Software Tools for Multigrid Methods 107

d=2 e=ElmB4n2D { [2,2] } [1,1]
ok
sub MLSolver_prm
set multilevel method = Multigrid

set cycle type gamma = 1 ' V cycle
ok
set sweeps = [1,1] ! 1 pre- and 1 post-smoothing sweep (V1,1 cycle)

sub smoother LinEqSolver_prm
set smoother basic method = SSOR
! no of iterations governed by the number of sweeps
ok
set coarse grid solver = false ! => SSOR on the coarse grid
ok

Referring to the notation in [10, App. C.4], the sweeps item equals [vy, f14],
where ¢ is the grid level, cycle type gamma is y,, and the no of grid levels is
K = 4. You can find the complete input file for this example in Verify/test1.i.

If coarse grid solver is set to false, the smoother menu items is used to
initialize the coarse grid solver. In this example it will therefore be SSOR.
Switching to an alternative coarse-grid solver is easy, just set the coarse grid
solver menu item on and fill out a submenu on the MGtools menu that we
did not cover in the previous example:

set coarse grid solver = true ! iterative solver
sub coarse grid LinEqSolver_prm

set coarse grid basic method = SSOR

set coarse grid max iterations = 20

ok

Notice that when coarse grid solver is true and nothing else is specified, the
default Gaussian elimination solver is chosen. This means the factLU function
in the chosen matrix format class. If Gaussian elimination with pivoting is
required, one should set coarse grid solver to true and fill in the exact
specification of the GaussElim procedure on the coarse grid LinEqSolver_prm
menu.

3.5 Playing Around with Multigrid

Even with this simple Poisson1MG simulator we can do several interesting ex-
periments with multigrid. To get some feeling for different components of the
algorithm, we encourage you to do some tests on your own. Playing around
with parameters will be useful, especially if you want to apply multigrid in
more advanced problems.

The following sections will explore various aspects of multigrid by sug-
gesting a number of exercises/examples that the reader can play around with.
First we use standard multigrid as a basic iterative method. Then we inves-
tigate other variants of multigrid and use multigrid as a preconditioner for
Conjugate Gradient-like (Krylov) methods.

108 Mardal et al.

3.5.1 Number of Grids and Number of Iterations

The number of iterations. Take a multigrid V-cycle with an exact coarse
grid solver, one pre- and one post-smoothing step, use a relative residual
termination criterion for some arbitrarily prescribed tolerance, and let the
coarse grid consist of 2 x 2 bilinear elements on the unit square. That is,
use the Verify/testl.i input file as starting point. A central question is how
the number of iterations depends on the number of grids or the number of
unknowns. The sensitivity to the number of grids can easily be investigated
by changing the no of grid levels item to a multiple answer, either in the
file (do it in a copy of Verify/testl.il)

set no of grid levels = { 2 & 3 &4 &5 &6 &7 &8 & 9}

or directly on the command line®

——no_of _grid_levels '{ 2 & 3 & 4 &5 &6 &7 &8%&9 1}

The number of iterations in multigrid is written by the PoissoniMG code to
the screen. Here is a sample from an experiment on a Unix machine:

unix> ./app --iscl --Default Verify/testl.i \
—--no_of _grid_levels ’{ 2 & 3 & 4 &5 &6 &7 &8 &9} > tmp.1
unix> grep ’solver converged’ tmp.1
solver converged in 5 iterations
solver converged in 6 iterations

solver converged in 6 iterations
solver converged in 6 iterations
solver converged in 6 iterations
solver converged in 6 iterations
solver converged in 6 iterations
solver converged in 6 iterations

The total number of unknowns in these eight experiments are 25, 81, 289,
1098, 4225, 16641, 66049, and 263169 and it appears that the number of iter-
ations is constant. The V-cycle has a convergence rate, v, independent of h.
Hence, the number of iterations, k, to achieve convergence can be determined

from the relation, ¢ < 7*, where €, = ||ex|| = ||x — xi|| and || - || is, e.g., the
lo-norm, X is the exact numerical solution and xj, is the approximated solu-
log Z—"

tion after k iterations. Since, 6:51 is fixed, the number of iterations k = Tog &
should be fixed. However, we do not measure the error in this experiment.
H:’SH is used as a convergence criterion. Therefore we
cannot conclude that multigrid has a convergence rate independent of h, but
it is still a good indication. A more rigorous test is done in Section 3.6.2,
where MGtools is extended with some debugging functionality. Nevertheless,
we continue our discussion about the number or iterations.

A bounded number of iterations (for a fixed tolerance), independent of the

number of unknowns n, means a bounded number of operations per unknown:

The relative residual

5 A list of all command line options is generated by the command DpMenu__HTML

Software Tools for Multigrid Methods 109

The operations per iteration sum up to some constant times the number
of unknowns. This means that we are solving the equation system for n
unknowns in O(n) operations, which is (order) optimal.

This should not be confused with the optimality of the Full Multigrid
method, considered in Section 3.5.4. Full Multigrid reaches the discretization
error in O(n) iterations. The discretization error, Ej,, for elliptic problems is
on the form Ey, < Kh?, h = #, where K is a constant independent of h, and
d is the number of space dimensions. Hence, if the numerical error should be
comparable with the discretization error we can not use a fixed tolerance, but
need to choose ¢, < K # and determine k. A straightforward calculation
shows that,

10%(%#) _logn?? log %
logy logl/y logl/y’
Therefore, with a stopping criterion suitable for practical purposes the multi-
grid method requires the work of O(nlogn) operations.

3.5.2 Convergence Monitors

In the previous experiment we saw that the number of iterations was con-
stant even though we changed the number of unknowns (grid levels). The
reason was that multigrid reduces the error by a constant rate, independent
of the grid size. So how can we choose a convergence criterion that guarantees
that the numerical solution is approximated with the same accuracy as the
discretization error? Several criteria can be used. In the previous experiment
we simply used the ||ry||/||rol|. This is implemented as CMRelResidual. We
can estimate the error in the energy norm by measuring the residual. The
residual equation reads,

Aek =T . (31)

From this equation we derive,
(Aey,er) = (rp,er) = (tp, A rg) < [JATH|[Jrg]”.

The multigrid method is a fix point iteration, hence ||x; — x,_1]|| can be used.
We have,

e — i1l < e = x|+ % = x| S F 7+ Dllx - xoll. (3:2)

This criterion is implemented as CMAbsSeqSolution. One can also measure the
convergence factor, p, in the energy norm,

(Aey,er,) < p*(Aeg,ep), (3.3)

where A is the matrix to be solved in Poissonl. A is a symmetric positive
definite (SPD) matrix. However, the error e = x —xy, is obviously unavailable
in general and therefore unusable as convergence criterion. Instead we can

110 Mardal et al.

use the residual equation (3.1), to derive a suitable criterion for the residual.
First of all we consider some general properties. Multigrid is a linear operator,
meaning that it can be represented as a matrix. However, it is more efficiently
implemented as an algorithm, which produces an output vector vy, given an
input vector ri. We therefore introduce the algorithm as an operator B, and
v = Brj, makes sense. It is known that B is spectrally equivalent with A~"!,
and spectral equivalence of A~! and B is defined by,

co(A'x,x) < (Bx,x) <ci(A'x,x), Vx, (3.4)

or
co(Ax,x) < (ABAXx,x) < ¢1(Ax,x), Vx, (3.5)

From (3.1), (3.3) and (3.5) we derive,
(Brg,ri) = (BAeg, Ae) = (ABAeg, e) < ci1(Aeg, ep). (3.6)

The term (Brg,ry) is already computed by the preconditioned Conjugate-
Gradient method and is available at no cost. It is implemented in the conver-
gence monitor CMRelMixResidual. The term Rel or Abs refers to the fact that
the criterion is relative or absolute, respectively. These convergence monitors
and several others are implemented in Diffpack, look up the man page (dpman
ConvMonitor). We usually use a relative convergence criterion when we test
the efficiency of multigrid, since the criterion will then be independent of the
grid size.

Experiments in 8D. The code in the PoissoniMG works for 3D problems as
well (cf. [10]). We can redo the previous experiments to see if the number of
iterations n is bounded, i.e., independent of the number of unknowns, also
in 3D. Since n grows faster (with respect to the number of levels) in 3D
than in 2D, we only try 2, 3, 4, and 5 refinements on the unit cube. The
relevant lines in Verify/testl.i that needs to be updated are three items on
the GridCollector submenu:

set no of grid levels = {2 &3 &4 &5}
set refinement = [2,2,2] ! subdivide each elm into 2x2x2
set gridfile = P=PreproBox | d=3 [0,1]x[0,1]x[0,1] |

d=3 e=E1lmB8n3D [2,2,2] [1,1,1]

These modifications are incorporated in the Verify/test2.i file. Running
the PoissoniMG with the test2.i input shows that the number of iterations
seems to be no worse than constant (but higher than in the 2D experiment).
The multigrid method is in general an O(nlogn) operation algorithm in any
number of space dimensions.

3.5.3 Smoother

Effect of Different Smoothers. In the previous examples (input files test1.i
and test2.i) we used the SSOR method as smoother. What is the effect of

Software Tools for Multigrid Methods 111

other choices, like SOR and Jacobi iterations? This is investigated by editing
Verify/testl.i a bitf

set no of grid levels = 6
set smoother basic method = { SSOR & SOR & Jacobi }

(The resulting file is Verify/test3.i.) The critical result parameters to be
investigated are the number of iterations and the CPU time of the solver.
Especially the latter is a relevant measure of the relative performance of the
smoothers. The CPU time of the linear solver is written to the screen if you
run the simulator with the command-line option --verbose 1:

unix> app —-verbose 1 < Verify/test3.i > tmp.1

Again you will need to grep on the tmp.1 file to extract the relevant informa-
tion:

unix> egrep ’solver converged|solver_classname’ tmp.1

The performance of Jacobi, Gauss-Seidel, SOR, and SSOR iterations deteri-
orates with increasing number of unknowns in the linear system when these
methods are used as stand-alone solvers. In connection with multigrid, this
is no longer true, but there are of course significant differences between the
efficiency of various smoothing procedures in a multigrid context and in par-
ticular the relaxation parameter is very important. Choosing the ”"wrong”
relaxation parameter may lead to poor performance, as we will see below.

Influence of the Relaxation Parameter. Our choice of SOR in the previous test
actually means the Gauss-Seidel method, because the relaxation parameter in
SOR is 1 by default. For the same reason we used SSOR with a unit relaxation
parameter. One should notice that the optimal relaxation parameter for SOR
and SSOR as smoothers differs from the optimal value when using SOR and
SSOR as stand-alone iterative solvers. In this case under-relaxation rather
than over-relaxation is appropriate. It is trivial to test this too:

set smoother basic method = { SSOR & SOR }
set smoother relaxation parameter =
{08&1.0&1.2&1.4&1.6&1.87}

(test4.i contains these modifications.) Now two menu items are varied. To
see the menu combination in run number 5, just look at SIMULATION_m5.ml.
From the *.ml files we realize that the relaxation parameter is fixed while
changing between SSOR and SOR (or in other words, the smoother has the
fastest variation). A relaxation parameter around unity seems appropriate.

In the context of preconditioning we will see that symmetric smoothers
can be necessary.

6 It would be convenient to just take testl.i as input and give the smoother
method on the command-line. However, the command-line option --itscheme is
ambiguous. We are therefore forced to use file modifications.

112 Mardal et al.

The Number of Smoothing Steps. The number of smoothing steps is another
interesting parameter to investigate:

set sweeps = { [1,1] & [2,2] & [3,3] & [4,4] }

How many smoothing steps are optimal? We can simply run the application
with test1l.i as input and use command-line arguments for the number of
sweeps (and for increasing the CPU time by setting the number of grid levels
to 7):

./app —-iscl --Default Verify/testl.i --verbose 1 \
—--no_of _grid_levels 7 \
—--sweeps ’{ [1,1] & [2,2] & [3,3] & [4,4] }’ > tmp.1

The number of iterations decreases slightly with the number of sweeps, but
recall that the work in each iteration increases with the number of sweeps.
We have included the --verbose 1 option such that we can see the CPU time
of the total multigrid solver. The CPU times point out that one sweep is
optimal in this case.

Another open question is whether the number of pre- and post-smooth
operations should be equal. Let us experiment with pre-smoothing only, post-
smoothing only, and combined smoothing. We can either modify a copy of
the testl.i

set sweeps = { [1,0] & [2,0] & [0,1] & [0,2] & [1,1] & [2,2] }

or use the command-line option:

--sweeps ’{ [1,0] & [2,0] & [0,1] & [0,2] & [1,1] & [2,2] }’

With seven grid levels, two post-smoothings or one pre- and post-smoothing
turned out to be the best choices. This is a little bit strange. The transfer
operators (standard Lo projection) are not perfect, high frequency errors are
restricted to low frequency errors and may therefore pollute the coarse grid
correction. It is therefore very important that the pre-smoother removes all
high frequency error before transferring. These projection effects are usually
called aliasing. A funny example of aliasing is apparent in old western movies,
where the wheels seem to go backwards. This is simply a result of too coarse
sampling rate of a high frequency phenomena. In general, because of aliasing,
we need pre- smoothers (at least in theory). However, the above numerical
experiment indicated that multigrid might very well work with only post-
smoothings.

If you have a self-adjoint operator and want to construct a symmetric
multigrid preconditioner (for a Conjugate-Gradient solver), you will have to
use an equal number of pre- and post-smoothings and the pre-smoother and
post-smoother should be adjoint, to obtain a symmetric preconditioner.

Software Tools for Multigrid Methods 113

Fig. 3.1. Multigrid W-cycle

3.5.4 W Cycle and Nested Iteration

Different Multigrid Cycles. We specify the multigrid W-cycle and other cycles
by introducing a cycle parameter, often denoted by ~ [10]. The value v =1
gives a V-cycle, whereas v = 2 gives a W-cycle (see Figure 3.1 for an example
on a W-cycle). The menu item cycle type gamma is used to set 7. Use testl.i
as input and override v on the command line”:

unix> ./app --iscl --Default Verify/testl.i --verbose 1\
—--no_of _grid_levels 7 --gamma ’{ 1 & 2 & 3 }’ > tmp.1

unix> grep ’solver conv\|LinEqAdm’ tmp.1
LinEqAdm: :solve: solve a linear system, CPU time= 0.24
solver converged in 6 iterations
LinEgAdm::solve: solve a linear system, CPU time= 0.31
solver converged in 6 iterations
LinEqAdm: :solve: solve a linear system, CPU time= 0.45
solver converged in 6 iterations

The numerical experiments are done on an AMD Athlon 1800 MHz with 1
GB RAM.

The v parameter increases the complexity of the algorithm (the recursive
calls of the multigrid routine). If you encounter convergence problems in an
application, you can try a W-cycle multigrid or even v > 2. Higher ~ values
are usually used for more complicated grids or equations. For the current
Poisson equation, a straightforward V-cycle is optimal.

Nested Iteration. Nested iteration, or full multigrid, or cascadic iteration® is
based on the idea that a coarse grid solution may serve as a good start guess

7 This is only possible as long as there are no --gamma command-line option from
the simulator’s own menu (or the Diffpack libraries for that sake). Adjusting the
menu item in a file is always safe.

8 This is a special case of the nested iteration, where no restriction is used and
coarser grids are never revisited.

114 Mardal et al.

nested iteration

multigrid

smoother

Fig. 3.2. Nested iteration, multigrid V-cycle

for a fine grid iteration. Hence, before the standard V- or W-cycle, a start
vector is computed. This process starts by first computing an approximate
solution on the coarsest grid. This solution is prolongated onto the next
coarsest grid and a smoother is applied on this grid level. This process is
repeated until the finest grid is reached, where the standard multigrid process
starts. The right hand side on the coarsest grid is in Diffpack implemented as
a restriction of the right hand side on the finest grid. It is cheaper to generate
the right hand side on the coarsest grid, but this can not be done when the
right hand side comes from a residual generated by Krylov solver. We have
therefore chosen this implementation such that it is easy to use the nested
iteration as a preconditioner for a Krylov solver.

We now want to run NestedMultigrid, which can be specified as the an-
swer to the multilevel method menu item or the corresponding --ml.-method
command-line option. There is a parameter nested cycles (command-line
option --nestedcycles) that controls the number of multigrid cycles before
the solution is passed to the next finer grid as a start solution. We can include
some values of this parameter:

./app —-iscl --Default Verify/testl.i --verbose 1 \
—--nestedcycles { 1 & 2 & 3 }’ --no_of_grid_levels 7 \
--ml_method NestedMultigrid

A slight increase of the CPU time is seen as the nested cycle parameter
increases.

It appears that the efficiency of nested multigrid is better than standard
multigrid. In fact, nested multigrid is optimal, it reaches discretization error
within O(n) iterations (see also page 109). Let us compare the two approaches
directly and include a run-time plot of how the residual in the linear system
decreases with the iteration number (the run time plot item on the Define
ConvMonitor #1 menu or the --runtime_plot command-line option):

./app --iscl --Default Verify/testl.i --verbose 1 \
—--no_of_grid_levels 7 --runtime_plot ON \

Software Tools for Multigrid Methods 115

--ml_method ’{ Multigrid & NestedMultigrid }’

The run-time plot of the residuals evolution during the multigrid algorithm is
shown briefly on the screen, but the plots are also available in some standard
Diffpack curveplot files®:

tmp.LinEqConvMonitorData.SIMULATION_mO1.map
tmp.LinEqConvMonitorData.SIMULATION_mO2.map

Each of the mapfiles contains only one curve, but we can plot both curves
bY’ e'g'7

curveplot gnuplot \
-f tmp.LinEqConvMonitorData.SIMULATION mO1.map \
-f tmp.LinEqConvMonitorData.SIMULATION _mO2.map \
-r >.” ’.” ’.’ -ps r_nested_vs_std.ps

Figure 3.3 shows the resulting plot, where we clearly see that nested multigrid
results in faster decrease in the absolute norm of the residual. (When prepar-
ing the plot in Figure 3.3, we edited the Gnuplot command file, which has
the name .gnuplot.commands when produced by curveplot [10, App. B.5.1],
to improve the labels, and then we loaded this file into Gnuplot to produce
a new plot.)

log10(norm of residual) vs. no of iterations

Multigrid ——
NestedMultigrid -—»—

Fig. 3.3. Nested iteration vs. standard multigrid.

% Note that the filenames contain the string "tmp", which means that the files will
be automatically removed by the Clean script [10].

116 Mardal et al.

3.5.5 Coarse-Grid Solver

The Accuracy of the Coarse-Grid Solver. On page 107 we outlined how easy it
is to switch from using Gaussian elimination as coarse-grid solver to using an
iterative method. Let us investigate SOR, SSOR, and Conjugate-Gradients
as coarse-grid solvers and how many iterations that are optimal (i.e., how
accurate the solution need to be on the coarse grid). Input file test5.i has
the relevant new menu items:

sub MGtools
sub GridCollector

set no of grid levels = 5

set gridfile = P=PreproBox | d=2 [0,1]x[0,1]
| d=2

e=ElmB4n2D [8,8] [1,1]

d
ok

set coarse grid solver = true
sub coarse grid LinEqSolver_prm

set coarse grid basic method = { SOR & SSOR & ConjGrad }
! default relaxation parameter is 1.0

set coarse grid max iterations = { 1 & 5 & 10 & 40 }
ok

Since we are using an iterative solver, we need a coarse grid with some un-
knowns, at least more than 9. This is why we have specified 8 x 8 bilinear
elements for the coarsest grid. From the CPU-time values it appears that 10-
40 iterations have the best computational efficiency. That is, the coarse-grid
solver needs to be accurate, which also is a general result from the analysis
of multigrid methods. These experiments show that the Conjugate-Gradient
method is more efficient than SSOR,, which is more efficient than SOR, when
then maximum number of coarse-grid iterations is small. The different solu-
tion methods result in approximately the same overall CPU time when the
optimal (a large) number of coarse-grid iterations is specified. It is important
to notice that the Conjugate-Gradient method is not a linear iteration and
does not fit into most theoretical analysis of multilevel methods. However,
the numerical experiments done here indicate that it may work anyway.

The Optimal Coarse Grid and Number of Levels. We now face the important
question of how to choose the coarse-grid partition and the number of grid
levels. Let us try the following combinations of grid levels and coarse-grid
partitions, designed such that the number of unknowns on the finest grid is
constant (16384):

levels coarse-grid partition
6 [4,4]
5 (8,8]

Software Tools for Multigrid Methods 117

4 [16,16]
3 [32,32]

These modifications have been incorporated in test6a.i to testéd.i (which
are essentially minor edits of test5.i — a more efficient and convenient
method of handling the input file is to embed one input file in a Perl script
as explained in [10, Ch. 3.12.9]). As the coarse-grid solver we use SSOR with
unit relaxation parameter, i.e., symmetric Gauss-Seidel iteration, and a max-
imum number of iterations of 40. The number of iterations is constant at 7,
but the CPU-time increases dramatically as we go from a 16 x 16 to a 32 x 32
coarse grid. Thus, a very coarse coarse grid with many levels seems to be an
optimal combination.

3.5.6 Multigrid as a Preconditioner

We now want to use multigrid as a preconditioner [10, App. C] instead of as
a stand-alone iterative solver. We choose the Conjugate-Gradient algorithm
to solve the Poisson equation. This algorithm requires a symmetric precondi-
tioner and a symmetric matrix, which in a multigrid context means that the
pre- and post-smoothing operators as well as the restriction and prolongation
operators must be adjoint. Several methods are available:

— One way to satisfy the condition is to take a self-adjoint smoother like
Jacobi iteration or symmetric Gauss-Seidel iteration (i.e. SSOR with unit
relaxation parameter).

— Alternatively, use an non-symmetric smoother as a pre-smoother and its
adjoint as a post-smoother. For example, take a Gauss-Seidel iteration
(SOR) or a (R)ILU iteration with a node ordering 1,2,...,n as pre-
smoother and the same method with a reversed node ordering n,n —
1,...,1 as post-smoother.

— Another alternative is to use an additive multigrid (see section 3.5.7) with
a self-adjoint smoother like Jacobi iteration or symmetric Gauss-Seidel
iteration.

A necessary requirement is that the number of pre- and post-smoothing steps
must be equal.

Using multigrid as a preconditioner is pretty much the same as using
it as a stand-alone solver, except that applying the preconditioner means
a single multigrid iteration (e.g. one V-cycle). Technically in Diffpack, the
preconditioner PrecML must have a MLSolver, or in the case of multigrid a
Multigrid, attached. PrecML just passes the vectors x and b to Multigrid
which does the computation. These steps were taken care of in the example
of the simulator’s scan function as we explained in Section 3.3.1.

118 Mardal et al.

Specifying Multigrid as Preconditioner. In the input file we basically change
sub LinEqAdmFE

sub LinEqSolver_prm

set basic method = ConjGrad

set max iterations = 300

ok

sub Precond_prm

set preconditioning type = PreclML
ok

The input file test7.1i runs a test with both multigrid and Conjugate-Gradients
as basic solver and multigrid and the identity matrix as preconditioners. The
parameters in the multigrid method (whether used as a basic iteration scheme
or a preconditioner) are set on the MGtools menu.

Table 3.2. Comparison of Multigrid as a solver and as a preconditioner

MG CG/MG
h |#it.]CPU time|#it.[CPU time

272 5 0.01 3 0.01
2731 5 0.01 4 0.01
2-11 6 0.01 5 0.01
2751 6 0.01 5 0.02
2761 6 0.06 5 0.07
2771 6 0.25 5 0.29
278 7 1.22 5 1.19
279 7 4.85 5 4.75
2~ 7 23.08 6 31.26

Multigrid as a Preconditioner vs. a Basic Iteration Method. In Table 3.2
we compare multigrid as a solver with multigrid as a preconditioner for the
Conjugate Gradient method. The results are striking, there seems to be no
point in using Krylov subspace acceleration for a highly efficient multigrid
method as we have here (see also [13], Chapter 7.8). In general, multigrid
preconditioners are more robust and in real-life applications it is often difficult
to choose optimal multigrid parameters. While multigrid may reduce most
parts of the error, other parts remain essentially unchanged. These are picked
up by the Krylov method (see the Sections 3.6.4 and 3.7).

Investigating the Effect of Different Smoothers. Let us test the performance
of different smoothers when multigrid is used as preconditioner. The test8.i
file specifies Conjugate-Gradients as basic solver, multigrid V-cycle as the

Software Tools for Multigrid Methods 119

preconditioner, and the following parameters for the smoother and the num-
ber of smoothing sweeps:

set sweeps = { [1,1] & [0,1] }
sub smoother LinEqSolver_prm
set smoother basic method = { Jacobi & SSOR & SOR }

The results are striking: using [0,1] as sweeps leads to divergence of the
solver. This is in accordance with the requirement of an equal number of
pre- and post-smoothing steps when multigrid is used as preconditioner, as
we have already mentioned. The SOR smoother with one pre- and post-
smoothing sweep converges well, despite being non-symmetric, but applies
twice the CPU time and twice the number of Conjugate-Gradient iterations
compared with the symmetric smoothers (Jacobi and SSOR). The typical
behavior can be seen in Figure 3.4. Initially, we get nice convergence, but
later we get stagnation or even divergence.

Non symmetric Smoothers and Conjugate Gradient-like Algorithms. If we
apply a Conjugate Gradient-like method for non-symmetric linear systems,
there is no requirement of a symmetric preconditioner, and we can play
around with a wider range of smoothing strategies. The input file test9.i
launches experiments with four basic solvers, BiICGStab, CGS, GMRES, and
Conjugate-Gradients, combined with a highly non-symmetric smoother: two
Gauss-Seidel sweeps as pre-smoothing and no post-smoothing.

sub LinEqSolver_prm
set basic method = { BiCGStab & GMRES & CGS & ConjGrad }

sub ConvMonitorList_prm
sub Define ConvMonitor #1

set #1: run time plot = ON

set sweeps = [2,0]
sub smoother LinEqSolver_prm
set smoother basic method = SOR

Both BiCGStab and CGS with two pre-smoothing Gauss-Seidel sweeps ap-
pear to be as efficient as Conjugate Gradients with a symmetric multigrid
preconditioner (cf. the test8.i test). As expected, the symmetric Conjugate-
Gradient solver stagnates in combination with the non-symmetric smoother,
but the other algorithms behave well.

3.5.7 Additive Preconditioner

Additive multigrid refers to a strategy where the corrections on the differ-
ent grid levels are run independently. Originally, this method was proposed
in [14], and now it is often referred to as the BPX preconditioner (BPX)
or “multilevel diagonal scaling” (MDS). The method played an important

120 Mardal et al.

log10(residual) vs no of iterations
1.8 T T T T T

16| CG w/nonsym. prec. —— |

14 R

0 50 100 150 200 250 300

Fig. 3.4. The stagnation of a Conjugate-Gradient method with a multigrid V-
cycle, combined with a non-symmetric smoother (two Gauss-Seidel pre-smoothing
sweeps).

role for the proof of optimal complexity of multigrid, and the interpretation
as additive multigrid was found later. Additive multigrid may diverge even
for elliptic problems, but as a preconditioner, it is fairly efficient. The ad-
vantage of additive multigrid is that independent operations may serve as
a source of parallelism, although the grid transfer operations, the restric-
tions and prolongations still are serial operations. These steps can be broken
up into independent operations by splitting the computational domain into
subdomains.

Standard vs. Nested vs. Additive Multigrid. We can start testing the additive
multigrid method by running some experiments:

sub LinEqSolver_prm
set basic method = ConjGrad

sub Precond_prm
set preconditioning type = PrecML

sub MLSolver_prm

set multilevel method = {AddMultigrid & Multigrid & NestedMultigrid}
set cycle type gamma = 1 ! V cycle

set nested cycles =1

ok

set sweeps = [1,1]

sub smoother LinEqSolver_prm

set smoother basic method = SSOR

