
3. Stochastic processes  

Next, we turn to the modeling of the evolution of stochastic variables. There are 
two ways to address this question. The first way is to describe the evolution of the 
PDF that characterizes a stochastic process. This approach will be described in the 
first three sections. A general transport equation for the PDF of a stochastic 
process will be derived in section 3.1. This equation will be simplified in section 
3.2 to a Fokker-Planck equation. Section 3.3 deals with an example: it presents an 
exact solution to this Fokker-Planck equation. The second way to describe the 
evolution of stochastic processes is to postulate stochastic equations for them. 
Basics of this approach will be presented in section 3.4, and a more general (and 
more demanding) approach to solve this question is given in Appendix 3A. An 
essential element of this introduction of stochastic equations is the explanation of 
the relationships between processes that are described by stochastic differential 
equations and Fokker-Planck equations. Section 3.5 provides a link to the 
following chapters: it specifies the requirements for the construction of closed 
stochastic equations for any specific case considered.  

3.1. PDF transport equations  

3.1.1. The Kramers-Moyal equation  

To prepare for the consideration of Fokker-Planck equations in section 3.2, we 
introduce first a general frame for PDF transport equations. For simplicity, we 
consider only one stochastic variable ξ. According to (2.4), its PDF is given by  
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where ∆t is a positive, infinitesimal time interval. To relate the right-hand side to 
the PDF at the previous time step Fξ(x, t), we expand the delta function into a 
Taylor series at x − ξ(t),  

  ( ) ( ) [ ] (3.2)            .)tt()t(
dx

)t(xd
!n

1)tt()t()t(x
0n

n

n

n

∑
∞

=

∆+ξ−ξ
ξ−δ

=∆+ξ−ξ+ξ−δ  

 



34 3. Stochastic processes  

By inserting (3.2) into (3.1) we obtain  
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where the term of zeroth-order is written onto the left-hand side. We may now 
adopt (2.35) for conditional means to rewrite the right-hand side of (3.3) into 
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The division of (3.4) by ∆t and consideration of the limit ∆t → 0 then results in  
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where the coefficients D(n)(x, t) are given by (n ≥ 1)  
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Equation (3.5) is called the Kramers-Moyal equation (Kramers 1940, Moyal 
1949). It may be seen as the most general form of a PDF transport equation (if it is 
written for the case of a vector of several variables).  

3.1.2. Markov processes  

The difference ∆ξ = ξ(t + ∆t) − ξ(t) in the coefficients (3.6) may depend on all 
the values of the stochastic variable ξ at earlier times, this means on ξ(t − k ∆t) 
with k = 0, 1, …. However, very often one finds that the influence of such memory 
effects becomes negligible after a characteristic relaxation time. Thus, if we choose 
∆t such that it is large compared to this relaxation time of memory effects, we find 
that ∆ξ is fully determined by the state ξ(t) (which is correlated to ξ(t) in the 
difference ∆ξ) and independent of states at earlier times. This assumption is found 
to be a good approximation under many circumstances provided a suitable set of 
stochastic variables is chosen; see for instance the detailed discussion of this 
question regarding the construction of stochastic velocity models in chapter 5. 

Stochastic processes for which ∆ξ only depends on the state ξ(t) are referred to 
as Markov processes (Gardiner 1983; Risken 1984). They will be considered now, 
which makes the general PDF transport equation (3.5) to an applicable tool for the 
investigation of the evolution of stochastic processes. In this case, the coefficients 
D(n)(x, t) depend only on x and t. Equation (3.5) represents then with respect to 
time  t  a  differential  equation of first-order. Combined with appropriate boundary 
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conditions and the specification of an initial PDF Fξ(x, t0), equation (3.5) uniquely 
determines the PDF Fξ(x, t).  

3.1.3. Implications for PDF transport equations  

To solve equation (3.5), one needs knowledge about the number of terms on the 
right-hand side that have to be considered. Regarding this, an important constraint 
arises from the theorem of Pawula (1967). This theorem may be shown by 
considering the implications of Schwarz's unequality (2.30), which also applies to 
conditional means (all the arguments given in section 2.3.2 may be repeated for the 
sample space considered). By choosing ϕ = (∆ξ)k and ψ = (∆ξ)k + m, where k ≥ 1 
and m ≥ 1, Schwarz's unequality implies for the coefficients (3.6) that  
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First, we assume that D(2k) = 0. This implies according to relation (3.7) that D(2k + m) 
= 0; this means all the higher-order coefficients have to vanish. Second, we assume 
that D(2k + 2m) = 0. Relation (3.7) then implies that D(2k + 2m − m) = 0; this means all the 
lower-order coefficients have to vanish then (with the exception of D(1) and D(2) 
because 2 k + m is bounded from below by 3). These two cases can be combined 
to produce the following result  
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Hence, D(1) may be zero or nonzero, this does not imply any restrictions. If we take 
D(2) = 0, we have to restrict the series in (3.5) to the first term. If we take D(2) ≠ 0, 
we have two possibilities: we may consider only the first two terms in equation 
(3.5), or we have to involve an infinite number of nonzero coefficients of even 
order. We see therefore that the theorem of Pawula (1967) is very similar to the 
theorem of Marcienkiewicz (1939), see section 2.2.2. Both theorems make use of 
the definition of PDFs as positive definite quantities, i.e., PDFs may have negative 
values if the requirements of these theorems are not satisfied.  

The consideration of an infinite number of coefficients of even order leads to 
the notable problems of providing all these coefficients as functions of the sample 
space variable x, and of solving such an equation numerically. Thus, the neglect of 
these coefficients D(m) (m = 3, 4, …) seems to be the better way in general. 
However, this leads to the question under which conditions this is justified. The 
answer is closely related to the consideration of the continuity of the sample path 
of stochastic processes. By considering an infinitesimal time increment ∆t, one can 
often expect that the change ∆ξ = ξ(t + ∆t) − ξ(t) of a stochastic variable is 
bounded (i.e., small). Such stochastic processes have a continuous sample path, 
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and one can show that the assumption of such a process implies the neglect of D(m) 
(m = 3, 4, …), see Gardiner (1983). In other words, one takes jump processes into 
account (instantaneous changes ∆ξ that may be very large) which imply 
discontinuous sample paths if coefficients D(m) (m = 3, 4, …) are involved. To 
exclude this case, we will neglect coefficients of higher than second order from 
now.  

3.2. The Fokker-Planck equation  

3.2.1. The Fokker-Planck equation  

We consider a vectorial stochastic process ξ = {ξ1(t), ξ2(t), ⋅⋅⋅, ξN(t)} which is 
assumed to be Markovian and to have continuous sample paths. The corresponding 
extension of equation (3.5) reads  

  ( ) ( ) ( ) ( ) ( ) (3.9)                             .t,Ft,D
xx

t,Ft,D
x

t,F
t ij

ji

2

i
i

xxxxx ξξξ ∂∂
∂

+
∂
∂

−=
∂
∂  

This equation is called a Fokker-Planck equation (Fokker 1914, Planck 1917). Its 
coefficients Di and Dij are given by the vectorial generalizations of D(1) and D(2),  
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The conditional means refer to the condition ξ(t) = x. Di may be seen as a 
generalized velocity if x is interpreted as generalized coordinate in sample space. 
Equation (3.9) corresponds then to a diffusion equation with Dij as diffusion 
coefficient. Important properties of Dij are that Dij is symmetric and semidefinite. 
The latter may be seen by multiplying (3.10b) with any vectors ci and cj,  
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Usually, we will assume that Dij is positive definite, Dij ci cj > 0 for ci ci > 0. The 
inverse matrix of Dij exists in this case.  

To prove the consistency of (3.9), we integrate it over the sample space x,  
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The left-hand side of (3.12) vanishes (Fξ is assumed to be normalized to unity). By 
setting Di Fξ and ∂(Dij Fξ) / ∂xj equal to L, respectively, the integrals on the right-
hand side may be written as volume integrals over derivatives of L. The latter can 
be rewritten as surface integrals,  
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Here, s is the surface that surrounds the domain considered, and ds is a differential 
element of s. The unit vector of the xi-axis is referred to by ηi, and n is the normal 
vector of s. By considering an infinite domain, the integrals on the right-hand side 
of (3.13) will vanish if L is zero at the surface. Therefore, the consistency of the 
formulation of equation (3.9) requires the assumption that the PDF Fξ and its 
derivatives vanish at |x| → ∞.  

3.2.2. Transport equations for moments  

The implications of equation (3.9) for the transport of moments of the PDF Fξ 
will be considered next. By multiplying this equation with xk and integration over 
the sample space we obtain  
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As done before, we set Di Fξ and ∂(Dij Fξ) / ∂xj equal to L, respectively. The 
integrals of (3.14) may be rewritten then by adopting partial integration,  
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According to (3.13), combined with the assumption L = 0 at |x| → ∞, the left-hand 
side of (3.15) vanishes. By adopting the resulting relation in (3.14) we then obtain  
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since the last integral in (3.14) does not contribute. Hence, <Dk> determines the 
transport of the means <ξk>. For that reason, Dk is called a drift coefficient.  

In analogy to the derivation of (3.16), one may obtain the following relation for 
second-order moments by multiplication of (3.9) with xk xn and integrating it over 
the sample space,  
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To obtain this relation, partial integration has to be applied twice in accordance 
with (3.15). The combination of (3.16) and (3.17) can be used then to derive a 
transport equation for the variance  
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This variance transport equation reads  
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where D'k = Dk − <Dk> is written for fluctuations of Dk. Hence, variances are 
produced by <Dkn> provided that Dkn is positive definite. The appearance of Dkn 
causes a diffusion process (the width of the PDF increases), which is the reason for 
the consideration of Dkn as a diffusion coefficient. An equilibrium state may be 
reached asymptotically if the first two terms on the right-hand side of (3.19) appear 
with a negative sign, i.e., if they are able to balance the variance production. These 
two terms then describe the dissipation (or destruction) of variance.  

3.2.3. The limiting PDF  

An important question concerns the conditions for the existence of a unique 
asymptotic state. To clarify this, we have to consider the asymptotic features of the 
PDF Fξ that obeys the Fokker-Planck equation (3.9). As done by Lebowitz & 
Bergmann (1957) and Risken (1984), we consider an infinite domain and define 
the entropy difference related to two solutions F1(x, t) and F2(x, t) of the Fokker-
Planck equation (3.9) (which may result from different initial PDFs) according to 
the entropy definition (2.42) by  
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The purpose of the following explanations is to show that h(t) ≥ 0 and dh / dt ≤ 0, 
this means h evolves towards h = 0. This limit h = 0 corresponds then to the 
asymptotic agreement of both solutions.  

To show h(t) ≥ 0, we rewrite relation (3.20) by adopting the normalization 
constraints for F1 and F2,  
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where the abbreviations R = F1 / F2 and g(R) = R ln(R) − R + 1 are introduced. The 
analysis of the function g(R) reveals that it takes its minimum zero at R = 1. 
Consequently, we find that h(t) always has to be non-negative.  
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To show dh / dt ≤ 0, we calculate the derivative of h(t),  
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The last expression arises from the fact that the integral over ∂F1 / ∂t has to vanish 
due to the normalization constraint. By adopting (3.9) to replace in equation (3.22) 
the derivatives of F1 and F2, we obtain  
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This expression may be rewritten by means of partial integration. We consider 
integrals over derivatives ∂ / ∂xi in correspondence to relation (3.15), rewrite them 
according to (3.13), and assume that the integrands vanish at |x| → ∞. This leads to  

  ( ) ( ) (3.24)         .
x

FD
FD

x
R

x
FD

FD
x

Rlndt
dt
dh

j

2ij
2i

ij

1ij
1i

i∫ 























∂
∂

+−
∂
∂

−












∂
∂

+−
∂

∂
−= x  

This relation reduces to  
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because the terms that involve Di cancel each other. The latter may be seen by 
rewriting the derivative of ln(R) into a derivative of R. We replace F2 by F1 / R and 
apply partial integration to obtain  
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The first term within the bracket on the right-hand side may be rewritten by means 
of the relation ∂R / ∂xi = R ∂ln(R) / ∂xi. This leads then to  
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Hence, dh / dt ≤ 0 if Dij is positive definite. This means, h will evolve towards its 
minimum h = 0 provided Di and Dij have no singularities and do not permit that 
infinite values of solutions of (3.9) appear at |x| → ∞. For h = 0, different solutions 
of the Fokker-Planck equation have to coincide such that F1 = F2. This unique 
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asymptotic solution is the stationary solution of (3.9) for the case that Di and Dij 
are independent of time.  

To show the relation of these conclusions to the consideration of the entropy in 
chapter 2, we consider a special case. We assume that the limiting PDF was chosen 
to be the initial PDF of F2, so that F2 will not change in time. h(t) is then the 
positive difference of the entropies related to the limiting PDF F2 and F1, 
respectively. The fact that h evolves towards its minimum h = 0 describes the 
increase of entropy of a system for which a limiting state exists. The entropy will 
become maximal if this limiting state is reached. Due to the disappearance of the 
left-hand side, the Fokker-Planck equation (3.9) implies in the equilibrium case  
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This expression is consistent with the structure of SML PDFs considered in 
chapter 2: the choice of Dk as a polynomial of nth-order corresponds to the 
specification of a SML PDF of nth-order.  

3.3. An exact solution to the Fokker-Planck equation  

3.3.1. The equation considered  

To illustrate the application of Fokker-Planck equations and characteristics of 
their solutions, let us consider an example that enables the derivation of analytical 
results. In conjunction with the assumption of natural boundary conditions (this 
means Fξ(x, t) → 0 for |x| → ∞), we specify the Fokker-Planck equation (3.9) in 
the following way,  
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The drift coefficient Di is written as a linear function of the variables x, which may 
be seen as the Taylor series of Di in the first order of approximation. The inclusion 
of <ξk> in (3.29) defines Gik as the coefficient that controls the intensity of 
fluctuations around the mean <ξk>. It will be shown in the following chapters that 
such linear models for Di are well suited to characterize near-equilibrium 
processes. The diffusion coefficient Dij is assumed to be only a function of time. 
This choice is convenient with regard to many applications, see the explanations 
given in the following chapters. In addition to this, one can guarantee in this way 
the important property of Dij to be semidefinite.  
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3.3.2. The solution to the Fokker-Planck equation  

The solution to the Fokker-Planck equation (3.29) depends on the initial PDF 
Fξ(x', t') according to relation (2.32),  

  ( ) ( ) ( ) (3.30)                                                             .'t,'F't,'t,F'dt,F ∫= xxxxx ξξ|ξξ  

Therefore, to obtain a general solution to equation (3.29) one has to calculate the 
conditional PDF Fξ|ξ. Specific solutions Fξ(x, t) can be obtained then in dependence 
on specified initial PDFs Fξ(x', t') by integration according to (3.30). By inserting 
relation (3.30) into equation (3.29) one may prove that the conditional PDF Fξ|ξ 
also satisfies the Fokker-Planck equation (3.29). According to (2.37), the required 
initial condition for Fξ|ξ is given by  
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The coefficients in (3.29) are specified as linear functions of the sample space 
variables x. Thus, one may assume that the PDF evolves towards a Gaussian 
shape. To prove this idea, we consider the conditional PDF Fξ|ξ as a N-dimensional 
Gaussian PDF,  
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The means of this PDF are given by αk, the variances by αkl, and det(α) is the 
determinant of the matrix α with the elements αkl. What one has to do now is to 
explain the relationship between αk and αkl with the coefficients Gi, Gik, and Dij of 
the Fokker-Planck equation (3.29). To do this, we calculate the corresponding 
derivatives of (3.32) and insert them into (3.29). This leads to three conditions for 
the coefficients of terms of zeroth-, first- and second-order in the variables 
considered. One condition is satisfied identically, and the other two constraints 
lead to the following equations for the means αk and variances αkl of (3.32),  
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To derive (3.33a-b) we applied the following relations for the variances αkl,  
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The first relation of (3.34) may be obtained by the differentiation of (3.32) by time 
and integration over the sample space. The second relation can be derived by the 
differentiation of the identity αin α−1

nj = δij. Hence, we find that (3.32) provides the 
solution to (3.29) provided the means αk and variances αkl satisfy (3.33a-b). The 
initial conditions for these equations (3.33a-b) are given by  
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By adopting the properties of delta functions, one may prove that (3.32) combined 
with (3.35a-b) recovers the initial condition (3.31) for the conditional PDF Fξ|ξ. 

3.3.3. Means, variances and correlations  

Next, let us have a look at the means and variances of Fξ(x, t), which are 
implied by the Fokker-Planck equation (3.29). One way to obtain these quantities 
is to derive them from expression (3.30) for the PDF Fξ(x, t) in combination with 
(3.32) for the conditional PDF Fξ|ξ. However, this approach requires the 
specification of the initial PDF Fξ(x', t') and integration of the transport equations 
(3.33a-b) for αk and αkl. A simpler way is to derive directly transport equations for 
the means and variances of Fξ(x, t), as pointed out in section 3.2.2. In this way, we 
find the equations  
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which have to be solved in conjunction with the corresponding initial conditions 
provided by the initial PDF.  

The equations (3.36a-b) can be used to rewrite the equations (3.33a-b) for αk 
and αkl. The combination of these equations leads to  
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These equations show that αk and αkl relax to the means and variances of Fξ(x, t). 
Asymptotically, the left hand sides of (3.37a-b) vanish, and αk and αkl become 
equal to the means and variances of Fξ(x, t),  
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In this case, the conditional PDF is independent of x', as may be seen by adopting 
(3.38a-b) in the parametrization (3.32) for Fξ|ξ. Equation (3.30) reveals then that 
the PDF Fξ is equal to the conditional PDF Fξ|ξ. Accordingly, the unconditional 
PDF Fξ and conditional PDF Fξ|ξ relax asymptotically (independent of the initial 
conditions) to a Gaussian function.  

Another relevant characteristics of the Fokker-Planck equation (3.29) is the 
two-point correlation function, which is defined by (s ≥ 0) 
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The two-point PDF Fξξ has also to satisfy equation (3.29), as may be seen by 
means of the definition (2.31) of the two-point PDF. The integration of (3.29) 
multiplied with the corresponding variables results then in the following equation 
for the correlation function,  

  ( ) ( ) ( ) ( ) (3.40)                                                 .st't'Gst't'
s lmkmlk +ξξ=+ξξ
∂
∂  

The initial condition is given by the variance of Fξ(x, t) at t. Accordingly, the 
correlation decays exponentially for the dynamics considered: the memory lost is 
controlled by − Gkm, which represents a frequency (inverse time scale) matrix. In 
contrast to the evolution of variances, which is determined by equation (3.36b), 
there is no production mechanism for correlations (provided that − Gkm is non-
negative as usually assumed): memory can only be lost.  

3.4. Stochastic equations for realizations  

One way to model the evolution of stochastic variables was considered in the 
previous three sections, where equations for the PDF of stochastic variables were 
introduced. It was argued that the reduction of the Kramers-Moyal equation (3.5) 
(written for the case of several variables) to the Fokker-Planck equation (3.9) has 
to be seen as the most suitable way of constructing a PDF transport equation. An 
alternative approach is to postulate differential equations for the calculation of the 
evolution of stochastic variables. The stochastic processes determined in this way 
can then be applied to calculate all the coefficients of the Kramers-Moyal equation, 
this means this approach results, too, in a specific PDF transport equation. The 
relations between these two approaches will be considered next.  
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3.4.1. Stochastic differential equations  

A general evolution equation for a vector ξ(t) = {ξ1(t), ξ2(t), ⋅⋅⋅, ξN(t)} of N 
stochastic variables may be written in the following way (0 ≤ s ≤ t),  

  [ ] (3.41)                                                                                      .fs),s(a
dt
d

ii
i +=
ξ ξ  

fi represents any stochastic force which produces fluctuations of ξ. We assume that 
fi vanishes in the ensemble average, and that it has a characteristic correlation time 
τf (fluctuations of fi are relaxed, basically, after the time τf). Usually, ai represents 
the dynamics of mean values of ξ and the relaxation of fluctuations of ξ. This term 
is a deterministic functional that may depend on all states ξ(s) at earlier times 
(which makes ξ to a non-Markovian process, see section 3.1.2).  

Obviously, the consideration of memory effects in ai and a finite correlation 
time τf of stochastic forces may hamper analyses and applications of (3.41) 
significantly. A very important experience is that a suitable choice of variables 
often enables the consideration the characteristic relaxation time τf of fi as 
infinitely small compared to the typical time scales of the problem considered (this 
may require, for instance, the extension of the set of variables considered by 
constructing models that include equations for derivatives of ξ, see the 
explanations given in Appendix 3A and chapter 5). In this case, the stochastic 
forces in (3.41) can be seen to be uncorrelated and the influence of memory effects 
on ai can be neglected (the close relation between stochastic force correlations and 
memory effects is pointed out in detail in Appendix 3A). This assumption of 
vanishing memory effects and correlation times τf will be made now, this means 
we restrict the attention to the consideration of the equation 
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d k

iki
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In this equation, ai and bik are any deterministic functions of ξ(t) and t. The 
stochastic process dWk / dt represents the derivative of the kth component of a 
vectorial Gaussian process W = (W1, …, WN), which is called a Wiener process 
(Gardiner 1983, Risken 1984). Hence, dWk / dt is fully determined by its first two 
moments that are given by  

  
( ) ( ) ( ) (3.43b)                                                                  .'tt't

dt
dWt

dt
dW

(3.43a)                                                                                                ,0
dt

dW

kl
lk

k

−δδ=

=

 

 



 3.4. Stochastic equations for realizations 45 

In accord with the assumed properties of the stochastic force fi, the relations 
(3.43a-b) mean that fi vanishes in the ensemble average, and that its correlation 
time is zero (it is uncorrelated for different times). In addition to this, it is assumed 
that there are no correlations between different stochastic force components. 
Hence, the change of ξi modeled by (3.42) is completely determined by the state of 
ξ at t, such that ξ(t) represents a Markov process.  

It is essential to note that (in contrast to the integration of ordinary differential 
equations) the value of integrals that involve stochastic variables may depend on 
the definition of the integration. Throughout this book we will use the Itô-
definition for this (Gardiner 1983, Risken 1984). The latter assumes that the formal 
solution of the equation (3.42) is given by  
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where ∆t is an infinitesimal time increment. The assumption related to the second 
line of equation (3.44) is that the coefficients ai and bik in the integrals are taken at 
the previous time step t. Further, we introduced the variable  
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By adopting the properties (3.43a-b) of dWk / dt, the properties of the Gaussian 
process ∆Wk are found to be  
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where t' = t − k ∆t (k = 0, 1) is applied as an abbreviation. Therefore, the values of 
∆Wk at the same time step (k = 0) are correlated, whereas values at different times 
(k = 1)  are  uncorrelated  (obviously,  ∆Wk(t)  is  also uncorrelated to ∆Wk(t') with 
k = 2, 3, …). Two examples for realizations of ∆Wk normalized to (∆t)1/2 are 
shown in Fig. 3.1. This figure reveals that there is no correlation between adjacent 
values and various realizations. According to the relations (3.46a-b), these 
standardized numbers have a zero mean and a variance equal to unity.  
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Fig. 3.1. Two examples for realizations of one component of ∆W / (∆t)1/2.  

According to its definition (3.45), ∆Wk / ∆t represents the derivative of Wk. By 
dividing (3.46b) by (∆t)2, we see that the variance of ∆Wk / ∆t does not exist: it 
diverges proportional to (∆t)−1/2, this means it goes to infinity for ∆t → 0. 
Consequently, Wk is not differentiable because the probability for the appearance 
of ∆Wk / ∆t values that are larger than any limit is equal to unity (Gardiner 1983). 
For that reason, stochastic equations are often written according to the formulation 
(3.44) where ∆Wk behaves properly. Nevertheless, the equation (3.42) will be used 
here in general to represent stochastic equations, having in mind that it states 
nothing else than the formulation (3.44).  

3.4.2. The relationship to Fokker-Planck equations  

Equation (3.42) determines the evolution of the stochastic process ξ. 
Consequently, it has to imply a PDF transport equation. This fact leads then to the 
question about the relation of the PDF transport equation implied by (3.42) to the 
Fokker-Planck equation (3.9). To address this, we calculate the first two 
coefficients of the Kramers-Moyal equation (written for the case of several 
variables), which are equal to the coefficient Di and Dij of the Fokker-Planck 
equation (3.9). By inserting (3.44) into (3.10a-b) we find  

  ( ) ( ) (3.47a)                                                                                        ,t,at,D ii xx =  

  ( ) ( ) ( ) (3.47b)                                                                      .t,bt,b
2
1t,D jkikij xxx =  

where the properties (3.46a-b) of ∆Wk are used. The corresponding calculation of 
higher-order  coefficients  of  the  Kramers-Moyal  equation  reveals  that  all these  
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Fig. 3.2. Two examples for realizations of the stochastic equation (3.48).  

coefficients vanish because they are of higher order in ∆t. Hence, the stochastic 
equation (3.42) uniquely determines a Fokker-Planck equation that describes the 
PDF evolution. However, the opposite is not the case in general. For N variables, 
equation (3.47b) represents N (N + 1) / 2 equations for N2 elements of bij. Thus, 
the coefficients of the equation (3.42) are uniquely determined by the coefficients 
Di and Dij of the Fokker-Planck equation only if bij is assumed to be symmetric.  

3.4.3. Monte Carlo simulation  

Applications of Fokker-Planck equations to turbulent reacting flows often 
require the consideration of a large number of variables, which makes the direct 
solution of Fokker-Planck equations extremely complicated or even impossible. 
This problem can be avoided if stochastic differential equations are used which 
correspond to a given Fokker-Planck equation. This means one solves equation 
(3.42) with ai and (a symmetric) bij, which are derived according to the relations 
(3.47a-b) from the coefficients Di and Dij of a Fokker-Planck equation.  

The advantage of such Monte Carlo simulations is given by the fact that 
stochastic equations can be solved easily. The statistics of ∆Wk, which are required 
to solve (3.44), are available in standard routines, and all the means and the PDF of 
a stochastic process considered can be obtained by summation. Suitable techniques 
to solve such equations are described, e.g., by Kloeden and Platen (1992). As an 
example, two realizations of a specification of (3.42)  

  (3.48)                                                                                            ,
dt

dW
dt
d
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are shown in Fig. 3.2. These solutions were obtained for ξ(0) = 0 and ∆t = 0.01.  
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The drawback of Monte Carlo methods for the solution of Fokker-Planck 
equations is that they are often time-consuming, and generally have high memory 
requirements. The statistical accuracy decreases only with N1/2, where N is the 
number of realizations (Risken 1984). Hence, one needs, for example, 100 times 
more particles to improve the accuracy by an order of magnitude. 
Correspondingly, the deviations from the exact mean and variance of ∆Wk / (∆t)1/2 
are about 1% if 104 realizations are considered, and 0.1% for 106 realizations.  

3.5. Stochastic modeling  

The reduction of the general stochastic model (3.41) to the Markov model 
(3.42) is a very important step regarding the construction of a stochastic model for 
any specific case considered. However, to obtain closed stochastic differential 
equations one still has to solve two important problems: one has to choose an 
appropriate set of stochastic variables, and the coefficients in the stochastic 
equations have to be determined as functions of the variables considered.  

3.5.1. The set of variables considered  

The first problem to find a suitable set of stochastic variables can be solved by 
estimating the correlation time scale of the forces that drive the dynamics of the 
quantities of interest. Usually, one will find that this time scale is nonzero, such 
that the structure of equation (3.42) cannot be used directly. However, as pointed 
out in detail in Appendix 3A, it is then possible to extend the set of variables 
considered such that (3.42) can be used. A detailed application of this concept will 
be given in chapter 5 regarding the construction of models for turbulent velocities.  

3.5.2. The coefficients of stochastic equations  

The second problem to provide the coefficients ai and bik in the stochastic 
equation (3.42) as explicit functions of the stochastic variables can be addressed in 
the following way. In many cases one can find simple and well-justified 
parametrizations for the diffusion coefficient bik. This is not surprising because bik 
just simulates the intensity of the unordered, chaotic production of fluctuations. 
The determination of ai is much more complicated. Simple solutions (isotropic 
linear relaxation models) are available for systems in equilibrium states, and the 
extension of such equations (anisotropic linear relaxation models with mixing 
frequencies that vary in space and time) for the simulation of systems in near-
equilibrium states does often work successfully. However, the simulation of 
nonequilibrium processes requires the consideration of nonlinear stochastic 
models. Various ways to construct them will be discussed in chapter 5.  
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Appendix 3A: The dynamics of relevant variables  

A systematic procedure for the construction of stochastic equations for any 
variables considered (which will be referred to as relevant variables) will be 
presented here. This methodology is called the projection operator technique. Its 
basic idea is to extract the dynamics of relevant variables from any complete, 
deterministic dynamics. This results in contributions to the dynamics of relevant 
variables that are explicit deterministic functions of the relevant variables (which 
may involve memory effects), and remaining contributions that involve the 
influence of all the other quantities. The latter terms have the properties of 
stochastic forces.  

The projection operator technique may be applied in various variants, see for 
instance Grabert (1982), Lindenberg & West (1990) and Zubarev et al. (1996, 
1997). One way is to derive a PDF transport equation for relevant variables, which 
has (by adopting the Markov assumption) a structure that corresponds to that of the 
Fokker-Planck equation. Another way is to separate the instantaneous dynamics of 
relevant variables from the complete dynamics, see Heinz (1997). This approach 
will be presented here to contrast the derivation of PDF transport equations in the 
sections 3.1 and 3.2 with a corresponding construction of stochastic models.  

3A.1. The problem considered  

We assume that the dynamics of a system considered are completely described 
by a set of variables Ξ(t) = {ξ(t), η(t)}, see Fig. 2.1 in chapter 2 for an illustration. 
The vector ξ(t) refers to variables that we consider to be relevant, and η(t) denotes 
the vector of the remaining (irrelevant) variables. Instead of Ξ(t), we may consider 
the corresponding instantaneous PDF Ψ*(x, y, t) = δ(ξ(t) − x) δ(η(t) − y). An 
equation for the evolution of this PDF may be obtained by differentiating it by 
time. This results in  

  ( ) ( ) ( ) ( ) (3A.1)  .t,,t),t(),t(
dt

d
y

t),t(),t(
dt

d
xt

t,, n

n

k

k

yxyx *
*

ηξηξ ΨΨ







 η
∂
∂

+
ξ

∂
∂

−=
∂

∂  

The derivatives by the arguments of the delta functions are rewritten into the 
corresponding sample space derivatives (∂Ψ* / ∂(ξ1(t) − x1) = − ∂Ψ* / ∂x1). The 
sample space derivatives may be drawn in front of dξk / dt and dηn / dt since the 
latter are independent of x and y. Equation (3A.1) corresponds to the Liouville 
equation of classical statistical mechanics. It is unclosed due to the appearance of 
the unknown derivatives dξk / dt and dηn / dt. The explicit time dependence in 
these derivatives may be caused for instance by the appearance of external forces.  
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In general, there is neither a way to assess the detailed dynamics of the complete 
set of variables Ξ(t) nor an interest to have all this information. Therefore, we 
restrict the attention to the dynamics of relevant variables ξ(t), which may by 
obtained from (3A.1) by integration over the y-space. This leads to  
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where the instantaneous PDF of the process ξ(t) is referred to  

  ( ) ( ) (3A.3)                                                                                    .)t(t, xx −δ= ξΨ  

The sum of the operators Lrel, Lext and L is defined by the middle expression of 
(3A.2). This differentiation of different contributions to the evolution of relevant 
variables is applied to refer to the possibility of the appearance of contributions 
that are explicit functionals of the relevant variables, this means contributions that 
do not require assumptions to take them into account. Terms related to Lrel are 
found, e.g., if xn denotes coordinates in physical space and dξn / dt corresponding 
velocities. Lext refers to a possible contribution due to external forces, which is also 
assumed to be known. Due to the fact that the consideration of Lrel and Lext does 
not pose any difficulties, we will neglect them for simplicity. Consequently, we 
consider the following basic equation  

   ( ) ( ) ( ) (3A.4)                                                                     .t,t,,L=t,
t

xxx ΨΨ η
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Regarding the dynamics of ξ(t), equation (3A.4) is unclosed due to the appearance 
of irrelevant variables η(t). The rewriting of (3A.4) by means of the projection 
operator technique will be considered next.  

3A.2. The projection operator  

To rewrite the dynamics (3A.4) we need a projection operator P that projects 
any functions A = A(ξ(t), η(t), t) of relevant and irrelevant variables onto the 
subspace of relevant variables. Such an operator will be defined by  

  ( ) ( ) ( ) (3A.5)                            ,0,)0(t),t(),t(Ad=t),t(),t(PA xxx Ψ∫ =ξηξηξ  

where the initial time is assumed to be zero. The conditional mean on the right-
hand side is defined by (2.35). P is characterized by the properties (A and B are 
any functions of relevant and irrelevant variables)  

  ( ) ( ) ( ) ( ) (3A.6)                  .PP,0,0,P,PBABPA 2 === xx ΨΨ  
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The validity of the relations (3A.6) may be proved by means of (3A.5) combined 
with the definition (2.35) of conditional means,  
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Alternatively, the relations (3A.6) may be formulated by adopting the complement 
operator Q = 1 − P,  
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The latter relations will be used frequently below.  

3A.3. An operator identity  

To transform (3A.4) in the way described above we consider its formal solution  
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The operator exp(Lt) can be considered as the sum of two contributions,  

  (3A.10)                                                                                  ),t(U)t(Ue 21
Lt +=  

where U1 describes the part of the dynamics which is explicit in the relevant 
variables (it may depend on all the history of the relevant variables), and U2 is the 
remainder, i.e., U2 a function of the irrelevant variables. To determine U2, we will 
assume that it is determined by the following equation and initial condition,  

  (3A.11)                                                               .1)0(U,QLU
dt

dU
22

2 ==  

Due to PQ = P (1 − P) = 0, which follows from the last part of (3A.6), the assumed 
evolution equation for U2 assures that the projection of dU2 / dt vanishes in the 
ensemble average. This enables the interpretation of dU2 / dt as a stochastic force, 
see the explanations given below. The condition U2(0) = 1 implies U1(0) = 0. This 
corresponds with the assumption that U1(t) is independent of its initial condition. 
As a consequence of (3A.11), U1 is determined by the following equation and 



52 3. Stochastic processes  

initial condition,  
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By adopting the formal solutions of (3A.11) and (3A.12), the evolution operator 
exp(Lt) can be rewritten into  
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We transform the integrand by setting t' = t − s. This results in the operator identity  
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Its consistency may be seen by comparing the initial values and derivatives by t of 
both sides.  

3A.4. The dynamics of relevant variables  

The use of the operator identity (3A.14) in (3A.9) allows now the rewriting of 
the evolution equation (3A.4). By adopting the definition (3A.5) of the projection 
operator P we obtain  
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We differentiate (3A.15) by time, multiply it by xi and integrate it over the space of 
relevant variables. This leads to the following equation for relevant variables ξi,  

  ( ) ( ) ( ) ( ) (3A.16)          ),t(fs,st,
dt

dMddst,0,Md
dt
d

i

t

0

i
i

i +Ψ−−Ψ−=
ξ

∫ ∫∫ xxxxxx  

where we applied the abbreviations  
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The last term fi in equation (3A.16) is a function of the irrelevant variables. By 
adopting the relations (3A.8), we find  
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The integration of this relation over x leads then to the result  

   (3A.19)                                                                                                .0)t(fi =  

This important property of fi to vanish in the ensemble mean enables its 
interpretation as a stochastic force.  

The first two terms on the right-hand side of equation (3A.16) are functions of 
relevant variables. They are characterized by the memory function Mi(x, t), which 
represents the averaged influence of irrelevant variables on the dynamics of 
relevant variables. By means of (3.17a), we find for Mi(x, 0), which appears in the 
first term,  
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This expression may be rewritten into an equation that relates Mi(x, 0) to the PDF 
<δ(ξ(t) − x)>,  
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This result shows that Mi(x, 0) vanishes under stationary conditions. With regard 
to dMi(x, t) / dt in the second term on the right-hand side of (3A.16) we obtain by 
the differentiation of the expression (3A.17a)  
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This relation is an essential result of the approach presented here. It provides a link 
between the stochastic force fi, which generates fluctuations of relevant variables, 
and dMi(x, t) / dt, which controls the relaxation (the dissipation) of fluctuations of 
relevant variables. Such relations are called fluctuation-dissipation theorems. The 
value of (3A.22) arises from the possibility of calculating the function dMi(x, t) / dt 
on the basis of assumption about the statistics of stochastic forces. This will be 
pointed out in the next three subsections.  

3A.5. The equilibrium dynamics of relevant variables  

The use of the fluctuation-dissipation theorem (3A.22) for the calculation of 
dMi(x, t) / dt requires assumptions on L to relate the right-hand side to measurable 
quantities. For statistically stationary processes, L is characterized by the property  

  ( ) ( ) (3A.23)                                                              .LBABLA0
t

AB
+==

∂
∂  



54 3. Stochastic processes  

This relation may be used to rewrite the expression (3A.22). We obtain  
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The first rewriting of the left-hand side results from the definition (2.35) of 
conditional means. The second rewriting makes use of (3A.23). Then, we replace fi 
by Q fi, and apply the first part of relation (3A.8) to obtain the third rewriting. The 
expressions on the second line may be obtained by applying L to Ψ(x, 0) and 
adopting the definition (3A.17b) of stochastic forces. The definition of conditional 
means is then applied again to obtain the last line of (3A.24).  

The application of the relation (3A.24) in equation (3A.16) implies then the 
following equilibrium dynamics of relevant variables,  
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where Mi(x, 0) = 0 is applied for the stationary case considered. Thus, the 
specification of the equilibrium PDF <Ψ(x, 0)> and statistics of the stochastic 
force fi completely determines the dynamics of relevant variables. Examples for 
such assumptions will be considered next.  

3A.6. Colored Gaussian noise  

The consideration of the vector of relevant variables ξ(t) as a continuous 
process requires the assumption that the stochastic force fi is a Gaussian process 
(Gardiner 1983, Thomson 1987). Therefore, fi is completely specified by its zero 
mean and correlation. First, we will assume that fi is a colored noise process, this 
means its correlation function is characterized by an exponential function, 

  (3A.26)                          .
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bin denotes a constant coefficient and τf represents the constant correlation time of 
fi. The first rewriting of the left-hand side results from the fact that the correlation 
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function only depends on the difference of the time argument under statistically 
stationary conditions. The use of (3A.26) in equation (3A.25) leads then to the 
equilibrium dynamics  
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if the equilibrium PDF is specified as a Gaussian PDF with constant variance 
matrix σ. The inverse variance matrix is denoted by σ−1.  

The inclusion of correlated noise and memory effects in (3A.27) hampers 
analyses and the application of standard methods for the solution of stochastic 
differential equations (Kloeden & Platen 1992). In order to rewrite equation 
(3A.27), we represent fi as solution of the equation  
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By adopting the relations between stochastic equations and Fokker-Planck 
equations pointed out in section 3.4 in combination with the findings presented in 
section 3.3, one can prove that this equation determines fi as a Gaussian process. 
Its means vanish for the assumed stationarity, and the correlation function of fi 
satisfies for s ≥ 0 according to (3.40) the equation  
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This equation provides the same evolution of the correlation function of fi as given 
by (3A.26). Therefore, the definition of fi by (3A.28) is equivalent to (3A.26) 
provided the variance of fi (which represents the initial condition to equation 
(3A.29)) is also consistent with the corresponding implication of (3A.26),  
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This is the case, see equation (3.36b) for the stationary case considered.  
By adopting (3.A28) we can transform (3A.27) into the frame of the stochastic 

equations (3.42). This may be seen by differentiation of (3A.27),  
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Hence, the enlarged set of variables (ξ, dξ / dt) represents a Markov process that 
satisfies the structure of the equations (3.42). Such a rewriting of the equations 
(3A.27) is usually very helpful because many results related to Fokker-Planck 
equations and their solutions can be applied then.  

3A.7. White Gaussian noise  

A further specification of the dynamics of relevant variables is given by the 
assumption that fi becomes delta-correlated (τf → 0). In this case, the correlation 
function (3A.26) reduces to  
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The comparison of the properties of fi with those of dWi / dt, see the relations 
(3.43a-b), shows that fi has to be proportional to dWi / dt in this case. This relation 
can be derived from the stochastic model (3A.28) for fi, which reduces for τf → 0 
to the expression  
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The use of (3A.32) and (3A.33) in (3A.27) leads then to the equation  
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Thus, for the case of white-noise forces fi one obtains equations for the set ξ(t) of 
relevant variables which agree with the structure of the stochastic equations (3.42).  
 
 
 
 
 
 
 
 
 
 
 




