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Preliminaries

2.1 Introduction

This chapter outlines the basic considerations in thinking about the design
and analysis of computer experiments. This section begins by distinguishing
three types of variables that can affect the output of a computer code y(·),
depending on the phenomenon being modeled. Using this categorization,
we identify some possible experimental goals.

The first type of variable that we distinguish is a control variable. If the
output of the computer experiment is some performance measure of a prod-
uct or process, then the control variables are those variables that can be
set by a engineer or scientist to “control” the product or process. Some au-
thors use the terms engineering variables or manufacturing variables rather
than control variables. We use the generic notation xc to denote control
variables. Control variables are present in physical experiments as well as
in many computer experiments.

As examples of control variables, we mention the dimensions b and d
of the bullet tip prosthesis illustrated in Figure 1.2 (see Section 1.2.2).
Another example is given by Box and Jones (1992) in the context of a
hypothetical physical experiment to formulate (“design”) the recipe for a
cake. The goal was to determine the amounts of three baking variables
to produce the best tasting cake: flour, shortening, and egg; hence, these
are control variables. The physical experiment considered two additional
variables that also affect the taste of the final product: the time at which
the cake is baked and the oven temperature. Both of the latter variables
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are specified in the baking recipe on the cake box. However, not all bakers
follow the box directions exactly and even if they attempt to follow them
precisely, ovens can have true temperatures that differ from their nominal
settings and timers can be systematically off or be unheard when they ring.

The variables, baking time and oven temperature, are examples of envi-
ronmental variables, a second type of variable that can be present in both
computer and physical experiments. In general, environmental variables
affect the output y(·) but depend on the specific user or on the environ-
ment at the time the item is used. Environmental variables are sometimes
called “noise variables.” We use the notation xe to denote the vector of
environmental variables for a given problem. In practice, we typically re-
gard environmental variables as random with a distribution that is known
or unknown. To emphasize situations where we regard the environmental
variables as random, we use the notation Xe. As an example of a com-
puter experiment where environmental variables occur, in the hip prosthe-
sis design problem of Chang, Williams, Notz, Santner and Bartel (1999)
described above, both outputs depended on the magnitude and direction
of the force exerted on the head of the prosthesis. These two variables
were patient specific and depended on body mass and activity. They were
treated as having a given distribution that was characteristic of a given
population.

In addition to control and environmental variables, there is a third cat-
egory of input variable that sometimes occurs. This third type of input
variable describes the uncertainty in the mathematical modeling that re-
lates other inputs to output(s). As an example, O’Hagan, Kennedy and
Oakley (1999) consider a model for metabolic processing of U235 that in-
volves various rate constants for elementary conversion processes that must
be known in order to specify the overall metabolic process. In some cases,
such elementary rate constants may have values that are unknown or pos-
sibly there is a known (subjective) distribution that describes their values.
We call these variables model variables and denote them by xm. In a clas-
sical statistical setting we would call model variables “model parameters”
because we use the results of a physical experiment, the ultimate reality, to
estimate their values. Some authors call model variables “tuning parame-
ters.”

The following section describes several fundamental goals for computer
experiments depending on which types of variables are present and the
number of responses that the code produces. For example, if the code pro-
duces a single real-valued response that depends on control and environ-
mental variables, then we use the notation y(xc, Xe) to emphasize that
the propagation of uncertainty in the environmental variables Xe must be
accounted for. In some cases there may be multiple computer codes that
produce related responses y1(·), . . . , yB(·) which either represent compet-
ing responses or correspond to “better” and “worse” approximations to the
response. For example, if there are multiple finite element analysis codes
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based on greater or fewer node/edge combinations to represent the same
phenomenon, then one might hope to combine the responses to improve
prediction. Another alternative is that y1(·) represents the primary object
of interest while y2(·), . . . , yL(·) represent “related information”; for exam-
ple, this would be the case if the code produced a response and vector
of first partial derivatives. A third possibility is when the yi(·) represent
competing objectives; in this case, the goal might to optimize one response
subject to minimum performance standards on the remaining ones.

Following the description of experimental goals, we summarize the ba-
sic issues in modeling computer output. Then we will be prepared to
begin Chapter 3 on the first of the two basic issues considered in this
book, that of predicting y(·) at (a new) input x0 based on training data
(x1, y(x1)), . . . , (xn, y(xn)). Chapter 5 will address the second issue, the
design problem of choosing the input sites at which the computer should
be run.

2.2 Defining the Experimental Goal

2.2.1 Introduction

In this section, we initially consider the case of a single real-valued output
y(·) that is to be evaluated at input training sites x1, . . . ,xn. We let ŷ(x)
denote a generic predictor of y(x) and consider goals for two types of inputs.
In the first type of input, referred to as a mono-input, all components of x
are either control variables or environmental variables or model variables.
In the second type of input, referred to as a mixed-input, x contains at least
two of the three different types of input variables: control, environmental,
and model. Finally, in Subsection 2.2.4, we outline some typical goals when
there are several outputs. In all cases there can be both “local” and “global”
goals that may be of interest.

2.2.2 Research Goals for Mono-Inputs Codes

First, suppose that x consists exclusively of control variables, i.e., x = xc.
In this case one important objective is to estimate y(x) “well” for all x
in some domain D. There have been several criteria used to measure the
quality of the prediction in an “overall” sense. One appealing intuitive basis
for judging the predictor ŷ(x) is its integrated squared error∫

D
[ŷ(x) − y(x)]2 w(x)dx, (2.2.1)

where w(x) is a weight function that quantifies the importance of each value
in D. For example, w(x) = 1 weights all parts of D equally while w(x) =
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IA(x), the indicator function of the set A ⊂ D, ignores the complement of
A and weights all points in A equally.

Unfortunately, (2.2.1) cannot be calculated because y(x) is unknown.
However, later in Chapter 6 we will replace [ŷ(x) − y(x)]2 by a posterior
mean squared value computed under a certain “prior” model for y(x) and
obtain a quantity that can be computed (see Section 6.2 for methods of
designing computer experiments in such settings).

The problem of predicting y(·) well over a region can be thought of as a
global objective. In contrast, more local goals focus on finding “interesting”
parts of the input space D. An example of such a goal is to identify (any)
x, where y(x) equals some target value. Suppose

L(t0) = {x ∈ D|y(x) = t0}
denotes the “level set” of input values where y(·) attains a target value
t0. Then we wish to determine any input x where y(·) attains the target
level, i.e., any x ∈ L(t0). Another example of a local goal is to find extreme
values of y(·). Suppose

M = {x ∈ D|y(x) ≥ y(x�) for all x� ∈ D} ≡ arg max y(·)
is the set of all arguments that attain the global maximum of y(x). Then an
analog of the level set problem is to find a set of inputs that attain the over-
all maximum, i.e., to determine any x ∈ M. The problem of finding global
optima of computer code output has been the subject of much investigation
(Mockus, Tiešis and Žilinskas (1978), Bernardo, Buck, Liu, Nazaret, Sacks
and Welch (1992), Mockus, Eddy, Mockus, Mockus and Reklaitis (1997),
Jones, Schonlau and Welch (1998), Schonlau, Welch and Jones (1998)).

There is a large amount of literature on mono-input problems when x
depends only on environmental variables. Perhaps the most frequently oc-
curring application is when the environmental variables are random inputs
with a known distribution and the goal is determine how the variability
in the inputs is transmitted through the computer code. In this case we
write x = Xe using upper case notation to emphasize that the inputs
are to be treated as random variables and the goal is that of finding the
distribution of y(Xe). This problem is sometimes called uncertainty anal-
ysis (Crick, Hofer, Jones and Haywood (1988), Dandekar and Kirkendall
(1993), Helton (1993), O’Hagan and Haylock (1997), and O’Hagan et al.
(1999) are examples of such papers). Also in this spirit, McKay, Beckman
and Conover (1979) introduced the class of Latin hypercube designs for
choosing the training sites Xe at which to evaluate the code when the
problem is to estimate the mean of the y(Xe) distribution, E{y(Xe)}.
The theoretical study of Latin hypercube designs has established a host
of asymptotic and empirical properties of estimators based on them (Stein
(1987), Owen (1992a), Owen (1994), Loh (1996), Pebesma and Heuvelink
(1999)) and enhancements of such designs (Handcock (1991), Tang (1993),
Tang (1994), Ye (1998), Butler (2001)).
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The third possibility for mono-input is when y(·) depends only on model
variables, x = xm. Typically in such a case, the computer code is meant to
describe the output of a physical experiment but the mathematical model-
ing of the phenomenon involves unknown parameters, often unknown rate
or physical constants. In this situation the most frequently discussed ob-
jective in the computer experiments literature is that of calibration. Cal-
ibration is possible when the results of a physical experiment are avail-
able whose response is the physical phenomenon that the computer code is
meant to model. The goal is to choose the model variables xm so that the
computer output best matches the output from the physical experiment
(examples are Cox, Park and Singer (1996), Craig, Goldstein, Rougier and
Seheult (2001), Kennedy and O’Hagan (2001), and the references therein).

2.2.3 Research Goals for Mixed-Inputs

Mixed-inputs can arise from any combination of control, environmental,
and model variables. We focus on what is arguably the most interesting of
these cases, that of x consisting of both control and environmental vari-
ables. In the problems described below, the environmental variables will be
assumed to have a known distribution, i.e., x = (xc, Xe) where Xe has
a known distribution. There are related problems for other mixed-input
cases.

In this case, for each xc, y(xc, Xe) is a random variable with a distribu-
tion that is induced by the distribution of Xe. The y(xc, Xe) distribution
can change as xc changes. As discussed above for the mono-input case x
= Xe, attention is typically focused on some specific aspect of this in-
duced distribution. For example, recall the study of Chang et al. (1999)
for designing a hip prosthesis that was introduced in Section 2.1. In their
situation, y(xc, xe) was the maximum strain at the bone-implant interface;
it depended on the engineering variables, xc, that specified the geometry of
the device, and on the environmental variables xe, consisting of the force
applied to the hip joint and the angle at which it is applied. Chang et
al. (1999) considered the problem of finding engineering designs xc that
minimized the mean strain where the mean is taken with respect to the
environmental variables. Of course, this is equivalent to maximizing the
negative of the mean strain and for definiteness, we describe all optimiza-
tion problems below as those of finding maxima of mean functions.

To describe this, and related goals, in a formal fashion, let

µ(xc) = E {y(xc, Xe)} (2.2.2)

denote the mean of y(xc, Xe) with respect to the distribution of Xe. Sim-
ilarly define (implicitly) the upper alpha quantile of the distribution of
y(xc, Xe), denoted by ξα = ξα(xc), as

P {y(xc, Xe) ≥ ξα} = α
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(assuming for simplicity that there is a unique such upper α quantile).
For example, the notation ξ.5(xc) denotes the median of the distribu-
tion of y(xc, Xe), which is a natural competitor of the mean, µ(xc), when
y(xc, Xe) has a skewed distribution.

With this setup, it now possible to describe analogs of the three goals
considered above for y(xc) but now defined for µ(xc) (or ξ.5(xc), say, if the
distribution of y(xc, Xe) is skewed). Let µ̂(xc) denote a generic predictor
of µ(xc). The analog of estimating y(·) well over its domain is to estimate
µ(xc) well over the control variable domain in the sense of minimizing∫

[µ(xc) − µ̂(xc)]
2

w(xc)dxc. (2.2.3)

To solve this problem, one must not only choose a particular predictor
µ̂(xc) of µ(xc), but also the set of input training sites (xc, xe) on which
to base the predictor. As in the case of (2.2.1), the criterion (2.2.3) cannot
be computed, but a Bayesian analog that has a computable mean will be
introduced in Chapter 6.

The parallel of the problem of finding a control variable that maximizes
y(xc) is that of determining an xc that maximizes the mean output µ(xc),
i.e., finding an xM

c that satisfies

µ(xM
c ) = max

xc

µ(xc). (2.2.4)

Similarly, a parallel to the problem of finding xc to attain target y(·) values
is straightforward to formulate for µ(xc).

Additional challenges occur in those applications when the distribution
of Xe is not known precisely. To illustrate the consequences of such a
situation, suppose that xM

c maximizes EGN{y(xc, Xe)} for a given nominal
Xe distribution, GN . Now suppose, instead, that G �= GN is the true Xe

distribution. If

EG{y(xM
c , Xe)} � max

xc

EG{y(xc, Xe)}, (2.2.5)

then xM
c is substantially inferior to any x�

c that achieves the maximum
in the right-hand side of (2.2.5). From this perspective, a control variable
xc can be thought of as being “robust” against misspecification of the Xe

distribution if xc comes close to maximizing the mean over the nominal
Xe distribution and xc is never far from achieving the the maximum on
the right-hand side of (2.2.5) for alternative Xe distributions, G. There are
several formal methods of defining a robust xc that heuristically embody
this idea.

The classical method of defining a robust xc is by a minimax approach
(Huber (1981)). Given a set G of possible environmental variable distribu-
tions (that includes a “central,” nominal distribution GN ), let

µ(xc, G) = EG{y(xc, Xe)}



2.2 Experimental Goal 19

denote the mean of y(xc, Xe) when Xe has distribution G ∈ G. Then

min
G∈G

µ(xc, G)

is the smallest mean value for y(xc, ·) that is possible when Xe distributions
come from G. We say xG

c is a G-robust design provided

min
G∈G

µ(xG
c , G) = max

xc

min
G∈G

µ(xc, G).

Philosophically, G-robust designs can be criticized because they are pes-
simistic; xG

c maximizes a worst-case scenario for the mean of y(xc). In ad-
dition, one is faced with the challenge of specifying a meaningful G. Finally,
there can be substantial computational problems determining G-robust de-
signs.

An alternative definition, Bayesian in spirit, assumes that it is possible
to place a distribution π(·) on the G ∈ G where G is the known set of envi-
ronmental distributions. In the most straightforward case, the distributions
in G can be characterized by a finite vector of parameters θ. Suppose that
π(·) is a prior density over the θ values. We define xπ

c to be π(·)-robust
provided ∫

µ(xπ
c , θ)π(θ)dθ = max

xc

∫
µ(xc, θ)π(θ)dθ.

A critique of π(·)-robust designs is that, in addition to the difficulty of
specifying a meaningful G, one must also determine a prior π(·). However,
π(·)-robust designs are typically easier to compute than G-robust designs.

A third, more heuristic definition of a robust xc requires only a nominal
Xe distribution, and neither a class G of alternative distributions nor a
prior π(·) need be specified. This last definition is based on the following
observation. Suppose that for a given xc, y(xc, xe) is (fairly) “flat” in xe;
then the mean of y(xc, Xe) will “tend” to be independent of the choice of
Xe distribution. Assuming that we desire the mean µ(xc) of y(·) under the
nominal distribution to be large, a robust xc maximizes µ(xc) among those
xc for which y(xc, xe) is flat. We call such an xc a V -robust design where
the V is for “variance” since the constraint can be thought of as a variance
of y(xc, Xe) (with respect to a heuristically chosen Xe distribution). To
define this notion formally, suppose that each component of Xe has a
bounded support; the Xe has support on a bounded hyper-rectangle, say
Πi[ai, bi]. Let

σ2(xc) =
1

Πi[ai, bi]

∫
y2(xc, xe)dxe −

(
1

Πi[ai, bi]

∫
y(xc, xe)dxe

)2

be the “variance” of y(xc, Xe) with respect to a uniform distribution on
Xe. We define xV

c to be M -robust provided xV
c maximizes
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µ(xc)
subject to

σ2(xc) ≤ M .

Here M is an absolute bound on the variability of y(xc, ·). An alternative
natural constraint is

σ2(xc) ≤ max
x�

c∈D
σ2(x�

c) × M,

where M is now a relative bound that is < 1. Because M < 1, this sec-
ond formulation has the theoretical advantage that the feasible region is
always nonempty whereas in the former specification one may desire that
the variance be no greater than a certain bound M , but there need not
exist control variables xc that achieve this target value. Using the relative
constraint has the computational disadvantage that the maximum variance
must be determined. Alternatively, and perhaps more in keeping with the
quality control concept of having a “target” mean, we define xV

c to be V -
robust if it minimizes σ2(xc) subject to a constraint on µ(xc). Lehman,
Santner and Notz (2003) discuss the sequential design of computer experi-
ments to find M -robust and V -robust choices of control variables.

2.2.4 Multiple-Output Experiments

To fix ideas, suppose that y1(·), . . . , ym(·) are the computed outputs. There
are at least three different settings that lead to such a situation. First, the
outputs can represent multiple codes for the same quantity; for example,
Kennedy and O’Hagan (2000) study multiple codes that represent coarser
and finer finite element descriptions for the same response.

A second setting that leads to multiple outputs is when the yi(·) are
competing responses from different codes; in prosthesis design we desire to
maximize the strain at the prosthesis–bone interface so that bone resorption
does not occur and simultaneously minimize (or at least bound) the side
to side “toggling” of the implant. The two objectives, maximizing strain
and minimizing toggling, represent competing design goals. A third setting
that leads to multiple outputs is when a single code produces yi(·) that
are related to one another. As an example, Morris, Mitchell and Ylvisaker
(1993) and Mitchell, Morris and Ylvisaker (1994) consider the estimation of
y(x) for codes that produce y(·) and all its first partial derivatives for each
input site x. Thus we regard y1(x) = y(x), the original output, and y2(x),
. . . , ym(x) as the values of the partial derivatives of y(x) with respect to
each component of x. These derivatives provide auxiliary information that
permits more precise estimation of y(x) than that based on y(·) alone.

The modeling of multiple yi(·) depends on which scenario above holds,
as do the possible scientific or engineering objectives. For example, when
y2(x), . . . , ym(x) represent auxiliary information about y1(x), the goal
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might simply be to use the additional information to better estimate y1(·).
To continue the example introduced in the previous paragraph, Morris et
al. (1993) and Mitchell et al. (1994) show how to model the output from
codes that produce a response y(·) and the partial derivatives of y(·). They
then use these models to derive (empirical) best linear unbiased estimators
of y(·) at new sites x0 based on all the responses. See Section 4.2 for a
discussion of modeling multiple responses.

Now consider the scenario where x = xc, y1(·) is the response of primary
interest, and y2(·), . . ., ym(·) are competing objectives. Then we can define
a feasible region of xc values by requiring minimal performance standards
for y2(xc), . . ., ym(xc). Formally, an analog of the problem of minimizing
y(·) is

minimize y1(xc)
subject to

y2(xc) ≥ M2

...
ym(xc) ≥ Mm.

Here Mi is lower bounds on the performance of yi(·) that is acceptable.
If in addition to control variables, x also contains environmental variables,
then we can replace each yi(xc) above with µi(xc) = E{yi(xc, Xe)}. In
cases where x = xe, a typical objective is to find the joint distribution of
(y1(Xe), . . ., ym(Xe)) or, even simpler, that of estimating the mean vector
(E{y1(Xe)}, . . ., E{ym(Xe)}).

Lastly, if the yi(·) represent the outputs of different codes of varying ac-
curacy for the same response, then a typical goal is to combine information
from the various outputs to better estimate the true response. Specifica-
tion of this goal depends on identifying the “true” response; we postpone a
discussion of this idea until we discuss modeling multiple response output
in Section 4.2.

2.3 Modeling Output from Computer Experiments

2.3.1 Introduction

This book uses Bayesian methodology to design and analyze computer
experiments. Prior information describing the functional relationship of the
input x to the (unknown) output y(x) is combined with the information in
the training data to predict y(·) at new sites and to accomplish the other
goals described in Sections 2.2 and 6.3.

Best linear unbiased prediction, a frequentist methodology, has also been
used for prediction of real-valued quantities associated with y(·) and for
the calculation of their standard errors (see Section 3.2.3). The concep-
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tual problem with this approach is that the source of randomness that is
measured by the standard error, for example, is not easily understood and
when specified is often not of interest to the user. For example, one source
of randomness that leads to interpretable standard errors is the randomness
in the predictor that results from use of a stochastic mechanism to choose
the locations of the input data (the “design” of the computer experiment).
In this case, the standard error of a predictor of y(x0) is the variation in
the predictor due to the randomly selected training data.

We prefer the Bayesian approach to analyze the data from computer
experiments and regard the use of a prior distribution for y(·) as clearer in
its intent than the frequentist viewpoint, though not simpler to implement.
Computer experiments represent a highly nonparametric setting. Eliciting
a prior for the output of a black box code is much more difficult than, say,
eliciting the prior for the output of a regression. However, this approach
is philosophically more satisfying, for example, in its interpretation of the
standard errors that will be specified in Section 4.1—they refer to model
uncertainty (given the training data). However, the reader should recognize
that reasonable users may disagree about the prior information concerning
the input-output function that any particular Bayesian predictor makes
(and hence the associated standard error of prediction). Oakley (2002) and
Reese, Wilson, Hamada, Martz and Ryan (2000) give advice and case-
studies about the formation of prior distributions.

In sum, our attitude toward using the Bayesian approach to problems
of the design and analysis of computer experiments is not dogmatic. We
do attempt to control the characteristics of the functions produced by our
priors, but do not rigidly believe them. Instead, our goal is to choose flexible
priors that are capable of producing many shapes for y(·) and then let the
Bayesian machinery allow the data to direct the details of the prediction
process.

Sections 2.3.2-2.3.4 will introduce Gaussian random functions and pro-
vide the reader with an appreciation for the flexibility of this class of pri-
ors. Section 2.3.5 will discuss hierarchical priors based on Gaussian random
functions as a method of further enhancing this flexibility.

The final general point we wish to make in this introduction is that
computer experiments are not alone in their use of Bayesian prediction
methodology to analyze high-dimensional, highly correlated data. Many
other scientific fields produce such data, albeit with measurement error.
The statistical analyses used in geostatistics (Matheron (1963), Journel and
Huijbregts (1979)), environmental statistics and disease mapping (Ripley
(1981), Cressie (1993)), global optimization (Mockus et al. (1997)), and
statistical learning (Hastie, Tibshirani and Friedman (2001)) are based on
the Bayesian philosophy. Hence many of the methodologies discussed in
their literatures are also relevant here.

In the following we regard y(·) to be a real-valued function with domain
X where X is a subset of d-dimensional Euclidean space having positive d-
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dimensional volume. We adopt the notation Y (·) to distinguish the random
function from its realizations y(·) which are functions. Some authors use the
terms “stochastic process” or simply “process” rather than random function
and we occasionally also use these terms, although “random function” is
the most natural terminology when discussing computer experiments.

Conceptually, a random function should be thought of as a mapping
from elements of a sample space of outcomes, say Ω, to a given set of func-
tions, just as random variables are mappings from a set Ω of elementary
outcomes to the real numbers. It will occasionally add clarity to our dis-
cussion to make this explicit by writing y(x) = Y (x, ω) to be a particular
function from X to IR1, where ω ∈ Ω is a specific element in the sample
space. Sometimes we refer to y(·, ω) as a draw from the random function
Y (·) or as a sample path (in X ) of the random function. The introduction
of the underlying sample space Ω helps clarify ideas when discussing the
smoothness properties of functions drawn from Y (·). In particular, we de-
sire sufficient flexibility in our stochastic model so that, ideally, there is
an ω for which y(x) = Y (x, ω) represents the response to our computer
experiment.

We will also consider computer experiments that produce multiple out-
puts; in such situations we let y(x) = (y1(x), . . . , yB(x))� denote the vec-
tor of outputs. A typical application that produces multiple outputs is that
when the computer code determines not only y(x) but also each of the par-
tial derivatives of y(x). Then y(x) = (y(x),∂y(x)/∂x1,. . . ∂y(x)/∂xd). In
the general multiple output case, we view the random mechanism as as-
sociating a vector valued function, y(x) = Y (x, ω), with each elementary
outcome ω ∈ Ω. Codes that produce multiple outcomes were introduced
in Section 2.2, their modeling will be considered in Section 5.2.1, and the
application of these models will be provided in Sections 4.2.3 and 6.3.6.

We begin this overview of stochastic models for generating functions y(·)
with the following simple example.

Example 2.1 Suppose that we generate y(x) on [−1, +1] by the mecha-
nism

Y (x) = b0 + b1x + b2x
2, (2.3.1)

where b0, b1, and b2 are independent with bi ∼ N(0, σ2
i ) for i = 1, 2, 3.

Functions drawn from Y (x) are simple to visualize. Every realization y(·)
is a quadratic equation (P{b2 = 0} = 0) that is symmetric about an axis
other than the y-axis (symmetry about the y-axis occurs if and only if
b1 = 0 and P{b1 = 0} = 0). The quadratic is convex with probability 1/2
and it is concave with probability 1/2 (because P{b2 > 0} = 1/2 = P{b2 <
0}). Figure 2.1 illustrates ten outcomes from this random function when
σ2

0 = σ2
1 = σ2

2 = 1.0.
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FIGURE 2.1. Ten draws from the random function Y (x) = b0 + b1x + b2x
2

on [−1, +1], where b0, b1, and b2 are independent and identically N(0, 1.0) dis-
tributed.

For any x ∈ [−1, +1] the draws from (2.3.1) have mean zero, i.e.,

E{Y (x)} = E{b0 + b1x + b2x
2}

= E{b0} + E{b1} × x + E{b2} × x2

= 0 + 0 × x + 0 × x2 = 0. (2.3.2)

Equation (2.3.2) says that for any x, the mean of Y (x) is zero over many
drawings of the coefficients (b0, b1, b2); this is true because each regression
coefficient is independent and centered at the origin so that each regression
term is positive and negative with probability 1/2 and thus their sum,
Y (x), is also positive and negative with probability 1/2.

For any x ∈ [−1, +1] the pointwise variance of Y (x) is

Var{Y (x)} = E
{(

b0 + b1x + b2x
2
) (

b0 + b1x + b2x
2
)}

= σ2
0 + σ2

1x
2 + σ2

2x4 ≥ 0.

The values of Y (x1) and Y (x2) at x1, x2 ∈ [−1, +1] are related, as can
be seen from

Cov{Y (x1), Y (x2)} = E
{(

b0 + b1x1 + b2x
2
1

) (
b0 + b1x2 + b2x

2
2

)}
= σ2

0 + σ2
1x1x2 + σ2

2x
2
1x

2
2. (2.3.3)
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This covariance can be positive or negative. The sign of the covariance of
Y (x1) and Y (x2) can intuitively be explained as follows. The covariance
formula (2.3.3) is clearly positive for any x1 and x2 when both are positive
or both are negative. Intuitively this is true because over many drawings of
(b0, b1, b2), Y (x1) and Y (x2) both tend to be on the same side of the axis of
symmetry of the quadratic and thus Y (x1) and Y (x2) increase or decrease
together. The covariance formula can be negative if x1 and x2 are on the
opposite sides of the origin and σ2

1 dominates σ2
0 and σ2

2 (algebraically, the
middle term in (2.3.3) is negative and can exceed the sum of the other
two terms). Intuitively, one circumstance where this occurs is if σ2

0 is small
(meaning the curves tend to go “near” (0, 0)), and σ2

2 is small (the curves
tend to be linear near the origin), and σ2

1 is large; in this case, the draws
fluctuate between those with large positive slopes and those with large
negative slopes, implying that Y (x1) and Y (x2) tend to have the opposite
sign over the draws.

Because linear combinations of a fixed set of independent normal ran-
dom variables have the multivariate normal distribution, the simple model
(2.3.1) for Y (·) satisfies: for each L > 1 and any choice of x1, . . . , xL ∈ X ,
the vector (Y (x1),. . ., Y (xL)) is multivariate normally distributed. (See
Appendix B for a review of the multivariate normal distribution.) The
y(·) realizations also have several limitations, from the viewpoint of com-
puter experiments. First, the model can only produce quadratic draws.
Second, the multivariate normal distribution of (Y (x1),. . ., Y (xL)) is de-
generate when L ≥ 4. In the development below we wish to derive more
flexible random functions that retain the computational advantage that
(Y (x1), . . . , Y (xL)) has the multivariate normal distribution. �

There are many sources that provide detailed theoretical discussions of
random functions, particularly the Gaussian random functions introduced
in Sections 2.3.2–2.3.4 (Cramér and Leadbetter (1967), Adler (1981), Adler
(1990), and Abrahamsen (1997), for example). It is not our purpose to
present a complete account of the theory. Rather, we desire to give an
overview of these models, to describe the relationship between the “corre-
lation function” of stationary Gaussian random functions and the smooth-
ness properties of its realizations y(x), and to develop intuition about this
relationship through a series of examples.

2.3.2 Gaussian Random Function Models

In the computer experiments literature, the most popular models for gener-
ating function draws are Gaussian random functions, also called the Gaus-
sian stochastic processes. Hence we emphasize these models in this section
although, as we will note, some of the concepts that we introduce apply to
more general random functions.
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Definition Suppose that X is a fixed subset of IRd having positive d-
dimensional volume. We say that Y (x), for x ∈ X , is a Gaussian random
function (GRF) provided that for any L ≥ 1 and any choice of x1, . . . xL in
X , the vector (Y (x1), . . ., Y (xL)) has a multivariate normal distribution.

Gaussian random functions are determined by their mean function, µ(x)
≡ E{Y (x)}, for x ∈ X , and by their covariance function

C�(x1, x2) ≡ Cov{Y (x1), Y (x2)},
for x1, x2 ∈ X . Some authors call C�(·, ·) the “autocovariance” function to
be consistent with the language used in time series analysis.

The Y (x) model in Example 2.1 is a GRF. The GRFs that are used
in practice are nonsingular, which means that for any choice of inputs,
the covariance matrix of the associated multivariate normal distribution
is nonsingular. Such nonsingular multivariate normal distributions have
the advantage that it is easy to compute the conditional distribution of
one (or several) of the Y (xi) variables given the remaining Y (xj). The
prediction methodology used in Section 3.3 requires that these conditional
means and conditional variances be known and the predictive distributions
of Section 4.1 require that the entire conditional distribution be known. In
addition, draws from the most widely used GRFs allow a greater spectrum
of shapes than the quadratic equations generated in (2.1). They also permit
the modeler to control the smoothness properties of the y(x) draws; in most
of the scientific applications mentioned above, there is some information
about the smoothness of y(·), although perhaps only that it is a continuous
function of the inputs.

There are two technical concepts that we address briefly before intro-
ducing specific GRF models. We wish to make the reader aware of the
practical difficulties that these two concepts address. The first concept has
to do with the fact that our random function models are defined by their
finite-dimensional distributions while, in the following, we are interested in
properties that depend on limiting operations such as assuring that func-
tions drawn from the process have specified smoothness (continuity and
differentiability) properties. The continuity and differentiability of y(x) as
a function of x are sample path properties, i.e., they regard y(x) = Y (x, ω)
as a function of x for fixed ω. Thus throughout, we require that our ran-
dom function models be separable, which is a property introduced by Doob
(1953) that ensures that the finite-dimensional distributions determine the
sample path properties of function draws. Adler (1981) (pages 14-15) states
the formal definition of separability and discusses its intuition. For our pur-
poses it suffices to know that given any random function Y (·) on X , there is
an equivalent separable random function Y s(·) on X . The random functions
Y (·) and Y s(·) are equivalent provided

P {Y (x) = Y s(x)} = 1 for all x ∈ X .
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We assume throughout (and the proofs of almost sure sample path prop-
erties require) that our GRF models have been chosen to be separable.

Our second technical concept concerns a statistical issue. Classical statis-
tical methods make inferences about a population based on a random sam-
ple of data from that population. Indeed, the statistical procedure is chosen
to have certain sampling characteristics (meaning properties based on re-
peated sampling from the population). In computer experiments (as well
as in most other applications of spatial statistics), we observe y(x1), . . .,
y(xn), where x1, . . ., xn are training data input sites. However, these data
are values of a single function drawn from a population of functions accord-
ing to Y (·), i.e., (y(x1), . . . , y(xn)) = (Y (x1, ω), . . . , Y (xn, ω)). Thus spa-
tial data gives partial information about a single function y(x) = Y (x, ω)
rather than a random sample of functions drawn according to Y (·). To
predict the value of y(xnew), where xnew is a new input site, the process
must exhibit some regularity over X . In general, it need not be the case
that one can make inference about population quantities which are Ω av-
erages such as the y(xnew) predictor above, based on a spatial average for
a single ω ∈ Ω. Process ergodicity is the standard property that permits
valid statistical inference about that process based on a single draw (for a
discussion of this property from a statistical viewpoint, see Cressie (1993),
pages 52-58, and the additional references listed there). The technical de-
tails of this concept are beyond the scope of this book; we note only that
this issue motivates users to restrict attention to GRFs that are (strongly)
stationary (or homogeneous).

Definition The random function Y (·) is strongly stationary provided that
for any h ∈ IRd, any L ≥ 1, any x1, . . . , xL in X with x1 + h, . . . ,
xL + h ∈ X , it must be the case that (Y (x1), . . . , Y (xL)) and (Y (x1 +
h), . . . , Y (xL + h)) have the same distribution.

Notice that this definition is general. When applied to GRFs Y (·), sta-
tionarity is equivalent to requiring that (Y (x1), . . . , Y (xL)) and (Y (x1 +
h), . . . , Y (xL +h)) always have the same mean vector and same covariance
matrix. In particular, GRFs must have the same marginal distribution for
all x (taking L = 1); their mean and their variance must both be constant.
Furthermore, it is not difficult to show that the covariance of a stationary
GRF must satisfy

Cov {Y (x1), Y (x2)} = C (x1 − x2) (2.3.4)

for some function C(·), called the covariance function of the process. The
equation (2.3.4) means that all pairs of locations x1 and x2 having common
orientation and common inter-point distance will have the same covariance.
For example, the pairs of points at the tails and tips of the three arrows in
Figure 2.2 all have the same covariance structure (as well as infinitely many
other pairs on the two parallel lines depicted in the figure). The (constant)
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variance of a stationary process can be expressed in terms of its covariance
function as Var{Y (x)} = Cov{Y (x), Y (x)} = C(0).

Technically, the stationarity of a GRF Y (x) does not guarantee that
Y (x) is ergodic but this will be case if C(h) → 0 as h → ∞ and hence,
inference is valid based on data collected from a single sample path (Adler
(1981), page 145). The correlation function examples below satisfy this
condition.

An even stronger requirement is that the GRF be invariant under rota-
tions, a property called isotropy. A stationary GRF Y (·) can be shown to
be isotropic provided

Cov{Y (x1), Y (x2)} = C (‖x1 − x2‖2) , (2.3.5)

where ‖h‖2 =
√∑

i h2
i is Euclidean distance. For isotropic models, every

pair of points x1 and x2 having common inter-point distance must have
the same covariance (and correlation) regardless of their orientation (see
the right panel of Figure 2.2). For example, for any isotropic GRF, the
origin has the same correlation with every point on the unit circle. Isotropic
models are usually not useful when component inputs are measured on
different scales.
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FIGURE 2.2. In the left-hand panel, the tip and tail of each arrow have the same
correlation for stationary random functions. In the right-hand panel, all points
on the circle have the same correlation for isotropic random functions.

We will occasionally consider random function models that that are non-
parametric in that they make only moment requirements on Y (·). The most
important such model is that of second-order stationary. A random function
Y (·) having constant mean and constant variance is second-order stationary
provided its covariance function satisfies (2.3.4).

Despite the arguments given above, stationarity is a substantial restric-
tion and we often require more flexibility in modeling y(x). Several ap-
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proaches have been used in the literature to enhance random function
modeling while retaining (some) of the theoretical simplifications that sta-
tionarity provides. The most frequently used of these techniques, the one
we employ here, is to permit the mean of the stochastic process generating
y(x) to depend on x in a standard regression manner while assuming the
residual variation follows a stationary GRF. The corresponding random
function has the form

Y (x) =
p∑

j=1

fj(x)βj + Z(x) = f�(x)β + Z(x), (2.3.6)

where f1(·), . . . , fp(·) are known regression functions, β = (β1, . . . , βp)�

is a vector of unknown regression coefficients, and Z(·) is a zero mean
stationary GRF over X . These Y (·) models are, of course, nonstationary.

Most other methods for enhancing Y (x) model flexibility have been mo-
tivated by environmental applications which often require nonstationary
models. While extremely successful in these applications, the nonstationary
models introduced in the course of such data analyses have typically been
used only in low-dimensional x input settings (two- or three-dimensional
space, or three- or four-dimensional space-time applications). Their ability
to handle higher dimensional x input cases is untested, although they may
well be of use in the analysis of computer experiments. We mention two
modeling strategies that have been suggested in the literature.

One method is to generate nonstationary Y (x) models from stationary
ones by convolving a stationary process with a kernel; Higdon, Swall and
Kern (1999) integrate white noise, the spatial analog of a random sample of
normal observations, against a Gaussian kernel to produce such a model. In
the same spirit, Hass (1995) constructs Y (x) models as a moving window
over a stationary process. Another approach, introduced by Sampson and
Guttorp (1992), is based on deforming the input x of a stationary process
to model Y (x) (see also Guttorp and Sampson (1994) and Guttorp, Meiring
and Sampson (1994)).

2.3.3 The Correlation Function of a Gaussian Random
Function Model

To be consistent with the notation introduced in (2.3.6), hereafter we de-
note the stationary GRF of interest by Z(·). We reiterate that Z(·) has zero
mean (by including any overall constant mean value among the regression
terms in (2.3.6)). Thus Z(·) is completely determined by its covariance
function C(·). In some applications, it is more convenient to separately
model the process variance σ2

Z
= C(0) and the process correlation func-

tion. The correlation function of a stationary process Z(x) that has finite
σ2

Z
> 0 and covariance function C(·) is defined to be

R(h) = C(h)/σ2
Z for h ∈ IRd.
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The name “correlation function” comes from

Cor{Z(x1), Z(x2)} =
Cov{Z(x1), Z(x2)}√

Var{Z(x1)} × Var{Z(x2)}
=

C(x1 − x2)
σ2

Z

= R(x1 − x2).

What properties must valid covariance and correlation functions possess?
Assuming that Z(x) is nondegenerate, then C(0) (= σ2

Z) > 0 while R(0) =
1. Because Cov{Y (x + h), Y (x)} = Cov{Y (x), Y (x + h)}, the covariance
and correlation functions of stationary GRFs must be symmetric about the
origin, i.e.,

C(h) = C(−h) and R(h) = R(−h).

Both C(·) and R(·) must be positive semidefinite functions; stated in terms
of C(·), this means that for any L ≥ 1, and any real numbers w1, . . . , wL,
and any inputs x1, . . . ,xL in X ,

L∑
i=1

L∑
j=1

wiwjC(xi − xj) ≥ 0. (2.3.7)

The sum (2.3.7) must be nonnegative because the left-hand side is the
variance of

∑L
i=1 wiY (xi). The covariance function C(·) is positive definite

provided > 0 holds in (2.3.7) for every (w1, . . . , wL) �= 0 (any L ≥ 1 and
any x1, . . . ,xL in X ).

While every covariance function must satisfy the symmetry and positive
semidefinite properties above, these properties do not offer a convenient
method for generating valid covariance functions. Rather, what is of greater
importance is a characterization of the class of covariance functions because
this would allow us to generate valid covariance functions. While a general
study of how to determine the form of valid stationary covariance functions
is beyond the scope of this book, one answer to this question is relatively
simple to state, and we do so next.

As a prelude to identifying this class of covariance functions (and as
an introduction to the topic of smoothness which is taken up again in
Section 2.3.4), we introduce the concept of mean square (MS) continuity.
Mean square properties describe the average performance of the sample
paths. For purposes of stating the definitions of MS properties, there is
nothing to be gained by restricting attention to GRFs and so we consider
general random functions Y (·).

Definition Suppose Y (·) is a stationary process on X that has finite second
moments. We say that Y (·) is MS continuous at the point x0 ∈ X provided

lim
x→x0

E
{
(Y (x) − Y (x0))

2
}

= 0.
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The process is MS continuous on X provided it is MS continuous at every
x0 ∈ X .

Suppose CY (·) is the covariance function of the stationary process Y (·),
then

E
{
(Y (x) − Y (x0))

2
}

= 2 (CY (0) − CY (x − x0)) . (2.3.8)

The right-hand formula shows that Y (·) is MS continuous at x0 provided
CY (·) is continuous at the origin—in fact, Y (·) is MS continuous at every
x0 ∈ X provided CY (·) is continuous at the origin. Stated in terms of the
correlation function, CY (h) → CY (0) = σ2

Z as h → 0 is equivalent to

RY (h) = CY (h)/σ2
Z → 1.0 as h → 0.

Continuing our discussion of general random functions Y (·), Bochner
(1955) proved that the covariance function of every stationary, MS contin-
uous random function Y (·) on IRd, can be written in the form

CY (h) =
∫

IRd
cos(h�w) dG(w), (2.3.9)

where G(·) is positive finite symmetric measure on IRd. In particular, this
characterization must hold for the special case of stationary GRFs. (See
also the discussions in Cramér and Leadbetter (1967) on page 126, Adler
(1981) on page 25, Cressie (1993) on page 84, or Stein (1999) on page
22-25.)

The process variance corresponding to CY (·) having the form (2.3.9) is

CY (0) =
∫

IRd
dG(w) < +∞

which is finite because G is a bounded measure on IRd; F (·) = G(·)/CY (0)
is a symmetric probability distribution, called the spectral distribution, cor-
responding to CY (·). The function

RY (h) =
∫

IRd
cos(h�w) dF (w) (2.3.10)

is the correlation function corresponding to the spectral distribution F (·). If
F (·) has a density f(·), then f(·) is called the spectral density corresponding
to RY (·). In this case

RY (h) =
∫

IRd
cos(h�w)f(w) dw. (2.3.11)

The right-hand side of (2.3.11) gives us a method to produce valid correla-
tion functions (and covariance functions)—choose a symmetric density f(·)
and evaluate the integral (2.3.11).
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FIGURE 2.3. The correlation function R(h) = sin(h/θ)/(h/θ) for θ = 1/4π over
h in [−1, +1]

Example 2.2 This first example shows how (2.3.11) can be used to gener-
ate valid correlation functions from probability density functions that are
symmetric about the origin. Consider the one-dimensional case. Perhaps
the simplest choice of one-dimensional density is the uniform density over
a symmetric interval which we take to be (−1/θ, +1/θ) for a given θ > 0.
Thus the spectral density is

f(w) =
{

θ/2, −1/θ < w < 1/θ
0, otherwise

and the corresponding correlation function is

R(h) =
∫ +1/θ

−1/θ

θ

2
cos(hw) dw =

{
sin(h/θ)

h/θ . h �= 0
1, h = 0

.

This correlation has scale parameter θ; Figure 2.3 shows that R(h) can
model both positive and negative correlations. �

Any function RY (·) of the form (2.3.10) must satisfy RY (0) = 1, must
be continuous at h = 0, must be symmetric about h = 0, and must be
positive semidefinite. The first consequence holds because

RY (0) =
∫

IRd
cos(0�w) dF (w) =

∫
IRd

1 dF (w), = 1,
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where the third equality in the above is true because F (·) is a probability
distribution. Continuity follows by an application of the dominated conver-
gence theorem; notice that from the argument following (2.3.8), continuity
of RY (h) at the origin insures that the corresponding process is MS con-
tinuous. Symmetry holds because cos(−x) = cos(x) for all real x. Positive
semidefinite is true because for any L ≥ 1, any real numbers w1, . . . , wL,
and any x1, . . . ,xL we have

L∑
i=1

L∑
j=1

wiwjRY (xi − xj)

=
∫

IRd

L∑
i=1

L∑
j=1

wiwj cos(x�
i w − x�

j w) dF (w)

=
∫

IRd

L∑
i=1

L∑
j=1

wiwj

{
cos(x�

i w) cos(x�
j w)

+ sin(x�
i w) sin(x�

j w)
}

dF (w)

=
∫

IRd


(

L∑
i=1

wi cos(x�
i w)

)2

+

(
L∑

i=1

wi sin(x�
i w)

)2
 dF (w)

≥ 0.

Continuity, symmetry, and positive semidefiniteness also hold for any co-
variance function CY (·) of form (2.3.9).

We conclude by mentioning several additional tools that are extremely
useful for “building” covariance and correlation functions given a basic
set of such functions. Suppose that C1(·) and C2(·) are valid covariance
functions. Then their sum and product,

C1(·) + C2(·) and C1(·) × C2(·),
are also valid covariance functions. The sum, C1(·) + C2(·), is the covari-
ance of two independent processes, one with covariance function C1(·) and
the other with covariance function C2(·). Similarly, C1(·)×C2(·) is the co-
variance function of the product of two independent zero-mean GRFs with
covariances C1(·) and C2(·), respectively.

The product of two valid correlation functions, R1(·) and R2(·), is a valid
correlation function, but their sum is not (notice that R1(0) + R2(0) =
2, which is not possible for a correlation function). Correlation functions
that are the products of one-dimensional marginal correlation functions are
sometimes called separable correlation functions (not to be confused with
the earlier use of the term separable).

We now introduce two widely–used families of correlation functions that
have been used in the literature to specify stationary Gaussian stochastic
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processes (see also Journel and Huijbregts (1978), Mitchell, Morris and
Ylvisaker (1990), Cressie (1993), Vecchia (1988), and Stein (1999)).

Example 2.3 Another familiar choice of a symmetric density that can be
used as a spectral density is the normal density. To give a simple form for
the resulting correlation function, take the spectral density to be N(0, 2/θ2)
for θ > 0. Calculation gives

R(h) =
∫ +∞

−∞
cos(hw)

θ√
2π

√
2

exp{−w2θ2/4} dw

= exp
{−(h/θ)2

}
. (2.3.12)

This correlation is sometimes called the Gaussian correlation function be-
cause of its form but the reader should realize that the name is, perhaps, a
misnomer. The Gaussian correlation function is a special case of the more
general family of correlations called the power exponential correlation fam-
ily. This family is far and away the most popular family of correlation
models in the computer experiments literature. The one-dimensional GRF
Z(x) on x ∈ IR has power exponential correlation function provided

R(h) = exp {−|h/θ|p} for h ∈ IR, (2.3.13)

where θ > 0, and 0 < p ≤ 2. In addition to the Gaussian subfamily, the
case p = 1

R(h) = exp {−(|h|/θ)}
is well-studied. The GRF corresponding to this correlation function is
known as the Ornstein-Uhlenbeck process.

For later reference, we note that every power exponential correlation
function, 0 < p ≤ 2, is continuous at the origin, and none, except the
Gaussian p = 2, is differentiable at the origin. In fact, the Gaussian corre-
lation function is infinitely differentiable at the origin.

From the fact that products of correlation functions are also correlation
functions,

R(h) = exp

−
d∑

j=1

|hj/θj |pj

 (2.3.14)

is a d-dimensional separable version of the power exponential correlation
function, as is the special case of the product Gaussian family

R(h) = exp

−
d∑

j=1

(hj/θj)2


which has dimension–specific scale parameters. �
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Example 2.4 Suppose that Z(x) is a one-dimensional GRF on x ∈ IR
with correlation function

R(h|θ) =


1 − 6

(
h
θ

)2
+ 6

(
|h|
θ

)3

, |h| ≤ θ/2

2
(
1 − |h|

θ

)3

, θ/2 < |h| ≤ θ

0, θ < |h|
, (2.3.15)

where 0 < θ and h ∈ IR. The function R(h|θ) has two continuous derivatives
at h = 0 and also at the change point h = θ/2 (see the right column of
Figure 2.6). R(h|θ) assigns zero correlation to inputs x1 and x2 that are
sufficiently far apart (|x1 − x2| > θ). Formally, the spectral density that
produces (2.3.15) is proportional to

1
w4θ3

{72 − 96 cos (wθ/2) + 24 cos(wθ)} .

Anticipating Section 3.2 on prediction in computer experiments, the use
of (2.3.15) leads to cubic spline interpolating predictors. As in the previous
example, we note that

R(h|θ) =
d∏

j=1

R(hj |θj)

for h ∈ IRd is a correlation function that allows each input dimension to
have its own scale and thus dimension specific rate at which Z(·) values
become uncorrelated. Other one-dimensional cubic correlation functions
can be found in Mitchell et al. (1990) and Currin, Mitchell, Morris and
Ylvisaker (1991). �

2.3.4 Using the Correlation Function to Specify a GRF with
Given Smoothness Properties

In practice we reduce the choice of a GRF to that of a covariance (or correla-
tion) function whose realizations have desired prior smoothness character-
istics. Hence we now turn attention to describing the relationship between
the smoothness properties of a stationary GRF, Z(·), and the properties of
its covariance function, C(·). To describe this relationship for general pro-
cesses would require substantial space. By restricting attention to station-
ary GRFs we can provide a relatively concise overview. See Adler (1990),
Abrahamsen (1997), or Stein (1999) for a discussion of these ideas for more
general processes and for additional detail concerning the Gaussian process
case.

There are several different types of “continuity” and “differentiability”
that a process can possess. The definitions differ in their ease of applica-
tion and the technical simplicity with which they are established. Given a
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particular property such as continuity at a point or differentiability over an
interval, we would like to know that draws from a given random function
model Z(·) have that property with probability one. For example, if Q is a
property of interest, say continuity at the point x0, then we desire

P {ω : Z(·, ω) has property Q} = 1.

We term this almost sure behavior of the sample paths.
Section 2.3.3 introduced the widely-used concept of MS continuity. We

saw an instance of the general fact that MS properties are relatively simple
to prove, although they are not of direct interest in describing sample paths.
Below we show that a slight strengthening of the conditions under which
MS continuity holds guarantees almost sure continuity.

Recall that in Section 2.3.3 we stated that any stationary random func-
tion Z(·) on X having finite second moments is MS continuous on X pro-
vided that its correlation function is continuous at the origin, i.e., R(h) → 1
as h → 0. GRFs with either the cubic (2.3.15) or the power exponential
(2.3.13) correlation functions are examples of such random functions.

Adler (1981) (page 60) shows that for the sample paths of stationary
GRFs to be almost surely continuous, one need only add a condition re-
quiring that R(h) converge to unity sufficiently fast. For example, a con-
sequence of his Theorem 3.4.1 is that, if Z(·) is a stationary GRF with
correlation function R(·) that satisfies

1 − R(h) ≤ c

| log(‖h‖2)|1+ε
for all ‖h‖2 < δ (2.3.16)

for some c > 0, some ε > 0, and some δ < 1, then Z(·) has almost surely
continuous sample paths. MS continuity requires that (1 − R(h)) → 0 as
h → 0; the factor | log(‖h‖2)|1+ε → +∞ as h → 0. Thus (2.3.16) holds
provided that 1−R(h) converges to zero at least as fast as | log(‖h‖2)|1+ε

diverges to +∞. The product

[1 − R(h)] × |log (‖h‖2)|1+ε

is bounded for most correlation functions used in practice. In particular
this is true for any power exponential correlation function with 0 < p ≤ 2.
One can also use the spectral distribution to give sufficient conditions for
almost sure continuity of sample paths. The standard conditions are stated
in terms of the finiteness of the moments of the spectral distribution. For
example, see Theorem 3.4.3 of Adler (1981) or Sections 9.3 and 9.5 of
Cramér and Leadbetter (1967).

Conditions for almost sure continuity of the sample paths of nonstation-
ary GRFs, Z(·), can be similarly expressed in terms of the rate at which

E
{
|Z(x1) − Z(x2)|2

}



2.3 Modeling Output 37

converges to zero as ‖x1 − x2‖2 → 0 (Adler (1981), Theorem 3.4.1).
As for continuity, a concept of mean square differentiability can be de-

fined that describes the mean difference of the usual tangent slopes of
a given process and a limiting “derivative process.” Instead, here we di-
rectly discuss the parallel to almost sure continuity. Consider the indi-
vidual sample draws z(x) = Z(x, ω), X ⊂ IRd, corresponding to specific
outcomes ω ∈ Ω. Suppose that the jth partial derivative of Z(x, ω) exists
for j = 1, . . . d and x ∈ X , i.e.,

∇jZ(x, ω) = lim
δ→0

Z(x + ejδ, ω) − Z(x, ω)
δ

exists where ej denotes the unit vector in the jth direction. Let

∇Z(x, ω) = (∇1Z(x, ω), . . . ,∇dZ(x, ω))

denote the vector of partial derivatives of Z(x, ω), sometimes called the gra-
dient of Z(x, ω). We will state conditions on the covariance (correlation)
function that guarantee that the sample paths are almost surely differ-
entiable. The situation for higher order derivatives can be described in a
similar manner, sample pathwise, for each ω.

As motivation for the condition given below, we observe the following
heuristic calculation that gives the covariance of the derivative of Z(·). Fix
x1 and x2 in X , then

Cov
(

1
δ1

Z(x1 + ejδ1) − Z(x1) , 1
δ2

Z(x2 + ejδ2) − Z(x2)
)

=
1

δ1δ2
{C(x1 − x2 + ej(δ1 − δ2)) − C(x1 − x2 + ejδ1)

− C(x1 − x2 − ejδ2) + C(x1 − x2)}

→ − ∂2C(h)
∂hj

∣∣∣∣
h = x1−x2

(2.3.17)

as δ1, δ2 → 0 when the second partial derivative of C(·) exists. These calcu-
lations motivate the fact that the covariance function of the partial deriva-
tives of Z(·), if they exist, are given by the partial derivatives of C(h). Thus
it should come as no surprise that to assure that a given Gaussian random
field has, almost surely, differentiable draws, the conditions required are on
the partial derivatives of the covariance function.

Formally, suppose

C
(2)
j (h) ≡ ∂2C(h)

∂h2
j

exists and is continuous with C
(2)
j (0) �= 0; let R

(2)
j (h) ≡ C

(2)
j (h)/C

(2)
j (0)

be the normalized version of C
(2)
j (·). Then almost surely Z(·) has jth par-

tial differentiable sample path, denoted ∇jZ(x), provided R
(2)
j (·) satisfies
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(2.3.16). In this case −C
(2)
j (h) is the covariance function and R

(2)
j (h) is the

correlation function of ∇jZ(x).
Higher order Z(·) derivatives can be iteratively developed in the same

way, although a more sophisticated notation must be introduced to describe
the higher-order partial derivatives required of C(·). Conditions for non-
stationary Z(·) can be determined from almost sure continuity conditions
for nonstationary Z(·) (Adler (1981), Chapter 3).

We complete this section by illustrating the effects of changing the co-
variance parameters on the draws of several stationary GRFs that were
introduced earlier and on one important additional family, the Matérn cor-
relation function. In each case, the plot was obtained by linearly joining
draws from an appropriate 20 or 40 dimensional multivariate normal distri-
bution; hence the figures give the spirit, if not the detail, of the sample paths
from the associated process. The interested reader can gain addition feel
for stationary Gaussian processes by using the software of Kozintsev (1999)
or Kozintsev and Kedem (2000) for generating two-dimensional Gaussian
random fields (see the URL

http://www.math.umd.edu/~bnk/CLIP/clip.gauss.htm)

Example 2.3 (Continued–power exponential correlation function)
Figures 2.4 and 2.5 show the marginal effects of changing the shape parame-
ter p and the scale parameter θ on the function draws from GRFs over [0, 1]
having the power exponential correlation function (2.3.13). These figures,
and those that illustrate the other GRFs that are discussed below, connect
20 points drawn from a multivariate normal distribution having the desired
covariance matrix and so illustrate the spirit of the function draws, if not
their fine detail.

For powers p < 2, the sample paths are theoretically nondifferentiable
and this can be seen in the bottom two panels of Figure 2.4. The sample
paths for p = 2.0 are infinitely differentiable; the draws in the top panel of
Figure 2.4 are very near the process mean of zero for θ = 1.0. As shown
in Figure 2.5, the number of local maxima and minima in sample paths
is controlled by the scale parameter when p = 2.0. Figure 2.5 shows that
as the scale parameter θ increases, the correlations for each fixed pair of
inputs decreases and the sample paths have increasing numbers of local
maxima. This is true because the process exhibits less dependence for “near-
by” x and thus “wiggles” more like white noise, the case of uncorrelated
Z(x). As θ decreases, the correlation for each pair of inputs increases and,
as the correlation approaches unity, the draws become more nearly the
constant zero, the process mean. In Figure 2.5 the most extreme case of
this phenomenon is shown in the top panel where (p, θ) = (2.0, 0.50). �

Example 2.4 (Continued–cubic correlation function) Recall that the
cubic correlation (and covariance) function (2.3.15) is twice continuously
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FIGURE 2.4. The Effect of Varying the Power on the Sample Paths of a GRF
with a Power Exponential Correlation Function. Four draws from a zero mean,
unit variance GRF with the exponential correlation (2.3.13) having fixed θ ≡ 1.0
with p = 2.0 (dashed lines), p = 0.75 (dotted lines), and p = 0.20 (solid lines).

differentiable. Thus draws from a GRF with this correlation structure will
be continuous and differentiable. Figure 2.6 shows draws from this pro-
cess for different θ. As the scale parameter θ decreases, the domain where
R(h) = 0 increases and hence the paths become more like white noise, i.e.,
having independent and identically distributed Gaussian components. As
θ increases, the paths tend to become flatter with fewer local maxima and
minima. �

Example 2.5 The Matérn correlation function was introduced by Matérn
in his thesis (Matérn (1960) or see the reprint Matérn (1986) and Vecchia
(1988) for related work). This model has been used especially to describe
the spatial and temporal variability in environmental data (see Rodŕıguez-
Iturbe and Mej́ıa (1974), Handcock and Stein (1993), Handcock and Wallis
(1994), and especially Stein (1999)).

From the viewpoint of the spectral representation, the Matérn correlation
function arises by choosing the t distribution as the spectral density. Given
ν > 0 and θ > 0, use of the t density

f(w) =
Γ(ν + 1/2)
Γ(ν)

√
π

(
4ν

θ2

)ν 1(
w2 + 4ν

θ2

)ν+1/2



40 2 Preliminaries

x

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

h
R

(h
)

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

R
(h

)

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2
3

R
(h

)

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

FIGURE 2.5. The Effect of Varying the Scale Parameter on the Sample Paths
of a GRF with a Power Exponential Correlation Function. Four draws from a
zero mean, unit variance GRF with the exponential correlation function (2.3.12)
(having fixed p = 2.0) for θ = 0.50 (dashed lines), θ = 0.25 (dotted lines), and
θ = 0.10 (solid lines).

in spectral correlation formula (2.3.10) gives the two parameter correlation
family

R(h) =
1

Γ(ν)2ν−1

(
2
√

ν |h|
θ

)ν

Kν

(
2
√

ν |h|
θ

)
, (2.3.18)

where Kν(·) is the modified Bessel function of order ν. As is usual in
the literature, we refer to (2.3.18) as the Matérn correlation function. The
parameter θ is clearly a scale parameter for this family. The modified Bessel
function arises as the solution of a certain class of ordinary differential
equations (Kreyszig (1999)). In general, Kν(t) is defined in terms of an
infinite power series in t; when ν equals a half integer, i.e., ν = n + 1/2 for
n ∈ {0, 1, 2, . . .}, then Kn+1/2(·) can be expressed as the finite sum

Kn+1/2(t) = e−t

√
π

2t

n∑
k=0

(n + k)!
k! (n − k)!

1
(2t)k

.

The corresponding Matérn correlation function (2.3.18) is

e−2
√

ν|h|/θ

{
b0

( |h|
θ

)n

+ b1

( |h|
θ

)n−1

+ b2

( |h|
θ

)n−2

+ . . . + bn

}
,
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FIGURE 2.6. The Effect of Varying the Scale Parameter on the Sample Paths
of a GRF with a Cubic Correlation Function. Four draws from a zero mean,
unit variance GRF with the cubic correlation function (2.3.15) for θ = 0.5 (solid
lines), θ = 1.0 (dotted lines), and θ = 10.0 (dashed lines). The corresponding
correlation function is plotted to the right of each set of sample paths.

where the coefficients are given by

bj =
√

π ν(n−j)/2

4jΓ(ν)
(n + j)!

j! (n − j)!

for j = 0, 1, . . . where ν = n + 1/2; the bj depend on ν but not θ. For
example, when n = 0 (ν = 1/2),

K1/2(t) =
√

πe−t/
√

2t and so R(h) = e−
√

2|h|/θ,

which is a special case of the power exponential correlation function with
p = 1 that was introduced earlier. Similarly, R(h) → e−(h/θ)2 as ν → ∞ so
that this class of correlations includes the Gaussian correlation function in
the limit.

The smoothness of functions drawn from a GRF with Matérn correlation
depends on ν. Let �ν� denote the integer ceiling of ν, i.e., the smallest
integer that is greater than or equal to ν. For example, �3.2� = 4 and �3� =
3. Then functions drawn from a GRF having the Matérn correlation have
almost surely continuously differentiable sample draws of order (�ν� − 1).
Thus we refer to ν as the smoothness parameter of the Matérn family (see
Cramér and Leadbetter (1967)).
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Products of the one-dimensional Matérn correlation function can be use-
ful for modeling d-dimensional input responses. In this case, the family
might include dimension specific scale parameters and a common smooth-
ness parameter,

R(h) =
d∏

i=1

1
Γ(ν)2ν−1

(
2
√

ν |hi|
θi

)ν

Kν

(
2
√

ν |hi|
θi

)
,

or dimension specific scale and smoothness parameters.
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FIGURE 2.7. The Effect of Varying the ν Parameter on the Sample Paths of a
GRF with Matérn Correlation Function. Four draws from a zero mean, unit vari-
ance GRF with the Matérn correlation function (2.3.18) (having fixed θ = 0.25)
for ν = 1 (solid lines), ν = 2.5 (dotted lines), and ν = 5 (dashed lines).

We conclude by displaying sets of function draws from one-dimensional
GRFs on [0, 1] having different Matérn correlation functions to illustrate
the effect of changing the scale and shape parameters.

Figure 2.7 fixes the scale parameter at θ = 0.25 and varies ν ∈ {1, 2.5, 5}.
The draws clearly show the increase in smoothness as ν increases. As a
practical matter, it is difficult for most observers to distinguish sample
paths having 3 or 4 continuous derivatives from those that are infinitely
differentiable. In contrast, Figure 2.8 fixes the smoothness parameter at
ν = 4 and varies θ ∈ {0.01, 0.25, 2.0}. For fixed ν and 0 < h < 1.0, the
scaled range of |h|/θ varies substantially for different θ; |h|/θ ranges from
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FIGURE 2.8. The Effect of Varying the Scale Parameter on the Sample Paths
of a GRF with Matérn Correlation Function. Four draws from a zero mean, unit
variance GRF with the Matérn correlation function (2.3.18) (having fixed ν = 4)
for θ = 0.01 (solid lines), θ = 0.25 (dotted lines), and θ = 2.0 (dashed lines).

0.0 to 100 for θ = 0.01 while this ratio only varies over 0.0 to 0.5 for θ = 2.0.
Notice that we use different h ranges for plotting R(h) in Figure 2.8 to
better illustrate the character of the correlation function near the origin.
As θ increases, the correlation function of any two fixed points decreases (to
zero) and hence the sample paths “look” more like white noise. Thus the
bottom panel of this figure plots a process with many more local maxima
and minima than does the top panel. �

2.3.5 Hierarchical Gaussian Random Field Models

While the examples above can provide guidance about the choice of a spe-
cific GRF prior for y(·), it will often be the case that the user will not
be prepared to specify every detail of the GRF prior. For example, it will
often be difficult to specify the correlation function of the GRF. A flexible
alternative to the complete specification of a GRF is to use a hierarchical
GRF prior model for Y (·). To describe this model, suppose that

Y (x) =
p∑

j=1

fj(x)βj + Z(x) = f�(x)β + Z(x),
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where Z(·) is a Gaussian random field with zero mean, variance σ2
Z
, and

correlation function R(· |ψ). Here R(· |ψ) denotes a parametric family of
correlation functions. In a hierarchical model some (or all) of β, σ2

Z
, and ψ

are not specified but rather a 2nd stage distribution that describes expert
opinion about the relative likelihood of the parameter values.

To be specific, suppose it desired to place a 2nd stage prior on all three
parameters β, σ2

Z , and ψ. Sometimes this task is facilitated because the
prior [β, σ2

Z
, ψ] prior can be expressed in “pieces.” Suppose that it is rea-

sonable to assume that large scale location parameters β and the small
scale variance, σ2

Z, are independent of the correlation parameters, ψ. This
means that

[β, σ2
Z , ψ] = [β, σ2

Z ] × [ψ] = [β |σ2
Z] × [σ2

Z] × [ψ] .

The second equality is true because [β, σ2
Z
] = [β |σ2

Z
] × [σ2

Z
] always holds.

Thus the overall prior can be determined from these three pieces, which is
often easier to do.

One complication with hierarchical models is that even when [β, σ2
Z
, ψ]

can be specified, it will usually be the case that the Y (x) posterior can-
not be expressed in closed form. Subsection 3.3.2 discusses the problem of
computing the posterior mean in the context of various “empirical best lin-
ear unbiased predictors.” See especially the discussion of “posterior mode
empirical best linear unbiased predictors” beginning on page 66.

As an example, suppose that the input x is d-dimensional and that
R(· |ψ) has the product Matérn correlation function

R(h |ψ) =
d∏

i=1

1
Γ(ν)2ν−1

(
2
√

ν |hi|
θi

)ν

Kν

(
2
√

ν |hi|
θi

)
(2.3.19)

with unknown common smoothness parameter and dimension-specific scale
parameters; thus ψ = (ν, θ1, . . . , θd). Consider specification of prior [ψ =
(ν, θ1, . . . , θd)]. Suppose that any ν, 2 ≤ ν ≤ 50 is equally likely, which
implies that the number of derivatives in each dimension is equally likely
to range from 1 to 49. Given ν, 2nd stage priors can be placed on each
scale parameter by soliciting expert opinion about likelihood of correlation
values between Y (x1) and Y (x2) where x1 and x2 differ in exactly one
coordinate direction. See Oakley (2002) for details and a case study. There
are other examples of the construction of 2nd stage prior distributions for
parameters, mostly in the environmental literature. For example, Handcock
and Wallis (1994) build a prior distribution for correlation parameters in
their space-time model of the mean temperature of a region of the northern
United States.

The references in the previous paragraph describe what might be thought
of as “informative” 2nd stage priors. Again returning to the Matérn corre-
lation function (2.3.19), it may be difficult to choose even the means and
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variances of the smoothness parameter and the scale parameters for specific
dimensions, much less the [ψ] joint distribution. in such cases it is tempting
to develop and use so-called “non-informative” 2nd stage priors, which give
“equal” weight to all the legitimate parameter values. The reader should
be warned that there is not always agreement in the statistical community
about what constitutes a non-informative prior, even for parameters having
finite ranges. Furthermore not every choice of a non-informative 2nd stage
prior dovetails with the 1st stage model to produce a legitimate prior for
y(·) (see the important paper by Berger, De Oliveira and Sansó (2001)).
More will said about non-informative 2nd stage priors in Subsection 3.3.2
on page 66, which discusses “posterior mode empirical best linear unbi-
ased predictors.” Such predictors assume that a hierarchical GRF model is
specified having parametric correlation function R(· |ψ) with unknown ψ.

A third possible choice for a 2nd stage parameter prior is a “conju-
gate” prior. Conjugate priors lead to closed-form posterior calculations,
and are sometimes reasonable. Section 4.1.2 discusses conjugate and non-
informative 2nd stage [β] distributions (with σ2

Z
and ψ known). Section 4.1.3

gives the analogous conjugate and non-informative 2nd stage [β, σ2
Z ] distri-

butions (with ψ known). These two sections give closed-form expressions
for the posterior of Y (x) given the data.


