
Information in Multiple Tables

We spent a lot of time while we were designing our tables removing redundant or duplicate
data from our database. Instead of inserting multiple instances of text into a table, we put
the text once into another table, and then inserted the primary key pointing to that data
into the table that would have contained the duplicates. This leads to very efficiently stored
data, but means that we have to join the tables to get the data back from them in a readable
form.

For instance, Figure 7.1 shows all the data that is stored in our log table. Notice that the
second and third columns contain foreign keys from the cookie and webpage tables. It may
be easy to remember that webpageID one is the Home page but what about the other IDs?
Also what is so special about cookieID two? It seems that they are the only person that has
looked at the website, so did they enter their name in the visitor book as well? We can
answer these sort of questions by joining tables together.

There are two basic types of joins in SQL:

• the inner join, and
• the outer join.

Joining Tables 7

73

Figure 7.1 The Log table contents.

text.qxd 8/7/03 17:57 Page 73

Cross Joins

The simplest way of joining two or more tables together is by specifying more than one
table after the FROM keyword as follows:

SELECT columns
FROM table1, table2, etc

However, that seldom produces the effect that you might expect. Try joining the Log table
to the webpage table as follows:

SELECT *
FROM log, webpage

Figure 7.2 shows the results of this join, called the cross join.
Can you see what this join has done? It is probably easier if you look at this on the screen

as it is difficult to show all of the rows in the figure. Look at how many rows the query has
returned. By selecting two tables, containing five and seven rows respectively, the query has
generated 35 rows as a result. This is because the cross join links every row in the Log table
with every row in the webpage table (5 × 7 = 35). If you scroll along the results you will see
that the contents of the rows of both tables are represented in each row of these results.

Now scroll across and look at all the columns that the query has returned. You will see
that each record has returned a row that has every column of every table specified in it.You

74 Database Design Manual: using MySQL for Windows

Figure 7.2 The cross join.

text.qxd 8/7/03 17:57 Page 74

might think that you can restrict this by specifying only certain column names in the select
statement. This works to an extent, as you can see if you run the following query:

SELECT cookieid
FROM log,webpage

Even though the results now contain only one column, the query has still returned 35
rows, as can be seen in Figure 7.3.

Be careful when using cross joins; they are of little use and can cause incredible per-
formance hits on your database system if you join big tables together. Try cross joining your
webpage, log, cookies and visitorbook tables together and you will see how quickly this can
get out of hand. Joining a few little tables produces a huge result set.

Inner Joins

The cross join as described above is an inner join. Simply put, inner joins require a match
between both tables that are being joined. If no match is specified then all rows are matched
such as in the cross join.

Equi-join

An inner join that is more useful than the cross join is the equi-join. In an equi-join you
specify something to match between the tables being joined, which results in a much more
controlled join. The basic format of such a join is as follows:

SELECT columns
FROM table1, table2, etc
WHERE condition

Chapter 7 • Joining Tables 75

Figure 7.3 A cross join restricted to a single column.

text.qxd 8/7/03 17:57 Page 75

In this case the condition will check for a matching piece of data in a column that
appears in the tables to be joined. Most likely this will be matching a foreign key in one
table with a primary key in another.

The last paragraph may seem a bit confusing, but as ever with SQL its much easier to
demonstrate by example, so we will turn the previous cross join into an equi-join by adding
a WHERE clause as follows:

SELECT *
FROM log, webpage
WHERE webpage.id = log.webpageid

Figure 7.4 shows the results of the above query. Notice how the WHERE clause restricted
the number of rows of the query to 5, and got all and more of the data that we want on each
row.

Notice that in the WHERE clause we specified the table name as well as the column name
for the match. It is not always necessary to do this but if you get into the habit of doing so it
can save you a lot of time debugging later. For instance, in our example, if we had just spec-
ified the ID column without the table name, we could have been referring to the ID column
in either the webpage table or the log table, as there are two with the same name.

If you cast your mind back to the start of this chapter you will remember we were trying
to get more information from the log table so that we could see the title of the page that we
were looking for as opposed to only its ID. We needed to join the pages together to find this
out. We can now tidy up this equi-join by restricting the columns we return as follows:

SELECT webpage.title, log.*
FROM log, webpage
WHERE webpage.id = log.webpageid

Figure 7.5 shows the results of this equi-join. What the join has done is take every row
from the log table, which contains the foreign key pointing to the entry in the webpage
table. It then has included the relevant column from the webpage table (title) which
matches that foreign key.

76 Database Design Manual: using MySQL for Windows

Figure 7.4 A basic equi-join.

text.qxd 8/7/03 17:57 Page 76

If you look at the query again after the SELECT keyword, you will see that we have spec-
ified what we want from each table. The entry,

log.*

is selecting everything from the log table, whereas,

webpage.title

will just select the single column title from the webpage table. On a previous query we
selected all columns from all tables using the asterisk.You can see that using the asterisk to
select everything would be the same as using,

log.*, webpage.*

We will do one more thing to make our results tidier. If you look at Figure 7.5 again you
will see that by selecting everything from the log table we also select the foreign key
webpageID. As we already have the title of the webpage which is more useful, we do not
need to return that foreign key as well. Unfortunately, this means that we will have to spec-
ify all of the other columns in the log table instead of just using the asterisk. We will shuffle
the order of the columns slightly and use an alias as well so as to make the output look more
like the log table. Our final script will now read as follows:

SELECT log.id as logid,
log.cookieid,
webpage.title AS pagetitle,
log.browser,
log.datecreated,
log.ipnumber,
log.referringpage

FROM log, webpage
WHERE webpage.id = log.webpageid

Figure 7.6 shows the results of our completed query. We’ve given the log’s id column the
alias logid in the output to save it getting confused with any other id columns elsewhere.We

Chapter 7 • Joining Tables 77

Figure 7.5 An equi-join with selected columns.

text.qxd 8/7/03 17:57 Page 77

have done the same with the webpage’s title column so that what we are referring to
becomes clearer.

You will also notice that we do not have to return a column that we use in the match con-
ditions. In our example, we used webpage.id in the match query but filtered that column out
of the actual results by not specifying it in our output column list after the SELECT key-
word.

Equi-joins on More Tables

To demonstrate further, you can use an equi-join to inner join more than one table. We will
now join the results we obtained above with the cookie table, so that we can get the date that
the person viewing the page first looked at our site. This will show if they are visiting for the
first time or have come back to look again. To do this we will take the above query and add
another column match clause to the WHERE statement, and rename a few columns for clar-
ity:

SELECT log.id as logid,
webpage.title AS pagetitle,
log.browser,
log.datecreated AS logdate,
log.ipnumber,
log.referringpage,
cookies.datecreated AS cookiecreated

FROM log, webpage, cookies
WHERE webpage.id = log.webpageid

AND cookies.cookieid=log.cookieid

Figure 7.7 shows this query working. By comparing the datestamp of the log column,
alias logdate, with the cookie creation date, alias cookiecreated, we can now see if the viewer
is looking at the site for the first time or returning.

78 Database Design Manual: using MySQL for Windows

Figure 7.6 The completed equi-join query.

text.qxd 8/7/03 17:57 Page 78

Restricting Equi-joins

However, our log table still only has a few rows. In this situation it is easy to look through the
result set. What if we had hundreds of rows returned by this query? If this was the case we
can just further filter the rows by adding another condition to the end of the WHERE clause:

SELECT log.id AS logid,
webpage.title AS pagetitle,
log.browser,
log.datecreated AS logdate,
log.ipnumber,
log.referringpage,
cookies.datecreated AS cookiecreated

FROM log, webpage, cookies
WHERE webpage.id = log.webpageid

AND cookies.cookieid=log.cookieid
AND log.webpageid=1

Figure 7.8 shows this query running. We have restricted the whole output by looking for
the ID of 1 (the main Home page) in the results. In our example this has reduced five rows
to only three rows, but we could continue adding clauses to reduce the number further. For
instance, we could also restrict by browser or referring page to see the characteristics of
people viewing our websites from different links.

INNER JOIN – Another Format

Look again at the end of the last query:

WHERE webpage.id = log.webpageid
AND cookies.cookieid=log.cookieid
AND log.webpageid=1

Chapter 7 • Joining Tables 79

Figure 7.7 An equi-join query with three rows.

text.qxd 8/7/03 17:57 Page 79

You will notice that really there are two different meanings to the three different clauses
used. The first two,

webpage.id = log.webpageid
AND cookies.cookieid=log.cookieid

are used by the two joins to match primary and foreign keys in different tables, whereas the
last,

log.webpageid=1

is just a standard restriction that would work on a normal SELECT statement that did not
contain a join. Sometimes this can get confusing so it is useful to know of another format
of the inner join that works as follows:

SELECT log.*, webpage.title
FROM webpage

INNER JOIN log ON
webpage.id = log.webpageid

This query will produce the same results as displayed in Figure 7.3. If we wanted to
restrict the rows that we were getting back from the query, in this instance we should not
append another clause on the end of the ON condition, we would need to add a WHERE
clause as follows:

SELECT log.*, webpage.title
FROM webpage

INNER JOIN log ON
webpage.id = log.webpageid

WHERE log.webpageid = 1

Using this format clearly sets a distinction between a restriction WHERE condition and
a JOIN condition and so can lead to queries that are easier to read.

On some database systems it is advisable to use the INNER JOIN format rather than the
one shown previously, as the DBMS has special code for performing the INNER JOIN that

80 Database Design Manual: using MySQL for Windows

Figure 7.8 An equi-join with restricted rows returned.

text.qxd 8/7/03 17:57 Page 80

it only uses if in this format. This may result in your join queries running faster. If nothing
else, it save a lot of confusing WHERE clauses!

Outer Joins

The inner join allows you to join two tables which have matching data in certain rows. In an
outer join, the whole of one table is returned, along with the matching rows in another
table. The first table is returned regardless of whether anything matches with it in the sec-
ond table. If that sounds confusing to you then don’t worry too much. As usual a few exam-
ples will make it clearer.

LEFT JOIN

The LEFT JOIN is an outer join that uses the format that we just introduced in the section
on INNER JOIN as follows:

SELECT columns
FROM firsttable

LEFT JOIN secondtable ON
firsttable.column = secondtable.column

To demonstrate the left join, we have to examine the results from the following query:

SELECT webpage.title, log.datecreated
FROM log, webpage
WHERE webpage.id = log.webpageid

You should now recognize the above as an equi-join. Figure 7.9 shows the results.
What we are trying to display is a list of all of the webpages that we have on our site and

a relevant log entry for each page. However, if we look at Figure 7.9 we can see that we have

Chapter 7 • Joining Tables 81

Figure 7.9 An equi-join fails to show all web pages.

text.qxd 8/7/03 17:57 Page 81

the Home page listed four times and the Links page once. We are only displaying the page
title for rows in our log table: the rows that match. Figure 7.10 will remind you of all of the
entries in the log table.

So we need to convert this equi-join into a left join to get the desired results. Execute the
following query:

SELECT webpage.title, log.datecreated
FROM webpage

LEFT JOIN log ON
webpage.id = log.webpageid

Look at the results in Figure 7.11. You will see that we still have all of the rows that
appeared in Figure 7.9, with the addition of the extra rows in the webpage table. As there is
no corresponding entry in the last four rows, the MySQL server has returned a NULL for
the value in the datecreated column.

If we look at the query again, we can see why we call it a left join:

SELECT webpage.title, log.datecreated FROM webpage LEFT JOIN log ON ….

This has been formatted in a different way so that you can see that the webpage table is
on the left of the log table as it is written. All of the rows in the left table – the webpage table
– will be returned with the matching rows in the rightmost table. This is a good way to
remember which column does which in a left join. The leftmost column in the query will
return all its rows irrespective of matches in the right column.

Let us now swap the two columns around in the query, so that we make the log table the
leftmost:

SELECT webpage.title, log.datecreated
FROM log

LEFT JOIN webpage ON
webpage.id = log.webpageid

82 Database Design Manual: using MySQL for Windows

Figure 7.10 All of the entries in the webpages table.

text.qxd 8/7/03 17:57 Page 82

This time this query is saying: “Show me every title in the webpage table that matches a
row in the log table, and all of the rest of the datecreated entries in the log table”. Figure 7.12
shows this query running. It actually gives the same result set as the equi-join that we ran
at the start of this chapter, but it has been executed as a left join. As every row in the log
table must match a row in the webpage table, to maintain referential integrity, no NULLs
will appear.

RIGHT JOIN

As we have a left join, it follows that we will also have a right join. The format of a right join
is similar to that of a left join, as below:

SELECT columns
FROM firsttable

RIGHT JOIN secondtable ON
firsttable.column = secondtable.column

This query is saying: “Show me every column in the first table that matches a column in
the second table, and all of the rest of the second table entries”. We’ll run this with our pre-
vious example again:

SELECT webpage.title, log.datecreated
FROM log

RIGHT JOIN webpage ON
webpage.id = log.webpageid

If you have still got the script on the screen, just change the LEFT keyword to RIGHT and
run it again.

Chapter 7 • Joining Tables 83

Figure 7.11 A left join.

text.qxd 8/7/03 17:57 Page 83

Again by formatting the query in a line we can see how it works in a clearer way:

SELECT webpage.title, log.datecreated FROM log RIGHT JOIN webpage ON ….

This time it is the rightmost table, webpage, which has all of its rows returned, with only
the matching rows in the left table, log, in the result set.

If you have just worked through the previous examples, you will notice that running this
query produces the same result as the left join shown in Figure 7.11 when the table order is
reversed.

This shows an interesting function of the outer join. The following two scripts will pro-
duce identical result sets:

SELECT columns
FROM firsttable

RIGHT JOIN secondtable ON
firsttable.column = secondtable.column

SELECT columns
FROM secondtable

LEFT JOIN firsttable ON
firsttable.column = secondtable.column

If you understand this, you will realize that there is not actually a need for a system to
implement both the left and right join, as you can accomplish both by the re-ordering of
table order within the query. MySQL implements both of these joins but some other SQL
systems only implement one of them. Though not necessary, the two types of join make
query building easier when joining more than two tables with outer joins.

84 Database Design Manual: using MySQL for Windows

Figure 7.12 Left join swapping the tables’ positions.

text.qxd 8/7/03 17:57 Page 84

UNION

The UNION keyword allows you to join two result sets together. The result sets must have
similar column names. The UNION function is used as follows:

SELECT columns
FROM tables
WHERE condition
UNION
SELECT similarcolumns
FROM tables
WHERE condition

We can demonstrate this quickly by combining a query that selects all log IDs less than
3 from the log table with another that selects all log IDs that refer to the Home page as fol-
lows:

SELECT * FROM log WHERE ID < 3
UNION
SELECT * FROM log WHERE webpageID = 1

Figure 7.13 shows the results of that query. MySQL has taken the results of both of the
queries and joined them into one table, removing the duplicate row. (The two individual
queries would both have returned row ID = 1.)

But that quick example does not illustrate the full potential of using the UNION key-
word. You may realize that the above query could be re-written with a conventional
WHERE clause as follows:

SELECT *
FROM log
WHERE ID < 3 OR

webpageID = 1

Chapter 7 • Joining Tables 85

Figure 7.13 Joining two queries with UNION.

text.qxd 8/7/03 17:57 Page 85

The above can be re-written as it is selecting data from the same table. The beauty of the
UNION command is that it can join data from different tables, as long as the columns you
are choosing have similar datatypes. For example, both the cookies table and the log table
have ID fields and date fields. How would we combine the ID and the dates from both tables
into one results set? You could attempt it using a join as follows:

SELECT log.ID, log.datecreated, cookies.cookieid, cookies.datecreated
FROM log,cookies

However, the above will produce a large result set, as it is an unrestricted join, every row
in the log table returned with a row from the cookies table producing 30 rows as a result.We
just want the results with the rows from both of the two tables. We will try this query using
a union:

SELECT ID, datecreated
FROM log
UNION
SELECT cookieid, datecreated
FROM cookies

This produces a UNION of the two different tables on the ID and datecreated columns.
The results are shown in Figure 7.14.

If you have been working through all of the examples in this book, your cookie table
should contain 6 rows and your log table 5 rows. However, the result set, shown in the fig-
ure, only contains 10 rows. This is because the datecreated and the ID fields for both tables
are the same for ID = 1. MySQL has therefore treated this as duplicate entry and removed
one of the duplicates in the result set. As we have never specified the time when creating
these fields, MySQL always defaults to 00:00:00. If our examples had used more accurate
date/time fields, the difference in the time columns would have stopped this being treated
as a duplicate row.

86 Database Design Manual: using MySQL for Windows

Figure 7.14 Two different tables joined with UNION.

text.qxd 8/7/03 17:57 Page 86

