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Summary.

Amos II (Active Mediator Object System) is a distributed mediator sys-
tem that uses a functional data model and has a relationally complete func-
tional query language, AmosQL. Through its distributed multi-database
facilities many autonomous and distributed Amos II peers can interop-
erate. Functional multi-database queries and views can be defined where
external data sources of different kinds are translated through Amos IT and
reconciled through its functional mediation primitives. Each mediator peer
provides a number of transparent functional views of data reconciled from
other mediator peers, wrapped data sources, and data stored in Amos II
itself. The composition of mediator peers in terms of other peers provides
a way to scale the data integration process by composing mediation mod-
ules. The Amos II data manager and query processor are extensible so
that new application oriented data types and operators can be added to
AmosQL, implemented in some external programming language (Java, C,
or Lisp). The extensibility allows wrapping data representations special-
ized for different application areas in mediator peers. The functional data
model provides very powerful query and data integration primitives which
require advanced query optimization.

9.1 Introduction

The mediator/wrapper approach, originally proposed by [9.42], has been used
for integrating heterogeneous data in several projects, e.g. [9.16, 9.41, 9.14,
9.5]. Most mediator systems integrate data through a central mediator server
accessing one or several data sources through a number of “wrapper” inter-
faces that translate data to a common data model (CDM). However, one of
the original goals for mediator architectures [9.42] was that mediators should
be relatively simple distributed software modules that transparently encode
domain-specific knowledge about data and share abstractions of that data
with higher layers of mediators or applications. Larger networks of media-
tors would then be defined through these primitive mediators by composing
new mediators in terms of other mediators and data sources. The core of
Amos II is an open, light-weight, and extensible database management sys-
tem (DBMS) with a functional data model. Each Amos II server contains
all the traditional database facilities, such as a storage manager, a recov-
ery manager, a transaction manager, and a functional query language named



212 Risch, Josifovski, and Katchaounov

AmosQL. The system can be used as a single-user database or as a multi-user
server to applications and to other Amos II peers.

9.1.1 Distribution

Amos II is a distributed mediator system where several mediator peers com-
municate over the Internet. Each mediator peer appears as a virtual func-
tional database layer having data abstractions and a functional query lan-
guage. Functional views provide transparent access to data sources from
clients and other mediator peers. Conflicts and overlaps between similar real-
world entities being modeled differently in different data sources are rec-
onciled through the mediation primitives [9.18, 9.17] of the multi-mediator
query language AmosQL. The mediation services allow transparent access to
similar data structures represented differently in different data sources. Ap-
plications access data from distributed data sources through queries to views
in some mediator peer.

Logical composition of mediators is achieved when multi-database views
in mediators are defined in terms of views, tables, and functions in other me-
diators or data sources. The multi-database views make the mediator peers
appear to the user as a single virtual database. Amos II mediators are compos-
able since a mediator peer can regard other mediator peers as data sources.

9.1.2 Wrappers

In order to access data from external data sources Amos II mediators may
contain one or several wrappers which process data from different kinds
of external data sources, e.g. ODBC-based access to relational databases
[9.11, 9.4], access to XML files [9.28], CAD systems [9.25], or Internet search
engines [9.22]. A wrapper is a program module in Amos II having specialized
facilities for query processing and translation of data from a particular class
of external data sources. It contains both interfaces to external data sources
and knowledge of how to efficiently translate and process queries involving ac-
cesses to a class of external data sources. In particular, external Amos II peers
known to a mediator are also regarded as external data sources and there is
a special wrapper for accessing other Amos II peers. However, among the
Amos II peers special query optimization methods are used that take into
account the distribution, capabilities, costs, etc., of the different peers [9.20].

9.1.3 The Name Server

Every mediator peer must belong to a group of mediator peers. The mediator
peers in a group are described through a meta-schema stored in a mediator
server called name server. The mediator peers are autonomous and there is
no central schema in the name server. The name server contains only some
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general meta-information such as the locations and names of the peers in the
group while each mediator peer has its own schema describing its local data
and data sources. The information in the name server is managed without
explicit operator intervention; its content is managed through messages from
the mediator peers. To avoid a bottleneck, mediator peers usually communi-
cate directly without involving the name server; it is normally involved only
when a connection to some new mediator peer is established.

9.1.4 AmosQL

AmosQL is a functional language having its roots in the functional query
languages OSQL [9.31] and DAPLEX [9.37] with extensions of mediation
primitives [9.18, 9.17], multi-directional foreign functions [9.29], late binding
[9.13], active rules [9.38], etc. Queries are specified using the select—from—
where construct as in SQL. AmosQL furthermore has aggregation operators,
nested subqueries, disjunctive queries, quantifiers, and is relationally com-
plete.

9.1.5 Query Optimization

The declarative multi-database query language AmosQL requires queries to
be optimized before execution. The query compiler translates AmosQL state-
ments first into object calculus and then into object algebra expressions. The
object calculus is expressed in an internal simple logic based language called
ObjectLog [9.29], which is an object-oriented dialect of Datalog. As part of the
translation into object algebra programs, many optimizations are applied on
AmosQL expressions relying on its functional and multi-database properties.
During the optimization steps, the object calculus expressions are re-written
into equivalent but more efficient expressions. For distributed multi-database
queries a multi-database query decomposer [9.20] distributes each object cal-
culus query into local queries executed in the different distributed Amos II
peers and data sources. For better performance, the decomposed query plans
are rebalanced over the distributed Amos II peers [9.17]. A cost-based op-
timizer on each site translates the local queries into procedural execution
plans in the object algebra, based on statistical estimates of the cost to ex-
ecute each generated query execution plan expressed in the object algebra.
A query interpreter finally interprets the optimized algebra to produce the
result of a query.

9.1.6 Multi-Directional Foreign Functions

The query optimizer is extensible through a generalized foreign function
mechanism, multi-directional foreign functions. It gives transparent access
from AmosQL to special purpose data structures such as internal Amos II
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meta-data representations or user defined storage structures. The mechanism
allows the programmer to implement query language operators in an external
language (Java, C, or Lisp) and to associate costs and selectivity estimates
with different user-defined access paths. The architecture relies on extensible
optimization of such foreign function calls [9.29]. They are important both
for accessing external query processors [9.4] and for integrating customized
data representations from data sources.

9.1.7 Organization

Next the distributed mediator architecture of Amos II is described. Then the
functional data model used in Amos II is described along with its functional
query language followed by a description of how the basic functional data
model is extended with data integration primitives. After that there is an
overview of the distributed multi-mediator query processing. Finally, related
work is discussed followed by a summary.

9.2 Distributed Mediation

Groups of distributed Amos II peers can interoperate over a network using
TCP/IP. This is illustrated by Figure 9.1 where an application accesses data
from two distributed data sources through three distributed mediator peers.
The thick lines indicate communication between peers where the arrows in-
dicate peers acting as servers.

The name server is a mediator peer storing names, locations, and other
general data about the mediators in a group. As illustrated by the dashed
lines, mediators in a group communicate with the name server to register
themselves in the group or obtain information about other peers.

The figure furthermore illustrates that several layers of mediator peers can
call other mediator peers. Notice, however, that the communication topology
is dynamic and any peer can communicate directly with any other peer or
data source in a group. It is up to the distributed mediator query optimizer
to automatically come up with the optimal communication topology between
the peers for a given query. The query optimizers of the peers can furthermore
exchange both data and schema information in order to produce an optimized
distributed execution plan.

In the figure, the uppermost mediator defines mediating functional views
integrating data from them. The views include facilities for semantic recon-
ciliation of data retrieved from the two lower mediators.

The two lower mediators translate data from a wrapped relational database
and a web server, respectively. They have knowledge of how to translate
AmosQL queries to SQL [9.11] through JDBC and, for the web server, to
web service requests.
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Fig. 9.1. Distributed mediator communication

When an Amos II system is started, it initially assumes stand-alone single-
user mode of operation in which no communication with other Amos II sys-
tems can be done. The stand-alone system can join a group by issuing a
registration command to the name server of the group. Another system com-
mand makes the mediator a peer that accepts incoming commands from other
peers in the group.

In order to access data from external data sources Amos II mediators
may contain one or several wrappers to interface and process data from ex-
ternal data sources. A wrapper is a program module in a mediator having
specialized facilities for query processing and translation of data from a par-
ticular kind of external data sources. It contains interfaces to external data
repositories to obtain both meta-data (schema definitions) and data. It also
includes data source specific rewrite rules to efficiently translate and process
queries involving accesses to a particular kind of external data source. More
specifically the wrappers perform the following functions:

— Schema importation translates schema information from the sources into a
set of Amos II types and functions.

— Query translation translates internal calculus representations of AmosQL
queries into equivalent APT calls or query language expressions executable
by the source.

— Source statistics computation estimates costs and selectivities for API calls
or query expressions to a data source.

— Proxy OID generation executes in the source query expressions or API calls
to construct prory OIDs describing source data.

— OID wverification executes in the source query expressions or API calls to
verify the validity of involved proxy OIDs, in case they have become invalid
between different query requests.
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Once a wrapper has been defined for a particular kind of source, e.g.
ODBC or a web service, the system knows how to process any AmosQL query
or view definition for all such sources. When integrating a new instance of
the source the mediator administrator can define a set of views in AmosQL
that provide abstractions of it.

Different types of applications require different interfaces to the mediator
layer. For example, there are call level interfaces allowing AmosQL statements
to be embedded in the programming languages Java, C, and Lisp. The call-in
interface for Java has been used for developing a Java-based multi-database
object browser, GOOVI [9.6].

The Amos II kernel can also be extended with plug-ins for customized
query optimization, fusion of data, and data representations (e.g. matrix
data). Often specialized algorithms are needed for operating on data from
a particular application domain. Through the plug-in features of Amos II |
domain-oriented algorithms can easily be included in the system and made
available as new query language functions in AmosQL. It is furthermore pos-
sible to add new query transformation rules (rewrite rules) for optimizing
queries over the new domain.

9.3 Functional Data Model

The data model of Amos II is an extension of the Daplex [9.37] functional
data model. The basic concepts of the data model are objects, types, and
functions.

9.3.1 Objects

Objects model all entities in the database. The system is reflective is the
sense that everything in Amos II is represented as objects managed by the
system, both system and user-defined objects. There are two main kinds
of representations of objects: literals and surrogates. The surrogates have
associated object identifiers (OIDs), which are explicitly created and deleted
by the user or the system. Examples of surrogates are objects representing
real-world entities such as persons, meta-objects such as functions, or even
Amos II mediators as meta-mediator objects.

The literal objects are self-described system-maintained objects which do
not have explicit OIDs. Examples of literal objects are numbers and strings.
Literal objects can also be collections, representing collections of other ob-
jects. The system-supported collections are bags (unordered sets with dupli-
cates) and wvectors (order-preserving collections). Literals are automatically
deleted by an incremental garbage collector when they are no longer refer-
enced in the database.



9. Functional Data Integration 217
9.3.2 Types

Objects are classified into types making each object an instance of one or
several types. The set of all instances of a type is called the extent of the
type. The types are organized in a multiple inheritance, supertype/subtype
hierarchy. If an object is an instance of a type, then it is also an instance of
all the supertypes of that type; conversely, the extent of a type is a subset
of all extents of the supertypes of that type (extent-subset semantics). For
example, if the type Student is a subtype of type Person, the extent of type
Student is also a subset of the extent of type Person. The extent of a type
which is multiple inherited from other types is a subset of the intersection of
its supertypes’ extents.

There are two kinds of types, stored and derived types. Derived types are
used mainly for data reconciliation and are described in the next section.
Stored types are defined and stored in an Amos II peer through the create
type statement, e.g.:

create type Person;

create type Student under Person;
create type Teacher under Person;
create type TA under Student, Teacher;

The above statements extend the database schema with four new types. A
TA object is both a Student and a Teacher. The extent of type Person is
the union of all objects of types Person, Student, Teacher, and TA. The
extent of type TA is the intersection of the extents of types Teacher and
Student.

All objects in the database are typed, including meta-objects such as those
representing the types themselves. The meta-objects representing types are
also stored types and instances of the meta-type named Type. In the example
the extent of the type named Type is the meta-objects representing the types
named TA, Teacher, Student, and Person.

The root in the type hierarchy is the system type named Object. The
system type Userobject is the root of all user-defined types and the extent
of type Userobject contains all user-defined objects in the database.

The major root types in the type hierarchy are illustrated by the function
diagram on Figure 9.2 where ovals denote types, thin arrows denote functions,
thick arrows denote type inheritance, and literal function result types are
omitted for readability. The type Datasource and its subtypes and functions
are explained later in section 9.4.2.

Every object has an associated type set, which is the set of those types that
the object is an instance of. Every object also has one most specific type which
is the type specified when the object is created. The full type set includes
the most specific type and all types above the type in the type hierarchy. For
example, objects of type TA have the most specific type named TA while its
full type set is {TA, Teacher, Student, Person, Userobject, Object}.
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Fig. 9.2. System type hierarchy

The type set of an object can dynamically change during the lifetime of
the object through AmosQL statements that change the most specific type
of an object. The reason for such facilities is because the role of an object
may change during the lifetime of the database. For example, a TA might
become a student for a while and then a teacher.

9.3.3 Functions

Functions model the semantics (meaning) of objects. They model proper-
ties of objects, computations over objects, and relationships between objects.
They furthermore are basic primitives in functional queries and views. Func-
tions are instances of the system type Function.

A function consists of two parts, the signature and the implementation.

The signature defines the types, and optional names, of the argument(s)
and the result of a function. For example, the signature of the function mod-
eling the attribute name of type Person would have the signature:

name (Person) ->Charstring

Functions can be defined to take any number of arguments, e.g. the arithmetic
addition function implementing the infix operator ”+" has the signature:

plus (Number ,Number) ->Number

The implementation specifies how to compute the result of a function
given a tuple of argument values. For example, the function plus computes
the result by adding the two arguments, and name obtains the name of a
person by accessing the database. The implementation of a function is nor-
mally non-procedural, i.e. a function only computes result values for given
arguments and does not have any side-effects. The exception is database pro-
cedures defined through procedural AmosQL statements.
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Furthermore, Amos II functions are often multi-directional, meaning that
the system is able to inversely compute one or several argument values if
(some part of) the expected result value is known [9.29]. Inverses of multi-
directional functions can be used in database queries and are important for
specifying general queries with function calls over the database. For example,
the following query, which finds the age of the person named ”Tore”, uses
the inverse of function name to avoid iterating over the entire extent of type
Person:

select age(p) from Person p where name(p)=’Tore’;

Depending on their implementation the basic functions can be classified
into stored, derived, and foreign functions. In addition, there are database
procedures with side-effects and prozy functions for multi-mediator access as
explained later.

— Stored functions represent properties of objects (attributes) locally stored
in an Amos IT database. Stored functions correspond to attributes in object-
oriented databases and tables in relational databases.

— Derived functions are functions defined in terms of functional queries over
other Amos II functions. Derived functions cannot have side effects and the
query optimizer is applied when they are defined. Derived functions cor-
respond to side-effect free methods in object-oriented models and views in
relational databases. AmosQL has an SQL-like select statement for defining
derived functions and ad hoc queries.

— Foreign functions provide the low-level interfaces for wrapping external

systems from Amos II. For example, data structures stored in external
storage managers can be manipulated through foreign functions. Foreign
functions can also be defined for updating external data structures, but
foreign functions to be used in queries must be side-effect free.
Foreign functions correspond to methods in object-oriented databases.
Amos II furthermore provides a possibility to associate several implementa-
tions of inverses of a given foreign function, multi-directional foreign func-
tions, which informs the query optimizer that there are several access paths
implemented for the function. To help the query processor, each associated
access path implementation may have associated cost and selectivity func-
tions. The multi-directional foreign functions provide access to external
storage structures similar to data ”blades”, ” cartridges”, or ”extenders” in
object-relational databases.

— Database procedures are functions defined using a procedural sublanguage
of AmosQL. They correspond to methods with side-effects in object-
oriented models and constructors. A common usage is for defining con-
structors of objects along with associated properties.

Amos IT functions can furthermore be overloaded, meaning that they can
have different implementations, called resolvents, depending on the type(s)
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of their argument(s). For example, the salary may be computed differently
for types Student and Teacher. Resolvents can be any of the basic function
types’. Amos II’s query compiler chooses the resolvent based on the types of
the argument(s), but not the result.

The extent of a function is a set of tuples mapping its arguments and its
results. For example, the extent of the function defined as

create function name(Person)-> Charstring as stored;

is a set of tuples < P;, N; > where P; are objects of type Person and N; are
their corresponding names. The extent of a stored function is stored in the
database and the extent of a derived function is defined by its query. The
extents are accessed in database queries.

The structure of the data associated with types is defined through a set
of function definitions. For example:

create function name(Person) -> Charstring as stored;
create function birthyear(Person) -> Integer as stored;

create function hobbies(Person) -> Bag of Charstring
as stored;
create function name(Course) -> Charstring as stored;

create function teaches(Teacher) -> Bag of Course
as stored;
create function enrolled(Student) -> Bag of Course
as stored;
create function instructors(Course c) -> Bag of Teacher t
as
select t
where teaches(t) = c; /* Inverse of teaches */

The above stored function and type definitions can be illustrated with the
function diagram of Figure 9.3.

The function name is overloaded on types Person and Course. The func-
tion instructors is a derived function that uses the inverse of function
teaches. The functions hobbies, teaches, and enrolled return sets of
values. If Bag of is declared for the value of a stored function it means that
the result of the function is a bag (multiset)?, otherwise it is an atomic value.

Functions (attributes) are inherited so the above statement will make
objects of type Teacher have the attributes name, birthyear, hobbies,
and teaches.

We notice here that single argument Amos II functions are similar to
relationships and attributes in the entity—relationship (ER) model and that

L A resolvent cannot be overloaded itself, though.
2 DAPLEX uses the notation ->> for sets.
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Fig. 9.3. Function diagram

Amos 1II types are similar to ER entities. The main difference between an
Amos II function and an ER relationship is that Amos II functions have
a logical direction from the argument to the result, while ER entities are
direction neutral. Notice that Amos II functions normally are invertible and
thus can be used in the inverse direction too. The main difference between
Amos II types and the entities in the basic ER model is that Amos II types
can be inherited.

Multi-Directional Foreign Functions

As a very simple example of a multi-directional foreign function, assume we
have an external disk-based hash table on strings to be accessed from Amos II.
We can then implement it as follows:

create function get_string(Charstring x)-> Charstring r
as foreign "JAVA:Foreign/get_hash";

Here the foreign function get_string is implemented as a Java method
get_hash of the public Java class Foreign. The Java code is dynamically
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loaded when the function is defined or the mediator initialized. The Java
Virtual Machine is interfaced with the Amos II kernel through the Java Na-
tive Interface to C.

Multi-directional foreign functions include declarations of inverse foreign
function implementations. For example, our hash table can not only be ac-
cessed by keys but also scanned, allowing queries to find all the keys and
values stored in the table. We can generalize it by defining;:

create function get_string(Charstring x)->Charstring y
as multidirectional
("bf" foreign "JAVA:Foreign/get_hash"
cost {100,1})
("ff" foreign "JAVA:Foreign/scan_hash"
cost "scan_cost");

Here, the Java method scan hash implements scanning of the external hash
table. Scanning will be used, for example, in queries retrieving the hash key
for a given hash value. The binding patterns, bf and £f, indicate whether the
argument or result of the function must be bound (b) or free (f) when the
external method is called.

The cost of accessing an external data source through an external method
can vary heavily depending on, e.g. the binding pattern, and, to help the query
optimizer, a foreign function can have associated costing information defined
as user functions. The cost specifications estimate both execution costs in
internal cost units and result sizes (fanouts) for a given method invocation. In
the example, the cost specifications are constant for get _hash and computed
through the Amos II function scan_cost for scan hash.

The basis for the multi-directional foreign function was developed in
[9.29], where the mechanisms are further described.

9.3.4 Queries

General queries are formulated through the select statement with format:

select <result>
from <type extents>
where <condition>

For example:

select name(p), birthyear(p)
from Person p
where birthyear(p) > 1970;

The above query will retrieve a tuple of the names and birth years of all
persons in the database born after 1970.
In general the semantics of an AmosQL query is as follows:



9. Functional Data Integration 223

1. Form the cartesian product of the type extents.

Restrict the cartesian product by the condition.

3. For each possible variable binding to tuple elements in the restricted
cartesian product, evaluate the result expressions to form a result tuple.

4. Result tuples containing NIL are not included in the result set; queries
are null intolerant.

N

It would be very inefficient to directly use the above semantics to execute
a query. It is therefore necessary for the system to do extensive query opti-
mization to transform the query into an efficient execution strategy. Actually,
unlike in SQL, AmosQL permits formulation of queries accessing indefinite
extents and such queries are not executable at all without query optimization.
For example, the previous query could also have been formulated as:

select nm, b
from Person P, Charstring nm, Integer b
where b = birthyear(p) and

nm = name(p) and

b > 1970;

In this case, the cartesian product of all persons, integers, and strings is
infinite so the above query is not executable without query optimization.

Some functions may not have a fully computable extent, e.g. arithmetic
functions have an infinitely large extent. Queries over infinite extents are not
executable, e.g. the system will refuse to execute this query:

select x+1 from Number x;

9.4 Functional Mediation

For supporting multi-database queries, the basic data model is extended with
prozy objects, types, and functions. Any object, including meta-objects, can
be defined by Amos II as a proxy object by associating with it a property
describing its source. The proxy objects allow data and meta-data to be
transparently exchanged between mediator peers.

On top of this, reconciliation of conflicting data is supported through
regular stored and derived functions and through derived types (DTs) [9.18,
9.19] that define types through declarative multi-database queries.

9.4.1 Proxy Objects

The distributed mediator architecture requires the exchange of objects and
meta-data between mediator peers and data sources. To support multi-
database queries and views, the basic concepts of objects, types, and functions
are generalized to include also prozy objects, proxy types, and proxy functions:
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— Proxy objects in a mediator peer are local OIDs having associated descrip-
tions of corresponding objects stored in other mediators or data sources.
They provide a general mechanism to define references to remote objects.

— Proxy types in a mediator peer describe types represented in other media-
tors or data sources. The proxy objects are instances of some proxy types
and the extent of a proxy type is a set of proxy objects.

— Analogously, prozy functions in a mediator peer describe functions in other
mediators or sources.

The proxy objects, types, and functions are implicitly created by the
system in the mediator where the user makes a multi-database query, e.g.:

select name(p) from Personnel@Tb p;

This query retrieves the names of all persons in a data source named Tb.
It causes the system to internally generate a proxy type for Personnel@Tb in
the mediator server where the query is issued, M. It will also create a proxy
function name in M representing the function name in Tb. In this query it is not
necessary or desirable to create any proxy instances of type Personel@Tb in
M since the query is not retrieving their identities. The multi-database query
optimizer will here make such an optimization.

Proxy objects can be used in combination with local objects. This allows
for general multi-database queries over several mediator peers. The result of
such queries may be literals (as in the example), proxy objects, or local ob-
jects. The system stores internally information about the origin of each proxy
object so it can be identified properly. Each local OID has a locally unique
OID number and two proxy objects are considered equal if they represent
objects created in the same mediator or source with equal OID numbers.

Proxy types can be used in function definitions as any other type. In the
example one can define a derived function of the persons located in a certain
location:

create function personnel_in(Charstring 1) -> Personnel@Tb
as select p from Personnel@Tb p
where location(p) = 1;

In this case the local function personnel_in will return those instances of the
proxy type for Personnel in the mediator named Tb for which it holds that
the value of function location in Tb returns 1. The function can be used
in local queries and function definitions, and as proxy functions in multi-
database queries from other mediator peers.

Multi-database queries and functions are compiled and optimized through
a distributed query decomposition process fully described in [9.20] and sum-
marized later. Notice again that there is no central mediator schema and the
compilation and execution of multi-database queries is made by exchanging
data and meta-data with the accessed mediator servers. If some schema of
a mediator server is modified, the multi-database functions accessing that
mediator server become invalid and must be recompiled.
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9.4.2 Data Source Modeling

Information about different data sources is represented explicitly in the
Amos 1T data model through the system type Datasource and its subtypes
(Figure 9.2). Some subtypes of Datasource represent generic kinds of data
sources that share common properties, such as the types Relational and
SearchEngine [9.22] representing the common properties of all RDBMSs and
all Internet search engines, respectively. Other subtypes of Datasource like
ODBC_DS and JDBC_DS represent specific kinds of sources, such as ODBC and
JDBC drivers. In particular the system type Amos represents other Amos I1
peers. Instances of these types represent individual data sources. All types
under Datasource are collectively called the datasource types.

Since wrappers and their corresponding datasource types interact tightly,
every wrapper module installs its corresponding types and functions whenever
initialized. This reflexive design promotes code and data reuse and provides
transparent management of information about data sources via the Amos 11
query language.

Each datasource type instance has a unique name and a set of imported
types. Some of the (more specific) subtypes have defined a set of low-level
access functions. For example, the type Relational has the function sql
that accepts any relational data source instance, a parametrized SQL query,
and its parameters. Since there is no generic way to access all relational data
sources this function only defines an interface. On the other hand the type
ODBC_DS overloads this function with an implementation that can submit a
parametrized query to an ODBC source. These functions can be used in low-
level mediator queries, which roughly corresponds to the pass-through mode
defined in the SQL-MED standard [9.32]. However, normally the low-level
data access functions are not used directly by the users. Instead queries that
refer to external sources are rewritten by the wrapper modules in terms of
these functions. In addition datasource types may include other functions,
such as source address, user names, and passwords.

9.4.3 Reconciliation

Proxy objects provide a general way to query and exchange data between
mediators and sources. However, reconciliation requires types defined in terms
of data in different mediators. For this, the basic system is extended with
derived types (DTs), which are types defined in terms of queries defining
their extents. These extent queries may access both local and proxy objects.

Data integration by DTs is performed by building a hierarchy of DTs
based on local types and types imported from other data sources. The tra-
ditional inheritance mechanism, where the corresponding instances of an ob-
ject in the super/subtypes are identified by the same OID, is extended with
declarative query specification of the correspondence between the instances
of the derived super/subtypes. Integration by sub/supertyping is related to
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the mechanisms in some other systems such as the integrated views and col-
umn adding in the Pegasus system [9.9], but is better suited for use in an
object-oriented environment.

The extents of derived subtypes are defined through queries restricting
the intersection of the extents of the constituent supertypes. For example:

create derived type CSD_emp under Personnel p
where location(p)=’’CSD’’;

This statement creates a DT CSD_emp whose extent contains those persons
who work in the CSD department. When a DT is queried the system will
implicitly create those of its instance OIDs necessary to execute the query.
An important purpose of DTs is to define types as views that reconcile
differences between types in different mediator servers. For example, the type
Personnel might be defined in mediator Tb while Ta has a corresponding type
Faculty. The following statement executed in a third mediator, M, defines
a DT Emp in M representing those employees who work both in Ta and Tb:

create derived type Emp
under Faculty@Ta f, Personnel@Tb p
where ssn(f)=id_to_ssn(id(p))

Here the where clause identifies how to match equivalent proxy objects from
both sources. The function ssn uniquely identifies faculty members in Ta,
while the function id in Tb identifies personnel by employee numbers. A
(foreign) function id_to_ssn in M translates employee numbers to SSNs.

The system internally maintains the information necessary to map be-
tween OIDs of a DT and its supertypes.

An important issue in designing object views is the placement of the
DTs in the type hierarchy. Mixing freely the DTs and ordinary types in
a type hierarchy can lead to semantically inconsistent hierarchies [9.24]. In
order to provide the user with powerful modeling capabilities along with a
semantically consistent inheritance hierarchy, the ordinary types and DT's in
Amos II are placed in a single type hierarchy where it is not allowed to have
an ordinary type as a subtype of a DT. This rule preserves the extent—subset
semantics for all types in the hierarchy. If DT's were allowed to be supertypes
of ordinary types, due to the declarative specification of the DTs, it would
not have been possible to guarantee that each instance of the ordinary type
has a corresponding instance in its supertypes [9.24].

The DT instances are derived from the instances of their supertypes ac-
cording to an extent query specified in the DT definition. DT instances are
assigned OIDs by the system, which allows their use in locally stored func-
tions defined over the DTs in the same way as over the ordinary types. A
selective OID generation for the DT instances is used to avoid performance
and storage overhead.

The concept of DTs and its use for data integration is fully described in
[9.18]. The regular DTs, defined by subtyping through queries of their super-
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types, provide means for mediation based on operators such as join, selection,
and projection. However, these do not suffice for integration of sources having
overlapping data. When integrating data from different mediator servers it
is often the case that the same entity appears either in one of the mediators
or in both. For example, if one wants to combine employees from different
departments, some employees will only work in one of the departments while
others will work in both of them.

For this type of integration requirements the Amos II system features
a special kind of DTs called Integration Union Types (IUTs) defined as su-
pertypes of other types through queries. IUTs are used to model unions of
real-world entities represented by overlapping type extents. Informally, while
the regular DTs represent restrictions and intersections of extents of other
types, the IUTs represent reconciled unions of (possibly overlapping) data
in one or more mediator server or data sources. The example in Figure 9.4
illustrates the features and the applications of the IUTs.

—_

salary / dept Ta

University A RDBMS University B RDBMS

Fig. 9.4. An object-oriented view for the computer science department.

In this example, a computer science department (CSD) is formed out of
the faculty members of two universities named A and B. The CSD adminis-
tration needs to set up a database of the faculty members of the new depart-
ment in terms of the databases of the two universities. The faculty members
of CSD can be employed by either one of the universities. There are also
faculty members employed by both universities. The full-time members of a
department are assigned an office in the department.

In Figure 9.4 the mediators are represented by rectangles; the ovals in
the rectangles represent types, and the solid lines represent inheritance rela-
tionships between the types. The two mediators Ta and Tb provide Amos II
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views of the relational databases University A DB and University B DB. In
mediator Ta there is a type Faculty and in mediator Tb a type Personnel.

The relational databases are accessed through an ODBC wrapper in Ta
and Tb that translates AmosQL queries into ODBC calls. The ODBC wrapper
interface translates AmosQL queries over objects represented in relations into
calls to a foreign function executing SQL statements [9.4]. The translation
process is based on partitioning general queries into subqueries only using
the capabilities of the data source, as fully explained in [9.20].

A third mediator M is set up in the CSD to provide the integrated view.
Here, the semantically equivalent types CSD_A_emp and CSD_B_emp are defined
as derived subtypes of types in Ta and Tb:

create derived type CSD_a_emp
under Faculty@Ta f
where dept(f) = ’CSD’;

create derived type CSD_b_emp
under Personnel@Tb p
where location(p) = ’Building G’;

The system imports the external types, looks up the functions defined over
them in the originating mediators, and defines local proxy types and functions
with the same signature but without local implementations.

The IUT CSD_emp represents all the employees of the CSD. It is defined
over the constituent subtypes CSD_a_emp and CSD_b_emp. CSD_emp contains one
instance for each employee object regardless of whether it appears in one of
the constituent types or in both. There are two kinds of functions defined
over CSD_emp. The functions on the left of the type oval in Figure 9.4 are
derived from the functions defined in the constituent types. The functions on
the right are locally stored.

The data definition facilities of AmosQL include constructs for defining
IUTs as described above. The integrated types are internally modeled by
the system as subtypes of the IUT. Equality among the instances of the
integrated types is established based on a set of key attributes. IUTs can also
have locally stored attributes, and attributes reconciled from the integrated
types. See [9.19] for details.

The type CSD_emp is defined as follows:

CREATE INTEGRATION TYPE CSD_emp
KEYS ssn Integer;
SUPERTYPE OF

CSD_A_emp ae: ssn

CSD_B_emp be: ssn
FUNCTIONS
CASE ae

name = name(ae);

ssn(ae);
id_to_ssn(id(be));
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salary = pay(ae);

CASE be
name = name(be) ;
salary = salary(be);

CASE ae, be
salary = pay(ae) + salary(be);

PROPERTIES
bonus Integer;
END;

For each of the constituent subtypes, a KEYS clause is specified. The instances
of different constituent types having the same key values will map into a single
IUT instance. The key expressions can contain calls to any function.

The FUNCTIONS clause defines the reconciled functions of CSD_emp, de-
rived from functions over the constituent subtypes. For different subsets of
the constituent subtypes, a reconciled function of an IUT can have different
implementations specified by the CASE clauses. For example, the definition of
CSD_emp specifies that the salary function is calculated as the salary of the
faculty member at the university to which it belongs. In the case when s/he
is employed by both universities, the salary is the sum of the two salaries.
When the same function is defined for more than one case, the most specific
case applies. Finally, the PROPERTIES clause defines the stored function bonus
over the IUT CSD_emp.

The IUTs can be subtyped by DTs. In Figure 9.4, the
2 type Full Time is defined as a subtype of the CSD_emp type, represent-
ing the instances for which the salary exceeds a certain number (50000). The
locally stored function office stores information about the offices of the full-
time CSD employees. The type Full _Time and its property office have the
following definitions:

create derived type Full_Time under CSD_emp e
where salary(e)>50000;
create function office(Full_Time)->Charstring
as stored;

9.5 Query Processing

The description of type hierarchies and semantic heterogeneity using declara-
tive multi-database functions is very powerful. However, a naive implementa-
tion of the framework could be very inefficient, and there are many opportu-
nities for the extensive query optimization needed for distributed mediation.

The query processor of Amos I1, illustrated by Figure 9.5, consists of three
main components. The core component of the query processor is the local
query compiler that optimizes queries accessing local data in a mediator. The



230 Risch, Josifovski, and Katchaounov

Local query compiler External subquery
IR execution requests
N
i object object Tl . object
query // calculus calculus ~_ algebra result
I | I
I I
* (| Calculus _* [ calculus v
77| Generator Optimizer
____________ __ object
“““““ o algebra
o object - — = OFStB % N
External compilation, object - — = caloulus 29 Algebra N
cost and selectivity requests calculus ,' | Generator N
-7 \
e -7 \
decomp. !

Multidatabase
query compiler
~_ N

1
MDB Decomp. /
Cost-based Tree /
Optimizer Rebalancer /
1 query _ _ ,l ﬁ _ _ object /

| graph calculus

MDB View

External view Expander

\
expansion requests N

External compilation,
7 cost and selectivity requests

Fig. 9.5. Query processing in Amos II

Multi-database Query Compiler MQC, allows Amos II mediators to process
queries that also access other mediator peers and data sources. Both compilers
generate query execution plans (QFEPs) in terms of an object algebra that is
interpreted by the QFEP interpreter component. The following two sections
describe in more detail the subcomponents of the local and the multi-database
query compilers.

9.5.1 Local Query Processing

To illustrate the query compilation of single-site queries we use the sample
ad hoc query:

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’;

The first query compilation step, calculus generation, translates the parsed
AmosQL query tree into an object calculus representation called ObjectLog
[9.29]. The object calculus is a declarative representation of the original query
and is an extension of Datalog with objects, types, overloading, and multi-
directional foreign functions.

The calculus generator translates the example query into this expression:
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{pnm |
p= Personnil—»Person () A
pa = pa?"entPersonéPerson (P) A
nm = Nameperson—Charstring (pa) A
’sailing’ = hObbyPerson—»Charstring (p)}

The first predicate in the expression is inserted by the system to assert the
type of the variable p. This type check predicate defines that the variable p is
bound to one of the objects returned by the extent function for type Person,
Person(), which returns all the instances (the extent) of its type. The vari-
ables nm and pa are generated by the system. Notice that the functions in the
predicates are annotated with their type signatures, to allow for overloading
of function symbols over the argument types.

The calculus optimizer of the query optimizer first transforms the un-
optimized calculus expression to reduce the number of predicates, e.g. by
exploring properties of type definitions. In the example, it removes the type
check predicate:

{p,nm |
pa = pa?"entPersonéPerson (P) A
nm = NaMeperson— Charstring (pa’) A
"sailing’ = hobby person—Charstring (P)}

This transformation is correct because p is used in a stored function (parent
or hobby) with argument or result of type Person. The referential integrity
system constrains instances of stored functions to be of correct types [9.29].

The local cost-based optimizer will use cost-based optimization to produce
an executable object algebra plan from the transformed query calculus ex-
pression. The system has a built-in cost model for local data and built-in
algebra operators. Basically the cost-based optimizer generates a number of
execution plans, applies the cost model on each of them, and chooses the
cheapest for execution. The system has the options of using dynamic pro-
gramming, hill climbing, or random search to find an execution plan with
minimal cost. Users can instruct the system to choose a particular strategy.

The optimizer is furthermore extensible whereby new algebra operators
are defined using the multi-directional foreign functions, which also provide
the basic mechanisms for interactions between mediator peers in distributed
execution plans.

The query execution plan interpreter will finally interpret the execution
plan to yield the result of the query.

9.5.2 Queries over Derived Types

Queries over DT's are expanded by system-inserted predicates performing the
DT system support tasks [9.18]. These tasks are divided into three mecha-
nisms: (i) providing consistency of queries over DT’ so that the extent—subset
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semantics is followed; (ii) generation of OIDs for those DT instances needed
to execute the query; and (iii) validation of the DT instances with assigned
OIDs so that DT instances satisfy the constraints of the DT definitions.
The system generates derived function definitions to perform these tasks.
During the calculus optimization the query is analyzed and, where needed,
the appropriate function definitions are added to the query. A selective OID
generation mechanism avoids overhead by generating OIDs only for those de-
rived objects that are either needed during the execution of a query, or have
associated local data in the mediator database.

The functions specifying the view support tasks often have overlapping
parts. Reference [9.18] demonstrates how calculus-based query optimization
can be used to remove redundant computations introduced from the overlap
among the system-inserted expressions, and between the system-inserted and
user-specified parts of the query.

Each IUT is mapped by the calculus optimizer to a hierarchy of system-
generated DTs, called auziliary types [9.19]. The auxiliary types represent
disjoint parts of the outerjoin needed for this type of data integration. The
reconciliation of the attributes of the integrated types is modeled by a set
of overloaded derived functions generated by the system from the specifica-
tion in the IUT definition. Several novel query processing and optimization
techniques are developed for efficiently processing the queries containing over-
loaded functions over the auxiliary types, as described in [9.19].

9.5.3 Multi-database Query Processing

The Multi-database Query Compiler (MQC) [9.20, 9.17] is invoked whenever
a query is posed over data from more than one mediator peer. The goal of
the MQC is to explore the space of possible distributed execution plans and
choose a “reasonably” cheap one. As the local query compiler, the MQC uses
a combination of heuristic and dynamic programming strategies to produce
a set of distributed object algebra plans.

The distributed nature of Amos II mediators requires a query process-
ing framework that allows cooperation of a number of autonomous mediator
peers. The MQC interacts with the local optimizer as well as with the query
optimizers of the other mediator peers involved in the query via requests
to estimate costs and selectivities of subqueries, requests to expand the view
definitions of remote views, and requests to compile subqueries in remote me-
diator peers. The generated local execution plan interacts with the execution
plans produced by the other mediator peers.

The details of the MQC are described in [9.20]. Here we will overview its
main subcomponents:

— The query decomposer identifies fragments of a multi-database query, sub-
queries, where each subquery can be processed by a single data source. The
decomposer takes as input an object calculus query and produces a query
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graph with nodes representing subqueries assigned to an execution site and
arcs representing variables connecting the subqueries. The benefit of de-
composition is twofold. First, complex computations in subqueries can be
pushed to the data sources to avoid expensive communication and to uti-
lize the processing capabilities of the sources. Second, the multi-database
query optimization cost is reduced by the partitioning of the input query
into several smaller subqueries.

Query decomposition is performed in two steps:

1. Predicate grouping collects predicates executable at only one data source
and groups them together into one or more subqueries. The grouping
process uses a heuristic where cross-products are avoided by placing
predicates without common variables in separate subqueries.

2. Site assignment uses a cost-based heuristics to place those predicates
that can be executed at more than one site (e.g. -joins), eventually
replicates some of the predicates in the subqueries to improve the selec-
tivity of subqueries, and finally assigns execution sites to the subqueries.

— The multi-database view expander expands remote views directly or indi-
rectly referenced in queries. This may lead to significant improvement in
the query plan quality because there may be many redundancies in large
compositions of multi-database views.

The multi-database view expander traverses the query graph to send ex-
pansion requests for the subqueries. In this way, all predicates defined in
the same database are expanded in a single request. This approach al-
lows the remote site to perform calculus simplifications of the expanded
and merged predicate definitions as a whole and then return the trans-
formed subquery. However, when there are many mediator layers it is not
always beneficial to fully expand all view definitions, as shown in [9.21].
The multi-database view expander therefore uses a heuristic to choose the
most promising views for expansion, a technique called controlled view ex-
pansion. After all subqueries in the query graph have been view expanded
the query decomposer is called again for predicate regrouping.

— The multi-database (MDB) query optimizer decides on the order of exe-
cution of the predicates in the query graph nodes, and on the direction
of the data shipping between the peers. Execution plans for distributed
queries in Amos II are represented by decomposition trees. Each node in a
decomposition tree describes a join cycle through a client mediator (i.e. the
mediator where the query is issued). In a cycle, first intermediate results
are shipped to the site where they are used. Then a subquery is executed
at that site using the shipped data as input, and the result is shipped back
to the mediator. Finally, one or more post-processing subqueries are per-
formed at the client mediator. The result of a cycle is always materialized
in the mediator. A sequence of cycles can represent any execution plan.
As the space of all execution plans is exponential to the number of sub-
queries in the input query graph, we examine only the space of left-deep
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decomposition trees using a dynamic programming approach. To evaluate
the costs and selectivities of the subqueries the multi-database optimizer
sends compilation requests for the subqueries both to the local optimizer
and to the query compilers of the remote mediators.

— The decomposition tree rebalancer transforms the initial left-deep decom-
position tree into a bushy one. To prevent all the data flowing through the
client mediator, the decomposition tree rebalancer uses a heuristic that
selects pairs of adjacent nodes in the decomposition tree, merges the se-
lected nodes into one new node, and sends the merged node to the two
mediators corresponding to the original nodes for recompilation. From the
merged nodes, each of the two mediators generate different decomposition
subtrees and the cheaper one is chosen. In this way, the input decomposi-
tion tree is rebalanced from a left-deep tree into a bushy one. The overall
execution plan resulting from the tree rebalancing can contain plans where
the data is shipped directly from one remote mediator to another, elimi-
nating the bottleneck of shipping all data through a single mediator. See
[9.17] for details.

— The object algebra generator translates a decomposition tree into a set of
inter-calling local object algebra plans.

9.6 Related Work

Amos II is related to research in the areas of data integration, object views,
distributed databases, and general query processing. There has been several
projects on intergration of data in a multi-database environment [9.5, 9.8,
9.10, 9.12, 9.14, 9.16, 9.23, 9.27, 9.30, 9.40, 9.41]. The integration facilities
of Amos II are based on work in the area of object-oriented views [9.1, 9.3,
9.15, 9.26, 9.33, 9.35, 9.36, 9.39].

Most of the mediator frameworks reported in the literature (e.g. [9.16,
9.41, 9.14]) propose centralized query compilation and execution coordina-
tion. In [9.9] it is indicated that a distributed mediation framework is a
promising research direction, but to the best of our knowledge no results in
this area are reported. Some recent commercial data integration products,
such as IBM’s Federated DB2, also provide centralized mediation features.

In the DIOM project [9.30] a framework for integration of relational data
sources is presented where the operations can be executed either in the me-
diator or in a data source. The compilation process in DIOM is centrally
performed, and there is no clear distinction between the data sources and the
mediators in the optimization framework.

The Multiview [9.35] object-oriented view system provides multiple in-
heritance and a capacity-augmented view mechanism implemented with a
technique called Object Slicing [9.26] using OID coercion in an inheritance
hierarchy. However, it assumes active view maintenance and does not elab-
orate on the consequences of using this technique for integration of data in
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autonomous and dislocated repositories. Furthermore, it is not implemented
using declarative functions for the description of the view functionality.

One of the few research reports describing the use of functional view
mechanisms for data integration is the Multibase system [9.8]. It is also based
on a derivative of the DAPLEX data model and does reconciliation similar
to the IUTs in this chapter. An important difference between Multibase and
Amos II is that the data model used in Multibase does not contain the object-
oriented concept of OIDs and inheritance. The query optimization and meta-
modeling methods in Amos IT are also more elaborate than in Multibase.

The UNISQL [9.23] system also provides views for database integration.
The virtual classes (corresponding to the DTs) are organized in a separate
class hierarchy. However, the virtual class instances inherit the OIDs from the
corresponding instances in the ordinary classes, which prohibits definition of
stored functions over virtual classes defined by multiple inheritance as in
Amos II. There is no integration mechanism corresponding to the IUTs.

Reference [9.34] gives a good overview of distributed databases and query
processing. As opposed to the distributed databases, where there is a cen-
tralized repository containing meta-data about the whole system, the archi-
tecture described in this paper consists of autonomous systems, each storing
only locally relevant meta-data.

One of the most thorough attempts to tackle the query optimization prob-
lem in distributed databases was done within the System R* project [9.7]
where, unlike Amos II, an exhaustive, cost-based, and centrally performed
query optimization is made to find the optimal plan. Another classic dis-
tributed database system is SDD-1 [9.2] which used a hill-climbing heuristic
like the query decomposer in Amos II.

9.7 Summary

We have given an overview of the Amos II mediator system where groups of
distributed mediator peers are used to integrate data from different sources.
Each mediator in a group has DBMS facilities for query compilation and
exchange of data and meta-data with other mediator peers. Derived func-
tions can be defined where data from several mediator peers is abstracted,
transformed, and reconciled. Wrappers are defined by interfacing Amos II
systems with external systems through its multi-directional foreign function
interface. Amos II can furthermore be embedded in applications and used as
stand-alone databases. The chapter gave an overview of Amos II’s architec-
ture with references to other published papers on the system for details.

We described the Functional Data Model and query language forming the
basis for data integration in Amos II. The distributed multi-mediator query
decomposition strategies used were summarized.

The mediator peers are autonomous without any central schema. A special
mediator, the name server, keeps track of what mediator peers are members
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of a group. The name servers can be queried for the location of mediator peers
in a group. Meta-queries to each mediator peer can be posed to investigate
the structure of its schema.

Some unique features of Amos II are:

— A distributed mediator architecture where query plans are distributed over
several communicating mediator peers.

— Using declarative functional queries to model reconciled functional views
spanning multiple mediator peers.

— Query processing and optimization techniques for queries to reconcile views
involving function overloading, late binding, and type-aware query rewrites.

The Amos II system is fully implemented and can be downloaded from
http://user.it.uu.se/~udbl/amos. Amos II runs under Windows and Unix.
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