
10 The Finite Element Method for a Parabolic

Problem

In this chapter we consider the approximation of solutions of the model heat
equation in two space dimensions by means of Galerkin’s method, using piece-
wise linear trial functions. In Sect. 10.1 we consider the discretization with
respect to the space variables only, and in the following Sect. 10.2 we study
some completely discrete schemes.

10.1 The Semidiscrete Galerkin Finite Element Method

Let Ω ⊂ R2 be a bounded convex domain with smooth boundary Γ , and
consider the initial-boundary value problem,

(10.1)
ut −∆u = f, in Ω × R+,

u = 0, on Γ × R+,

u(·, 0) = v, in Ω,

where ut denotes ∂u/∂t and ∆ the Laplacian ∂2/∂x2
1 + ∂2/∂x2

2. In the first
step we shall approximate the solution u(x, t) by means of a function uh(x, t)
which, for each fixed t, is a piecewise linear function of x over a triangulation
Th of Ω, thus depending on a finite number of parameters.

Thus, let Th = {K} denote a triangulation of Ω of the type considered in
Sect. 5.2 and let {Pj}Mh

j=1 be the interior nodes of Th. Further, let Sh denote
the continuous piecewise linear functions on Th which vanish on ∂Ω and let
{Φj}Mh

j=1 be the standard basis of Sh corresponding to the nodes {Pj}Mh

j=1.
Recall the definition (5.28) of the interpolant Ih : C0(Ω̄) → Sh, and the error
bounds (5.34) with r = 2.

For the purpose of defining thus an approximate solution to the initial
boundary value problem (10.1) we first write this in weak form as in Sect. 8.3,
i.e., with the definitions there,

(10.2) (ut, ϕ) + a(u, ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 , t > 0.

We then pose the approximate problem to find uh(t) = uh(·, t), belonging to
Sh for each t, such that
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(10.3)
(uh,t, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Sh, t > 0,

uh(0) = vh,

where vh ∈ Sh is some approximation of v. Since we have discretized only
in the space variables, this is referred to as a spatially semidiscrete problem.
In the next section, we shall discretize also in the time variable to produce
completely discrete schemes.

In terms of the basis {Φj}Mh

j=1 our semidiscrete problem may be stated:
Find the coefficients αj(t) in

uh(x, t) =
Mh∑

j=1

αj(t)Φj(x),

such that

Mh∑

j=1

α′
j(t)(Φj , Φk) +

Mh∑

j=1

αj(t)a(Φj , Φk) = (f(t), Φk), k = 1, . . . ,Mh,

and, with γj denoting the nodal values of the given initial approximation vh,

αj(0) = γj , j = 1, . . . ,Mh.

In matrix notation this may be expressed as

(10.4) Bα′(t) +Aα(t) = b(t), for t > 0, with α(0) = γ,

where B = (bkj) is the mass matrix with elements bkj = (Φj , Φk), A = (akj)
the stiffness matrix with akj = a(Φj , Φk), b = (bk) the vector with entries
bk = (f, Φk), α(t) the vector of unknowns αj(t), and γ = (γj). The dimension
of all these items equals Mh, the number of interior nodes of Th.

We recall from Sect. 5.2 that the stiffness matrix A is symmetric positive
definite, and this holds also for the mass matrix B since

Mh∑

k,j=1

ξjξk(Φj , Φk) =
∥
∥
∥

Mh∑

j=1

ξjΦj

∥
∥
∥

2

≥ 0,

and since equality can only occur if the vector ξ = 0. In particular, B is
invertible, and therefore the above system of ordinary differential equations
may be written

α′(t) +B−1Aα(t) = B−1b(t), for t > 0, with α(0) = γ,

and hence obviously has a unique solution for t positive.
We begin our analysis by considering the stability of the semidiscrete

method. Since Un ∈ Sh we may choose χ = u in (10.3) to obtain
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(uh,t, uh) + a(uh, uh) = (f, uh), for t > 0,

or, since the first term equals 1
2
d
dt‖uh‖2 and the second is non-negative,

1
2

d

dt
‖uh‖2 = ‖uh‖

d

dt
‖uh‖ ≤ ‖f‖ ‖uh‖.

This yields
d

dt
‖uh‖ ≤ ‖f‖,

which after integration shows the stability estimate

(10.5) ‖uh(t)‖ ≤ ‖vh‖ +
∫ t

0

‖f‖ ds.

For the purpose of writing equation in (10.3) in operator form, we intro-
duce a discrete Laplacian ∆h, which we think of as an operator from Sh into
itself, defined by

(10.6) (−∆hψ, χ) = a(ψ, χ), ∀ψ, χ ∈ Sh.

This discrete analogue of Green’s formula clearly defines ∆hψ =
∑Mh

j=1 djΦj
from

Mh∑

j=1

dj(Φj , Φk) = −a(ψ,Φk), k = 1, . . . ,Mh,

since the matrix of this system is the positive definite mass matrix encoun-
tered above. The operator ∆h is easily seen to be selfadjoint and −∆h is
positive definite in Sh with respect to the L2-inner product, see Problem
10.3. With Ph denoting the L2-projection onto Sh, the equation in (10.3)
may now be written

(uh,t −∆huh − Phf, χ) = 0, ∀χ ∈ Sh,

or, noting that the first factor is in Sh, so that χ may be chosen equal to it,
it follows that

(10.7) uh,t −∆huh = Phf, for t > 0, with uh(0) = vh,

We denote by Eh(t) the solution operator of the homogeneous case of
the semidiscrete equation in (10.7), with f = 0. Hence Eh(t) is the operator
which takes the initial data uh(0) = vh into the solution uh(t) at time t, so
that uh(t) = Eh(t)vh. It is then easy to show (cf. Duhamel’s principle (8.22))
that the solution of the initial value problem (10.7) is

(10.8) uh(t) = Eh(t)vh +
∫ t

0

Eh(t− s)Phf(s) ds.
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We now note that it follows from (10.5) that Eh(t) is stable in L2, or

(10.9) ‖Eh(t)vh‖ ≤ ‖vh‖, ∀vh ∈ Sh.

Since also Ph has unit norm in L2 this, together with (10.8), re-establishes
the stability estimate (10.5) for the inhomogeneous equation, so that, in fact,
it suffices to show stability for the homogeneous equation.

We shall prove the following estimate for the error between the solutions
of the semidiscrete and continuous problems.

Theorem 10.1. Let uh and u be the solutions of (10.3) and (10.1). Then

‖uh(t) − u(t)‖ ≤ ‖vh − v‖ + Ch2
(
‖v‖2 +

∫ t

0

‖ut‖2 ds
)
, for t ≥ 0.

Here we require, as usual, that the solution of the continuous problem has
the regularity implicitly assumed by the presence of the norms on the right.
Note also that for vh = Ihv, (5.31) shows that

(10.10) ‖vh − v‖ ≤ Ch2‖v‖2,

in which case the first term on the right is dominated by the second. The same
holds true if vh = Phv, where Ph denotes the orthogonal projection of L2 onto
Sh, since this choice is the best approximation of v in Sh with respect to the
L2-norm, see (5.39). Another choice of optimal order is vh = Rhv, where Rh
is the elliptic (or Ritz) projection onto Sh defined in (5.49) by

(10.11) a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh.

Thus Rhv is the finite element approximation of the solution of the elliptic
problem whose exact solution is v. We recall the error estimates of Theo-
rem 5.5,

(10.12) ‖Rhv − v‖ + h|Rhv − v|1 ≤ Chs‖v‖s, for s = 1, 2.

We now turn to the

Proof of Theorem 10.1. In the main step of the proof we shall compare the
solution of the semidiscrete problem to the elliptic projection of the exact
solution. We write

(10.13) uh − u = (uh −Rhu) + (Rhu− u) = θ + ρ.

The second term is easily bounded using (10.12) and obvious estimates by

‖ρ(t)‖ ≤ Ch2‖u(t)‖2 = Ch2
∥
∥
∥v +

∫ t

0

ut ds
∥
∥
∥

2
≤ Ch2

(
‖v‖2 +

∫ t

0

‖ut‖2 ds
)
.

In order to bound θ, we note that
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(θt, χ) + a(θ, χ) = (uh,t, χ) + a(uh, χ) − (Rhut, χ) − a(Rhu, χ)
= (f, χ) − (Rhut, χ) − a(u, χ) = (ut −Rhut, χ),

(10.14)

or

(10.15) (θt, χ) + a(θ, χ) = −(ρt, χ), ∀χ ∈ Sh.

In this derivation we have used (10.3), (10.2), the definition of Rh in (10.11),
and the easily established fact that this operator commutes with time dif-
ferentiation, i.e., Rhut = (Rhu)t. We may now apply the stability estimate
(10.5) to (10.15) to obtain

‖θ(t)‖ ≤ ‖θ(0)‖ +
∫ t

0

‖ρt‖ ds.

Here

‖θ(0)‖ = ‖vh −Rhv‖ ≤ ‖vh − v‖ + ‖Rhv − v‖ ≤ ‖vh − v‖ + Ch2‖v‖2,

and further
‖ρt‖ = ‖Rhut − ut‖ ≤ Ch2‖ut‖2.

Together these estimates prove the theorem. ��

We see from the proof of Theorem 10.1 that the error estimate for the
semidiscrete parabolic problem is thus a consequence of the stability for this
problem combined with the error estimate for the elliptic problem, expressed
in terms of ρ = (Rh − I)u .

Recalling the maximum principle for parabolic equations, Theorem 8.7,
we find at once that, for the solution operatorE(t) of the homogeneous case of
the initial boundary value problem (10.1), we have ‖E(t)v‖C ≤ ‖v‖C for t ≥ 0.
The corresponding maximum principle does not hold for the finite element
problem, but it may be shown that, if the family {Th} of triangulations is
quasi-uniform, cf. (5.52), then for some C > 1,

‖Eh(t)vh‖C ≤ C‖vh‖C , for t ≥ 0.

This may be combined with the error estimate (5.53) for the stationary prob-
lem to show a maximum-norm error estimate for the parabolic problem.

In this regard we mention a variant of the semidiscrete problem (10.2)
for which a maximum principle sometimes holds, namely the lumped mass
method. To define this we replace the matrix B in (10.4) by a diagonal matrix
B̄, in which the diagonal elements are the row sums of B. One can show that
this method can also be defined by

(10.16) (uh,t, χ)h + a(uh, χ) = (f, χ), ∀χ ∈ Sh, for t > 0,

where the inner product in the first term has been obtained by computing
the first term in (10.2) by using the nodal quadrature rule (5.64). For this
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method one may derive a O(h2) error estimate similar to that of Theorem
10.1. If we now assume that all angles of the triangulations are ≤ π/2, then
the off-diagonal elements of the stiffness matrix A are nonpositive, and as a
result of this one may show that, if Ēh(t) denotes the solution operator of
the modified problem, then

‖Ēh(t)vh‖C ≤ ‖vh‖C , for t ≥ 0.

Returning to the standard Galerkin method (10.1) we now prove the
following estimate for the error in the gradient.

Theorem 10.2. Under the assumptions of Theorem 10.1, we have for t ≥ 0,

|uh(t) − u(t)|1 ≤ |vh − v|1 + Ch
{
‖v‖2 + ‖u(t)‖2 +

( ∫ t

0

‖ut‖2
1 ds

)1/2}
.

Proof. As before we write the error in the form (10.13). Here by (10.12),

|ρ(t)|1 = |Rhu(t) − u(t)|1 ≤ Ch‖u(t)‖2.

In order to estimate ∇θ we use again (10.15), now with χ = θt. We obtain

‖θt‖2 + 1
2

d

dt
|θ|21 = −(ρt, θt) ≤ 1

2 (‖ρt‖2 + ‖θt‖2),

so that
d

dt
|θ|21 ≤ ‖ρt‖2,

or

|θ(t)|21 ≤ |θ(0)|21 +
∫ t

0

‖ρt‖2 ds ≤
(
|vh − v|1 + |Rhv − v|1

)2
+
∫ t

0

‖ρt‖2 ds.

Hence, since a2 + b2 ≤ (|a| + |b|)2 and in view of (10.12), we conclude

(10.17) |θ(t)|1 ≤ |vh − v|1 + Ch
{
‖v‖2 +

(∫ t

0

‖ut‖2
1 ds

)1/2}
,

which completes the proof. ��

Note that if vh = Ihv or Rhv, then

|vh − v|1 ≤ Ch‖v‖2,

so that the first term on the right in Theorem 10.2 is dominated by the
second.

We make the following observation concerning θ = uh − Rhu: Assume
that we choose vh = Rhv, so that θ(0) = 0. Then in addition to (10.17) we
have
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|θ(t)|1 ≤
(∫ t

0

‖ρt‖2 ds
)1/2

≤ Ch2
(∫ t

0

‖ut‖2
2 ds

)1/2

.

Hence the gradient of θ is of second order O(h2), whereas the gradient of the
total error is only of orderO(h) as h→ 0. Thus ∇uh is a better approximation
to ∇Rhu than is possible to ∇u. This is an example of a phenomenon which
is sometimes referred to as superconvergence.

The discrete solution operator Eh(t) introduced above also has smooth-
ing properties analogous to the corresponding results in Sect. 8.2 for the
continuous problem, such as, for instance

|Eh(t)vh|1 ≤ Ct−1/2‖vh‖, for t > 0, vh ∈ Sh,

and

(10.18)
∥
∥
∥Dk

tEh(t)vh
∥
∥
∥ = ‖∆k

hEh(t)vh‖ ≤ Ckt
−k‖vh‖, for t > 0, vh ∈ Sh.

Such results may be used to show, e.g., the following non-smooth data error
estimate for the homogeneous equation.

Theorem 10.3. Assume that f = 0 and let uh and u be the solutions of
(10.3) and (10.1), respectively, where now the initial data for (10.3) are cho-
sen as vh = Phv. Then

‖uh(t) − u(t)‖ ≤ Ch2t−1‖v‖, for t > 0.

The proof is left as an exercise (Problem 10.4). This result shows that the
convergence rate is O(h2) for t bounded away from zero, even when v is only
assumed to belong to L2.

The above theory easily extends to finite elements of higher order, under
the appropriate regularity assumptions on the solution. Thus, if the finite
element subspace is such that

(10.19) ‖Rhv − v‖ ≤ Chr‖v‖r, ∀v ∈ Hr ∩H1
0 ,

then we may show the following theorem.

Theorem 10.4. Let uh and u be the solutions of (10.3) and (10.1), respec-
tively, and assume that (10.19) holds. Then, for vh suitably chosen, we have

‖uh(t) − u(t)‖ ≤ Chr
(
‖v‖r +

∫ t

0

‖ut‖r ds
)
, for t ≥ 0.

Recall from (5.50) that for r > 2 the estimate (10.19) holds for piecewise
polynomials of degree r− 1, but that the regularity assumption v ∈ Hr ∩H1

0

is then somewhat unrealistic. For a domain Ω with a smooth boundary Γ
special considerations are needed in the boundary layer Ω \Ωh.
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10.2 Some Completely Discrete Schemes

We shall now turn our attention to some simple schemes for discretization
also with respect to the time variable, and let Sh be the space of piecewise
linear finite element functions as before. We begin with the backward Euler-
Galerkin method. With k the time step and Un ∈ Sh the approximation of
u(t) at t = tn = nk, this method is defined by replacing the time derivative
in (10.3) by a backward difference quotient, or with ∂̄tUn = k−1(Un−Un−1),

(10.20)
(∂̄tUn, χ) + a(Un, χ) = (f(tn), χ), ∀χ ∈ Sh, n ≥ 1,

U0 = vh.

Given Un−1 this defines Un implicitly from the discrete elliptic problem

(Un, χ) + ka(Un, χ) = (Un−1 + kf(tn), χ), ∀χ ∈ Sh.

Expressing Un in terms of the basis {Φ}Mh

j=1 as Un(x) =
∑Mh

j=1 α
n
j Φj(x), we

may write this equation in the matrix notation introduced in Sect. 10.1 as

Bαn + kAαn = Bαn−1 + kbn, for n ≥ 1,

where αn is the vector with components αnj , or

αn = (B + kA)−1Bαn−1 + k(B + kA)−1bn, for n ≥ 1, with α0 = γ.

We begin our analysis of the backward Euler method by showing that it
is unconditionally stable, i.e., that it is stable independently of the relation
between h and k. Choosing χ = Un in (10.20) we have, since a(Un, Un) ≥ 0,

(∂̄tUn, Un) ≤ ‖fn‖ ‖Un‖, where fn = f(tn),

or
‖Un‖2 − (Un−1, Un) ≤ k‖fn‖ ‖Un‖.

Since (Un−1, Un) ≤ ‖Un−1‖ ‖Un‖, this shows

‖Un‖ ≤ ‖Un−1‖ + k‖fn‖, for n ≥ 1,

and hence, by repeated application,

(10.21) ‖Un‖ ≤ ‖U0‖ + k

n∑

j=1

‖f j‖.

We shall now prove the following error estimate.

Theorem 10.5. With Un and u the solutions of (10.20) and (10.1), respec-
tively, and with vh chosen so that (10.10) holds, we have, for n ≥ 0,

‖Un − u(tn)‖ ≤ Ch2
(
‖v‖2 +

∫ tn

0

‖ut‖2 ds
)

+ Ck

∫ tn

0

‖utt‖ ds.
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Proof. In analogy with (10.13) we write

Un − u(tn) =
(
Un −Rhu(tn)

)
+
(
Rhu(tn) − u(tn)

)
= θn + ρn.

As before, by (10.12),

‖ρn‖ ≤ Ch2‖u(tn)‖2 ≤ Ch2
(
‖v‖2 +

∫ tn

0

‖ut‖2 ds
)
.

This time, a calculation corresponding to (10.14) yields

(10.22) (∂̄tθn, χ) + a(θn, χ) = −(ωn, χ),

where

ωn = Rh∂̄tu(tn) − ut(tn) = (Rh − I)∂̄tu(tn) + (∂̄tu(tn) − ut(tn)) = ωn1 + ωn2 .

By application of the stability estimate (10.21) to (10.22) we obtain

‖θn‖ ≤ ‖θ0‖ + k

n∑

j=1

‖ωj1‖ + k

n∑

j=1

‖ωj2‖.

Here, as before, by (10.10) and (10.12),

‖θ0‖ = ‖vh −Rhv‖ ≤ ‖vh − v‖ + ‖v −Rhv‖ ≤ Ch2‖v‖2.

Note now that

ωj1 = (Rh − I)k−1

∫ tj

tj−1

ut ds = k−1

∫ tj

tj−1

(Rh − I)ut ds,

whence

k
n∑

j=1

‖ωj1‖ ≤
n∑

j=1

∫ tj

tj−1

Ch2‖ut‖2 ds = Ch2

∫ tn

0

‖ut‖2 ds.

Further, by Taylor’s formula,

ωj2 = k−1(u(tj) − u(tj−1)) − ut(tj) = −k−1

∫ tj

tj−1

(s− tj−1)utt(s) ds,

so that

k

n∑

j=1

‖ωj2‖ ≤
n∑

j=1

∥
∥
∥

∫ tj

tj−1

(s− tj−1)utt(s) ds
∥
∥
∥ ≤ k

∫ tn

0

‖utt‖ ds.

Together our estimates complete the proof of the theorem. ��
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Replacing the backward difference quotient with respect to time in (10.20)
by a forward difference quotient we arrive at the forward Euler-Galerkin
method, or with ∂tUn = (Un+1 − Un)/k,

(∂tUn, χ) + a(Un, χ) = (f(tn), χ), ∀χ ∈ Sh, n ≥ 1,

U0 = vh.

In matrix form this may be expressed as

Bαn+1 = (B − kA)αn + kbn, for n ≥ 0,

Since B is not a diagonal matrix this method is not explicit. However, if
this time discretization method is applied to the lumped mass semidiscrete
equation (10.16), and thus B replaced by the diagonal matrix B̄, then the
corresponding forward Euler method becomes an explicit one.

Using the discrete Laplacian defined in (10.6), the forward Euler method
may also be defined by

(10.23) Un+1 = (I + k∆h)Un + kPhf(tn), for n ≥ 0, with U0 = vh.

This method is not unconditionally stable as the backward Euler method,
but considering for simplicity only the homogeneous equation, we shall show
stability under the condition that the family {Sh} is such that

(10.24) λMh,h k ≤ 2,

where λMh,h is the largest eigenvalue of −∆h. Recalling (6.37), we note that
this holds, e.g., if the Sh satisfy the inverse inequality (6.36) and if k ≤
2C−1h2, where C is the constant in (6.37), which thus shows conditional
stability.

It is clear that (10.23) is stable if and only if ‖(I + k∆h)χ‖ ≤ ‖χ‖ for
all χ ∈ Sh, and since −∆h is symmetric positive definite, this holds if and
only if all eigenvalues of I + k∆h belong to [−1, 1]. By the positivity of −∆h

this is the same as requiring the smallest eigenvalue of I + k∆h to be ≥ −1,
or that the largest eigenvalue of −∆h is ≤ 2/k, which is (10.24). See also
Problem 10.3.

Note that because of the non-symmetric choice of the discretization in
time, the backward Euler-Galerkin method is only first order accurate in time.
We therefore now turn to the Crank-Nicolson-Galerkin method, in which the
semidiscrete equation is discretized in a symmetric fashion around the point
tn−1/2 = (n − 1

2 )k, which yields method which is second order accurate in
time. More precisely, we define Un ∈ Sh recursively for n ≥ 1 by

(10.25)
(∂̄tUn, χ) + a(1

2 (Un + Un−1), χ) = (f(tn−1/2), χ), ∀χ ∈ Sh,

U0 = vh.




