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In an uncertain economic decision environment, an expert’s knowledge about
discounting cash flows consists of a lot of vagueness instead of randomness.
Cash amounts and interest rates are usually estimated by using educated
guesses based on expected values or other statistical techniques to obtain
them. Fuzzy numbers can capture the difficulties in estimating these param-
eters. In this chapter, the formulas for the analysis of fuzzy present value,
fuzzy equivalent uniform annual value, fuzzy future value, fuzzy benefit-cost
ratio, and fuzzy payback period are developed and given some numeric exam-
ples. Then the examined cash flows are expanded to geometric and trigono-
metric cash flows and using these cash flows fuzzy present value, fuzzy future
value, and fuzzy annual value formulas are developed for both discrete com-
pounding and continuous compounding. The fuzzy dynamic programming is
applied to the situation where each investment in the set has the following
characteristics: the amount to be invested has several possible values, and
the rate of return varies with the amount invested. Each sum that may be
invested represents a distinct level of investment, and the investment there-
fore has multiple levels. A fuzzy present worth based dynamic programming
approach is used. A numeric example for a multilevel investment with fuzzy
geometric cash flows is given. A computer software named FUZDYN is devel-
oped for various problems such as alternatives having different lives, different
uniform cash flows, and different ranking methods.

3.1 Introduction

The purpose of this chapter is to develop the fuzzy capital budgeting tech-
niques and a fuzzy dynamic programming method for multilevel investments.
The analysis of fuzzy future value, fuzzy present value, fuzzy rate of return,
fuzzy benefit/cost ratio, fuzzy payback period, fuzzy equivalent uniform an-
nual value are examined for the case of discrete compounding and continuous
compounding.
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To deal with vagueness of human thought, Zadeh [3.37] first introduced
the fuzzy set theory, which was based on the rationality of uncertainty due to
imprecision or vagueness. A major contribution of fuzzy set theory is its capa-
bility of representing vague knowledge. The theory also allows mathematical
operators and programming to apply to the fuzzy domain.

A fuzzy number is a normal and convex fuzzy set with membership
function µA(x) which both satisfies normality: µA(x)=1, for at least one
x ∈ R and convexity: µA(x′) ≥ µA(x1)ΛµA(x2), where µA(x) ∈ [0, 1] and
∀x′ ∈ [x1, x2]. ‘Λ’ stands for the minimization operator.

Quite often in finance future cash amounts and interest rates are esti-
mated. One usually employs educated guesses, based on expected values or
other statistical techniques, to obtain future cash flows and interest rates.
Statements like approximately between $ 12,000 and $ 16,000 or approxi-
mately between 10% and 15% must be translated into an exact amount, such
as $ 14,000 or 12.5% respectively. Appropriate fuzzy numbers can be used
to capture the vagueness of those statements.

A tilde will be placed above a symbol if the symbol represents a fuzzy
set. Therefore, P̃ , F̃ , G̃, Ã, ĩ, r̃ are all fuzzy sets. The membership functions
for these fuzzy sets will be denoted by µ(x

∣∣∣P̃ ), µ(x
∣∣∣F̃ ), µ(x

∣∣∣G̃ ), etc. A fuzzy
number is a special fuzzy subset of the real numbers. The extended operations
of fuzzy numbers are given in the appendix. A triangular fuzzy number (TFN)
is shown in Fig. 3.1 The membership function of a TFN (M̃)defined by

µ(x
∣∣∣M̃ ) = (m1, f1(y

∣∣∣M̃ )/m2,m2/f2(y
∣∣∣M̃ ),m3) (3.1)

wherem1 ≺ m2 ≺ m3, f1(y
∣∣∣M̃ ) is a continuous monotone increasing function

of y for 0 ≤ y ≤ 1 with f1(0
∣∣∣M̃ ) = m1 and f1(1

∣∣∣M̃ ) = m2 and f2(y
∣∣∣M̃ ) is a

continuous monotone decreasing function of y for 0 ≤ y ≤ 1 with f2(1
∣∣∣M̃ ) =

m2 and f2(0
∣∣∣M̃ ) = m3. µ(x

∣∣∣M̃ ) is denoted simply as (m1/m2,m2/m3).
A flat fuzzy number (FFN) is shown in Fig. 3.2 The membership function

of a FFN, Ṽ is defined by

µ(x
∣∣∣Ṽ ) = (m1, f1(y

∣∣∣Ṽ )/m2,m3/f2(y
∣∣∣Ṽ ),m4) (3.2)

where m1 ≺ m2 ≺ m3 ≺ m4, f1(y
∣∣∣Ṽ ) is a continuous monotone increasing

function of y for 0 ≤ y ≤ 1 with f1(0
∣∣∣Ṽ ) = m1 and f1(1

∣∣∣Ṽ ) = m2 and

f2(y
∣∣∣Ṽ ) is a continuous monotone decreasing function of y for 0 ≤ y ≤ 1

with f2(1
∣∣∣Ṽ ) = m3 and f2(0

∣∣∣Ṽ ) = m4. µ(y
∣∣∣Ṽ ) is denoted simply as

(m1/m2,m3/m4).
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Fig. 3.1. A triangular fuzzy number, M̃
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Fig. 3.2. A flat fuzzy number, Ṽ

The fuzzy sets P̃ , F̃ , G̃, Ã, ĩ, r̃ are usually fuzzy numbers but n will be
discrete positive fuzzy subset of the real numbers [3.5]. The membership
function µ(x |ñ ) is defined by a collection of positive integers ni, 1 ≤ i ≤ K,
where

µ(x |ñ) =


µ(ni |ñ ) = λi, 0 ≤ λi ≤ 1

0 , otherwise
(3.3)

Karsak [3.26] develops some measures of liquidity risk supplementing
fuzzy discounted cash flow analysis. Iwamura and Liu [3.16] develop chance
constrained integer programming models for capital budgeting in fuzzy en-
vironments. Boussabaine and Elhag [3.4] examine the possible application
of the fuzzy set theory to the cash flow analysis in construction projects.
Dimitrovski and Matos [3.9] present an approach to including nonstatistical
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uncertainties in utility economic analysis by modelling uncertain variables
with fuzzy numbers. Kuchta [3.28] proposes fuzzy equivalents of all the clas-
sical capital budgeting methods.

3.2 Fuzzy Present Value (PV) Method

The present-value method of alternative evaluation is very popular because
future expenditures or receipts are transformed into equivalent dollars now.
That is, all of the future cash flows associated with an alternative are con-
verted into present dollars. If the alternatives have different lives, the alter-
natives must be compared over the same number of years.

Chiu and Park [3.8] propose a present value formulation of a fuzzy cash
flow. The result of the present value is also a fuzzy number with nonlinear
membership function. The present value can be approximated by a TFN.
Chiu and Park [3.8]’s formulation is

P Ṽ =
[ n∑

t=0

(
max(P l(y)

t , 0)
t∏

t′=0

(1 + rr(y)
t′ )

+
min(P l(y)

t , 0)
t∏

t′=0

(1 + rl(y)
t′ )

),

n∑
t=0

(
max(P r(y)

t , 0)
t∏

t′=0

(1 + rl(y)
t′ )

+
min(P r(y)

t , 0)
t∏

t′=0

(1 + rr(y)
t′ )

)
]

(3.4)

whereP l(y)
t : the left representation of the cash at time t, P r(y)

t : the right
representation of the cash at time t, rl(y)

t : the left representation of the
interest rate at time t, rr(y)

t : the right representation of the interest rate at
time t.

Buckley’s [3.5] membership function for P̃n,

µ(x
∣∣∣P̃n ) = (pn1, fn1(y

∣∣∣P̃n )/pn2, pn2/fn2(y
∣∣∣P̃n ), pn3) (3.5)

is determined by

fni(y|P̃n) = fi(y|F̃ )(1 + fk(y|r̃))−n (3.6)

for i = 1,2 where k = i for negative F̃ and k = 3 − i for positive F̃ . Ward
[3.34] gives the fuzzy present value function as

P Ṽ = (1 + r)−n(a, b, c, d) (3.7)

where (a, b, c, d) is a trapezoidal fuzzy number.
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3.3 Fuzzy Capitalized Value Method

A specialized type of cash flow series is perpetuity, a uniform series of cash
flows that continues indefinitely. An infinite cash flow series may be appropri-
ate for such very long-term investment projects as bridges, highways, forest
harvesting, or the establishment of endowment funds where the estimated life
is 50 years or more.

In the nonfuzzy case, if a present value P is deposited into a fund at
interest rate r per period so that a payment of size A may be withdrawn
each and every period forever, then the following relation holds between P ,
A, and r:

P =
A

r
(3.8)

In the fuzzy case, lets assume all the parameters as triangular fuzzy
numbers: P̃ = (p1, p2, p3) or P̃ = (((p2 − p1)y + p1), (p2 − p3)y + p3) and
Ã = (a1, a2, a3) or Ã = (((a2 −a1)y+a1), (a2−a3)y+a3) and r̃ = (r1, r2, r3)
or r̃ = ((r2 − r1)y+ r1, (r2 − r3)y+ r3), where y is the membership degree of
a certain point of A and r axis. If Ã and r̃ are both positive,

P̃ = Ã∅r̃ = (a1/r3, a2/r2, a3/r1) (3.9)

or

P̃ = (((a2−a1)y+a1)/((r2−r3)y+r3), ((a2−a3)y+a3)/((r2−r1)y+r1)) (3.10)

If Ã is negative and r̃ is positive,

P̃ = Ã∅r̃ = (a1/r1, a2/r2, a3/r3) (3.11)

or

P̃ = (((a2−a1)y+a1)/((r2−r1)y+r1), ((a2−a3)y+a3)/((r2−r3)y+r3)) (3.12)

Now, let Ã be an expense every nth period forever, with the first expense
occurring at n. For example, an expense of ($5, 000, $7, 000, $9, 000) every
third year forever, with the first expense occurring at t=3. In this case, the
fuzzy effective rate ẽ may be used as in the following:

fi(y| ẽ) = (1 + (1/m)fi(y| r̃′))m − 1 (3.13)

where i = 1, 2; f1(y| ẽ) :a continuous monotone increasing function of y;
f2(y| ẽ) :a continuous monotone decreasing function of y; m: the number
of compounding per period; r̃′ : the fuzzy nominal interest rate per period.
The membership function of ẽ may be given as

µ(x| ẽ) = (e1, f1(y| ẽ)/e2, e2/f2(y| ẽ), e3) (3.14)
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If Ã and fi(y| ẽ) are both positive,

P̃ = Ã∅ẽ = [((a2 − a1)y + a1)/f2(y| ẽ), ((a2 − a3)y + a3)/f1(y| ẽ)] (3.15)

If Ã is negative and fi(y| ẽ) is positive,

P̃ = Ã∅ẽ = [((a2 − a1)y + a1)/f1(y| ẽ), ((a2 − a3)y + a3/f2(y| ẽ))] (3.16)

(a2 −a1)y+a1and (a2−a3)y+a3 can be symbolized as f1(y| ã) and f2(y| ã)
respectively.

3.4 Fuzzy Future Value Method

The future value (FV) of an investment alternative can be determined using
the relationship

FV (r) =
n∑

t=0

Pt(1 + r)n−t (3.17)

where FV(r) is defined as the future value of the investment using a mini-
mum attractive rate of return (MARR) of r%. The future value method is
equivalent to the present value method and the annual value method.

Chiu and Park’s [3.8] formulation for the fuzzy future value has the same
logic of fuzzy present value formulation:

{
n−1∑
t=0

[max(P l(y)
t , 0)

n∏
t′=t+1

(1 + rl(y)
t′ ) + min(P l(y)

t , 0)
n∏

t′=t+1

(1 + rr(y)
t′ )] +P l(y)

n ,

n−1∑
t=0

[max(P r(y)
t , 0)

n∏
t′=t+1

(1 + rr(y)
t′ ) + min(P r(y)

t , 0)
n∏

t′=t+1

(1 + rl(y)
t′ )] + P r(y)

n }

(3.18)

Buckley’s [3.5] membership function µ(x| F̃ ) is determined by

fi(y | F̃n) = fi(y | P̃ )(1 + fi(y | r̃))n (3.19)

For the uniform cash flow series, µ(x| F̃ ) is determined by

fni(y | F̃ ) = fi(y | Ã)β(n, fi(y| r̃)) (3.20)

where i =1,2 and β(n, r) = (((1 + r)n − 1)/r) and Ã � 0 and r̃ � 0.
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3.5 Fuzzy Benefit/Cost Ratio Method

The benefit/cost ratio (BCR) is often used to assess the value of a municipal
project in relation to its cost; it is defined as

BCR =
B −D
C

(3.21)

where B represents the equivalent value of the benefits associated with the
project, D represents the equivalent value of the disbenefits, and C represents
the project’s net cost. A BCR greater than 1.0 indicates that the project eval-
uated is economically advantageous. In BCR analysis, costs are not preceded
by a minus sign.

When only one alternative must be selected from two or more mutu-
ally exclusive (stand-alone) alternatives, a multiple alternative evaluation is
required. In this case, it is necessary to conduct an analysis on the incremen-
tal benefits and costs. While calculating ∆B2−1/∆C2−1 ratio, the costs and
benefits of the alternative with higher first cost are subtracted from the costs
and benefits of the alternative with smaller first cost. Suppose that there are
two mutually exclusive alternatives. In this case, for the incremental BCR
analysis ignoring disbenefits the following ratios must be used:

∆B2−1/∆C2−1 =∆PV B2−1/∆PV C2−1 (3.22)

where PVB: present value of benefits, PVC: present value of costs.
If ∆B2−1/∆C2−1 ≥ 1.0, the alternative 2 is preferred.

In the case of fuzziness, first, it will be assumed that the largest possible
value of Alternative 1 for the cash in year t is less than the least possible
value of Alternative 2 for the cash in year t. The fuzzy incremental BCR is

∆B̃
/
∆C̃ =

(

n∑
t=0

(Bl(y)
2t −Br(y)

1t )(1 + rr(y))−t

n∑
t=0

(Cr(y)
2t − Cl(y)

1t )(1 + rl(y))−t

,

n∑
t=0

(Br(y)
2t −Bl(y)

1t )(1 + rl(y))−t

n∑
t=0

(Cl(y)
2t − Cr(y)

1t )(1 + rr(y))−t

) (3.23)

If ∆B̃
/
∆C̃ is equal or greater than (1, 1, 1), Alternative 2 is preferred.

In the case of a regular annuity, the fuzzy B̃
/
C̃ ratio of a single investment

alternative is

B̃/C̃ = (
Al(y)γ(n, rr(y))

Cr(y)
,
Ar(y)γ(n, rl(y))

Cl(y)
) (3.24)

where C̃ is the first cost and Ã is the net annual benefit, and
γ(n, r) = (((1 + r)n − 1)/(1 + r)nr).

The ∆B̃/∆C̃ ratio in the case of a regular annuity is
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∆B̃/∆C̃ = (
(Al(y)

2 −Ar(y)
1 )γ(n, rr(y))

C
r(y)
2 − Cl(y)

1

,
(Ar(y)

2 −Al(y)
1 )γ(n, rl(y))

C
l(y)
2 − Cr(y)

1

) (3.25)

3.6 Fuzzy Equivalent Uniform Annual Value (EUAV)
Method

The EUAV means that all incomes and disbursements (irregular and uniform)
must be converted into an equivalent uniform annual amount, which is the
same each period. The major advantage of this method over all the other
methods is that it does not require making the comparison over the least
common multiple of years when the alternatives have different lives [3.3].
The general equation for this method is

EUAV = A = NPV γ−1(n, r) = NPV [
(1 + r)nr

(1 + r)n − 1
] (3.26)

where NPV is the net present value. In the case of fuzziness, NP̃V will be
calculated and then the fuzzy EUÃV (Ãn) will be found. The membership
function µ(x | Ãn) for Ãn is determined by

fni(y| Ãn) = fi(y|NP̃V )γ−1(n, fi(y | r̃)) (3.27)

and TFN(y) for fuzzy EUAV is

Ãn(y) = (
NPV l(y)

γ(n, rl(y))
,
NPV r(y)

γ(n, rr(y))
) (3.28)

3.7 Fuzzy Payback Period (FPP) Method

The payback period method involves the determination of the length of time
required to recover the initial cost of investment based on a zero interest rate
ignoring the time value of money or a certain interest rate recognizing the
time value of money. Let Cj0 denote the initial cost of investment alternative
j, and Rjt denote the net revenue received from investment j during period
t. Assuming no other negative net cash flows occur, the smallest value of mj

ignoring the time value of money such that
mj∑
t=1

Rjt ≥ Cj0 (3.29)

or the smallest value of mj recognizing the time value of money such that

mj∑
t=1

Rjt(1 + r)−t ≥ Cj0 (3.30)
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defines the payback period for the investment j. The investment alternative
having the smallest payback period is the preferred alternative. In the case
of fuzziness, the smallest value of mj ignoring the time value of money such
that

(
mj∑
t=1

r1jt,

mj∑
t=1

r2jt,

mj∑
t=1

r3jt) ≥ (C1j0, C2jo, C3j0) (3.31)

and the smallest value of mj recognizing the time value of money such that

(
mj∑
t=1

R
l(y)
jt

(1 + rr(y))t
,

mj∑
t=1

R
r(y)
jt

(1 + rl(y))t
) ≥

((C2j0 − C1j0)y + C1j0, (C2j0 − C3j0)y + C3j0) (3.32)

defines the payback period for investment j, where rkjt : the kth parameter
of a triangular fuzzy Rjt; Ckj0: the kth parameter of a triangular fuzzy Cj0;
R

l(y)
jt : the left representation of a triangular fuzzy Rjt; R

r(y)
jt : the right

representation of a triangular fuzzy Rjt. If it is assumed that the discount
rate changes from one period to another, (1 + rr(y))t and (1 + rl(y))t will be

t∏
t′=1

(1 + rr(y)
t′ ) and

t∏
t′=1

(1 + rl(y)
t′ ) respectively.

3.8 Ranking Fuzzy Numbers

It is now necessary to use a ranking method to rank the TFNs such as Chiu
and Park’s [3.8], Chang’s [3.6] method, Dubois and Prade’s [3.10] method,
Jain’s [3.17] method, Kaufmann and Gupta’s [3.27] method, Yager’s [3.36]
method. These methods may give different ranking results and most methods
are tedious in graphic manipulation requiring complex mathematical calcu-
lation. In the following, three of the methods, which do not require graphical
representations, are given.

Kaufmann and Gupta [3.27] suggest three criteria for ranking TFNs with
parameters (a,b,c). The dominance sequence is determined according to pri-
ority of:

1. Comparing the ordinary number (a+2b+c)/4
2. Comparing the mode, (the corresponding most promise value), b, of each

TFN.
3. Comparing the range, c-a, of each TFN.

The preference of projects is determined by the amount of their ordinary
numbers. The project with the larger ordinary number is preferred. If the
ordinary numbers are equal, the project with the larger corresponding most
promising value is preferred. If projects have the same ordinary number and
most promising value, the project with the larger range is preferred.
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Liou and Wang [3.32] propose the total integral value method with an
index of optimism ω ∈ [0, 1]. Let Ã be a fuzzy number with left membership
function fL

Ã
and right membership function fR

Ã
. Then the total integral value

is defined as:

Eω

(
Ã
)

= ωER

(
Ã
)

+ (1 − ω)EL

(
Ã
)

(3.33)

where

ER

(
Ã
)

=

β∫
α

xfR
Ã

(x) dx (3.34)

EL

(
Ã
)

=

δ∫
γ

xfL
Ã

(x) dx (3.35)

where −∞ ≤ α ≤ β ≤ γ ≤ δ ≥ +∞ and a trapezoidal fuzzy number is
denoted by (α, β, γ, δ). For a triangular fuzzy number,Ã = (a, b, c),

Eω

(
Ã
)

=
1
2

[ω (a+ b) + (1 − ω) (b + c)] (3.36)

and for a trapezoidal fuzzy number, B̃ = (α, β, γ, δ),

Eω

(
B̃
)

=
1
2

[ω (γ + δ) + (1 − ω) (α+ β)] (3.37)

Chiu and Park’s [3.8] weighted method for ranking TFNs with parameters
(a, b, c) is formulated as

((a+ b+ c)/3) + wb

where w is a value determined by the nature and the magnitude of the most
promising value. The preference of projects is determined by the magnitude
of this sum.

The computer software developed by the authors, FUZDYN, has the abil-
ity to use many ranking methods that are tedious in graphic manipulation
requiring complex mathematical calculation. To select the ranking method
required by the decision maker, the following form in Fig. 3.3 is used:

3.9 Fuzzy Internal Rate of Return (IRR) Method

The IRR method is referred to in the economic analysis literature as the
discounted cash flow rate of return, internal rate of return, and the true rate
of return. The internal rate of return on an investment is defined as the rate
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FUZDYN> Fuzzy Ranking Methods 

Fuzzy Number Ranking Methods 

Chang’s Method 

Kaufmann and Gupta’s Method 

Liou and Wang’s Method

Jain’s Method 

Dubois and Prade’s Method 

MARR Value (r) Fuzzy 

Calculate Close 

W = 0.5 

[0.05,0.06,0.07] 

Fig. 3.3. The form of fuzzy
ranking methods

of interest earned on the unrecovered balance of an investment. Letting r∗

denote the rate of return, the equation for obtaining r∗ is

n∑
t=1

Pt(1 + r∗)−t − FC = 0 (3.38)

where Pt is the net cash flow at the end of period t.
Assume the cash flow F̃ = F̃0, F̃1, ..., F̃N is fuzzy. F̃n is a negative fuzzy

number and the other F̃i may be positive or negative fuzzy numbers. The
fuzzy IRR(F̃ , n) is a fuzzy interest rate r̃ that makes the present value of
all future cash amounts equal to the initial cash outlay. Therefore, the fuzzy
number r̃ satisfies

n∑
i=1

PVk(i)(F̃i, r̃) = −F̃0 (3.39)

where
∑

is fuzzy addition, k(i)=1 if F̃i is negative and k(i)=2 if F̃i is positive.
Buckley [3.5] shows that such simple fuzzy cash flows may not have a fuzzy

IRR and concludes that the IRR technique does not extend to fuzzy cash
flows. Ward [3.34] considers Eq. (3.38) and explains that such a procedure
can not be applied for the fuzzy case because the right hand side of Eq. (3.38)
is fuzzy, 0 is crisp, and an equality is impossible.
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3.10 An Expansion to Geometric and Trigonometric
Cash Flows

When the value of a given cash flow differs from the value of the previous
cash flow by a constant percentage, g%, then the series is referred to as a
geometric series. If the value of a given cash flow differs from the value of
the previous cash flow by a sinusoidal wave or a cosinusoidal wave, then the
series is referred to as a trigonometric series .

3.10.1 Geometric Series–Fuzzy Cash Flows in Discrete
Compounding

The present value of a crisp geometric series is given by

P =
N∑

n=1

F1(1 + g)n−1(1 + i)−n =
F1

1 + g

N∑
n=1

(
1 + g
1 + i

)n (3.40)

where F1 is the first cash at the end of the first year. When this sum is made,
the following present value equation is obtained:

P =


F1[

1−(1+g)N (1+i)−N

i−g ], i 
= g

NF1
1+i , i = g

(3.41)

and the future value is

F =


F1[

(1+i)N−(1+g)N

i−g ], i 
= g

NF1(1 + i)N−1 , i = g
(3.42)

In the case of fuzziness, the parameters used in Eq.(3.40) will be assumed
to be fuzzy numbers, except project life. Let γ(i, g,N) = [1−(1+g)N (1+i)−N

i−g ], i 
=
g. As it is in Fig. 3.1 and Fig. 3.2, when k=1, the left side representation will
be depicted and when k=2, the right side representation will be depicted. In
this case, for i 
= g

fNk(y | P̃N ) = fk(y | F̃1)γ(f3−k(y| ĩ), f3−k(y | g̃), N) (3.43)

In Eq.(3.43), the least possible value is calculated for k = 1 and y = 0; the
largest possible value is calculated for k = 2 and y = 0; the most promising
value is calculated for k= 1 or k = 2 and y = 1.

To calculate the future value of a fuzzy geometric cash flow,
let ζ(i, g,N) = [ (1+i)N−(1+g)N

i−g ], i 
= g. Then the fuzzy future value is

fNk(y| F̃N ) = fk(y | F̃1)ζ(fk(y | ĩ), fk(y | g̃), N) (3.44)
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In Eq. (3.44), the least possible value is calculated for k = 1 and y = 0; the
largest possible value is calculated for k = 2 and y = 0; the most promising
value is calculated for k = 1 or k = 2 and y = 1. This is also valid for the
formulas developed at the rest of the paper.

The fuzzy uniform equivalent annual value can be calculated by using Eq.
(3.45):

fNk(y | Ã) = fk(y | P̃N )ϑ(fk(y | ĩ), N) (3.45)

where ϑ(i, N) = [ (1+i)N i
(1+i)N−1 ] and f(y | P̃N ) is the fuzzy present value of the

fuzzy geometric cash flows.

3.10.2 Geometric Series–Fuzzy Cash Flows in Continuous
Compounding

In the case of crisp sets, the present and future values of discrete payments
are given by Eq.(3.46) and Eq.(3.47) respectively:

P =

F1[1−e(g−r)N

er−eg ], r 
= g

NF1
er , g = er − 1

(3.46)

F =

F1[ erN−egN

er−eg ], r 
= g

NF1e
r(N−1), g = er − 1

(3.47)

and the present and future values of continuous payments are given by
Eq.(3.48) and Eq.(3.49) respectively:

P =


F1[1−eN(g−r)

r−g ], r 
= g

NF1
1+r , r = g

(3.48)

F =


F1[ erN−egN

r−g ], r 
= g

NF1erN

1+r , r = g
(3.49)

The fuzzy present and future values of the fuzzy geometric discrete cash
flows in continuous compounding can be given as in Eq.(3.50) and Eq.(3.51)
respectively:

fNk(y | P̃N ) = fk(y | F̃1)β(f3−k(y | r̃), f3−k(y| g̃), N) (3.50)
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fNk(y | F̃ ) = fk(y | F̃1)τ(fk(y | r̃), fk(y | g̃), N) (3.51)

where β(r, g,N) = 1−e(g−r)N

er−eg , r 
= g for present value and τ(r, g,N) =
erN−egN

er−eg , r 
= g for future value.
The fuzzy present and future values of the fuzzy geometric continuous cash

flows in continuous compounding can be given as in Eq.(3.52) and Eq.(3.53)
respectively:

fNk(y |P̃N ) = fk(y| F̃1)η(f3−k(y | r̃), f3−k(y | g̃), N) (3.52)

fNk(y | F̃N ) = fk(y | F̃1)υ(fk(y | r̃), fk(y | g̃), N) (3.53)

where η(r, g,N) = 1−e(g−r)N

r−g , υ(r, g,N) = erN−egN

r−g , r 
= g

3.10.3 Trigonometric Series–Fuzzy Continuous Cash Flows

In Fig. 3.4, the function of the semi-sinusoidal wave cash flows is depicted.
This function, h(t), is given by Eq.(3.54) in the crisp case:
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0 t 1 time

dt 

Fig. 3.4. Semi sinusoidal
wave cash flow function

h(t) =


D sin(π t), 0 ≤ t ≤ 1

0 , otherwise
(3.54)

The future value of a semi-sinusoidal cash flow for T=1 and g is defined by
Eq. (3.55) :

V (g, 1) = D

1∫
0

er(1−t) sin(π t) dt = D[
π(2 + g)
r2 + π2

] (3.55)

Fig. 3.5 shows the function of a cosinusoidal wave cash flow. This function,
h(t), is given by Eq.(3.56):

h(t) =


D(cos(2π t) + 1), 0 ≤ t ≤ 1

0 , otherwise
(3.56)
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0 1 time
Fig. 3.5. Cosinusoidal wave cash flow
function

The future value of a cosinusoidal cash flow for T=1 and g is defined as

V (g, 1) = D

1∫
0

er(1−t)(cos(2π t) + 1)dt = D[
gr

r2 + 4π2
+
g

r
] (3.57)

Let the parameters in Eq. (3.55), r and g, be fuzzy numbers. The future value
of the semi-sinusoidal cash flows as in Fig. 3.6 is given by

fNk(y | F̃N ) = fk(y | D̃)φ(f3−k(y | r̃), fk(y | g̃))ϕ(fk(y | r̃), N) (3.58)

where φ(r, g) = π(2 + g)/(r2 + π2), ϕ(r,N) = (erN − 1)/(er − 1).
The present value of the semi-sinusoidal cash flows is given by Eq. (3.59):

fNk(y | P̃N ) = fk(y | D̃)φ(f3−k(y | r̃), fk(y | g̃))ψ(f3−k(y | r̃), N) (3.59)

where ψ(r,N) = (erN − 1)/((er − 1)erN).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

0 1 2 N-1 N time 

P
~

F
~

 

D
~

. . . . . 

Fig. 3.6. Fuzzy sinu-
soidal cash flow diagram

3.10.4 Numeric Example I

The continuous profit function of a firm producing ice cream during a year
is similar to semi-sinusoidal wave cash flows whose g is around 4%. The
maximum level in $ of the ice-cream sales is between the end of June and
the beginning of July. The profit amount obtained on this point is around



108 Cengiz Kahraman and Cafer Erhan Bozdağ

$120,000. The firm manager uses a minimum attractive rate of return of
around 10%, compounded continuously and he wants to know the present
worth of the 10-year profit and the possibility of having a present worth of
$1,500,000.

‘Around $120,000’ can be represented by a TFN,
($100,000;$120,000;$130,000). ‘Around 10%’ can be represented by a TFN,
(9%;10%;12%). ‘Around 4%’ can be represented by a TFN, (3%;4%;6%)
f2(y|r̃) = 0.12 − 0.02y f1(y|r̃) = 0.09 + 0.01y
f1(y|D̃) = 100, 000 + 20, 000y f2(y|D̃) = 130, 000− 10, 000y
f10,1(y|P̃10) = f1(y|D̃)Φ(f2(y|r̃), f1(y|g̃))Ψ(f2(y|r̃), 10)
f10,2(y|P̃10) = f2(y|D̃)Φ(f1(y|r̃), f2(y|g̃))Ψ(f1(y|r̃), 10)

f1(y|g̃) = 0.03 + 0.01y f2(y|g̃) = 0.06 − 0.02y

f10,1(y|P̃10) = (100, 000 + 20, 000y)×[
π(2.03 + 0.01y)

[(0.12 − 0.02y)2 + π2]

] [
e(0.12−0.02y)10 − 1
e0.12−0.02y − 1

]
1

e(0.12−0.02y)10

f10,2(y|P̃10) = (130, 000− 10, 000y)×[
π(2.06 − 0.02y)

[(0.09 + 0.01y)2 + π2]

] [
e(0.09+0.01y)10 − 1
e0.09+0.01y − 1

]
1

e(0.09+0.01y)10

For y = 1, the most possible value is f10,1(y|P̃10) = f10,2(y|P̃10) = $467, 870.9.
For y = 0, the smallest possible value is f10,1(y|P̃10) = $353, 647.1.
For y = 0, the largest possible value is f10,2(y|P̃10) = $536, 712.8.

It seems to be impossible to have a present worth of $1,500,000.
The present and future values of the fuzzy cosinusoidal cash flows as in

Fig. 3.7 can be given by Eq. (3.60) and Eq. (3.61) respectively:

fNk(y | P̃N ) = fk(y | D̃)ξ(f3−k(y | r̃), fk(y | g̃))Ψ(f3−k(y | r̃), N) (3.60)

where ξ(r, g) = [ gr
r2+4π2 + g

r ] and the fuzzy future value is

fNk(y | F̃N ) = fk(y | D̃)ξ(f3−k(y | r̃), fk(y | g̃))ϕ(fk(y | r̃), N) (3.61)

3.10.5 Numeric Example II

The continuous cash flows of a firm is similar to cosinusoidal cash flows. The
maximum level of the cash flows during a year is around $780,000. The fuzzy
nominal cost of capital is around 8% per year. The fuzzy geometric growth
rate of the cash flows is around 4% per year. Let us compute the future worth
of a 10 year working period.
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Fig. 3.7. Fuzzy sinusoidal cash flow diagram

Let us define
D̃ = ($300, 000; $390, 000; $420, 000),f1(y|D̃) = 350, 000 + 40, 000y,
f2(y|D̃) = 420, 000− 30, 000y, r̃ = (6%; 8%; 10%), f1(y|r̃) = 0.06 + 0.02y,
f2(y|r̃) = 0.10 − 0.02y, g̃ = (3%; 4%; 5%), f1(y|g̃) = 0.03 + 0.01y,
f2(y|g̃) = 0.05 − 0.01y

f10,1(y|F̃10) = (350, 000 + 40, 000y)×[
(0.03 + 0.01y)(0.10− 0.02y)

(0.10 − 0.02y)2 + 4π2
+

0.03 + 0.01y
0.10 − 0.02y

] [
e(0.06+0.02y)10 − 1
e0.06+0.02y − 1

]

f10,2(y|F̃10) = (420, 000− 30, 000y)×[
(0.05 − 0.01y)(0.06 + 0.02y)

(0.06 + 0.02y)2 + 4π2
+

0.05 − 0.01y
0.06 + 0.02y

] [
e(0.10−0.02y)10 − 1
e0.10−0.02y − 1

]
For y = 1, the most possible value is f10,1(y|F̃10) = $2, 869, 823.5.
For y = 0, the smallest possible value is f10,1(y|F̃10) = $1, 396, 331.5.
For y = 0, the largest possible value is f10,2(y|F̃10) = $5, 718, 818.9.

3.11 Dynamic Programming for Multilevel Investment
Analysis

Dynamic programming is a technique that can be used to solve many op-
timization problems. In most applications, dynamic programming obtains
solutions by working backward from the end of a problem toward the be-
ginning, thus breaking up a large, unwieldy problem into a series of smaller,
more tractable problems. The characteristics of dynamic programming appli-
cations are [3.35]

– The problem can be divided into stages with a decision required at each
stage.
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– Each stage has a number of states associated with it.
– The decision chosen at any stage describes how the state at the current

stage is transformed into the state at the next stage.
– Given the current state, the optimal decision for each of the remaining

stages must not depend on previously reached states or previously chosen
decisions.

– If the states for the problem have been classified into one of T stages, there
must be a recursion that relates the cost or reward earned during stages t,
t+1,. . . ,T to the cost or reward earned from stages t+1, t+2,. . . ,T.

The dynamic programming recursion can often be written in the following
form. For a min problem with fixed output:

ft (i) = min { (cost during stage t) +
ft+1 (new state at stage t + 1) } (3.62)

and for a max problem with fixed input, it is

ft (i) = max { (benefits during state t) +
ft+1 (new state at stage t + 1) } (3.63)

or for a max problem neither input nor output fixed, it is

ft (i) = max {(′benefits − costs′ during state t)+
ft+1 (new state at stage t + 1)} (3.64)

where the minimum in Eq. (3.62) or maximum in Eq. (3.63) and Eq. (3.64)
is over all decisions that are allowable, or feasible, when the state at stage t
is i. In Eq. (3.62), ft (i) is the minimum cost and in Eq. (3.63) the maximum
benefit incurred from stage t to the end of the problem, given that at stage
t the state is i.

In deterministic dynamic programming, a specification of the current state
and current decision is enough to tell us with certainty the new state and costs
during the current stage. In many practical problems, these factors may not
be known with certainty, even if the current state and decision are known.
When we use dynamic programming to solve problems in which the current
period’s cost or the next period’s state is random, we call these problems
probabilistic dynamic programming problems (PDPs). In a PDP, the decision-
maker’s goal is usually to minimize expected cost incurred or to maximize
expected reward earned over a given time horizon.

Many PDPs can be solved using recursions of the following forms.
For min problems:

ft (i) = min
a

[
( expected cost during stage t| i, a )+∑

j

p (j| i, a, t)ft+1 (j)
]

(3.65)

and for max problems:
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ft (i) = max
a

[
(expected reward during stage t| i, a) +∑

j

p (j| i, a, t)ft+1 (j)
]

(3.66)

where
i : the state at the beginning of stage t.
a: all actions that are feasible when the state at the beginning of stage t

is i.
p (j| i, a, t) :the probability that the next period’s state will be j, given

that the current state is i and action a is chosen.
In the formulations above, we assume that benefits and costs received

during later years are weighted the same as benefits and costs received during
earlier years. But later benefits and costs should be weighted less than earlier
benefits and costs. We can incorporate the time value of money into the
dynamic programming recursion in the following way. For a max problem
with neither input nor output fixed,

ft (i) = max {(′benefits − costs′ during state t)+
1

(1+r) ft+1 (new state at stage t + 1)} (3.67)

where r is the time value of money.
Many capital budgeting problems allow of a dynamic formulation. There

may actually be several decision points, but even if this is not so, if the deci-
sion problem can be divided up into stages then a discrete dynamic expression
is possible. Many problems allow of either static or dynamic expression. The
choice of form would be up to the problem solver. Characteristically, a dy-
namic economizing model allocates scarce resources between alternative uses
between initial and terminal times. In the case of equal-life multilevel invest-
ments, each investment in the set has the following characteristic: the amount
to be invested has several possible values, and the rate of return varies with
the amount invested. Each sum that may be invested represents a distinct
level of investment, and the investment therefore has multiple levels. Exam-
ples of multilevel investments may be the purchase of labor-saving equipment
where several types of equipment are available and each type has a unique
cost. The level of investment in labor-saving equipment depends on the type
of equipment selected. Another example is the construction and rental of an
office building, where the owner-builder has a choice concerning the number
of stories the building is to contain [3.29].

3.11.1 Fuzzy Dynamic Programming: Literature Review

Fuzzy dynamic programming has found many applications to real-world prob-
lems: Health care, flexible manufacturing systems, integrated regional de-
velopment, transportation networks and transportation of hazardous waste,
chemical engineering, power and energy systems, water resource systems.
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Li and Lai [3.31] develop a new fuzzy dynamic programming approach
to solve hybrid multi-objective multistage decision-making problems. They
present a methodology of fuzzy evaluation and fuzzy optimization for hybrid
multi-objective systems, in which the qualitative and quantitative objectives
are synthetically considered. Esogbue [3.11] presents the essential elements
of fuzzy dynamic programming and computational aspects as well as var-
ious key real world applications. Fu and Wang [3.13] establish a model in
the framework of fuzzy project network by team approach under the con-
sideration of uncertain resource demand and the budget limit. The model is
transformed into a classical linear program formula and its results show that
the cause-effect relations of insufficient resources or over due of the project is
identified for better management. Lai and Li [3.30] develop a new approach
using dynamic programming to solve the multiple-objective resource alloca-
tion problem. There are two key issues being addressed in the approach. The
first one is to develop a methodology of fuzzy evaluation and fuzzy optimiza-
tion for multiple-objective systems. The second one is to design a dynamic
optimization algorithm by incorporating the method of fuzzy evaluation and
fuzzy optimization with the conventional dynamic programming technique.
Esogbue [3.12] considers both time and space complexity problems associ-
ated with the fuzzy dynamic programming model. Kahraman et al. [3.23]
use fuzzy dynamic programmingto combine equal-life multilevel investments.
Huang et al.[3.14] develop a fuzzy dynamic programmingapproach to solve
the direct load control problem of the air conditioner loads. Kacprzyk and
Esogbue [3.18] survey major developments and applications of fuzzy dynamic
programming which is advocated as a promising attempt at making dynamic
programming models more realistic by a relaxation of often artificial assump-
tions of precision as to the constraints, goals, states and their transitions, ter-
mination time, etc. Chin [3.7] proposes a new approach using fuzzy dynamic
programmingto decide the optimal location and size of compensation shunt
capacitors for distribution systems with harmonic distortion. The problem
is formulated as a fuzzy dynamic programming of the minimization of real
power loss and capacitor cost under the constraints of voltage limits and total
harmonic distortion. Hussein and Abo-Sinna [3.15] propose a new approach
using fuzzy dynamic programmingto solve the multiple criteria resource allo-
cation problems. They conclude that solutions obtained by the approach are
always efficient; hence an “optimal” compromise solution can be introduced.
Berenji [3.2] develops a new algorithm called Fuzzy Q-Learning, which ex-
tends Watkin’s Q-Learning method. It is used for decision processes in which
the goals and/or the constraints, but not necessarily the system under control,
are fuzzy in nature. He shows that fuzzy Q-Learning provides an alternative
solution simpler than the Bellman-Zadeh’s[3.1] fuzzy dynamic programming
approach.
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3.11.2 Crisp Dynamic Programming for Multilevel Investments

The solution of a dynamic programming problem of multilevel investments
consists of the following steps:

1. Devise all possible investments that encompass plans A and B alone, ap-
plying an upper limit of $L to the amount invested. Compound the cor-
responding annual dividends. Let Q denote the amount of capital to be
allocated to the combination of plans A and B, where Q can range from $
X to $ kX where k=1, 2, 3. . . Although both plans A and B fall within our
purview in this step, it is understood that Q can be allocated to A alone
or to B alone.

2. Identify the most lucrative combination of Plans A and B corresponding
to every possible value of Q.

3. Devise all possible investments that encompass plans A, B, and C, and
identify the most lucrative one.

Now let’s consider the selection among multilevel investments when crisp cash
flows are known. In other words, let’s deal with the problem from capital
budgeting viewpoint.

Newnan [3.33] shows that independent proposals competing for funding
should be picked according to their IRR values- monotonically from highest
to lowest. Ranking on present-worth values (computed at a specified MARR)
may not give the same results. Given a specified minimum attractive rate of
return(MARR) value, Newnan [3.33] suggests that proposals be ranked on
the basis of

Ranking ratio =
Proposal PW(MARR)

Proposal first cost
(3.68)

where PW is the present worth of a proposal. The larger ratio indicates the
better proposal.

Now assume that cash flows for l independent proposals that have passed
a screening based on a MARR of r% are given in Table 3.1 and we have a $L
capital limitation. The problem is which combination of proposals should be
funded. The solution consists of the following steps:

1. Devise all possible investments that encompass proposals 1 and 2 alone,
applying an upper limit of $L to the amount invested. Compute the present
worth of each proposal in the possible combinations using the discounted
cash flow techniques. $L can be allocated to proposal 1 alone or to proposal
2 alone or to any other combination.

2. Identify the most lucrative combination of proposals 1 and 2 corresponding
to every possible value of $L, using the ranking ratio in Eq.(3.68).

3. Devise all possible investments that encompass proposals 1, 2, and 3, and
identify the most lucrative one as in step 2.
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Table 3.1. Cash flows for l independent proposals

End-of-period-cash-flow, $

Proposal Investment,$ Period 1 Period 2 Period 3 . . . Period n

1 $X CF 1
11 CF 1

12 CF 1
13 . . . CF 1

1n

$2X CF 2
11 CF 2

12 CF 2
13 . . . CF 2

1n

$3X CF 3
11 CF 3

12 CF 3
13 . . . CF 3

1n

. . . . . . . . . . . . . . . . . .

$kX CF k
11 CF k

12 CF k
13 . . . CF k

1n

2 $X CF 1
21 CF 1

22 CF 1
23 . . . CF 1

2n

$2X CF 2
21 CF 2

22 CF 2
23 . . . CF 2

2n

$3X CF 3
21 CF 3

22 CF 3
23 . . . CF 3

2n

. . . . . . . . . . . . . . . . . .

$kX CF k
21 CF k

22 CF k
23 . . . CF k

2n

... ... ... ... ... ... ...

l $X CF 1
l1 CF 1

l2 CF 1
l3 . . . CF 1

ln

$2X CF 2
l1 CF 2

l2 CF 2
l3 . . . CF 2

ln

$3X CF 3
l1 CF 3

l2 CF 3
l3 . . . CF 3

ln

. . . . . . . . . . . . . . . . . . . . .

$kX CF k
l1 CF k

l2 CF k
l3 . . . CF k

ln

4. Continue increasing the number of proposals in the combination until the
number is l and identify the most lucrative combination.

In Table 3.1, CF k
lt indicates the cash flow of proposal l in period t at kth

level of investment.

3.11.3 Fuzzy Dynamic Programming for Multilevel Investments

Assume that we know the fuzzy cash flows of multilevel investments and
we deal with the problem from capital budgeting viewpoint. Given a fuzzy
specified (MARR) value, proposals can be ranked on the basis of

Ranking ratio =
Proposal fuzzy PW(MARR)

Proposal fuzzy first cost
(3.69)

where PW is the present worth of a proposal. The larger ratio indicates
the better proposal. Kahraman et al. [3.22] and Kahraman [3.19] use fuzzy
present worth and fuzzy benefit/cost ratio analysis for the justification of
manufacturing technologies and for public work projects.

Now assume that cash flows for l independent proposals that have passed
a screening based on a MARR of r̃% are given in Table 3.2 and we have a $L̃
capital limitation. In Table 3.2, CF̃ k

lt indicates the fuzzy cash flow of proposal
l in period t at kth level of investment. The problem is which combination of
proposals should be funded. The solution consists of the following steps:
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1. Devise all possible investments that encompass proposals 1 and 2 alone,
applying an upper limit of $L̃ to the fuzzy amount invested. Compute the
fuzzy present worth of each proposal in the possible combinations using the
fuzzy discounted cash flow techniques [3.20], [3.21]. $L̃ can be allocated to
proposal 1 alone or to proposal 2 alone or to any other combination.

2. Identify the most lucrative combination of proposals 1 and 2 corresponding
to every possible value of $L̃, using the ranking ratio in Eq. (3.69). Use a
ranking method of fuzzy numbers to identify the most lucrative combina-
tion.

3. Devise all possible investments that encompass proposals 1, 2, and 3, and
identify the most lucrative one as in step 2. Use a ranking method of fuzzy
numbers to identify the most lucrative combination.

4. Continue increasing the number of proposals in the combination until the
number is l and identify the most lucrative combination. Use a ranking
method of fuzzy numbers to identify the most lucrative combination.

Table 3.2. Fuzzy cash flows for l independent proposals

End-of-period-cash-flow, $

Proposal Investment,$ Period 1 Period 2 Period 3 . . . Period n

1 $X̃ CF̃ 1
11 CF̃ 1

12 CF̃ 1
13 . . . CF̃ 1

1n

$2X̃ CF̃ 2
11 CF̃ 2

12 CF̃ 2
13 . . . CF̃ 2

1n

$3X̃ CF̃ 3
11 CF̃ 3

12 CF̃ 3
13 . . . CF̃ 3

1n

. . . . . . . . . . . . . . . . . .

$kX̃ CF̃ k
11 CF̃ k

12 CF̃ k
13 . . . CF̃ k

1n

2 $X̃ CF̃ 1
21 CF̃ 1

22 CF̃ 1
23 . . . CF̃ 1

2n

$2X̃ CF̃ 2
21 CF̃ 2

22 CF̃ 2
23 . . . CF̃ 2

2n

$3X̃ CF̃ 3
21 CF̃ 3

22 CF̃ 3
23 . . . CF̃ 3

2n

. . . . . . . . . . . . . . . . . .

$kX̃ CF̃ k
21 CF̃ k

22 CF̃ k
23 . . . CF̃ k

2n

... ... ... ... ... ... ...

l $X̃ CF̃ 1
l1 CF̃ 1

l2 CF̃ 1
l3 . . . CF̃ 1

ln

$2X̃ CF̃ 2
l1 CF̃ 2

l2 CF̃ 2
l3 . . . CF̃ 2

ln

$3X̃ CF̃ 3
l1 CF̃ 3

l2 CF̃ 3
l3 . . . CF̃ 3

ln

. . . . . . . . . . . . . . . . . .

$kX̃ CF̃ k
l1 CF̃ k

l2 CF̃ k
l3 . . . CF̃ k

ln

3.11.4 A Numeric Example

A firm has $(15000, 21000, 27000) available for investment, and three invest-
ment proposals are under consideration. Each proposal has these features:
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the amount that can be invested is a multiple of $(5000, 7000, 9000); the
investors receive annual unequal receipts; each proposal has a useful life of
three years. Table 3.3 lists the annual geometric receipts corresponding to the
various fuzzy levels of investment. Devise the most lucrative composite in-
vestment using fuzzy dynamic programming. The company-specified MARR
value,r̃%, is (5%, 6%, 7%) per year.

Table 3.3. Fuzzy cash flows for three independent proposals (× $1,000)

Proposal Investment, $ Year 1 Year 2 Year 3

1 $(5, 7, 9) (3, 4, 5) (3.3, 4.4, 5.5) (3.63, 4.84, 6.05)
$(10, 14, 18) (5, 6, 7) (5.6, 6.72, 7.84) (6.272, 7.526, 8.78)
$(15, 21, 27) (8, 9, 10) (9.12, 10.26, 11.4) (10.396, 11.696, 12.996)

2 $(5, 7, 9) (3, 4, 6) (3.3, 4.4, 6.6) (3.63, 4.84, 7.392)
$(10, 14, 18) (4, 6, 7) (4.48, 6.72, 7.84) (5.017, 7.526, 8.78)
$(15, 21, 27) (5, 9, 10) (5.7, 10.26, 11.4) (6.498, 11.696, 12.996)

3 $(5, 7, 9) (3, 3, 4) (3.3, 3.3, 4.4) (3.630, 3.63, 4.84)
$(10, 14, 18) (5, 7, 7) (5.6, 7.84, 7.84) (6.272, 7.526, 7.526)
$(15, 21, 27) (8, 9, 12) (9.12, 10.26, 13.68) (10.396, 11.696, 15.595)

In FUZDYN, the project definition is as in Fig. 3.8.

Fig. 3.8. Project definition
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Fig. 3.9. The form of parameter input for proposals

As it can be seen from Table 3.3, the geometric growth rates (g) for the
annual receipts at the investment levels are 10%, 12%, and 14% respectively
and they are given as crisp rates in the problem and f1 (y| r̃) = 0.05+ 0.01y,
f2 (y| r̃) = 0.07 − 0.01y, γ (f3−k (y| r̃) , g, n), k=1,2.

In FUZDYN, data input for proposals is shown in Fig. 3.9. In Fig. 3.10
the data regarding fuzzy investment cost, fuzzy growth rate, and the benefit
of the first year are entered and in Fig. 3.11, it is shown how a fuzzy number
is entered.

For the total investment of $(15000, 21000, 27000) in proposals 1 and 2:

– Investment in proposal 1: $ (15000, 21000, 27000) and proposal 2: $ 0

We find f1
(
y| F̃1

)
= 1000y+ 8000, f2

(
y| F̃1

)
= 10000− 1000y.

For k= 1, f3,1

(
y| P̃
)

= (1000y+ 8000)
[

(1.14)3(1.07−0.01y)−3−1
0.07+0.01y

]
and for

y = 0, f3,1

(
y| P̃
)

=$ 23,929 and for y = 1, f3,1

(
y| P̃
)

=$ 27,442. For k = 2,

f3,2

(
y| P̃

)
= (10000− 1000y)

[
1−(1.14)3(1.05+0.01y)−3

0.01y−0.09

]
and for y = 0,

f3,2

(
y| P̃

)
=$ 31,090.
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Fig. 3.10. The forms related to data input for proposals

Now we can calculate the net PW and the fuzzy ranking ratio:

NPW1 = $ (23, 929; 27, 442; 31, 090) − $ (15, 000; 21, 000; 27, 000)
= $ (−3, 071; +6, 442; +16, 090)

Ranking ratio =
Proposal fuzzy PW(MARR)

Proposal fuzzy first cost

=
$ (−3, 071; +6, 442; +16, 090)

$ (15, 000; 21, 000; 27, 000)
= (−0.114; +0, 307; +1, 073)

– Investment in proposal 1: $ (10000, 14000, 18000) and proposal 2: $ (5000,
7000, 9000)

For proposal 1:
f1

(
y| F̃1

)
= 1000y+ 5000, f2

(
y| F̃1

)
= 7000− 1000y.

For k = 1, f3,1

(
y| P̃

)
= (1000y+ 5000)

[
(1.12)3(1.07−0.01y)−3−1

0.05+0.01y

]
and for

y = 0, f3,1

(
y| P̃
)

=$ 14,684 and for y = 1, f3,1

(
y| P̃
)

=$ 17,960.
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Fig. 3.11. The forms related to data input for proposals

For k = 2, f3,2

(
y| P̃

)
= (7000 − 1000y)

[
1−(1.12)3(1.05+0.01y)−3

0.01y−0.07

]
and for

y = 0, f3,2

(
y| P̃
)

=$ 21,363
For proposal 2:
f1

(
y| F̃1

)
= 1000y+ 3000, f2

(
y| F̃1

)
= 6000 − 2000y

For k= 1, f3,1

(
y| P̃
)

= (1000y+ 3000)
[

(1.10)3(1.07−0.01y)−3−1
0.03+0.01y

]
and for

y = 0, f3,1

(
y| P̃
)

=$ 8,649 and for y = 1, f3,1

(
y| P̃

)
=$ 11,753.

For k = 2, f3,2

(
y| P̃

)
= (6000 − 2000y)

[
1−(1.10)3(1.05+0.01y)−3

0.01y−0.05

]
and for

y = 0, f3,2

(
y| P̃
)

=$ 17,972.
Now we can calculate the net PW and the fuzzy ranking ratio:

PW1,2 = PW1 + PW2

= $ (14, 684; 17, 690; 21, 393) + $ (8, 649; 11, 753; 17, 972)
= $ (23, 333; 29, 443; 39, 365)

NPW1,2 = $ (23, 333; 29, 443; 39, 365) − $ (15, 000; 21, 000; 27, 000)
= $ (−3, 667; +8, 443; +24, 365)
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Ranking ratio =
$ (−3, 667; +8, 443; +24, 365)

$ (15, 000; 21, 000; 27, 000)
= (−0.136; +0.402; +1.624)

– Investment in proposal 1: $ (5000, 7000, 9000) and proposal 2: $ (10000,
14000, 18000)

For proposal 1:
f1

(
y| F̃1

)
= 1000y+ 3000, f2

(
y| F̃1

)
= 5000− 1000y.

For k = 1, f3,1

(
y| P̃
)

= (1000y+ 3000)
[

(1.10)3(1.07−0.01y)−3−1
0.03+0.01y

]
and for

y = 0, f3,1

(
y| P̃
)

=$ 8,649 and for y = 1, f3,1

(
y| P̃

)
=$ 11,753.

For k = 2, f3,2

(
y| P̃

)
= (5000 − 1000y)

[
1−(1.10)3(1.05+0.01y)−3

0.01y−0.05

]
and for

y = 0, f3,2

(
y| P̃
)

=$ 14,977.
For proposal 2:
f1

(
y| F̃1

)
= 2000y+ 4000, f2

(
y| F̃1

)
= 7000− 1000y

For k = 1, f3,1

(
y| P̃

)
= (2000y+ 4000)

[
(1.12)3(1.07−0.01y)−3−1

0.05+0.01y

]
and for

y= 0, f3,1

(
y| P̃
)

=$ 11,747 and for y = 1, f3,1

(
y| P̃

)
=$ 17,960.

For k =2, f3,2

(
y| P̃
)

= (7000− 1000y)
[

1−(1.12)3(1.05+0.01y)−3

0.01y−0.07

]
and for

y = 0, f3,2

(
y| P̃

)
=$ 21,363.

Now we can calculate the net PW and the fuzzy ranking ratio:

PW1,2 = PW1 + PW2

= $ (8, 649; 11, 753; 14, 977) + $ (11, 747; 17, 960; 21, 363)
= $ (20, 396; 29, 713; 36, 340)

NPW1,2 = $ (20, 396; 29, 713; 36, 340) − $ (15, 000; 21, 000; 27, 000)
= $ (−6, 604; +8, 713; +21, 340)

Ranking ratio =
$ (−6, 604; +8, 713; +21, 340)

$ (15, 000; 21, 000; 27, 000)
= (−0.025; +0.415; +1.423)

– Investment in proposal 1: $ 0 and proposal 2: $ (15000, 21000, 27000)
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We find f1
(
y| F̃1

)
= 4000y+ 5000, f2

(
y| F̃1

)
= 10000− 1000y.

For k= 1, f3,1

(
y| P̃
)

= (4000y+ 5000)
[

(1.14)3(1.07−0.01y)−3−1
0.07+0.01y

]
and for

y= 0, f3,1

(
y| P̃
)

=$ 14,956 and for y = 1, f3,1

(
y| P̃

)
=$ 27,442.

For k =2, f3,2

(
y| P̃
)

= (10000− 1000y)
[

1−(1.14)3(1.05+0.01y)−3

0.01y−0.09

]
and for

y = 0, f3,2

(
y| P̃

)
=$ 31,090.

Now we can calculate the net PW and the fuzzy ranking ratio:

NPW2 = $ (14, 956; 27, 442; 31, 090) − $ (15, 000; 21, 000; 27, 000)
= $ (−12, 044; +6, 442; +16, 090)

Ranking ratio =
$ (−12, 044; +6, 442; +16, 090)

$ (15, 000; 21, 000; 27, 000)
= (−0.446; +0, 307; +1, 073)

To select the most lucrative combination of an investment of $ (15,000;
21,000; 27,000), we will use Liou and Wang’s [3.32] method. For a moderately
optimistic decision-maker, ω = 0.5.

Table 3.4. Identifying the most lucrative combination of $ (15,000; 21,000; 27,000)
for the first stage

Ranking ratio, Ã Eω(Ã) = 1
2

[ω (a + b) + (1 − ω) (b + c)]

(−0.114; +0.307; +1.073) 0.393
(−0.136; +0.402; +1.624) 0.573∗

(−0.025; +0.415; +1.423) 0.557
(−0.446; +0.307; +1.073) 0.310

As it can be seen from Table 3.4, the most lucrative combination is to
invest $ (10,000; 14,000; 18,000) in proposal 1 and invest $ (5,000; 7,000;
9,000) in proposal 2.

For the total investment of $ (10000, 14000, 18000) in proposals 1 and 2:

– Investment in proposal 1: (10000, 14000, 18000) and proposal 2: $ 0

Ranking ratio =
$ (−3, 316; +3, 960; +11, 363)

$ (10, 000; 14, 000; 18, 000)
= (−0.184; +0.283; +1.136)

– Investment in proposal 1: $ (5000, 7000, 9000) and proposal 2: $ (5000,
7000, 9000)
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Ranking ratio =
$ (−702; +9, 506; +22, 949)
$ (10, 000; 14, 000; 18, 000)

= (−0.039; +0.679; +2.295)

– Investment in proposal 1: $ 0 and proposal 2: $ (10000, 14000, 18000)

Ranking ratio =
$ (−6, 253; +3, 960; 11, 363)

$ (10000, 14000, 18000)
= (−0.347; +0.283; +1.136)

To select the most lucrative combination of an investment of $ (10,000;
14,000; 18,000), we will again use Liou and Wang’s [3.32] method. For a
moderately optimistic decision-maker, ω = 0.5.

Table 3.5. Identifying the most lucrative combination of $ (10,000; 14,000; 18,000)
for the second stage

Ranking ratio, Ã Eω

(
Ã
)

= 1
2

[ω (a + b) + (1 − ω) (b + c)]

(−0.184; +0.282; +1.136) 0.379
(−0.039; +0.679; +2.295) 0.904∗

(−0.347; +0.283; +1.136) 0.339

As it can be seen from Table 3.5, the most lucrative combination is to
invest $ (5,000; 7,000; 9,000) in proposal 1 and invest $ (5,000; 7,000; 9,000)
in proposal 2.

For the total investment of $ (5000, 7000, 9000) in proposals 1 and 2:

– Investment in proposal 1: $ (5000, 7000, 9000) and proposal 2: $ 0

Ranking ratio =
$ (−351; +4, 753; +9, 977)

$ (5000, 7000, 9000)
= (−0.039; +0.679; +1.995)

– Investment in proposal 1: $ 0 and proposal 2: $ (5000, 7000, 9000)

Ranking ratio =
$ (−351; +4, 753; +12, 972)

$ (5, 000; 7, 000; 9, 000)
= (−0.039; +0.679; +2.594)

It is obvious that the most lucrative combination of an investment of $
(5,000; 7,000; 9,000) is to invest $ (5,000; 7,000; 9,000) in proposal 2.

Now we will devise all possible investments that encompass proposals 1,
2, and 3, and identify the most lucrative one.

– Investment in proposals 1+2: $ (15000, 21000, 27000) and proposal 3: $ 0
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Ranking ratio =
$ (−3, 667; +8, 443; +24, 365)

$ (15, 000; 21, 000; 27, 000)
= (−0.136; +0.402; +1.624)

– Investment in proposals 1+2: $ (10000, 14000, 18000) and proposal 3: $
(5000, 7000, 9000)

Ranking ratio =
$ (−1, 053; +11, 321; +29, 930)

$ (15, 000; 21, 000; 27, 000)
= (−0.039; +0.539; +1.995)

– Investment in proposals 1+2: $ (5000, 7000, 9000) and proposal 3: $ (10000,
14000, 18000)

Ranking ratio =
$ (−3, 667; +11, 707; +24, 335)

$ (15, 000; 21, 000; 27, 000)
= (−0.136; +0.557; +1.622)

– Investment in proposals 1+2: $ 0 and proposal 3: $ (15000, 21000, 27000)

Ranking ratio =
$ (−3, 071; +6, 442; +10, 308)

$ (15, 000; 21, 000; 27, 000)
= (−0.114; +0.307; +0.687)

To select the most lucrative combination of an investment of $ (15,000;
21,000; 27,000), we will again use Liou and Wang’s [3.32] method. For a
moderately optimistic decision-maker, ω = 0.5.

Table 3.6. Identifying the most lucrative combination of $ (15,000; 21,000; 27,000)
for the last stage

Ranking ratio, Ã Eω(Ã) = 1
2

[ω (a + b) + (1 − ω) (b + c)]

(−0.136; +0.402; +1.624) 0.573
(−0.039; +0.539; +1.995) 0.759∗

(−0.136; +0.557; +1.622) 0.650
(−0.114; +0.307; +0.687) 0.328

As it can be seen from Table 3.6, the most lucrative combination is to
invest $ (10,000; 14,000; 18,000) in proposal 1 and proposal 2 and invest
$ (5,000; 7,000; 9,000) in proposal 3. Then the final solution is to invest $
(5000, 7000, 9000) in proposal 1 and $ (5000, 7000, 9000) in proposal 2, and
$ (5,000; 7,000; 9,000) in proposal 3.

The final solution found by FUZDYN is given in Fig. 3.12:
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Fig. 3.12. Final solution

3.12 Conclusions

In this chapter, capital budgeting techniques in the case of fuzziness and
discrete compounding have been studied. The cash flow profile of some in-
vestments projects may be geometric or trigonometric. For these kind of
projects, the fuzzy present, future, and annual value formulas have been also
developed under discrete and continuous compounding in this chapter. Fuzzy
set theory is a powerful tool in the area of management when sufficient ob-
jective data has not been obtained. Appropriate fuzzy numbers can capture
the vagueness of knowledge. The other financial subjects such as replace-
ment analysis, income tax considerations; continuous compounding in the
case of fuzziness can be also applied [3.24], [3.25]. Comparing projects with
unequal lives has not been considered in this paper. This will also be a new
area for a further study. Dynamic programming is a powerful optimization
technique that is particularly applicable many complex problems requiring
a sequence of interrelated decisions. In the paper, we presented a fuzzy dy-
namic programming application for the selection of independent multi level
investments. This method should be used when imprecise or fuzzy input data
or parameters exist. In multilevel mathematical programming, input data or
parameters are often imprecise or fuzzy in a wide variety of hierarchical opti-
mization problems such as defense problems, transportation network designs,
economical analysis, financial control, energy planning, government regula-
tion, equipment scheduling, organizational management, quality assurance,
conflict resolution and so on. Developing methodologies and new concepts for
solving fuzzy and possibilistic multilevel programming problems is a practical
and interesting direction for future studies.
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Appendix

One of the most basic concepts of fuzzy set theory which can be used to
generalize crisp mathematical concepts to fuzzy sets is the extension principle.
Let X be a cartesian product of universes X = X1. . .Xr, and Ã1, ..., Ãr be r
fuzzy sets in X1 ,. . . ,Xr, respectively. f is a mapping from X to a universe
Y , y = f(x1 ,. . . ,xr). Then the extension principle allows us to define a fuzzy
set B̃ in Y by

B̃ = {(y, µB̃(y ))| y = f(x1, ..., xr), (x1, ..., xr) ∈ X} (A.1)

where

µB̃(y) =

{
sup

(x1,...,xr)∈f−1(y)

min{µÃ1
(x1), ..., µÃr

(xr)}, if f−1(y) 
= ∅

0 , otherwise
(A.2)

where f−1 is the inverse of f .

Assume P̃=(a, b, c) and Q̃=(d, e, f). a, b, c, d, e, f are all positive
numbers. With this notation and by the extension principle, some of the
extended algebraic operations of triangular fuzzy numbers are expressed in
the following.

Changing Sign
−(a, b, c) = (−c,−b,−a) (A.3)

or
−(d, e, f) = (−f,−e,−d) (A.4)

Addition
P̃ ⊕ Q̃ = (a+ d, b + e, c+ f) (A.5)

and
k ⊕ (a, b, c) = (k + a, k + b, k + c) (A.6)

or
k ⊕ (d, e, f) = (k + d, k + e, k + f) (A.7)

if k is an ordinary number ( a constant).

Subtraction
P̃ − Q̃ = (a− f, b− e, c− d) (A.8)

and
(a, b, c) − k = (a− k, b− k, c− k) (A.9)

or
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(d, e, f) − k = (d− k, e− k, f − k) (A.10)

if k is an ordinary number.

Multiplication
P̃ ⊗ Q̃ = (ad, be, cf) (A.11)

and
k ⊗ (a, b, c) = (ka, kb, kc) (A.12)

or
k ⊗ (d, e, f) = (kd, ke, kf) (A.13)

if k is an ordinary number.

Division
P̃ O\ Q̃ = (a/f, b/e, c/d) (A.14)




