOn = FUpPressed

End If

1143C08CMP1.qxd 7/8/03 4:55 PM Page 303

Chapter 8

304

If FSpacePressed Then

Select Case FShip.Status

Case ShipStatus.ssDead

'center screen

FShip.BringMeToLife(WID \ 2 - FShip.Size.Width \ 2, _

HGT \ 2 - FShip.Size.Height \ 2)

Case ShipStatus.ssAlive

p = FShip.Center

p.X = p.X - 16

p.Y = p.Y - 16

FBullets.Shoot(p, FShip.Angle)

End Select

FSpacePressed = False

End If

End Sub

End Class

Keyboard state is stored in Boolean variables named FLeftPressed,
FRightPressed, FUpPressed, and FSpacePressed. These variables are set to True in
the KeyDown event and to False in the KeyUp event (if the appropriate key is indeed
being pressed, that is). By storing the variables in this way, the game allows for
object movement as long as the correct key is down. For example, once a user
presses the up arrow, the ship should have its thrusters on until the key is
released. The Boolean FUpPressed will stay True as long as the arrow is down.

The B key is the last key that affects the game—it turns the bounding boxes
on and off for debugging purposes.

NOTE This was especially useful to me as I slowly coded the
“sprite-half-off-the-screen” code in the dxSprite’s Draw method (see
Listing 8-10 to relive the pain).

The function UpdateShipState, called once per drawing frame, polls the joy-
stick and keyboard Boolean variables for their states and updates the state of the
ship accordingly. For example, if the joystick’s x-axis has a value that’s greater than
100, then the ship is turning clockwise. A move in the negative y direction on the
joystick is the cue to turn on the thrusters. Pressing Button 1 on the joystick (or
pressing the spacebar) either fires a bullet or brings a dead ship back to life.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 304

Using DirectX

305

Figure 8-4. The first frame of the each of the three ship graphics

Setting Up the Ship Class

The dxShipSprite class is a descendant of the dxSprite class discussed earlier. This
class controls the player’s ship as it cruises around on the screen. There are three
graphics required for the ship—one for the ship with thrusters off, one with thrusters
on, and one for an explosion sequence for when the ship is biting the dust.
Figure 8-4 shows one frame of each of the bitmaps.

Drawing the Ship

The two ship graphics consist of 24 frames. Each frame represents a different
rotation of the ship in a circle. There are 15 degrees of rotation between each
frame (360 degrees / 24 frames = 15 degrees per frame). The explosion sequence
is only six frames and was designed by hand (and not very well; bear in mind
that I don’t consider computer graphics design among my talents).

Drawing the correct graphic at the correct time is a function of what state
the ship is in at the moment. There’s an enumerated type declared called
ShipStatus that defines whether the ship is currently okay, in the middle of
exploding, or dead and gone. If the ship is gone, then the program obviously
doesn’t have to draw it at all. If the ship is in the middle of exploding, then the
explosion graphic is chosen for display. If the ship is okay, then one of the two
ship graphics are displayed, either with or without the thruster fire. The ship
control code in Listing 8-13 hinted at the fact that the ship sprite has a prop-
erty named ThrustersOn, and this property determines which of the two ship
bitmaps to draw. Listing 8-14 shows the portion of the dxShipSprite class that
loads the three bitmaps into DirectDraw Surface variables and the code that
selects the correct surface to draw in a given frame.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 305

Chapter 8

306

Listing 8-14. Ship Sprite State and Graphics-Related Code

Public Enum ShipStatus

ssAlive = 0

ssDying = 1

ssDead = 2

End Enum

Public Class dxShipSprite

Inherits dxSprite

Private FShipSurfaceOff As Microsoft.DirectX.DirectDraw.Surface

Private FShipSurfaceOn As Microsoft.DirectX.DirectDraw.Surface

Private FShipSurfaceBoom As Microsoft.DirectX.DirectDraw.Surface

Public Sub New()

MyBase.new()

AddHandler Me.GetSurfaceData, AddressOf GetShipSurfaceData

End Sub

Private FStatus As ShipStatus

ReadOnly Property Status() As ShipStatus

Get

Return FStatus

End Get

End Property

'we can keep surfaces in the ship

'sprite class because there's only one of them

Public Sub RestoreSurfaces(ByVal oDraw As _

Microsoft.DirectX.DirectDraw.Device)

Dim oCK As New ColorKey

Dim a As Reflection.Assembly = _

System.Reflection.Assembly.GetExecutingAssembly()

If Not FShipSurfaceOff Is Nothing Then

FShipSurfaceOff.Dispose()

FShipSurfaceOff = Nothing

End If

FShipSurfaceOff = New Surface(a.GetManifestResourceStream(_

"SpaceRocks.ShipNoFire.bmp"), New SurfaceDescription, oDraw)

FShipSurfaceOff.SetColorKey(ColorKeyFlags.SourceDraw, oCK)

1143C08CMP1.qxd 7/8/03 4:55 PM Page 306

Using DirectX

307

If Not FShipSurfaceOn Is Nothing Then

FShipSurfaceOn.Dispose()

FShipSurfaceOn = Nothing

End If

FShipSurfaceOn = New Surface(a.GetManifestResourceStream(_

"SpaceRocks.ShipFire.bmp"), New SurfaceDescription, oDraw)

FShipSurfaceOn.SetColorKey(ColorKeyFlags.SourceDraw, oCK)

If Not FShipSurfaceBoom Is Nothing Then

FShipSurfaceBoom.Dispose()

FShipSurfaceBoom = Nothing

End If

FShipSurfaceBoom = New Surface(a.GetManifestResourceStream(_

"SpaceRocks.Boom.bmp"), New SurfaceDescription, oDraw)

FShipSurfaceBoom.SetColorKey(ColorKeyFlags.SourceDraw, oCK)

End Sub

Private Sub GetShipSurfaceData(ByVal aSprite As dxSprite, _

ByRef oSurf As Surface, ByRef oRect As Rectangle)

Dim aShip As dxShipSprite = CType(aSprite, dxShipSprite)

Select Case aShip.Status

Case ShipStatus.ssDead

oSurf = Nothing

Case ShipStatus.ssDying

oSurf = FShipSurfaceBoom

Case ShipStatus.ssAlive

If aShip.ThrustersOn AndAlso _

oRand.Next(0, Integer.MaxValue) Mod 10 <> 0 Then

oSurf = FShipSurfaceOn

Else

oSurf = FShipSurfaceOff

End If

End Select

1143C08CMP1.qxd 7/8/03 4:55 PM Page 307

oRect = New Rectangle((aShip.Frame Mod 6) * 96, _

(aShip.Frame \ 6) * 96, 96, 96)

End Sub

End Class

The RestoreSurfaces code is similar to what you saw in the DirectXDemo
application, except that there are three surfaces to load instead of one. The rou-
tine GetShipSurfaceData is special because it serves as the event handler for the
GetSurfaceData event for this object. If you’ll recall, the GetSurfaceData event is
raised from within the Draw method of the dxSprite class (see Listing 8-10 if you
need a reminder). When the Draw method is ready to draw, it raises this event and
expects the event handler to pass back the correct source Surface object that
needs to be drawn, as well as a Rectangle object that indicates which portion of
the source bitmap to draw. The routine GetShipSurfaceData does all of that work
for the ship class. Based on the state of the ship and whether its thrusters are on
or off, the appropriate bitmap is returned. The last line constructs a source rec-
tangle based on the value of the Frame property, based on the knowledge that all
of the ship graphics are 96-pixels wide and high.

NOTE The game uses one additional trick when selecting a bitmap
to display. Ten percent of the time, the GetShipSurfaceData routine
returns the ship graphic without the thruster fire, even when
thrusters are on. This gives the fire a little “flicker” effect.

Moving the Ship

The ship’s current location is stored in the Location property defined on the
ancestor dxSprite class. The trick is figuring out how to move the location based
on the current angle of the ship, whether the thrusters are currently on, and how
long they’ve been on.

Properties control the velocity of the ship, which is how many pixels it moves
per frame in both the x and y directions, and its acceleration, which controls how
fast the velocity is increasing.

Listing 8-15 lists the Move method of the ship class, which is called once dur-
ing every frame by the dxSpaceRocks game class.

Chapter 8

308

1143C08CMP1.qxd 7/8/03 4:55 PM Page 308

Using DirectX

309

Listing 8-15. The Move Method of dxShipSprite

Public Overrides Sub Move()

Dim dx, dy As Single

'we're only moving every x frames

FSkipFrame = (FSkipFrame + 1) Mod 1000

If FSkipFrame Mod 3 = 0 Then

Select Case Me.Status

Case ShipStatus.ssAlive

Turn()

If ThrustersOn Then

Acceleration += 1

dy = -Math.Sin(FAngle * Math.PI / 180) * Acceleration

dx = Math.Cos(FAngle * Math.PI / 180) * Acceleration

Velocity = New PointF(Velocity.X + dx, Velocity.Y + dy)

Else

Acceleration = 0

End If

Case ShipStatus.ssDying

Frame += 1

Velocity = New PointF(0, 0)

Acceleration = 0

'we're done drawing the boom

If Frame >= 6 Then

FStatus = ShipStatus.ssDead

End If

Case ShipStatus.ssDead

'nothing

End Select

End If

Location = New PointF(Location.X + Velocity.X, Location.Y + Velocity.Y)

End Sub

1143C08CMP1.qxd 7/8/03 4:55 PM Page 309

Note that there’s a “governor” of sorts on the Move class in the form of an
integer variable named FSkipFrame. This variable updates in every execution of
the Move method, but it allows actual velocity and acceleration to change in every
third execution. Without this governor, the ship’s controls are far too touchy and
hard to control.

The Acceleration property is an integer that keeps increasing as long as the
ship’s thrusters are turned on. (Actually, there’s maximum acceleration defined in
the property, so it does max out eventually.) The Acceleration variable, along with the
current angle the ship is facing and some basic trigonometry, help determine
the speed of the ship during this turn in both the x and y directions. This speed is
stored in the Velocity property.

At the bottom of the Move method, the calculated velocity is added to the
current location, which yields the new location of the ship.

Setting Up Rocks and Rock Collections

The rocks are simpler structures than the ship because they move at a constant
speed and in a constant direction, and they aren’t (directly) affected by the game
player’s control. This simplicity is counteracted by the fact that the game has to
keep track of an undetermined number of them, however. Thus, a “manager”
class keeps track of each rock.

The (rather cool) rock graphics themselves were created courtesy of
POV-RAY models from Scott Hudson. The models represent digital representa-
tions of actual “potential earth-crossing” asteroids. Please visit the Web site
http://www.eecs.wsu.edu/~hudson/Research/Asteroids for further information.

NOTE You can find information on POV-RAY and raytracing in
Appendix B, “Using POV-RAY and Moray.”

Creating the Rock Class

The rock class itself keeps track of the size of the rock (there are three possible
sizes), the direction it’s moving, which of the two graphics to use, which direction
it’s spinning, and how fast it’s spinning. Listing 8-16 shows the public interface for
this class.

Chapter 8

310

1143C08CMP1.qxd 7/8/03 4:55 PM Page 310

Using DirectX

311

Listing 8-16. The dxRockSprite Class and Enumerated Type for Determining
Rock Size

Public Enum dxRockSize

rsLarge = 0

rsMed = 1

rsSmall = 2

End Enum

Public Class dxRockSprite

Inherits dxSprite

Public Event RockBroken(ByVal aRock As dxRockSprite)

Property pAlternateModel() As Boolean

Property pSpinReverse() As Boolean

Property pRockSize() As dxRockSize

Property pRotSpeed() As Integer

Property Velocity() As PointF

Public Overrides Sub Move()

Public Sub Break()

End Class

Details of this class are mostly trivial and unworthy of you (who by this time
is a nearly expert game programmer). The pRockSize property is mildly interesting
in that the bounding box of the rock is different depending on the size of the rock.

Creating the Rock Collection Class

The dxRockCollection class is much more interesting than the rock class. This
class keeps track of the six different DirectDraw Surface objects that store the rock
graphics (two rock shapes in three sizes each). It also keeps the pointers to each
individual rock class and handles all of the interaction between the game and the
rocks (you can think of this class as a sort of “rock broker”). To that end, several
methods on the collection class simply perform functionality upon each rock in
the collection. The Draw method is one such method, shown in Listing 8-17, which
merely calls the like-named method on each object in the collection.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 311

Chapter 8

312

Listing 8-17. The Draw Method (and Some Others)

Public Sub Draw(ByVal oSurf As Microsoft.DirectX.DirectDraw.Surface)

Dim aRock As dxRockSprite

For Each aRock In FRocks

aRock.Draw(oSurf)

Next

End Sub

Another interesting piece of functionality in the rock collection is the pair of
overloaded AddRock methods, shown in Listing 8-18. These methods add a new
rock to the collection. It also includes the code that runs when a rock is shot and
split in two.

Listing 8-18. Adding a New Rock to the Game in One of Two Ways

Private Overloads Function AddRock()

Dim oPt As PointF

'start location along the edges

Select Case FRand.Next(0, Integer.MaxValue) Mod 4

Case 0

oPt = New PointF(0, FRand.Next(0, Integer.MaxValue) Mod HGT)

Case 1

oPt = New PointF(WID, FRand.Next(0, Integer.MaxValue) Mod HGT)

Case 2

oPt = New PointF(FRand.Next(0, Integer.MaxValue) Mod WID, 0)

Case 3

oPt = New PointF(FRand.Next(0, Integer.MaxValue) Mod WID, HGT)

End Select

Return AddRock(dxRockSize.rsLarge, oPt)

End Function

Private Overloads Function AddRock(ByVal pSize As dxRockSize, _

ByVal p As PointF) As dxRockSprite

Dim aRock As dxRockSprite

aRock = New dxRockSprite

With aRock

1143C08CMP1.qxd 7/8/03 4:55 PM Page 312

Using DirectX

313

.pShowBoundingBox = Me.pShowBoundingBox

.pAlternateModel = FRand.Next(0, Integer.MaxValue) Mod 2 = 0

.pSpinReverse = FRand.Next(0, Integer.MaxValue) Mod 2 = 0

.pRotSpeed = FRand.Next(0, Integer.MaxValue) Mod 3

.pRockSize = pSize

Select Case pSize

Case dxRockSize.rsLarge

.Size = New Size(96, 96)

Case dxRockSize.rsMed

.Size = New Size(64, 64)

Case dxRockSize.rsSmall

.Size = New Size(32, 32)

End Select

.Location = p

Do 'no straight up/down or left/right

.Velocity = New PointF(FRand.Next(-3, 3), FRand.Next(-3, 3))

Loop Until .Velocity.X <> 0 And .Velocity.Y <> 0

.Move() 'the first move makes sure they're off the edge

AddHandler .GetSurfaceData, AddressOf GetRockSurfaceData

AddHandler .RockBroken, AddressOf RockBroken

End With

FRocks.Add(aRock)

End Function

Private Sub RockBroken(ByVal aRock As dxRockSprite)

Select Case aRock.pRockSize

Case dxRockSize.rsLarge

AddRock(dxRockSize.rsMed, aRock.Location)

AddRock(dxRockSize.rsMed, aRock.Location)

Case dxRockSize.rsMed

AddRock(dxRockSize.rsSmall, aRock.Location)

AddRock(dxRockSize.rsSmall, aRock.Location)

Case dxRockSize.rsSmall

'nothing

End Select

FRocks.Remove(aRock)

End Sub

1143C08CMP1.qxd 7/8/03 4:55 PM Page 313

Chapter 8

314

The first AddRock function is the one that’s used when a new, large size rock
is to be added to the game. It takes no parameters. Its job is to select a random
point along one of the four edges of the screen, and then it calls the second
AddRock method, passing along the size of the new rock (always large) and the
location it has selected.

The second AddRock method actually creates the new instance of the
dxRockSprite class, sets up all of its properties, and then adds it to the ArrayList
that holds all of the rock objects. This second AddRock method is used when
a rock is shot and splits into two smaller pieces. You can see this code in the
RockBroken routine, which serves as the event handler for the rock class event
of the same name. When a large rock is broken, two medium-sized rocks are
spawned at the same location of the large rock, and then the large rock is
removed from the ArrayList named FRocks (and thus from the game). When
a medium rock is broken, two smaller rocks are spawned in the same location,
and the medium rock is removed from the ArrayList.

The last interesting function in the rock collection class is the CollidingWith
function, which determines if an outside agent has crashed into a rock and
whether that rock should break as a result (see Listing 8-19).

Listing 8-19. The CollidingWith Function

Public Function CollidingWith(ByVal aRect As Rectangle, _

ByVal bBreakRock As Boolean) As Boolean

Dim aRock As dxRockSprite

For Each aRock In FRocks

If aRock.WorldBoundingBox.IntersectsWith(aRect) Then

If bBreakRock Then

aRock.Break()

End If

Return True

End If

Next

Return False

End Function

The collision code in the game relies on the bounding boxes of all of the
game objects (ship, rocks, and bullets). The bounding boxes are all represented
by .NET Framework Rectangle objects. One of the most useful methods built into
the Rectangle class is the IntersectsWith class, which returns True if the current
rectangle overlaps another passed-in rectangle parameter. The function shown
in Listing 8-19 checks to see if the bounding box for each rock in the collection

1143C08CMP1.qxd 7/8/03 4:55 PM Page 314

Using DirectX

315

intersects with the rectangle that’s passed into the function. If it finds an inter-
section, the function returns True and the rock involved in the collision either
breaks or doesn’t break, depending on the value of the bBreakRock parameter
(collisions with bullets break the rock, and a collision with the ship leaves the
rock intact).

Setting Up Bullets and Bullet Collections

Keeping with the pattern of discussing things in decreasing order of complexity,
the bullet class is the simplest of the three major game elements. The bullet has
only one graphic (with only a single frame) and can move in a single direction at
a fixed speed. Like the rocks class, a “manager” class keeps track of multiple bul-
lets on the screen.

Creating the Bullet Class

The bullet class is simple and short enough to list here in its entirety, as shown in
Listing 8-20.

Listing 8-20. The Bullet Sprite Class

Public Class dxBulletSprite

Inherits dxSprite

Private FFrameAliveCount As Integer

Sub New()

MyBase.New()

FBoundingBox = New Rectangle(10, 10, 12, 12)

End Sub

Private FVelocity As PointF

Property Velocity() As PointF

Get

Return FVelocity

End Get

Set(ByVal Value As PointF)

FVelocity = Value

End Set

End Property

1143C08CMP1.qxd 7/8/03 4:55 PM Page 315

Chapter 8

316

Public Overrides Sub Move()

Location = New PointF(Location.X + Velocity.X, _

Location.Y + Velocity.Y)

FFrameAliveCount += 1

End Sub

ReadOnly Property pFrameAliveCount() As Integer

Get

Return FFrameAliveCount

End Get

End Property

End Class

The bullet class keeps track of velocity and a property known as
FrameAliveCount. This property determines when a bullet has traveled far enough
and should be removed from the screen. The Move method is extremely simple. It
changes the location of the sprite by the value of the Velocity property in both
the x and y directions.

Creating the Bullet Collection Class

The collection class that keeps track of multiple bullets shares many features
with the rock collection class already discussed. It uses an ArrayList to store
multiple instances of the dxBulltetSprite class. Listing 8-21 shows the Shoot
method, which brings a new instance of the bullet class into the world.

Listing 8-21. The Shoot Method

Public Sub Shoot(ByVal p As PointF, ByVal iAngle As Integer)

If FBullets.Count >= 4 Then Exit Sub

Dim dx, dy As Single

Dim aBullet As dxBulletSprite

aBullet = New dxBulletSprite

With aBullet

.pShowBoundingBox = Me.pShowBoundingBox

.Location = p

1143C08CMP1.qxd 7/8/03 4:55 PM Page 316

Using DirectX

317

dy = -Math.Sin(iAngle * Math.PI / 180) * 6

dx = Math.Cos(iAngle * Math.PI / 180) * 6

.Velocity = New PointF(dx, dy)

.Move()

AddHandler .GetSurfaceData, AddressOf GetBulletSurfaceData

End With

FBullets.Add(aBullet)

End Sub

The Shoot method first checks that there are fewer than four bullets already
floating around in space. If four bullets are already on the screen, then the method
returns without firing. If this check succeeds, though, then a new dxBulletSprite
object is instantiated, properties are set (including the Velocity property, calcu-
lated from the angle parameter pass into the function), and the bullet is added to
the ArrayList.

The method BreakRocks, shown in Listing 8-22, is called once in each draw-
ing loop to see if the bullet has found its target.

Listing 8-22. The Method BreakRocks

Public Sub BreakRocks(ByVal FRocks As dxRockCollection)

Dim aBullet As dxBulletSprite

Dim i As Integer

'check each bullet to see if it hits a rock

'have to use a loop so you don't skip over when deleting

i = 0

Do While i < FBullets.Count

aBullet = FBullets.Item(i)

If FRocks.CollidingWith(aBullet.WorldBoundingBox, _

bBreakRock:=True) Then

FBullets.Remove(aBullet)

Else

i = i + 1

End If

Loop

End Sub

1143C08CMP1.qxd 7/8/03 4:55 PM Page 317

Chapter 8

318

The method BreakRocks uses the CollidingWith function discussed in Listing 8-19
to determine if any of the bullets in this collection have collided with any rock in the
game. A slightly tricky loop is employed in this method that requires some explana-
tion. Whenever a collection is iterated and the possibility exists that elements in the
collection will be removed during that iteration, then the program should never use
the standard For..Each method to iterate, or the result is that items in the collection
will be skipped. Instead, you should use a loop such as the one shown in Listing 8-22.
This loop uses an integer counter to keep track of the place in the iteration. The trick
is that if an element in the collection is deleted (in this case, a bullet), then the loop
counter isn’t incremented. Say the loop is an element 5 in a collection of 10, and this
element is removed from the collection. After the removal, all of the elements after
element 5 have “slid down” one place in the order, meaning the former element 6 is
now element 5. By not incrementing the counter after a delete, the next iteration of
the loop makes sure to check that next element.

Summary

Whew! What you may have thought was a reasonably simple game ended up being
a complicated set of classes with some complex relationships. The result of this
code, however, is a decent set of reusable classes for creating DirectDraw games.
A “world” class encapsulates much of the DirectDraw setup code and surfaces
for page flipping, a “sprite” class abstracts an on-screen object (which is generic
enough for many uses because it doesn’t attempt to store surface data within
itself, instead employing an event to retrieve surface data from an outside source),
and several examples of “manager” classes control several instances of similar
game elements. You should be able to use this example and become the next Atari.

1143C08CMP1.qxd 7/8/03 4:55 PM Page 318

