

ATL Server:
High Performance

C++ on .NET

PRANISH KUMAR,
JASJIT SINGH GREWAL,

BOGDAN CRIVAT,
AND ERIC LEE

1283ch00cmp2.fm Page i Thursday, May 1, 2003 6:32 PM

ATL Server: High Performance C++ on .NET
Copyright © 2003 by Pranish Kumar, Jasjit Singh Grewal, Bogdan Crivat,
and Eric Lee

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-128-3

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen
Watterson, John Zukowski

Assistant Publisher: Grace Wong

Project Manager and Copy Editor: Nicole LeClerc

Proofreader: Lori Bring

Compositor: Argosy Publishing

Indexer: Valerie Perry

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email

orders@springer-ny.com

, or visit

http://www.springer-ny.com

. Outside the United States, fax +49 6221 345229, email

orders@springer.de

, or visit

http://www.springer.de

.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email

info@apress.com

, or visit

http://www.apress.com

.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at

http://www.apress.com

 in the Downloads
section.

1283ch00cmp2.fm Page ii Thursday, May 1, 2003 6:32 PM

119

CHAPTER 10

Web Services

W

EB

SERVICES

REPRESENT

A

 new philosophy in application development and
design. Based on standard protocols, Web services introduce a way of allowing
applications to take advantage of Internet communication.

Web services enable applications to take advantage of the Internet by allowing
them to make procedural calls and exchange data over the Web. By relying on
Extensible Markup Language (XML) as the packaging, Web services allow commu-
nications between programs running all over the world, regardless of the
underlying platform.

ATL Server has been designed to allow native C++ developers to easily create
Web services on the Windows platform. The ATL Server Web service support has
been extensively tested against Web services created using other tools and tech-
nologies (ASP.NET, Apache, and others) to ensure ease of use and interoperability.

In this chapter you’ll examine what exactly Web services are, how they work,
and how you can use ATL Server to take advantage of them in your own applica-
tions (or to migrate existing components forward). This chapter assumes you are
somewhat familiar with XML and XML namespaces.

Introducing Web Services

The two main protocols in the ATL Server implementation of Web services are
Simple Object Access Protocol (SOAP) and Web Services Description Language
(WSDL). SOAP is the protocol for a Web service message, and WSDL is for defining
the interface for a service being called.

In this section you’ll also look at Universal Description, Discovery, and Inte-
gration (UDDI), a publishing service that allows developers to publish their Web
services so that other developers may discover and use them. In addition, UDDI
allows developers looking for Web services to find and consume those that they
have access to.

For more information on SOAP and WSDL, please visit the following Web
pages on the World Wide Web Consortium’s (W3C’s) site:

• Simple Object Access Protocol (SOAP):

http://www.w3.org/TR/SOAP/

• Web Services Description Language (WSDL):

http://www.w3.org/TR/

WSDL.html

• XML Schema Part 0: Primer:

http://www.w3.org/TR/xmlschema-0/

1283ch10final.fm Page 119 Thursday, May 1, 2003 2:09 PM

Chapter 10

120

• XML Schema Part 1: Structures:

http://www.w3.org/TR/xmlschema-1/

• XML Schema Part 2: Datatypes:

http://www.w3.org/TR/xmlschema-2/

SOAP

SOAP is a protocol for the exchange of information in a distributed environment,
which is achieved by the exchange of SOAP “messages.” You’ll see some examples
of SOAP messages later in this section.

For many C++ developers, it’s probably convenient to consider SOAP as a style
of remote procedure call (RPC) using HTTP as the transport and XML as the data
format or packaging. Although this definition is an oversimplification, it should
provide a good sense of context. It’s important to note, however, that neither SOAP
nor the ATL Server SOAP support is limited to HTTP as the transport mechanism.
Later on, you’ll see how users can plug in their own transport mechanisms into the
ATL Server SOAP support.

A SOAP message is an XML document with predefined elements that may
have user-defined data as subelements. The basic format of a SOAP message as
described in section 4 of the SOAP specification is as follows:

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP:Header>

 <!—- user data -->

 </SOAP:Header>

 <SOAP:Body>

 <!—- user data -->

 </SOAP:Body>

</SOAP:Envelope>

The

Header

 element of the SOAP message is optional. The

Envelope

 and

Body

elements are required in the SOAP message. You can find a full description of the
SOAP message format in section 4 of the SOAP specification. Here’s an example of
a simple SOAP message:

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP:Body>

 <m:HelloWorld xmlns:m="Some-URI">

 <inputString>StringValue</inputString>

 </m:HelloWorld>

 </SOAP:Body>

</SOAP:Envelope>

1283ch10final.fm Page 120 Thursday, May 1, 2003 2:09 PM

Web Services

121

Notice that the optional

Header

 element has been omitted. The user data
under the

Body

 element is one possible encoding of a

Hello World

 SOAP message.
When viewed as an RPC message, the element

HelloWorld

 is a wrapper element
under

Body

 that denotes the function name.

inputString

 is a parameter to the
function

HelloWorld

 and has the value

StringValue

.
With that, let’s continue on to the other major protocol in ATL Server Web

services: WSDL.

WSDL

WSDL is an XML format for describing network services as a series of endpoints
containing either document-oriented or procedure-oriented information. WSDL
isn’t specific to SOAP, but it has a predefined syntax for describing SOAP messages.
For those familiar with COM, it may be convenient to think of WSDL as a Web
service version of Interface Definition Language (IDL). Again, this is an oversim-
plification that should help provide some context.

A WSDL document is an XML document, and it uses XML Schemas to describe
the format of the messages. (Extensible Schema Definition, or XSD, is described in
the specifications you can find at the Web addresses we presented at the start of
this section.) Listing 10-1 presents an example of a simple WSDL document.

Listing 10-1. A Simple WSDL Document

<?xml version="1.0"?>

<!-- ATL Server generated Web Service Description -->

<definitions

 xmlns:s="http://www.w3.org/2001/XMLSchema"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:s0="http://mynamespace"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:atls="http://tempuri.org/vc/atl/server/"

 targetNamespace="http://mynamespace"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

>

 <types>

 <s:schema targetNamespace=http://mynamespace

 attributeFormDefault="qualified" elementFormDefault="qualified">

 <s:simpleType name="MyEnumeration">

 <s:restriction base="s:string">

1283ch10final.fm Page 121 Thursday, May 1, 2003 2:09 PM

Chapter 10

122

 <s:enumeration value="Value1"/>

 <s:enumeration value="Value2"/>

 <s:enumeration value="Value3"/>

 </s:restriction>

 </s:simpleType>

 <s:complexType name="MyStruct">

 <s:sequence>

 <s:element name="EnumValue" type="s0:MyEnumeration"/>

 <s:element name="UIntValue" type="s:unsignedInt"/>

 </s:sequence>

 </s:complexType>

 </s:schema>

 </types>

 <message name="MyMethodIn">

 <part name="Parameter1" type="s0:MyStruct"/>

 </message>

 <message name="MyMethodOut">

 <part name="return" type="s0:MyStruct"/>

 </message>

 <portType name="MyServiceSoap">

 <operation name="MyMethod">

 <input message="s0:MyMethodIn"/>

 <output message="s0:MyMethodOut"/>

 </operation>

 </portType>

 <binding name="MyServiceSoap" type="s0:MyServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

 <operation name="MyMethod">

 <soap:operation soapAction="#MyMethod" style="rpc"/>

 <input>

 <soap:body use="encoded" namespace="http://mynamespace"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded" namespace="http://mynamespace"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

1283ch10final.fm Page 122 Thursday, May 1, 2003 2:09 PM

Web Services

123

 <service name="MyService">

 <port name="MyServiceSoap" binding="s0:MyServiceSoap">

 <soap:address location="http://localhost/MyService.dll?Handler=MyService"/>

 </port>

 </service>

</definitions>

All WSDL documents begin with a

definitions

 tag, which may also contain
XML namespace declarations. The

definitions

 tag is followed by the

types

 tag,
which in turn may contain

schema

 tags, which contain XSD type definitions. In
Listing 10-1, the

schema

 element contains a

simpleType

 element and a

complexType

element. The

simpleType

 element in Listing 10-1 is used to define an enumeration
named

MyEnumeration

, with the values

Value1

,

Value2

, and

Value3

. You may also use
the

simpleType

 element to extend or restrict other “primitive” types (e.g., to restrict
the range of an

unsignedInt

). The

complexType

 element in Listing 10-1 is used to
define a struct named

MyStruct

, with the field

EnumValue

, which is of type

MyEnumeration

, and

UIntValue

, which is of type

unsignedInt

. You may also use the

complexType

 element to define arrays, SOAP messages, and other types and ele-
ments. The

types

 section is followed by a series of

message

 elements, which are
used to define the contents of a SOAP message. The

message

 elements contain
message

part

 elements, which reference XSD types. The

message

 elements are fol-
lowed by one or more

portType

 elements, which compose the individual messages
into

operations,

 which form a complete SOAP interaction (request/response).
The

portType

 element is in turn followed by a

binding

 element, which references a

portType

 element and its

operations

 to

bind

 the operations to specific SOAP pro-
tocols, namespaces, encoding styles, and so on. The final element is the

service

element, which references a

binding

 element and provides a specific location URL
at which the service can be invoked.

This is a very high-level view of WSDL. Listing 10-1 is an example of a WSDL
document that is produced by the default configuration and settings of ATL Server
Web services. A WSDL document will vary depending on the type of messages that
are being passed, the encoding style, the transport mechanism, and other factors.
WSDL provides an extensibility method that allows for custom elements to be
inserted into WSDL documents. For more details on WSDL, consult the specifica-
tions noted previously.

Creating a Web Service

In this section you’ll learn what’s involved in creating a Web service and how ATL
Server helps simplify many of the tasks involved in this process for you.

1283ch10final.fm Page 123 Thursday, May 1, 2003 2:09 PM

Chapter 10

124

Creating a Web Service by Hand

To create a Web service by hand (without using any libraries or frameworks), you
have to complete a number of tasks. The following steps outline the tasks you nor-
mally need to perform to correctly handle the reception of a SOAP message:

1. Determine the intended recipient of the message (e.g., the

HelloWorld

function).

2. Parse the XML of the message and marshal the parameters (e.g.,

inputString

) into real C++ data types (e.g., a string).

3. Call the intended recipient of the message (

HelloWorld

) with the expected
parameters (

inputString

).

4. After the function, take the output parameters and return value and gen-
erate a SOAP HTTP response message to send back to the client.

This doesn’t even account for a situation where you intend the Web service to
be callable from any client, in which case WSDL for the Web service also needs
to be generated.

As you can clearly see, there’s a lot of code involved in creating a Web service
infrastructure, and most of this code actually needs to be duplicated for every
exposed function. All of these issues must be resolved before you can focus on
implementing your Web service functionality. Plus, all of this work only enables
you to create Web service services—it doesn’t include the infrastructure code
required to create a Web service client!

Creating a Web Service with ATL Server

ATL Server is designed to solve the problems mentioned in the preceding section
for you and make creating a Web service easy. ATL Server does this by allowing you
to focus on implementing your application logic and not on the underlying infra-
structure code.

Using the ATL Server Web Service Wizard

From the Visual Studio .NET New Project dialog box, choose the Visual C++
Projects folder, and then choose the ATL Server Web Service project.

You’ll notice that the wizard dialog box that appears is nearly identical to that
of the ATL Server Project Wizard described earlier. In fact, it’s the same wizard, just

1283ch10final.fm Page 124 Thursday, May 1, 2003 2:09 PM

Web Services

125

with different default settings. The Application Options tab has the Create as Web
Service box checked by default. Almost all the options and settings described
earlier for ATL Server are available for ATL Server Web services. A few options are
unavailable (they’re grayed out). In the Application Options tab, the Validation
Support and Stencil Processing Support options aren’t available, because those
options apply only to ATL Server projects that will handle Web page requests (i.e.,
SRF-based pages). Similarly, the locale and codepage options are unavailable
because Web services don’t use SRF files. On the Developer Support Options tab,
the Attributed Code check box can’t be unchecked, because ATL Server Web ser-
vices require the use of attributes.

The ATL Server Web Service Wizard will generate the following Web service
files (assuming that the project’s name is MyProject):

•

MyProject.h:

 Contains your Web service implementation

•

MyProject.disco:

The Web service .disco file

•

MyProject.htm:

 A description of the Web service

The default Web service generated by the wizard is a simple “Hello World”–
style Web service that shows how a basic ATL Server Web service works:

[

 uuid("989438E7-DC64-4C1E-9B7D-18AE00BA8EE2"),

 object

]

__interface IMyProjectService

{

 // HelloWorld is a sample ATL Server Web service method. It shows how to

 // declare a Web service method and its in-parameters and out-parameters

 [id(1)] HRESULT HelloWorld([in] BSTR bstrInput, [out, retval] BSTR *bstrOutput);

 // TODO: Add additional Web service methods here

};

First, embedded IDL is used to declare a COM interface that describes the Web
service.

Through attributes, embedded IDL is now available to all COM developers
and Web service developers. The COM-like syntax was chosen for a few very spe-
cific reasons. The benefit of choosing a COM-like syntax is that it enables COM
developers to protect their existing investment. In terms of a similar coding style, it
helps COM developers protect their existing investment in their knowledge of
COM development. In terms of similar code (embedded IDL), it enables COM
developers to easily protect their investment in existing code, making it easy for

1283ch10final.fm Page 125 Thursday, May 1, 2003 2:09 PM

Chapter 10

126

these developers to expose existing or new COM objects as Web services if they
desire (with just a few lines of code).

The IDL attributes are used to specify the parameters of the Web service
methods being exposed. In the wizard-generated code example, the HelloWorld
method has two parameters, both of which are BSTRs: bstrInput and bstrOutput
(in the next section we describe Web service types and their mappings to XSD).
The IDL in attribute is used to specify that the bstrInput parameter is a part of the
SOAP request, and the IDL out attribute is used to specify that the bstrOutput
parameter is part of the SOAP response (in the next section we describe all the
SOAP attributes in detail). Listing 10-2 shows the sample “Hello World” Web
service.

Listing 10-2. “Hello World” Web Service

[

 request_handler(name="Default", sdl="GenProject1WSDL"),

 soap_handler(

 name="MyProjectService",

 namespace="urn:MyProjectService",

 protocol="soap"

)

]

class CMyProjectService : public IMyProjectService

{

public:

// This is a sample Web service method that shows how to use the

// soap_method attribute to expose a method as a Web method

 [soap_method]

 HRESULT HelloWorld(/*[in]*/ BSTR bstrInput, /*[out, retval]*/ BSTR *bstrOutput)

 {

 CComBSTR bstrOut(L"Hello ");

 bstrOut += bstrInput;

 bstrOut += L"!";

 *bstrOutput = bstrOut.Detach();

 return S_OK;

 }

// TODO: Add additional Web service methods here

}; // class CMyProjectService

The CMyProjectService class implements the Web service described by the
interface we examined previously.

1283ch10final.fm Page 126 Thursday, May 1, 2003 2:09 PM

Web Services

127

The request_handler attribute (described earlier in the context of normal ATL
Server Web applications) now has the additional sdl parameter, which specifies
the handler name for retrieving the WSDL for the Web service. The soap_handler
attribute specifies that the request handler is also a SOAP Web service (i.e., it will
contain methods that will need to be able to decode incoming SOAP and encode
outgoing messages as SOAP). The class inherits from the IMyProjectService
interface and implements the HelloWorld method.

The soap_method attribute specifies which methods from the IMyProjectService
interface are to be exposed via SOAP. The HelloWorld method is implemented as
any COM method would be implemented, without any special processing
required as a Web service method.

Consuming ATL Server Web Services

In this section we describe how to consume ATL Server Web services using Visual
Studio .NET’s Add Web Reference dialog box. You can use the options on this
dialog box to consume any kind of Web service that exposes a WSDL description.
The dialog box generates a proxy class that you can use to invoke a method on the
Web service by simply calling the matching method in the proxy class. The dialog
box generates an ATL Server native C++ proxy for C++ projects (in 2002), in
2003 managed C++ projects generate managed C++ proxies (native remains
ATL Server).

In Solution Explorer, right-click the project to which you want to add the Web
service proxy class and choose Add Web Reference. Enter the location of the Web
service’s WSDL for the address, for example, http://localhost/MyProjectService/
MyProjectService.dll?Handler=GetWSDL. The Add Web Reference dialog box
lists the WSDL that you’ve selected. You have the option of viewing the documen-
tation for the Web service (if it exists). Click the Add Reference button to generate
the proxy class. For example, if you’re adding a Web reference to a Visual C++
project, an ATL Server proxy class will be generated using the sproxy.exe tool. The
Build Output window should appear and show something like the following:

------ Build started: Project: Proxy1, Configuration: Debug Win32

Creating Web service proxy file...

/out:MyProjectService.h

Build log was saved at "file://c:\Code\Proxy\Debug\BuildLog.htm"

Proxy1 - 0 error(s), 0 warning(s)

---------------------- Done ----------------------

 Build: 1 succeeded, 0 failed, 0 skipped

As the output suggests, the Web service proxy class is generated in the file
MyProjectService.h.

1283ch10final.fm Page 127 Thursday, May 1, 2003 2:09 PM

Chapter 10

128

The generated proxy class will have methods that map to the methods in the
Web service. In this example, there will be a HelloWorld method in the proxy class
that can be called to invoke the HelloWorld method in the Web service:

HRESULT HelloWorld(

 BSTR bstrInput,

 BSTR* __retval

);

To invoke the method, create an instance of the proxy class and simply call the
method as you would normally:

#include "MyProjectService.h"

int main()

{

 CoInitialize(NULL);

 {

 MyProjectService::CMyProjectService svc;

 CComBSTR bstrOut;

 svc.HelloWorld(CComBSTR(L"Joe"), &bstrOut);

 printf("%ws\n", bstrOut);

 return 0;

 }

 CoUninitialize();

}

When you run your program, it will output Hello Joe!.
You’ve covered the basics of creating and consuming ATL Server Web services

in Visual Studio .NET. Now it’s time to become more familiar with using ATL Server.

Using ATL Server Web Services

In this section you’ll learn how to use ATL Server to create Web services. You’ll
begin by looking at the architecture of an ATL Server Web service and then see how
a Web service request hooks into the ATL Server architecture.

Next, you’ll investigate the SAX XML parser used to parse the XML of the
incoming SOAP requests/responses. You’ll move on to implement ATL Server Web
services using attributes. You’ll then see how common types are supported by ATL
Server.

1283ch10final.fm Page 128 Thursday, May 1, 2003 2:09 PM

Web Services

129

ATL Server Web Service Architecture

From ATL Server’s point of view, a Web service is simply another request handler.
The SOAP details are handled in the implementation of the request handler itself,
which in turn dispatches to the user code once the XML has been marshaled to
C++ types and marshals the returned C++ types back into XML for the response.
Because the Web service is just another request handler, it can take advantage of
all the services that a regular request handler can. It has access to all services that
live in the ISAPI extension, and it can provide its own services as well. Figure 10-1
illustrates the lifetime of a typical request.

Figure 10-1. Application architecture for an ATL Server SOAP application

SAX

SOAP is based on XML, and the XML must be parsed somehow. ATL Server uses
SAX to parse XML. The primary reasons SAX was chosen are performance and
scalability. SAX is considerably faster than MSXML DOM for parsing, and it’s con-
siderably more lightweight as well—SAX uses significantly less memory and
significantly fewer allocations than MSXML DOM.

Your ApplicationISAPI

Dispatcher

HTTP
 Request

HTTP
 Response

We
b
Cl
ie
nt Protocol/

marshaling
code

injected
by

attribute
provider

User
code

Services

1283ch10final.fm Page 129 Thursday, May 1, 2003 2:09 PM

Chapter 10

130

Implementing Web Services

In the following sections you’ll explore the various aspects of implementing ATL
Server Web services. First, we cover the Visual C++ attributes that are provided by
ATL Server for Web services. Then we cover the various types supported by ATL
Server and how they map to XSD. We also describe how user-defined types, such as
structs and enums, can be used with ATL Server. Finally, we cover how to use
arrays in the Web service.

ATL Server Web Service Attributes

Just as ATL Server provides attributes to simplify the task of creating Web applica-
tions, it provides attributes to simplify the task of creating Web services. One
important difference, however, is that while it’s possible to create Web applications
without the use of the request_handler and tag_name attributes, ATL Server Web ser-
vices require the use of attributes. (Technically, it’s possible to create Web services
without attributes, because it’s always possible to view the injected code; however,
this won’t be portable to future versions of ATL Server.)

ATL Server provides the following attributes for creating Web services:
soap_handler, soap_header, and soap_method. Also, the sdl parameter of the
request_handler attribute applies only when it’s used in conjunction with the
soap_handler attribute.

soap_handler

The soap_handler attribute applies to classes, and it designates that the class will
handle SOAP requests. This ensures that the code to handle the marshaling of the
XML gets injected by the attribute provider. Additionally, a different base class will
be injected from the one that’s normally injected by the request_handler attribute.
The soap_handler attribute can appear only once per class.

The soap_handler attribute has five parameters: name, namespace, protocol,
style, and use.

• name: This is the user-provided name for the Web service. This name appears
in the WSDL as the name of the Web service and is used by sproxy.exe in gen-
erating the Web service proxy class. If this parameter isn’t specified, the
name of the class is used.

1283ch10final.fm Page 130 Thursday, May 1, 2003 2:09 PM

Web Services

131

• namespace: This parameter is the user-provided namespace for the Web
service, the XML namespace to which all user-defined types and methods
will belong. It’s the namespace that will be used to validate incoming SOAP
messages. If this parameter isn’t specified, the XML namespace will be
based upon the name of the class. For example, if the class name is
CMyWebService, the namespace will be urn:CMyWebService. Developers should
choose a specific, unique namespace that properly distinguishes their Web
service.

• protocol: This is a reserved parameter in the version of ATL Server that ships
as part of Visual Studio .NET. The only permissible value is soap. In the
future, other Web service protocols or extended SOAP protocols may be
supported.

• style: This is the SOAP “style” to be used for the format of the SOAP mes-
sages. The permissible values are rpc and document; rpc is the default value.
This parameter describes whether the SOAP messages are intended as
remote procedure calls or XML documents.

• use: This is the SOAP “use” for the SOAP messages. The permissible values
are encoded and literal; encoded is the default value. The use parameter indi-
cates whether the SOAP messages are to be encoded using SOAP section 5
encoding rules, or whether they’re describing the concrete XML schema of
the message.

In the version of ATL Server that ships with Visual Studio .NET, the only per-
missible style/use combinations are rpc/encoded and document/literal.

CAUTION When you use document/literal, multidimensional arrays
aren’t supported as SOAP headers or as parameters on a method exposed
via SOAP.

When the soap_handler attribute is used in conjunction with the
request_handler attribute, its sdl parameter may be used to specify the handler
name used to retrieve the WSDL for the Web service. If the handler name isn’t spec-
ified, it defaults to a value based on the class name. For example, if the class name
is CMyWebService, the sdl parameter defaults to GenCMyWebServiceWSDL.

1283ch10final.fm Page 131 Thursday, May 1, 2003 2:09 PM

Chapter 10

132

soap_method

The soap_method attribute applies to methods, and it designates that the method
on which it appears will be exposed via SOAP. The soap_method attribute can appear
only once per method.

The soap_method attribute has one parameter: name.

• name: This parameter is the user-specified name for the exposed method.
This is the name that will be used in the WSDL and that clients will need to
use when invoking the Web service. If this parameter isn’t specified, the
name of the method will be used.

CAUTION The method on which this attribute is placed must be an
implementation of an interface method defined in an embedded IDL
interface; otherwise, it will result in a compiler error. The reason for this
is that unless the method is an interface method, the ATL Server frame-
work can’t determine which parameters are in parameters, which are
out parameters, and if a return value is specified.

soap_header

The soap_header attribute applies to methods, and it indicates that the method on
which it appears will have the specified SOAP header in its SOAP message. Headers
must be member variables. The soap_header attribute is optional and may appear
one or more times per method. The soap_header attribute may appear only on
methods that also have the soap_method attribute, although the soap_method
attribute doesn’t require the soap_header attribute.

The soap_header attribute has four parameters: value, required, in, and out.

• value: This is the name of the member variable that’s being sent or received
as a header. Variable size arrays may not be used as SOAP headers. The user
must specify this parameter. There’s no default value.

• required: This is a boolean parameter that indicates whether the specified
header is optional or not. The default value for this parameter is false. If this
parameter is set to true, the header will be sent as a SOAP mustUnderstand
header, and the WSDL will indicate that the client should send the header as

1283ch10final.fm Page 132 Thursday, May 1, 2003 2:09 PM

Web Services

133

a mustUnderstand header. If a required header isn’t received, ATL Server will
return a SOAP fault.

• in: This is a boolean parameter that indicates whether the specified header
is expected as part of a request. The default value is true.

• out: This is a boolean parameter that indicates whether the specified header
should be sent as part of the response of the method. The default value is
true.

CAUTION When a soap_header attribute appears on a method, each
instance must have a unique “value” parameter. That is, the same header
can’t appear as more than one SOAP header for a particular method.

Types

In this section you’ll look at the types supported by the ATL Server implementation
of Web services. You’ll see how C++ data types are mapped to XSD data types.

ATL Server supports all native C++ data types. It also defines a special type,
ATLSOAP_BLOB, that’s used to send binary data over SOAP. Table 10-1 shows the
native types that are supported, along with their corresponding XSD data type
mappings.

Table 10-1. ATL Server Data Types

C++ DATA TYPE XSD DATA TYPE

bool Boolean

char Byte

_int8 Byte

unsigned char unsignedByte

unsigned _int8 unsignedByte

short Short

1283ch10final.fm Page 133 Thursday, May 1, 2003 2:09 PM

Chapter 10

134

ATL Server currently has no way to represent XSD types not listed in
Table 10-1. You may use typedefs in place of direct references to native types. You
must take care to ensure that the typedefs have the expected results. For example,
in Visual C++ .NET, BSTR is the only type that ATL Server will map to string. If
another string type is used, for example LPCSTR, it will be mapped to const char *,
which ATL Server will attempt to map to an array of bytes, which isn’t an efficient
way to represent strings in SOAP. ATL Server will treat all pointer types as arrays. In
these cases, the user is required to specify the size of the array by using the size_is
attribute. The upcoming section on arrays describes arrays in detail.

ATL Server supports user-defined structs and enums, which we describe in
detail in later sections of this chapter. ATL Server doesn’t support unions in Visual
C++ .NET. ATL Server doesn’t support templatized types or template instantiations
as SOAP types.

_int16 Short

unsigned short unsignedShort

unsigned_int16 unsignedShort

wchar_t unsignedShort

Int int

_int32 int

long int

unsigned int unsignedInt

unsigned_int32 unsignedInt

unsigned long unsignedInt

_int64 long

unsigned_int64 unsignedLong

double double

float dloat

BSTR string

ATLSOAP_BLOB base64Binary

Table 10-1. ATL Server Data Types (Continued)

C++ DATA TYPE XSD DATA TYPE

1283ch10final.fm Page 134 Thursday, May 1, 2003 2:09 PM

Web Services

135

Arrays

ATL Server supports arrays in two forms: fixed-size arrays and variable-sized
arrays. The arrays can contain any primitive or user-defined type that’s supported
by ATL Server. Fixed-size arrays are arrays of the form

int arr[5];

BSTR arr[2][3];

Variable-sized arrays are of the form

int *arr;

When you use variable-sized arrays, you must specify the size of the array with
the size_is attribute. This is required to ensure that the array is marshaled cor-
rectly and safely. The size_is attribute references a parameter or struct field that
specifies the size of the array. When the array is an in-only parameter, the size_is
attribute is optional. If it appears for in-only parameters, the parameter specified
in the size_is attribute will contain the number of array elements sent by client.
The parameter referenced by the size_is attribute must have the same “in” and
“out” attributes as the array to which it is applied. So a size_is parameter for an out
array must also be an out parameter, a size_is parameter for an in array must also
be an in parameter, and a size_is parameter for an in/out array must also be an
in/out parameter. Listing 10-3 shows an example of this.

Listing 10-3. Sample Web Service Using Variable-Sized Arrays

[uuid("643cd054-24b0-4f34-b4a1-642519836fe8"), object]

__interface IRetArray

{

 [id(1)] HRESULT retArray(

[out] int *nSize,

[out, retval,

size_is(*nSize)] int **arrOut);

};

[

 request_handler(name="Default", sdl="retArraySDL"),

 soap_handler(name="RetArray",

 namespace="http://retArray ",

 protocol="soap")

]

class CRetArray : public IRetArray

{

public:

1283ch10final.fm Page 135 Thursday, May 1, 2003 2:09 PM

Chapter 10

136

 [soap_method]

 HRESULT retArray(int *nSize, int **arrOut)

 {

 *nMax = 10;

 *arrOut = (int *)GetMemMgr()->Allocate(*nMax*sizeof(int));

 for (int i=0; i<*nMax; i++)

 (*arrOut)[i] = i;

 return S_OK;

 }

};

The size_is attribute appears in the IDL definition on the arrOut parameter
and references the nSize parameter (we explain the call to GetMemMgr()->Allocate
in detail in the section “Memory Management”).

ATL Server doesn’t support variable-length arrays of more than one
dimension.

Fixed-size arrays don’t require a size_is attribute, because the size of the array
is part of its type. Fixed-size may also be multidimensional. Listing 10-4 shows an
example of a Web service that uses multidimensional arrays.

Listing 10-4. Sample Web Service Using Multidimensional Arrays

[uuid("643cd054-24b0-4f34-b4a1-642519836fe8"), object]

__interface IRetArray

{

[id(1)] HRESULT retArray([out] int arrOut[3][3]);

};

[

 request_handler(name="Default", sdl="retArraySDL"),

 soap_handler(name="RetArray",

 namespace="http://retArray ",

 protocol="soap")

]

class CRetArray : public IRetArray

{

public:

 [soap_method]

 HRESULT retArray(int arrOut[3][3])

 {

 for (int i=0; i<3; i++)

 {

 for (int j=0; j<3; j++)

 {

 arrOut[i][j] = i*3+j;

1283ch10final.fm Page 136 Thursday, May 1, 2003 2:09 PM

Web Services

137

 }

 }

 return S_OK;

 }

};

Structs

ATL Server supports user-defined structs. For most common structs, simply define
and use the struct as you normally would. Listing 10-5 shows a sample Web service
that uses structs.

Listing 10-5. Sample Web Service Using Structs

[export]

struct MyStruct

{

 BSTR strValue;

 int nValue;

};

// IStructService - Web service interface declaration

//

[

 uuid("4EA08537-12F7-4DC7-ABE5-483CFE0F4FE0"),

 object

]

__interface IStructService

{

 [id(1)] HRESULT StructTest([in] MyStruct tIn, [out, retval] MyStruct *tOut);

};

// StructService - Web service implementation

//

[

 request_handler(name="Default", sdl="GenStructWSDL"),

 soap_handler(

 name="StructService",

 namespace="urn:StructService",

 protocol="soap"

)

]

class CStructService :

 public IStructService

1283ch10final.fm Page 137 Thursday, May 1, 2003 2:09 PM

Chapter 10

138

{

public:

 [soap_method]

 HRESULT StructTest(/*[in]*/ MyStruct tIn, /*[out, retval]*/ MyStruct *tOut)

 {

 tOut->strValue = SysAllocString(tIn.strValue);

 tOut->nValue = tIn.nValue;

 return S_OK;

 }

}; // class CStructService

The export attribute is only necessary if you plan for your Web service to also
be used as a COM object. If you don’t plan on using your Web service as a COM
object, it’s completely harmless to leave it on your struct definition.

Structs can contain fields of nearly any type, including nested struct and
enum fields. They can also contain array fields. You can use fixed-size arrays just as
you would normally. When you use variable-length arrays, however, you must
specify the array size, just as you do when you use a variable-length array as a
parameter. Listing 10-6 shows a sample Web service that uses a struct that con-
tains a variable-sized array.

Listing 10-6. Sample Web Service Using a Struct That Contains a Variable-Sized
Array

[export]

struct MyStruct

{

 [size_is(nSize)] int *arr;

 int nSize;

};

// IStructService - Web service interface declaration

//

[

 uuid("4EA08537-12F7-4DC7-ABE5-483CFE0F4FE0"),

 object

]

__interface IStructService

{

 [id(1)] HRESULT StructTest([in] MyStruct tIn, [out, retval] MyStruct *tOut);

};

// StructService - Web service implementation

1283ch10final.fm Page 138 Thursday, May 1, 2003 2:09 PM

Web Services

139

//

[

 request_handler(name="Default", sdl="GenStructWSDL"),

 soap_handler(

 name="StructService",

 namespace="urn:StructService",

 protocol="soap"

)

]

class CStructService :

 public IStructService

{

public:

 [soap_method]

 HRESULT StructTest(/*[in]*/ MyStruct tIn, /*[out, retval]*/ MyStruct *tOut)

 {

 // set the size of the array

 // tIn.nSize will contain the number of array elements marshaled

 tOut->nSize = tIn.nSize;

 tOut->arr =

reinterpret_cast<int *>(GetMemMgr()->Allocate(

 tIn.nSize*sizeof(int)));

 if (!tOut->arr)

 {

 return E_OUTOFMEMORY;

 }

 for (int i=0; i<tIn.nSize; i++)

 {

 tOut->arr[i] = tIn.arr[i];

 }

 return S_OK;

 }

}; // class CStructService

Note that tIn.nSize will contain the number of array elements marshaled in,
independent of the value that’s sent in the client request. Thus, a malicious user
can’t spoof the number of array elements, which could otherwise result in walking
past the end of an array. The nSize field of tOut will tell the ATL Server framework
how many array elements to marshal back to the user.

1283ch10final.fm Page 139 Thursday, May 1, 2003 2:09 PM

Chapter 10

140

Enums

ATL Server supports enums. You can use enums in ATL Server exactly as you would
normally. Listing 10-7 shows a sample Web service that uses enums.

Listing 10-7. Sample Web Service Using Enums

[export]

enum MyEnum { Value1, Value2, Value3, Value4 };

// IEnumService - Web service interface declaration

//

[

 uuid("A745E7CB-AD49-41EB-B36C-D533B812EC64"),

 object

]

__interface IEnumService

{

 [id(1)] HRESULT TestEnum([in] MyEnum eIn, [out, retval] MyEnum *eOut);

};

// EnumService - Web service implementation

//

[

 request_handler(name="Default", sdl="GenEnumWSDL"),

 soap_handler(

 name="EnumService",

 namespace="urn:EnumService",

 protocol="soap"

)

]

class CEnumService :

 public IEnumService

{

public:

 [soap_method]

 HRESULT TestEnum(/*[in]*/ MyEnum eIn, /*[out, retval]*/ MyEnum *eOut)

 {

 if (eIn == Value4)

 {

 *eOut = Value1;

 }

1283ch10final.fm Page 140 Thursday, May 1, 2003 2:09 PM

Web Services

141

 else

 {

 *eOut = (MyEnum)(eIn+1);

 }

 return S_OK;

 }

}; // class CEnumService

Again, the export attribute on the enum declaration is only necessary when
you plan for your Web service to also be used as a COM object. If you don’t plan on
using your Web service as a COM object, it’s completely harmless to leave it on
your enum definition.

BLOB Types

ATL Server supports BLOBs through the framework-defined ATLSOAP_BLOB struct.
The definition of ATLSOAP_BLOB is as follows:

[export]

typedef struct _tagATLSOAP_BLOB

{

 unsigned long size;

 unsigned char *data;

} ATLSOAP_BLOB;

The data field is the raw bytes contained in the BLOB, and the size field indi-
cates the number of bytes in the data field. The ATLSOAP_BLOB type maps to the XSD
base64Binary type, hence the data is base64-encoded before being put on the wire.
The memory for the data field is allocated in the same way arrays are allocated.
Listing 10-8 shows a sample Web service using the ATLSOAP_BLOB type.

Listing 10-8. Sample Web Service Using ATLSOAP_BLOB

[

 uuid("41AF710A-EC7B-4FD5-B1C4-CBB58406AEF8"),

 object

]

__interface IBlobService

{

 [id(1)] HRESULT BlobTest(

[in] ATLSOAP_BLOB blobIn,

[out, retval] ATLSOAP_BLOB *blobOut);

};

1283ch10final.fm Page 141 Thursday, May 1, 2003 2:09 PM

Chapter 10

142

// BlobService - Web service implementation

//

[

 request_handler(name="Default", sdl="GenBlobWSDL"),

 soap_handler(

 name="BlobService",

 namespace="urn:BlobService",

 protocol="soap"

)

]

class CBlobService :

 public IBlobService

{

public:

 [soap_method]

 HRESULT BlobTest(

/*[in]*/ ATLSOAP_BLOB blobIn,

/*[out, retval]*/ ATLSOAP_BLOB *blobOut)

 {

 blobOut->size = blobIn.size;

 blobOut->data =

reinterpret_cast<unsigned char *>(GetMemMgr()->Allocate(

 blobIn.size));

 memcpy(blobOut->data, blobIn.data, blobIn.size);

 return S_OK;

 }

}; // class CBlobService

When sending binary data, you need to use the ATLSOAP_BLOB struct; otherwise,
ATL Server won’t treat the data as binary and won’t perform the proper encodings
to ensure correct transport.

Restricted Types

The only type restriction that ATL Server has is the use of variable-length multidi-
mensional arrays. For example, the code in Listing 10-9 will result in a compiler
error.

1283ch10final.fm Page 142 Thursday, May 1, 2003 2:09 PM

Web Services

143

Listing 10-9. Illegal Input Header

[

 uuid("23E070EF-C8B5-4A0F-A299-FB50ABD6CD03"),

 object

]

__interface IRestrictedTypesService

{

 [id(1)] HRESULT Illegal([in] BSTR **arrInput);

};

 [

 request_handler(name="Default", sdl="GenRestrictedTypesWSDL"),

 soap_handler(

 name="RestrictedTypesService",

 namespace="urn:RestrictedTypesService",

 protocol="soap"

)

]

class CRestrictedTypesService :

 public IRestrictedTypesService

{

public:

 [soap_method]

 HRESULT Illegal(/*[in]*/ BSTR **arrInput)

 {

 arrInput;

 return S_OK;

 }

}; // class CRestrictedTypesService

Listing 10-9 will result in the following compiler error message:

error C2338: soap_method

 Atl Attribute Provider : error ATL2213: "arrInput" parameter of method

"Illegal" has too many indirections. In parameters cannot have more than 1

indirection.

Variable-length multidimensional arrays aren’t allowed as in parameters, out
parameters, struct fields, or SOAP headers. The restriction is due to implemen-
tation details relating to memory management.

1283ch10final.fm Page 143 Thursday, May 1, 2003 2:09 PM

Chapter 10

144

SOAP Headers

In this section you’ll look at how SOAP headers are defined and used. As described
earlier, SOAP headers are defined using the soap_header attribute. SOAP headers
designate member variables of the class to be sent or received as SOAP headers on
a per-method basis. Listing 10-10 shows a sample Web service that uses SOAP
headers.

Listing 10-10. Sample Web Service Using SOAP Headers

 [

 uuid("E8F59246-F4CB-4B8D-8F09-1F8C79F5A825"),

 object

]

__interface IHeader1Service

{

 [id(1)] HRESULT HeaderMethod([out, retval] BSTR *ReturnValue);

};

 [

 request_handler(name="Default", sdl="GenHeader1WSDL"),

 soap_handler(

 name="Header1Service",

 namespace="urn:Header1Service",

 protocol="soap"

)

]

class CHeader1Service :

 public IHeader1Service

{

public:

 BSTR HeaderValue;

 [soap_method]

 [soap_header(value="HeaderValue", required=false, in=true, out=false)]

 HRESULT HeaderMethod(/*[out, retval]*/ BSTR *ReturnValue)

 {

 if (HeaderValue != NULL)

 {

 *ReturnValue = SysAllocString(HeaderValue);

 }

1283ch10final.fm Page 144 Thursday, May 1, 2003 2:09 PM

Web Services

145

 else

 {

 *ReturnValue = NULL;

 }

 return S_OK;

 }

}; // class CHeader1Service

In Listing 10-10, the HeaderMethod SOAP method declares that the HeaderValue
member variable be used as a SOAP header for the method. The soap_header
attribute’s parameters declare that the header isn’t a required header, which
means that its absence won’t result in an error; that the header is an in header,
which means it’s expected as part of the SOAP request packet; and that the header
isn’t an out header, which means that it won’t be sent back to the client as part of
the SOAP response packet. If the required parameter to the soap_header attribute is
set to true, the header must be present if it’s an in header. If the header isn’t
present, the ATL Server framework will return an error to the client. Required
headers also impact the WSDL that’s generated for the Web service by making the
header a mustUnderstand header. Any mustUnderstand headers must be recognized
by the SOAP processor; if they aren’t, they’re required to return an error.

SOAP headers must be public member variables. If a private or protected
member variable is used, it will result in a compiler error. Again, this is due to
implementation details of the ATL Server framework. In future versions, protected
or private members might be permitted.

Any type that’s supported by ATL Server may be used as a SOAP header, with
the exception of variable-length arrays. ATL Server has no way to retrieve mar-
shaling information about the size of the arrays as it can with the size_is attribute
in IDL interface and struct definitions, hence it can’t marshal and clean up the
array. You may still use variable-length arrays inside of structs that are used as
SOAP headers, however—you just can’t use them directly as SOAP headers.

SOAP headers are automatically cleaned up by the ATL Server framework;
however, users must initialize the values themselves, as they would with any other
member variable. If custom cleanup is required for a SOAP header, users should
override the CleanupHeaders function in their soap_handler class (see Chapter 19 for
more details on custom handling).

1283ch10final.fm Page 145 Thursday, May 1, 2003 2:09 PM

Chapter 10

146

SOAP Faults

In this section you’ll look at how ATL Server handles SOAP faults. SOAP faults are
the way Web services convey error and status information to a client. A SOAP fault
is a special type of message, and it defines four subelements (see section 4.4 of the
SOAP 1.1 specification): faultcode, faultstring, faultactor, and detail.

• faultcode: The faultcode element is intended to provide an algorithmic
mechanism for identifying the fault. SOAP defines four default fault codes:

• VersionMismatch means the SOAP processor found an invalid namespace
for the SOAP envelope element.

• MustUnderstand means that the SOAP processor encountered a header
marked as mustUnderstand, which it didn’t recognize.

• Client means the client request is incorrect.

• Server means that the error occurred on the server, rather than for some
reason relating to the client request.

• faultstring: The faultstring element is intended to provide a human-
readable description of the error.

• faultactor: The faultactor element is intended to provide information
about who caused the fault within a message path.

• detail: The detail element is intended to provide application-specific error
information.

ATL Server represents SOAP faults through the CSoapFault class, which has
member variables to represent each of the preceding subelements. We describe
how to retrieve fault information from the client later in the “ATL Server Web
Service Client” section. For now, we’ll explain how to return custom SOAP faults
from the Web service.

ATL Server will automatically return faults for errors that occur while mar-
shaling the SOAP request. This includes VersionMismatch, MustUnderstand,
Server, and Client faults. Users can return custom SOAP faults by calling the
SoapFault() function. Listing 10-11 shows a sample Web service that returns a
custom SOAP fault.

1283ch10final.fm Page 146 Thursday, May 1, 2003 2:09 PM

Web Services

147

Listing 10-11. Sample Web Service Using a Custom SOAP Fault

[

 uuid("31F30250-D5BB-4022-B6E2-CEA65EC7B06D"),

 object

]

__interface IFault1Service

{

 [id(1)] HRESULT FaultTest([in] BSTR bstrInput);

};

 [

 request_handler(name="Default", sdl="GenFault1WSDL"),

 soap_handler(

 name="Fault1Service",

 namespace="urn:Fault1Service",

 protocol="soap"

)

]

class CFault1Service :

 public IFault1Service

{

private:

 bool IsInvalidArg(BSTR bstrInput)

 {

 bstrInput;

 return true;

 }

public:

 [soap_method]

 HRESULT FaultTest(/*[in]*/ BSTR bstrInput)

 {

 if (IsInvalidArg(bstrInput))

 {

 SoapFault(SOAP_E_CLIENT, L"Invalid Argument", sizeof("Invalid Argument")-1);

 return E_INVALIDARG;

 }

 return S_OK;

 }

}; // class CFault1Service

1283ch10final.fm Page 147 Thursday, May 1, 2003 2:09 PM

Chapter 10

148

In Listing 10-11, the FaultTest method checks the input to ensure it’s a valid
value; if it isn’t, it returns a SOAP fault with a custom error message. Additionally,
ATL Server will attempt to find an appropriate error message for an HRESULT error
using the FormatMessage API. In Listing 10-11, FaultTest could have also returned
E_INVALIDARG, and ATL Server would have loaded the appropriate error message
using FormatMessage.

Users can also use the CSoapFault class directly by filling in the fields that rep-
resent the subelements and then calling the GenerateFault method with a class
derived from IWriteStream. Listing 10-12 shows a sample Web service that uses the
GenerateFault method to return a custom SOAP fault.

Listing 10-12. Sample Web Service Using the GenerateFault Method to Return a
SOAP Fault

[

 uuid("2E55C132-0E5A-4EE9-9CAA-0B4824738D6B"),

 object

]

__interface IFault2Service

{

 [id(1)] HRESULT FaultTest([in] BSTR bstrInput);

};

 [

 request_handler(name="Default", sdl="GenFault2WSDL"),

 soap_handler(

 name="Fault2Service",

 namespace="urn:Fault2Service",

 protocol="soap"

)

]

class CFault2Service :

 public IFault2Service

{

private:

 bool IsInvalidArg(BSTR bstrInput)

 {

 bstrInput;

 return true;

 }

public:

1283ch10final.fm Page 148 Thursday, May 1, 2003 2:09 PM

Web Services

149

 [soap_method]

 HRESULT FaultTest(/*[in]*/ BSTR bstrInput)

 {

 if (IsInvalidArg(bstrInput))

 {

 CSoapFault fault;

 fault.m_soapErrCode = SOAP_E_CLIENT;

 fault.m_strDetail = L"Invalid Argument";

 fault.GenerateFault(m_pHttpResponse);

 return E_INVALIDARG;

 }

 return S_OK;

 }

}; // class CFault2Service

Memory Management

In this section you’ll look at how memory is managed in an ATL Server Web service.
In general, users will never have to free memory themselves, provided they
allocate the memory in the way required by the ATL Server framework.

ATL Server follows COM rules with respect to memory allocation: out param-
eters must be NULL or must be able to be deallocated. For in/out parameters,
users should free the memory before assigning into it; otherwise, the same rules as
for out parameters apply. There are three cases when users will have to manage
memory: when dealing with strings, when dealing with variable-length arrays, and
when dealing with ATLSOAP_BLOBs.

When dealing with strings (BSTRs), you should allocate memory using
SysAllocString* and free memory with SysFreeString. In other words, you allocate
and free memory in the same way you would normally when dealing with BSTRs.

For variable-length arrays and ATLSOAP_BLOBs, you should allocate memory as
explained in “Types” section previously, using the IAtlMemMgr interface that’s
returned from the GetMemMgr() method. The IAtlMemMgr interface is defined as
follows:

__interface __declspec(uuid("654F7EF5-CFDF-4df9-A450-6C6A13C622C0")) IAtlMemMgr

{

public:

 void* Allocate(size_t nBytes) throw();

 void Free(void* p) throw();

 void* Reallocate(void* p, size_t nBytes) throw();

 size_t GetSize(void* p) throw();

};

1283ch10final.fm Page 149 Thursday, May 1, 2003 2:09 PM

Chapter 10

150

By default, ATL Server uses a per-thread heap for its allocations. Users can
provide their own IAtlMemMgr using the SetMemMgr method. After calling SetMemMgr,
ATL Server will use the passed-in IAtlMemMgr for all its allocations, and it will also be
returned from the GetMemMgr() method. Users should set a different memory
manager when they are using asynchronous Web services (see Chapter 19 for more
details).

The ATL Server framework will automatically handle the cleanup of memory
after the processing of a Web service request. ATL Server Web service clients,
however, will have to manage the memory after a Web service proxy method invo-
cation themselves. We describe this process further in the next section.

ATL Server Web Service Clients

In this section you’ll look at ATL Server Web service clients in more detail. You’ll
examine how they differ from ATL Server Web services and how they’re similar.
First, you’ll look at the type support in ATL Server Web service clients.

Types

Table 10-2 shows how the ATL Server Web service proxy class generated by
sproxy.exe maps XSD types to C++ data types.

Table 10-2. XML Data Type to C++ Data Type Mapping

XML SCHEMA DATA TYPE C++ DATA TYPE (SPROXY)

boolean bool

byte char

unsignedByte unsigned char

short short

unsignedShort unsigned short

int int

unsignedInt unsigned int

long __int64

integer __int64

nonPositiveInteger __int64

negativeInteger __int64

1283ch10final.fm Page 150 Thursday, May 1, 2003 2:09 PM

Web Services

151

unsignedLong unsigned __int64

nonNegativeInteger unsigned __int64

positiveInteger unsigned __int64

decimal double

double double

float float

string BSTR

hexBinary ATLSOAP_BLOB

base64Binary ATLSOAP_BLOB

dateTime BSTR

time BSTR

date BSTR

gMonth BSTR

gYearMonth BSTR

gYear BSTR

gMonthDay BSTR

gDay BSTR

duration BSTR

anyURI BSTR

ENTITIES BSTR

ENTITY BSTR

ID BSTR

IDREF BSTR

IDREFS BSTR

language BSTR

Name BSTR

NCName BSTR

NMTOKEN BSTR

Table 10-2. XML Data Type to C++ Data Type Mapping (Continued)

XML SCHEMA DATA TYPE C++ DATA TYPE (SPROXY)

1283ch10final.fm Page 151 Thursday, May 1, 2003 2:09 PM

Chapter 10

152

The mapping is the reverse of the mapping from C++ types to XSD
types on the Web service side. Types that aren’t directly supported, such as
normalizedString, are represented as strings (BSTRs).

User-defined types, such as structs and enums, are also extracted from the
XSD and appropriate definitions are emitted by sproxy.exe. When sproxy.exe emits
the definition for a function that has a variable-length array as input or output, or
when it encounters a struct that has a variable-length array field, it will emit
a parameter or field that’s used as the size_is for that array. The name of the
parameter or field will be of the form __[parameter or field name]_nSizeIs.
For in parameters, users are required to pass in the number of elements in the
array so that the ATL Server framework knows how many elements to marshal. For
out parameters, ATL Server will fill in this value with the number of elements that
were marshaled. The size_is parameter/field will appear directly after the array
parameter/field to which it applies in the function/struct definition. We present
examples of this in the next section.

Memory Management

In this section you’ll examine memory management in ATL Server Web service
clients. Unlike ATL Server Web services, where ATL Server controls the full lifetime
of the request and hence the data for the request, ATL Server controls neither the
lifetime of the input parameter nor the output parameters on the client side. Users
must manage much of the memory on the client side themselves; however, ATL
Server provides several helper functions to make the job easier.

Strings on the client are managed just as they are on the server (i.e., using the
SysAllocString* and SysFreeString functions). CComBSTR or _bstr_t can be used to
simplify the task.

Arrays are allocated as they are on the server (i.e., using the proxy class’s
GetMemMgr() method to get the IAtlMemMgr interface and then invoking the
Allocate() method to allocate the memory). Arrays can then be freed using
IAtlMemMgr’s Free() method function provided by ATL Server. Listing 10-13
shows how array memory should be managed on the client.

NMTOKENS BSTR

normalizedString BSTR

NOTATION BSTR

QName BSTR

token BSTR

Table 10-2. XML Data Type to C++ Data Type Mapping (Continued)

XML SCHEMA DATA TYPE C++ DATA TYPE (SPROXY)

1283ch10final.fm Page 152 Thursday, May 1, 2003 2:09 PM

Web Services

153

Listing 10-13. Managing Array Memory on the Client

CWebServiceProxy proxy;

int *pArrInput = proxy.GetMemMgr()->Allocate(10*sizeof(int));

for (int i=0; i<10; i++)

{

 pArrInput[i] = i;

}

int *pArrOutput;

int nSize = 0;

HRESULT hr = proxy.EchoArray(pArrInput, 10, &pArrOutput, &nSize);

if (SUCCEEDED(hr))

{

 proxy.GetMemMgr()->Free(pArrOutput);

}

proxy.GetMemMgr()->Free(pArrInput);

Note the use of the size_is fields in Listing 10-13. The “10” represents the
number of elements in the input array to marshal, and the nSize parameter is used
to return the number of elements marshaled by the framework.

Structs can be cleaned up using the AtlCleanupValueEx template function. This
function ensures that all struct fields, including strings, arrays, and nested structs,
are cleaned up properly. Listing 10-14 shows how to manage struct memory on the
client.

Listing 10-14. Managing Struct Memory on the Client

CWebServiceProxy proxy;

WebServiceStruct wsStruct;

wsStruct.s = SysAllocString(L"string");

wsStruct.arr = proxy.GetMemMgr()->Allocate(10*sizeof(int));

wsStruct.__arr_nSizeIs = 10;

for (int i=0; i<10; i++)

{

 wsStruct.arr[i] = i;

}

WebServiceStruct wsStructOut;

HRESULT hr = proxy.EchoStruct(wsStruct, &wsStructOut);

if (SUCCEEDED(hr))

{

 AtlCleanupValueEx(&wsStructOut, proxy.GetMemMgr());

}

AtlCleanupValueEx(&wsStruct, proxy.GetMemMgr());

1283ch10final.fm Page 153 Thursday, May 1, 2003 2:09 PM

Chapter 10

154

Note the use of the size_is field for the preceding struct. This is used for the
same marshaling purposes as in the previous array example.

Cleanup of arrays of structs can also be simplified using the AtlCleanupArrayEx
or AtlCleanupArrayMDEx template function. The latter function handles cleanup of
multidimensional arrays. Listing 10-15 shows how to manage the memory of
arrays of structs on the client.

Listing 10-15. Cleaning Up Arrays of Structs

CWebServiceProxy proxy;

WebServiceStruct *pArrInput =

proxy.GetMemMgr()->Allocate(

 10*sizeof(WebServiceStruct));

for (int i=0; i<10; i++)

{

 pArrInput[i].s = SysAllocString(L"String");

 pArrInput[i].arr = proxy.GetMemMgr()->Allocate(10*sizeof(int));

 for (int j=0; j<10; j++)

 {

 pArrInput[i].arr[j] = j;

 }

pArrInput[i].__arr_nSizeIs = 10;

}

WebServiceStruct *pArrOutput;

int nSize = 0;

HRESULT hr = proxy.EchoStructArray(pArrInput, 10, &pArrOutput, &nSize);

if (SUCCEEDED(hr))

{

 AtlCleanupArrayEx(pArrOutput, nSize, proxy.GetMemMgr());

 proxy.GetMemMgr()->Free(pArrOutput);

}

AtlCleanupArrayEx(pArrOutput, 10, proxy.GetMemMgr());

proxy.GetMemMgr()->Free(pArrInput);

NOTE Users must still free the top-level array manually.

Multidimensional arrays can be cleaned up using the AtlCleanupArrayMDEx
template function. The only difference between this function and the
AtlCleanupArrayEx function is that instead of taking a count of the elements,

1283ch10final.fm Page 154 Thursday, May 1, 2003 2:09 PM

Web Services

155

it takes an array containing information about the dimensions of the array.
For example:

WebServiceStruct arrInput[2][3];

// Web service calls

int arrInputSize[] = {2, 2, 3};

AtlCleanpuArrayMDEx(&arrInput, arrInputSize, proxy.GetMemMgr());

The arrInputSize array indicates that this is a two-dimensional array (first
element). The remaining elements describe each dimension’s size.

Error Handling

In this section you’ll look at how errors are reported and handled in ATL Server
Web service clients.

When a SOAP request fails, the proxy class will set an error state that can be
retrieved using the GetClientError() function. This function returns a
SOAPCLIENT_ERROR enum value that describes the type of error. The enum is defined
as follows:

// client error states

enum SOAPCLIENT_ERROR

{

 SOAPCLIENT_SUCCESS=0, // everything succeeded

 SOAPCLIENT_INITIALIZE_ERROR, // initialization failed – most

 // likely an MSXML installation

 // problem

 SOAPCLIENT_OUTOFMEMORY, // out of memory

 SOAPCLIENT_GENERATE_ERROR, // failed in generating the response

 SOAPCLIENT_CONNECT_ERROR, // failed connecting to server

 SOAPCLIENT_SEND_ERROR, // failed in sending message

 SOAPCLIENT_SERVER_ERROR, // server error

 SOAPCLIENT_SOAPFAULT, // a SOAP Fault was returned by the server

 SOAPCLIENT_PARSEFAULT_ERROR, // failed in parsing SOAP fault

 SOAPCLIENT_READ_ERROR, // failed in reading response

 SOAPCLIENT_PARSE_ERROR // failed in parsing response

};

The errors are essentially as described in the comments next to the enum
values. The most relevant error is probably the SOAPCLIENT_SOAPFAULT error. The
SOAPCLIENT_SOAPFAULT error is returned when the Web service being invoked
returns a SOAP fault. Information about the SOAP fault can be retrieved using the
proxy class’s m_fault member variable, which is a CSoapFault. The same fields that

1283ch10final.fm Page 155 Thursday, May 1, 2003 2:09 PM

Chapter 10

156

we described in the earlier section on SOAP faults will be filled in according to the
information returned by the Web service. Listing 10-16 shows how to retrieve error
information from the proxy class.

Listing 10-16. Using SOAP Fault Information on the Client

HRESULT hr = proxy.WebMethod();

if (FAILED(hr))

{

 SOAPCLIENT_ERROR soapErr = proxy.GetClientError();

 switch(soapErr)

 {

 case SOAPCLIENT_INITIALIZE_ERROR :

 printf("initialization failed: check MSXML installation\n");

 break;

 case SOAPCLIENT_OUTOFMEMORY :

 printf("out of memory\n");

 break;

 case SOAPCLIENT_GENERATE_ERROR :

 printf("failed while generating request\n");

 break;

 case SOAPCLIENT_CONNECT_ERROR :

 printf("failed to connect to server\n");

 break;

 case SOAPCLIENT_SEND_ERROR :

 printf("failed while sending SOAP request\n");

 break;

 case SOAPCLIENT_SERVER_ERROR :

 printf("server error : %d\n", proxy.GetStatusCode());

 break;

 case SOAPCLIENT_PARSEFAULT_ERROR :

 printf("failed in parsing fault\n");

 break;

 case SOAPCLIENT_READ_ERROR :

 printf("failed while reading response\n");

 break;

 case SOAPCLIENT_PARSE_ERROR :

 printf("failed while parsing response\n");

 break;

 case SOAPCLIENT_SOAPFAULT :

 printf("SOAP Fault:\n"

 "fault code : %ws\n"

 "fault string : %ws\n"

 "fault detail : %ws\n",

1283ch10final.fm Page 156 Thursday, May 1, 2003 2:09 PM

Web Services

157

 proxy.m_fault.m_strFaultCode,

 proxy.m_fault.m_strFaultString,

 proxy.m_fault.m_strDetail);

 break;

 default:

 printf("unknown error\n");

 }

}

Note the use of the proxy class’s GetStatusCode method. This method retrieves
the HTTP code that is returned by the server.

Conclusion

In this chapter you explored the basic uses and functionality of the ATL Server Web
service support. You examined how to create Web services. You saw how to use
user-defined types, such as structs and enums, in Web services. You also saw how
arrays can be used within the ATL Server Web service framework. You learned how
memory is managed in Web services and how to use and create SOAP faults from
within a Web service. In addition, you examined the client side of all of these areas.
You should now be able to create basic Web services using ATL Server.

One of the great things about ATL Server is that many of the classes are useful
on applications other than Web applications and Web services. In the next chapter
we examine how you can take advantage of some of the core ATL Server classes to
solve problems you may face in many of your non-Web applications.

1283ch10final.fm Page 157 Thursday, May 1, 2003 2:09 PM

