
Accessibility for
Everyone: Understanding

the Section 508
Accessibility
Requirements

JOHN MUELLER

0864_Mueller.book Page i Friday, February 28, 2003 6:02 PM

Accessibility for Everyone: Understanding the Section 508 Accessibility
Requirements
Copyright © 2003 by John Mueller

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-086-4

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewers: Mary Romero Sweeney, Eric Mashlan

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager: Tracy Brown Collins

Copy Editor: Rebecca Rider

Compositor: Susan Glinert

Artist and Cover Designer: Kurt Krames

Indexer: Nancy Guenther

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

0864_Mueller.book Page ii Friday, February 28, 2003 6:02 PM

183

CHAPTER 6

Using Microsoft
Active Accessibility

In This Chapter:

Why Should You Care About MSAA?

How Can You Use the AccessibleObject Class to Your Advantage?

What Are the Standard Accessibility Options?

How Can the Standard Accessibility Options Help You as a Developer?

How Can You Access the Keyboard Features?

How Do You Display the Windows Accessibility Feature Status Information?

How Can You Interact with the Sound Features?

How Can You Detect the Display Features?

How Can You Detect the Mouse Settings and Functionality?

WINDOWS COMES WITH support for accessibility built into the system. In fact, this
support, when it works, provides many of the features that anyone with special
needs would require for a desktop application. The problem is that many developers
don’t include the required support in their applications, so Windows users don’t
gain full access to the accessibility features this support could provide. Of course,
the other side of the coin is that while Windows does provide good support for
accessibility functionality, the topic of accessibility doesn’t exactly head the list of
developer conference topics. Consequently, the main purpose of this chapter is to
make you aware of what accessibility features are available and demonstration
how you can use them in your next application.

0864_Mueller.book Page 183 Friday, February 28, 2003 6:02 PM

Chapter 6

184

NOTE Many developers recognize that Windows provides one of the
few operating system platforms where it’s possible to add a level of
accessibility support to an application without a lot of added coding. In
this respect, Windows does lead the world in providing the means for
those with special needs to help themselves. In fact, Microsoft is helping
in other ways. A recent Canadian Nation Institute for the Blind (CNIB)
article (http://www.cnib.ca/Thatallmayread/news_release.htm)
discusses the contributions that Microsoft has made to the well-being
of those with special needs.

The first part of this chapter discusses the Windows Accessibility features from
a user perspective. I’ve talked with over a hundred developers during the writing of
this book (and I have over half of the book to write yet). Out of all of those developers,
only one had even heard that Windows has Accessibility features and understood
how to install and use them. If you already know about the Windows Accessibility
features, you can safely skip the first section of the chapter. On the other hand, if
you don’t know what Windows can provide, this first section will help you under-
stand the features we’ll use in the applications in this chapter.

The next several sections discuss each of the Accessibility features in turn. We
begin by discussing the keyboard features, then we move on to sound, then the
display, and, finally, the mouse. When you finish these sections, you’ll see just how
complete the Accessibility features are so long as you provide the required support
in your application. Of course, the Accessibility features have some support holes
that we’ll discuss as the chapter progresses. You can plug some of these holes by
adding support for special hardware.

The final section of the chapter discusses an essential topic. You need to know
when a user has turned on the Accessibility features for a particular machine.
More than that, you need to know how the user has configured accessibility
support so that your application can work with the Accessibility features, rather
than against them. This is especially important for some of the visual and audio
features because they require special coding in your application.

What Is Microsoft Active Accessibility (MSAA)?

Microsoft Active Accessibility (MSAA) is a set of COM classes that help you build
better accessible applications. These COM classes help you create a bond between
the application and the operating system. This bond enables the operating system
to perform tasks such as querying the application for additional help information
and asking the application to perform specific tasks.

0864_Mueller.book Page 184 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

185

ON THE WEB You’ll find MSAA general information, along with down-
loads used in this book, on the Microsoft Active Accessibility Web site
at http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000544. This Web site includes links to a
number of helpful articles and other resources. Fortunately, MSAA is
built into Windows XP and you can add it to other versions of Windows
through service packs (including Windows 98, but not Windows 95). If
you need to support Windows 95 users, then be sure to download the
MSAA SDK at http://download.microsoft.com/download/activaxs/
SDK/1.3/W95/EN-US/MSAA13SDK.exe. We’ll use a number of MSAA spe-
cific tools in this book, so you’ll want to download them from http://
www.microsoft.com/downloads/release.asp?ReleaseID=33491.

However, as with most products, the COM interface is just the tip of the iceberg.
You’ll find that MSAA also supports registry entries that you can monitor and a few
API functions you can use to perform specific tasks. In general, .NET users will find
that Microsoft has built the major MSAA functionality into the .NET Framework,
but that some ancillary features don’t exist yet. Users of earlier Visual Studio
product versions will need to work a little harder to gain access to MSAA features.

The reason that the MSAA section appears in this chapter is because it’s
important for the developer to know a little about the underlying technology
before looking at the user interface elements. However, understanding the user
interface elements and learning how they work is an important part of working
with MSAA—you can’t test an MSAA application otherwise. Consequently, we’ll
discuss the MSAA theory in this chapter before we discuss the user interface.

The sections that follow perform two tasks. First, you’ll learn how MSAA works
from both an operating system and a development platform perspective. Second,
you’ll get a quick demonstration of how MSAA works. We’ll explorer MSAA pro-
gramming methods in detail in the “Obtaining and Using Microsoft Active
Accessibility” sections of Chapter 7.

Understanding the Technical Details

Working with MSAA requires that you understand a number of technical details.
The first is that most of the functionality needed to use MSAA appears in the
OLEACC.DLL. It’s interesting to open this DLL up using the Depends utility
because you can see many of the API calls directly and learn the dependencies of
this DLL. Figure 6-1 shows the OLEACC.DLL file opened in Depends (also known
as the Dependency Walker as shown in this screenshot). Notice the list of API
functions, such as AccessibleChildren() in the exports list. Scroll through the list
and you’ll find essential interface references such as IID_IAccessible.

0864_Mueller.book Page 185 Friday, February 28, 2003 6:02 PM

Chapter 6

186

A second technical detail is that MSAA is a COM object. The interface in
question is IAccessible. The .NET Framework wraps the more important parts of
the COM functionality found in IAccessible in the AccessibleObject class. The
IAccessible interface provides the methods that make it possible to request infor-
mation about a component or control, such as a description. This interface also
provides access to functionality, such as getting the current focus or performing
the default action. In short, the IAccessible interface encapsulates most of the
programming functionality that a developer needs to interact with the accessi-
bility features of any control.

ON THE WEB You’ll find a good summary of the IAccessible
functions at http://msdn.microsoft.com/library/en-us/msaa/
msaaccrf_4f51.asp. Note especially the descriptive properties and
methods that this interface provides. Another good place to get an over-
view of the IAccessible interface is at http://msdn.microsoft.com/
library/en-us/msaa/msaaccrf_5q05.asp.

A third technical detail is that MSAA relies to an extent on messaging—the
same technique used by a number of other processes in Windows. The OLEACC.DLL

Figure 6-1. The OLEACC.DLL file provides a list of essential API calls, as well as COM
functionality.

0864_Mueller.book Page 186 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

187

uses the WM_GETOBJECT message to retrieve an Active Accessibility server application
object. In other words, if you create an MSAA application, you’ll need to handle
this message in some cases.

A fourth technical detail is the registry entries. You can monitor the registry to
obtain the current accessibility settings for Windows. The key your application
would need to monitor is HKEY_CURRENT_USER\Control Panel\Accessibility.
Figure 6-2 shows the Windows XP registry setup. Older versions of Windows are
slightly less robust than Windows XP. For example, Windows 2000 lacks the Blind
Access key shown in Figure 6-2. However, you can count on all versions of Windows
to support accessibility function keys such as HighContrast, SerialKeys, and
MouseKeys. We’ll discuss the monitoring process in the “Developing the Windows
Accessibility Status Application” section of this chapter.

Figure 6-2. Use the registry to determine the status of the various Windows
Accessibility options.

The four technical details help you understand what’s going on beneath the
surface. You’ll learn more about the linkage between these technical details and
accessibility in general as the chapter progresses. For now, what you need to know
is that there’s linkage between MSAA and Windows Accessibility. The user interface
features the user selects affect messaging, the registry, and the COM interface.

0864_Mueller.book Page 187 Friday, February 28, 2003 6:02 PM

Chapter 6

188

A Quick Demonstration of the AccessibleObject Class

As with many of the other examples we’ll discuss in this book, you’ll need to add a
reference to the Accessibility.DLL that comes with the .NET Framework. When you
add this reference, you can view it in the Object Browser. Figure 6-3 shows a typical
display of this library. Notice that it contains references to both IAccessible and
IAccessibleHandler. In addition, you have access to the majority of the functions
found in the OLEACC.DLL file. You also need this reference to gain access to the
AccessibleObject class.

Figure 6-3. The Accessibility.DLL file contains the two interfaces required for the
COM portion of an accessible application.

Developers can use the AccessibleObject class in a number of ways. For
example, you can use it to create an accessible version of a new component or
control. By adding this class to your component or control, and overriding the
default actions it provides, you can customize the accessibility information the

0864_Mueller.book Page 188 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

189

component or control provides to the user. In many cases, the customization
makes it much easier for the user to interact with your application as a whole.

A more common use of the AccessibleObject class is to gain complete access
to the accessibility features provided by existing components and controls. For
example, you’ll need it to gain access to the shortcut key for some types of controls.
It also provides a number of handy methods such as DoDefaultAction(), which per-
forms the default action supported by any accessible object. The demonstration
application relies on the features of the AccessibleObject class to create a specialized
tooltip presentation for the user. Listing 6-1 shows this example. You’ll find the
complete listing in the \Chapter 06\AccessibleObjectDemo folder of the source
code that you can obtain from the Downloads section of the Apress Web site
(http://www.apress.com).

Listing 6-1. Specialized ToolTip Code for Displaying Complete Accesibility
Information

public frmMain()

{

 // Required for Windows Form Designer support

 InitializeComponent();

 // Initialize the accessible objects.

 btnQuit.AccessibleDefaultActionDescription =

 "Press to exit the application.";

 btnTest.AccessibleDefaultActionDescription =

 "Press to test the application.";

 txtMessage.AccessibleDefaultActionDescription =

 "Type to change test message.";

}

private void SpecialTip(object sender, System.EventArgs e)

{

 Control Ctrl; // The control in question.

 AccessibleObject AO; // The accessibility information.

 ToolTip TT; // Special ToolTip

 StringBuilder Output; // ToolTip Output String.

 // Initialize the ToolTip.

 TT = new ToolTip();

 TT.AutoPopDelay = 7000;

 TT.AutomaticDelay = 300;

0864_Mueller.book Page 189 Friday, February 28, 2003 6:02 PM

Chapter 6

190

 // Get the sender information.

 Ctrl = (Control)sender;

 // Obtain access to the accessibility information.

 AO = Ctrl.AccessibilityObject;

 // Create the output string.

 Output = new StringBuilder();

 Output.Append("Name: ");

 Output.Append(AO.Name);

 Output.Append("\r\nRole: ");

 Output.Append(AO.Role);

 Output.Append("\r\nDescription: ");

 Output.Append(AO.Description);

 Output.Append("\r\nDefault Action: ");

 if (AO.DefaultAction == null)

 Output.Append("None");

 else

 Output.Append(AO.DefaultAction);

 Output.Append("\r\nKeyboard Shortcut: ");

 if (AO.KeyboardShortcut == null)

 Output.Append("None");

 else

 Output.Append(AO.KeyboardShortcut);

 Output.Append("\r\nState: ");

 Output.Append(AO.State);

 Output.Append("\r\nValue: ");

 if (AO.Value == null)

 Output.Append("None");

 else

 Output.Append(AO.Value);

 // Display the information on screen.

 TT.SetToolTip(Ctrl, Output.ToString());

 TT.Active = true;

}

It’s important to create a customized AccessibleDefaultActionDescription
property value for each component in your application. The reason is simple. The
default information simply tells the user to press the spacebar to perform the
default action, but it doesn’t say what that action is. In some cases, such as a text
box, the control doesn’t have any type of default action assigned to it. All the user
knows is that the text box exists. Telling the user they can type something might

0864_Mueller.book Page 190 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

191

seem obvious until you try to use the example without the benefit of seeing it. In
fact, you should try this application out by blindfolding yourself and using just the
Narrator application described later in the chapter to move from area to area.

The SpecialTip() method has to follow the setup for the MouseHover delegate so
that it can act as an event handler. Consequently, it lists the sender as an object,
and not a control as you might expect. You need to add this event handler to the
MouseHover event of every control on the form, as shown in Figure 6-4.

Figure 6-4. Use the MouseHover event to create linkage between the user action and
the SpecialTip() event handler.

The SpecialTip() method code begins by creating the ToolTip object, TT.
Notice that TT uses an AutoPopDelay value of 7000 ms and an AutomaticDelay value
of 300 ms to ensure proper operation. A few tests will show you that the changes
are needed to ensure that the tooltip actually pops up fast enough for someone
with mobility difficulties and stays up long enough for someone with cognitive
difficulties to read. Interestingly enough, most screen readers will continue saying
the text in the tooltip even after it disappears from view provided the user doesn’t
change focus.

After the code creates the tooltip, it gains access to the sender as a Control
object. It uses the Control object’s AccessibilityObject property to create the
AccessibleObject, AO. Finally, the code uses AO to fill out the entries in a StringBuilder
object, Output. At this point, we have a string that contains all of the essential
accessibility information provided by the control that activated the SpecialTip()
event handler. The final step is to place this information in TT using the SetToolTip()
method, and then display the tooltip by setting the Active property to true. Figure 6-5
shows the output of this application.

0864_Mueller.book Page 191 Friday, February 28, 2003 6:02 PM

Chapter 6

192

Figure 6-5. The SpecialTip() event handler outputs tooltips with complete
accessibility information.

The output shown in Figure 6-5 is probably a little too inclusive. However, you
could provide a menu option that helps the user customize this information. Some
users, especially those who use screen readers, will probably want the keyboard
shortcut information as part of the tooltip. Users with cognitive needs might find it
helpful to set the tooltip popup and display times individually. Most users will
want to see the description—using this technique means you don’t have to define
that part of the tooltip for every control. Although this example shows what’s
available, you’ll still want to augment the code to provide added flexibility.

An Overview of the Standard Accessibility Options

Windows actually provides a wealth of accessibility features, but many people
don’t realize they even exist. You can divide the accessibility features into two
areas. The first area is utilities that you run as needed. The second are services that
you control using the Accessibility applet in the Control Panel. Third party com-
panies probably don’t have much to worry about from these utilities, but they do
work well enough for many people, including developers of accessible applications.

0864_Mueller.book Page 192 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

193

TIP You can often find other aids in other Control Panel applets. For
example, look in the Keyboard applet and you’ll notice options that
affect the character repeat delay and the character repeat rate. The
Mouse applet contains settings that enable the user to adjust the dou-
ble click rate and turn on features such as ClickLock. The ClickLock
feature is especially interesting because it helps someone drag and
drop items without holding the mouse button down. The Mouse applet
also provides access to larger pointers and enables the user to switch
mouse button functionality. Try using your application with changes to
these mouse and keyboard settings in place to see how it reacts. This
test can help ensure that time-dependent features work as anticipated.

The following sections provide a user eye view of accessibility in Windows.
This material is important because you need to know how the user will view the
output of your application. However, the utilities and services described in these
sections represent a worst-case scenario for many accessible application users.
Third party vendors have developed software and hardware that provide superior
performance and usability. In short, if your application works well with this software,
it will likely work well with the high-end products that most accessible application
users will have installed on their systems.

Utilities

Utilities are applications that the user can run from the Start ➤ Programs ➤
Accessories ➤ Accessibility menu if this feature is installed on the host system.
Windows XP installs the feature by default, so most users of that operating system
will have this feature at their fingertips by default. Users of older versions of Windows
can install Windows Accessibility using the Add/Remove Programs applet in the
Control Panel.

0864_Mueller.book Page 193 Friday, February 28, 2003 6:02 PM

Chapter 6

194

ON THE WEB Sometimes a developer will need short-term changes
in screen appearance to accommodate environmental conditions
(such as the change from daylight to nighttime lighting conditions).
NightVision (http://www.adpartnership.net/NightVision/index.html)
is a free utility that helps the developer make these changes. It helps by
modifying the gamma (or brightness) values for the display. The inter-
esting feature of this utility is that you can create your own settings. For
example, I found it useful as an aid to seeing the screen as someone
with low vision would see it. Using this product can help you make
color and brightness choices and keep the display readable even in
bright light or low vision conditions.

Several of these utilities actually have interesting uses for developers outside
of their use for accessibility development. We’ll explore these utilities and their
interesting uses in the sections that follow. Make sure you try out each of the util-
ities as you read about them and then spend time working with them afterward.
I’ve personally found many of the utilities useful as programming aids.

Using the Magnifier

The Magnifier is equivalent to a magnifying lens used for reading. Whenever you
start the Magnifier, you’ll see a band open at the top of your screen. This band con-
tains a magnified version of the information contained at the mouse cursor. You

can change the size of the band by dragging the line separating it from the rest of
your display using the mouse, just as you would for the Taskbar.

From a developer perspective, you can use this tool to see how your application
reacts to the unexpected. Suddenly cutting off the upper half of the screen is a
good way to see what will happen when someone needs that portion of the display
for an accessibility need such as a keyboard. The Magnifier also helps you view the
fit and finish of your application. For example, when an application displays a logo
or other picture element, it’s sometimes difficult to determine if the placement on
screen is correct.

As previously mentioned, the Magnifier works on the same basis as a lens used
for reading. However, this lens is adjustable, making it possible to see the screen at
various levels of detail. The default magnifier setting will magnify items by a factor
of 2. You can change this setting using the Magnifier Settings dialog box shown in
Figure 6-6. This dialog box opens whenever you start the Magnifier.

0864_Mueller.book Page 194 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

195

Figure 6-6. The Magnifier Settings dialog box allows you to control how the
Magnifier interacts with your system.

Notice you can change the tracking technique that Magnifier uses to home
in on the action. The default setting tells Magnifier to follow any activity on the
screen. However, you can clear one or more of these check boxes to reduce the
level of activity. When I use the Magnifier to check my application for fit and finish
problems, I normally tell it to follow the mouse. On the other hand, when checking
the application for usage problems, it’s better to have the Magnifier follow the key-
board input. That way you can simply tab between fields on a form as needed.

TIP As a developer and someone interested in drawing, I often use
Magnifier to see how other people create small screen elements such as
icons. It's hard to get just the right color combinations without help at
times. Viewing someone else's work can mean the difference between
trial and error, and getting the drawing right the first time.

You’ll also find three check boxes in the Presentation section. The first tells
Magnifier to invert the screen colors. This makes it easier to contrast the normal
appearance of your display with the magnified version. I also find this an interesting

0864_Mueller.book Page 195 Friday, February 28, 2003 6:02 PM

Chapter 6

196

way to check the color settings of my application—it should display well in either
mode. You can also start the Magnifier Settings dialog box minimized. Finally,
you can clear Show Magnifier to get rid of the band at the top. This is a handy
feature if you need more screen real estate for a short time and don’t want to
disable Magnifier in the interim.

Magnifier does incur a noticeable performance hit on your system, so you’ll
want to turn it off when you performance tune your application. When you click
Exit in the Magnifier Settings dialog box, the Magnifier also stops working and the
display returns to normal.

Using the Narrator

The Narrator reads the essential content on screen to you. In addition, whenever it
encounters a control, it will provide information about that control. The information
provided depends on the developer of the application. In many cases, there’s a
generic, almost useless bit of text that Narrator will read about the control if the
developer provides no other information.

The most obvious use of this utility for the developer is to check the accessi-
bility information provided by the application. Using a screen reader of some type
is the only effective means of performing this task. This application acts as a sanity
check for both desktop and Web-based applications. A developer can listen to hear
if Narrator stumbles on the content. If it doesn’t, then no one else is likely to have
troubles either.

There are other good uses for screen readers from the developer perspective.
I find that it does a relatively good job and use it when I need to “read” documents
online. I’ll get the document placed on screen, then kick back and let Narrator do
the work while I concentrate on the information contained on the Web site.

ON THE WEB AWS, a screen reader from Freedom Scientific (http://
www.freedomscientific.com/), provides a much better environment in
which to test your screen reader–capable applications. Not only can
you choose from a variety of voices, but you can also select options
such as the voice pitch and reading speed with greater accuracy than
Narrator can. JAWS also provides Braille support, along with a wealth of
other features. You can download a demonstration version of JAWS at
http://www.freedomscientific.com/fs_downloads/jaws.asp. The dem-
onstration version provides most of the features of the full product, but
you can only use it for about 30 minutes. The Help menu provides an
estimate of the time you have left for using the demonstration version.

0864_Mueller.book Page 196 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

197

Sometimes it’s also important to use Narrator as a fit and finish tool. For
example, closing your eyes and listening to the prompts for an application can
help you locate grammar and spelling problems. You can also hear the prompts
and determine if they make sense—whether they’re consistent and easy to under-
stand. The Narrator dialog box shown in Figure 6-7 contains four options.

Figure 6-7. Use the Narrator dialog box settings to control how Narrator interacts
with your system.

Announce Events On Screen: Tells Narrator to announce when you
successfully complete an action such as changing windows. (A window
change can also include the appearance of message boxes and other
system events that the user didn’t cause.)

Read Typed Characters: Tells you which character you typed last, including
control characters such as backspace.

Move Mouse To Active Item: Moves the mouse cursor so that you can see
which item on screen has the focus.

Start Narrator Minimized: Starts the program with the Narrator dialog
box minimized.

The Voice button takes you to the Voice Settings dialog box. This dialog box
allows you to choose a new voice for Narrator. The default setting is Microsoft Sam.
You can also change the speed, volume, and pitch of the voice. Nothing you do will
make the Narrator sound completely human. However, adjusting the pitch and
speed does make Narrator friendlier. Adjust the pitch and volume settings to make
Narrator easier to understand.

0864_Mueller.book Page 197 Friday, February 28, 2003 6:02 PM

Chapter 6

198

Using the On-Screen Keyboard

The On-Screen Keyboard shown in Figure 6-8 is a replica of the keyboard attached
physically to your system. It allows you to type text using a mouse or other pointing
device. We initially discussed this accessibility feature in the “Evaluating Your
Audience” section of Chapter 4. You’ll want to review that section for some of the
interesting uses of the On-Screen Keyboard.

Figure 6-8. You can use the On-Screen Keyboard as an alternative means for
inputting data.

You can adjust the appearance of the keyboard using the options on the
Keyboard menu. For example, you might want to use a 106 key keyboard instead of
the 101 key default. You can also choose between a standard and an enhanced key-
board. As mentioned in Chapter 4, many developers find the block layout easier to
use because the keys are lined up and easier to access. The staggered layout used
by physical keyboards is fine when you need to type, but it can prove cumbersome
for mouse or joystick access.

The Settings menu controls how the On-Screen Keyboard interacts with the
system. For example, you might want to use a different font for the keys. You can
also choose whether the keyboard always remains on top. The Use Click Sound
option comes in handy if you’re used to a regular keyboard and miss the sound it
makes.

The Settings ➤ Typing Mode command displays the Typing Mode dialog box.
You’ll use the options on this dialog box to control how the user inputs data. You
have a choice between clicking, hovering, or using a joystick (or other recognized
device). To get a better feel for how frustrating it can be to use an eye gaze system,
set the keyboard up for hover mode. You’ll find that using a joystick or mouse to
select a key, leave it in place for the required time, and then move to the next key is
harder than it first appears.

0864_Mueller.book Page 198 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

199

Using the Accessibility Wizard

You’ll find the Accessibility Wizard on the Start ➤ Programs ➤ Accessories ➤
Accessibility menu. The main purpose for using this wizard is to set Windows up
for an individual’s accessibility needs. The user isn’t required to use the wizard, but
it does make things easier if the user has many changes to make and is not familiar
with the actual settings. Once you start the Accessibility Wizard, you’ll see a
Welcome dialog box and then a series of question dialog boxes like the one shown
in Figure 6-9. Just follow the prompts to configure accessibility support to meet a
particular need.

Figure 6-9. Running the Accessiblity Wizard will help a user configure Windows
Accessibility support to meet particular needs.

ON THE WEB If you find that you need additional help with the
Accessibility Wizard, you’ll find step-by-step instructions for the various
setups at http://www.microsoft.com/enable/training/windowsxp/
usingwizard.htm. The instructions are targeted at a specific type of
setup, so you’ll need to decide which of the procedures to follow.

0864_Mueller.book Page 199 Friday, February 28, 2003 6:02 PM

Chapter 6

200

For the developer, the Accessibility Wizard provides a fast means of config-
uring a test system to meet specific needs. In addition, the Accessibility Wizard
shows one technique for providing special needs configuration of your own appli-
cations. Although the wizard provided with your application doesn’t have to be
this complex, the simple question and answer format does make the application a
lot easier to configure at the outset. Another product that uses this question and
answer format is the JAWS installation program (see the “Using the Narrator”
section for details).

Using the Utility Manager

So far, this book has spent a lot of time promoting the advantages of flexible appli-
cation configuration. The Utility Manager is a special application for managing
the Windows Accessibility applications. It controls the Magnifier, On-Screen
Keyboard, and Narrator. All three of these applications appear in the field at the
top of the dialog box (along with any other Accessibility applications you may
install), as shown in Figure 6-10. The Utility Manager demonstrates that you can
make an application flexible, yet provide a central configuration point for it.

Figure 6-10. Manage your Windows Accessibility applications using the Utility
Manager shown here.

As you can see, the Utility Manager displays the status of each of the appli-
cations that it manages. To stop an application, highlight it and click Stop. Likewise,

0864_Mueller.book Page 200 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

201

click Start to restart the application. Notice that most, but not all of the keys have
shortcuts—any management application you create should include shortcuts for
all options. In addition, the Utility Manager lacks support for tooltips—something
that most users find helpful in determining what action to perform. (Interestingly
enough, you can right click an entry or press the Context Menu key, and then select
What’s This from the context menu to learn more about a particular option.)

You can also set the startup options for each application. The three options
will start the program when you log in, lock the system, or start the Utility Manager
when they’re checked. Again, configuration flexibility is extremely important.
Enabling the user to choose when the application will start makes the application
itself seem flexible.

From a developer perspective, the Utility Manager provides a quick means of
starting and stopping Windows Accessibility applications. Sometimes you need
quick access for testing because you might want the feature on during debugging
and off while you correct code.

Accessibility Options Applet

The Accessibility Options applet appears in the Control Panel. It helps you con-
figure the Windows Accessibility options individually. Using this applet helps you
learn about each option individually and see how the Accessibility Wizard com-
bines them to meet specific special needs. Through observation, you can learn a
great deal about how the various accessibility options work under Windows and
develop your applications accordingly.

TIP There’s a chance that constantly turning the Windows Accessibility
options on and off will cause certain elements of your display, espe-
cially the fonts and icons, to become large and stay that way. If this
happens, turn off all accessibility features and restart the machine.
Open the Themes tab of the Display Properties dialog box and choose
the Windows XP theme. Click Apply. The text and icons should appear
normal again. Obviously, this fix relies on an unaltered Windows XP
theme, so you’ll want to ensure that you never make changes to it.
Always make any theme changes to another file.

The following sections discuss each of the Windows Accessibility options.
Make sure you try each of the options to learn how they work. More importantly,
use the options as part of your application testing strategy. The Windows Accessi-
bility options should be part of the manual usability test you perform on every
application your organization develops.

0864_Mueller.book Page 201 Friday, February 28, 2003 6:02 PM

Chapter 6

202

Using the StickyKeys Feature

The StickyKeys feature is one of three options on the Keyboard tab of the Accessi-
bility Options dialog box shown in Figure 6-11. It’s useful for a variety of purposes.
For example, this option forces the Shift, Ctrl, and Alt keys to act as toggle switches.
Press one of these keys once and it becomes active; press it a second time and it’s
turned off. The user can also press the keys sequentially to activate them or press a
non-control key to execute the entire key press (such as Ctrl+Alt+A). Afterward, the
control keys automatically become inactive. In other words, the toggle feature is
only important if the user doesn’t want to use that key as part of a key press.

Figure 6-11. Use the keyboard options to modify the functionality of the
PC keyboard.

From a developer perspective, there are a number of good uses for the StickyKeys
feature. For example, you can use StickyKeys in graphics programs that require
you to hold down the Ctrl key to select a group of items. It can be inconvenient to
hold down the Ctrl key while you look around for objects to select. The StickyKeys
feature alleviates this problem.

0864_Mueller.book Page 202 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

203

At some point, you’ll want to configure StickyKeys to meet particular needs.
Click the Settings button on the Keyboard tab of the Accessibility Properties dialog
box to open the Settings for StickyKeys dialog box shown in Figure 6-12. As you can
see, the dialog contains a number of optional settings that enable StickyKeys to
react to user input in a variety of ways.

Figure 6-12. Configure the StickKeys options using this dialog box.

There are three groups of settings for StickyKeys. The first group, Keyboard
Shortcut, enables you to turn on StickyKeys using the shortcut key. There’s no
reason to turn this off. It’s very unlikely that another application would use the
same control key sequence. Actually, it’s a little surprising that Microsoft chose
such an odd key combination given the reason they provide this feature. We’ll
discuss an easier technique for turning StickyKeys on and off in the “Developing

the Windows Accessibility Status Application” section of the chapter.
The Options group contains two settings. The StickyKeys option usually works

like a toggle. Checking the first box tells Windows to wait until you press the same
control key twice before making the control key active. The second check box
enables two people to use the same keyboard if one needs to use StickyKeys and
the other doesn’t. Pressing a control key and a non-control key at the same time turns
StickyKeys off in multiuser environments where this feature could be disorienting.

0864_Mueller.book Page 203 Friday, February 28, 2003 6:02 PM

Chapter 6

204

The Notification group also contains two settings. The first setting tells Windows
to play a different sound for each unique control key it activates. This setting can
help prevent you from activating a control key by accident. The second option dis-
plays an icon on the Taskbar so that you can control StickyKeys more easily. Select
this option to make it easier to turn StickyKeys on and off.

Using the FilterKeys Feature

Many users experience problems typing keys correctly—they sometimes tap the
key twice when they really meant to tap it only once. In other cases, the user will
press the key too long because they don’t have the sense of touch and control.
FilterKeys helps eliminate extra keystrokes so you don’t get “tthis” instead of “this.”
It performs this task by setting a minimal time threshold between keystrokes. As
with StickyKeys, you can adjust the way FilterKeys works by clicking the associated
Settings button. Figure 6-13 shows the Settings for FilterKeys dialog box.

Figure 6-13. Define features such as the timespan between keystrokes using this
dialog box.

0864_Mueller.book Page 204 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

205

The first option in this dialog box enables you to turn the shortcut key option
on or off. This works just like the same feature in StickyKeys. In fact, you’ll find that
all of the Windows Accessibility features provide this option, so I’ll skip it in future
discussions. I also found Microsoft’s selection of a shortcut for this feature a bit
odd considering how the feature is used.

The Filter Options group provides options to let the user choose between two
methods of filtering keystrokes. The first option filters keys that the user presses in
rapid succession. This feature would filter the rapid typing of the extra “t” in the
previous example. The Settings button displays a dialog box that enables you to
select how long an interval must pass between the first and second times you press
the same key. It also provides a field in which you can test the setting.

The second option in the Filter Options group filters accidental key presses.
At one time or another, everyone presses a key without meaning to. As with the
StickyKeys option, the Settings button displays a dialog box in which you select
how long you have to press a key before Windows accepts it. This dialog box also
lets you change the actual repeat rate or turn the keyboard repeat feature off so

that the user must press each key individually.
The Notification group at the bottom of the dialog box should look familiar.

The only difference is that FilterKeys beeps when you activate it instead of playing
a sound (such as a WAV file). You can also display an indicator on screen to show
that FilterKeys is active.

Using the ToggleKeys Feature

How many times have you accidentally hit the Caps Lock key and found yourself
typing in all uppercase? I know that when I get busy, it does occasionally happen to
me. The ToggleKeys feature emits a tone every time you turn the Caps Lock, Scroll
Lock, or Num Lock key on or off. This feature enables you to detect toggle key
changes quickly, before you’ve typed a lot of material using the wrong case.

Using the SoundSentry Feature

The SoundSentry and ShowSounds features both appear on the Sound tab of the
Accessibility Options dialog box shown in Figure 6-14. Both features control how
Windows XP interacts with sound. The Use SoundSentry option tells Windows XP
to display a visual warning when a system sound occurs. The user can choose to
flash the active caption bar, flash the active window, or flash the desktop.

0864_Mueller.book Page 205 Friday, February 28, 2003 6:02 PM

Chapter 6

206

Figure 6-14. The SoundSentry and ShowSounds features determine how Windows
reacts to sound events.

Unfortunately, you’ll need a copy of the Tweak UI utility to control the number
of times the system flashes in response to a sound. We discussed this utility in
the “Flashing Text and Other Blinking Issues” section of Chapter 4, so I won’t
discuss it again.

Using the ShowSounds Feature

The ShowSounds feature tells Windows XP and your applications to display captions
for the sounds they make. This includes speech. Instead of actually making the
sound, the system requests that the application provide a description of the sound
in a balloon help dialog. The only problem is that the application developer needs
to intercept the request and act on it. We’ll look at an example of the ShowSounds
feature in action in the “Using the Sound Features Example” section of the chapter.

0864_Mueller.book Page 206 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

207

NOTE The use of sound presents another situation where the theory of
accessibility doesn’t quite match the reality. While the SoundSentry and
ShowSounds features sound good in theory, the SoundSentry option
works more often in practice. Most applications won't display the sounds
that they make as text, even if you enable the ShowSounds feature.

Switching to a High Contrast Display

The actual purpose of the high contrast setting is to help those who have poor eye-
sight see the display better. However, this setting is also useful for the developer to
know about. For example, the high contrast screens work well when you’re tired. It
also works well if you’re on a plane using a laptop in bright sunlight. Sometimes a
high contrast screen is even the answer for presentations. Figure 6-15 shows the
Display tab of the Accessibility Options dialog box.

Figure 6-15. Define features such as the cursor blink rate using this dialog box.

0864_Mueller.book Page 207 Friday, February 28, 2003 6:02 PM

Chapter 6

208

To use the high contrast display, check the High Contrast option. The Settings
button displays the Settings for High Contrast dialog box that you’ll use to adjust
the high contrast settings. In general, you don’t have to use the large letter setting
to gain the benefits of the high contrast display. The settings include those used for
normal sized letters as well. In addition, you can choose between a black background
(good for nighttime use) or a white background (good for sunny location use).

Controlling Cursor Blink Rate and Width

At the bottom of the Display tab shown in Figure 6-15, you’ll find two sliders. The
Blink Rate slider controls the rate at which the cursor blinks. The Width slider
controls the cursor width. Generally, these settings help someone who has problems
with flashing text and other screen elements adjust their display for comfortable
use. In addition, using a slower blink rate can help those with cognitive difficulties.
(On the other hand, people with attention deficit disorder often need a faster blink
rate in order to see the cursor.)

Like many of the other settings, you can use these settings to your advantage
as well. For example, many people find that setting the cursor for a slow blink rate
aids laptop use in many situations. A wider cursor can also help forms and other
situations where finding the cursor might become a problem.

Accessing the MouseKeys Feature

Look at the Mouse tab of the Accessibility Options dialog box and you’ll find a
single option for turning MouseKeys on or off. MouseKeys enables you to use the
arrow keys on the numeric keypad as a mouse. Instead of moving the cursor with
the mouse, you can move it with the arrow keys. This doesn’t disable your mouse;
it merely augments it.

TIP MouseKeys is one of the most useful Windows Accessibility
features for designers because it provides very fine control over the
mouse. For example, I often use this feature when drawing block dia-
grams or creating the final version of a dialog box.

Click Settings on this tab to display the Settings for MouseKeys dialog box
shown in Figure 6-16. Using the Pointer Speed options, you can optimize the per-
formance of this particular feature. The Top Speed slider helps you to adjust the
fastest speed at which you can move the mouse cursor using the arrow keys. The

0864_Mueller.book Page 208 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

209

Acceleration slider determines how quickly the cursor reaches full speed after you
press it. Windows doesn’t start the cursor at full speed; it brings it there gradually.
The combination of these two settings determines how much added control
MouseKeys gives you over the cursor. The check box in this group provides
another option. You can press the Ctrl key to speed up the mouse cursor and press
the Shift key to slow it down.

Figure 6-16. The Settings for MouseKeys dialog box enables you to change how this
feature works.

There are two settings at the bottom of the dialog box. The radio buttons
control when MouseKeys is active. You must specify whether the Num Lock key
should be on or off when you use MouseKeys. The second option determines
whether the MouseKeys icon appears on the Taskbar.

Using the Keyboard Features Example

Generally, you don’t want to spend a lot of time manipulating the user environment
in Windows applications. The reason is simple—if the user wants to change their
environment, they have plenty of ways in which to accomplish the task. You do
want to monitor the environment at all times, however, to ensure that your appli-

0864_Mueller.book Page 209 Friday, February 28, 2003 6:02 PM

Chapter 6

210

cation works in a way that’s consistent with the current user settings (such as when
the user selects a large text display).

There are times when you’ll want to provide the user with configuration
options—a sort of shortcut to beneficial environmental changes. You don’t want
the application to modify these settings, but you do want to give the user quick
access to them so that they don’t have to leave the application environment. In
most cases, this is a convenience option that will keep the user happy and make
your application easier to use, but it isn’t a requirement for accessibility. For
example, what happens when you’ve developed a new graphics application and
want to be sure that the user has the ability to use accessibility features as needed?
The user can always turn on the StickyKeys feature by pressing the Shift key five
times, or they can open the Accessibility Options dialog box. Both of these methods
are inconvenient, but they work. However, if you want to make your application
truly usable, it’s better if you help the user turn StickyKeys on and off as needed
directly from your application. Providing a simple menu option doesn’t impair the
user’s ability to control their environment, but it does make the application infi-

nitely easier to use.
The example in this section shows how to create menus that will help the user

control the Windows Accessibility environment. You’ll want to exercise some dis-
cretion in implementing this feature, but it’s important to understand that there
are times when you might want to do so. For example, I often use the MouseKeys
option in my drawing applications because I lack a drawing tablet and must rely
on the mouse or the keyboard. Using MouseKeys makes drawing extremely fast
and accurate. I wish some graphics designers would include a switch for this
option in their application, but so far, none have.

The following sections describe the programming interface. You need to under-
stand the interface because each Windows Accessibility feature has a different
control. The .NET Framework doesn’t provide a method to manipulate the Windows
Accessibility features yet, so I had to build a library named AccesFuncs that relies
on Platform Invoke (PInvoke) to perform the task. This second section gets a little
technical and you don’t have to know how it works in order to use it. Feel free to skip
this section if desired. Finally, we’ll create an application that uses the AccessFuncs
library. I’ve divided this application into functional areas and provided some tips
on how to maximum user choices. You’ll need to read all of the sections to get the
big picture on how Windows Accessibility works, but you can read just the section
you need to implement a specific Windows Accessibility feature in your application.

Understanding the Interface

One of the first problems you’ll notice with the .NET Framework is a lack of support
for direct Windows Accessibility feature manipulation. You can check the status of

0864_Mueller.book Page 210 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

211

the HighContrast, CursorSize, and ShowSounds settings using properties in the
SystemInformation class, but that’s about it. We’ve already discussed the HighContrast
option as part of the “Creating the Font Modification Example” in Chapter 5. The
ShowSounds feature appears in the “Using the Sound Features Example” section
of this chapter. The CursorSize feature appears in the “Using the Display Features
Example” section of this chapter. We’ll also discuss some mouse functionality you
need to know about in the “Using the Mouse Features Example” section, but
essentially, you can’t even access the MouseKeys setting.

Because the .NET Framework doesn’t provide the functionality needed, you’ll
have to use PInvoke to perform the task. Using PInvoke means learning about the
Win32 API and understanding how to work with it. Obviously, the first question we
need to answer is what Accessibility features Windows provides.

In general, you’ll use the GetSystemMetrics() function to get the current
on or off status of a standard Windows Accessibility function. You’ll use the
SystemParamtersInfo() function to enable these functions or to check the current
user settings for them. Both of these functions rely on constants to determine

which Windows Accessibility feature you want to access. Table 6-1 contains a
complete list of the Windows Accessibility features, the access constant you use to
access them, and a short description of how the user generally benefits from the
Accessibility feature.

Table 6-1. Windows Accessibility Features

Feature Get Status Constant Set Status Constant Description

StickyKeys SPI_GETSTICKYKEYS SPI_SETSTICKYKEYS Makes the Ctrl, Alt, and Shift keys

sticky, which means you can

press them first and then the

associated alphanumeric or

function key. This allows users

who can only press one key at a

time use complex keyboard

accelerators.

FilterKeys SPI_GETFILTERKEYS SPI_SETFILTERKEYS Forces Windows to ignore brief or

quickly repeated keystrokes. Also

slows the repeat rate for the

keyboard when a key is held

down constantly.

0864_Mueller.book Page 211 Friday, February 28, 2003 6:02 PM

Chapter 6

212

ToggleKeys SPI_GETTOGGLEKEYS SPI_SETTOGGLEKEYS Sounds a tone whenever the

Caps Lock, Num Lock, Scroll

Lock keys are pressed. You may

need to disable this feature when

an application requires extensive

use of these keys, but remember

to enable it again when you exit

the program.

SoundSentry SPI_GETSOUNDSENTRY SPI_SETSOUNDSENTRY Displays a visual warning

whenever the system makes a

sound. You'll want to disable

non-imperative sounds when

this option is used.

ShowSounds SPI_GETSHOWSOUNDS SPI_SETSHOWSOUNDS Displays a caption whenever

speech or sound occurs. See the

“Using SAMI to Improve Your

Applications” sidebar for

additional details on how closed

captioning can help your

application.

HighContrast SPI_GETHIGHCONTRAST SPI_SETHIGHCONTRAST This feature uses high contrast

colors and large fonts to make

reading the screen easier. If your

application has formatted

displays (like those for database-

or dialog-based applications),

you may need to adjust the display

to make this feature useful.

Table 6-1. Windows Accessibility Features (Continued)

Feature Get Status Constant Set Status Constant Description

0864_Mueller.book Page 212 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

213

...

Using SAMI to Improve Your Applications

Closed captioning has moved from your television to the computer. Closed
captioning is an alternate form of audio content. It may include descriptions of
sounds, symbols, icons, or text to represent the audio content.

The use of closed captioning in applications affects many people. The most obvious
users are persons with hearing loss or impairment. It’s also useful for people who
are learning to read, learning a second language, or in situations where noise is
unwelcome, such as libraries or multiuse offices.

Microsoft’s Synchronized Accessible Media Interchange (SAMI) improves delivery
of closed captioning with multimedia applications by time-synchronizing the
captioning file with the media file. This makes it easier to edit or change either
file than it is in other applications where the application encodes the accessibility
information within the media file.

SAMI can provide closed captioning in more than one language and with different
presentation possibilities. The user chooses the appearance of the captions by
selecting the color, font, and size of the text. This will increase the ease of reading
for children and for people with slight visual impairments, who can select larger

MouseKeys SPI_GETMOUSEKEYS SPI_SETMOUSEKEYS Allows the user to use the

numeric keypad keys in place of

the mouse to move the mouse

cursor on screen. This feature

shouldn't require changes to

most applications. However, you

may want to offer this feature

when precise mouse placement

is required, since using the

cursor keys usually produces

more accurate results.

SerialKey SPI_GETSERIALKEYS SPI_SETSERIALKEYS Allows alternative access to

mouse and keyboard features.

In general, you'll never need to

directly access this feature in an

application (unless the appli-

cation requires a special input

device).

Table 6-1. Windows Accessibility Features (Continued)

Feature Get Status Constant Set Status Constant Description

0864_Mueller.book Page 213 Friday, February 28, 2003 6:02 PM

Chapter 6

214

screen types. The user also chooses what language the text will appear in, such as
American English or Canadian French.

SAMI files use the extension .SMI or .SAMI. The file format specification is free
(no licensing fee). You can find the specification, demonstrations, and examples
at http://www.microsoft.com/enable/, which is Microsoft’s Accessibility
Web site. The demonstrations require Internet Explorer 4 or above (http://
www.microsoft.com/windows/ie/default.asp) and Windows Media Player
(http://www.microsoft.com/windows/windowsmedia/download/default.asp).

SAMI instructions look similar to HTML or XML, but the actual implementation
is different. The use of a common programming idiom makes it an easy format to
learn. For example, documents begin with a <SAMI> tag and end with a </SAMI>
tag, replacing the <HTML> tag in a normal HTML document. (The tags must be
uppercase.) Once you have the <SAMI> tag in place, a SAMI document looks much
the same as its HTML counterpart. It even includes the <HEAD> and <BODY> tags.
You can learn more about SAMI at http://msdn.microsoft.com/library/en-us/

...

dnacc/html/atg_samiarticle.asp.

A Quick Description of the AccessFuncs Library

The AccessFuncs library encapsulates all of the code required to work with the
Windows Accessibility functions. If you want, you can simply skip this section and
use the library as needed in your applications. All you need is a reference to the
library and the appropriate using statement in your code. The library has full doc-
umentation, so you can read the descriptions in the Object Browser to understand
how the library works. In addition, the “Developing the Windows Accessibility
Status Application” section describes how to use the library for application devel-
opment. Of course, you’ll eventually want to know how the library works so that
you can modify it to meet specific needs.

As previously mentioned, this library contains all of the Win32 API access code
you’ll need, including data structures. Listing 6-2 provides an overview of the
essential functions, enumerations, and data structures. In fact, the listing only
contains one sample of each type. The extensive comments are also removed for
the sake of clarity. You can see the full listing of this library in the \Chapter 06\
AccessFuncs folder of the source code that you can obtain from the Downloads
section of the Apress Web site (http://www.apress.com).

0864_Mueller.book Page 214 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

215

Listing 6-2. An Overview of the AccessFuncs Library

public enum AccessType : uint

 {

 SPI_GETHIGHCONTRAST = 0x0042,

 SPI_SETHIGHCONTRAST = 0x0043,

 SPI_GETSCREENREADER = 0x0046,

 SPI_SETSCREENREADER = 0x0047,

 SPI_GETFILTERKEYS = 0x0032,

 SPI_SETFILTERKEYS = 0x0033,

 SPI_GETTOGGLEKEYS = 0x0034,

 SPI_SETTOGGLEKEYS = 0x0035,

 SPI_GETMOUSEKEYS = 0x0036,

 SPI_SETMOUSEKEYS = 0x0037,

 SPI_GETSHOWSOUNDS = 0x0038,

 SPI_SETSHOWSOUNDS = 0x0039,

 SPI_GETSTICKYKEYS = 0x003A,

 SPI_SETSTICKYKEYS = 0x003B,

 SPI_GETACCESSTIMEOUT = 0x003C,

 SPI_SETACCESSTIMEOUT = 0x003D,

 SPI_GETSERIALKEYS = 0x003E,

 SPI_SETSERIALKEYS = 0x003F,

 SPI_GETSOUNDSENTRY = 0x0040,

 SPI_SETSOUNDSENTRY = 0x0041

 }

public enum WinIniFlags

 {

 SPIF_NONE = 0x0000,

 SPIF_UPDATEINIFILE = 0x0001,

 SPIF_SENDWININICHANGE = 0x0002,

 SPIF_SENDCHANGE = SPIF_SENDWININICHANGE

 }

public enum HighContrastFlags

 {

 HCF_HIGHCONTRASTON = 0x00000001,

 HCF_AVAILABLE = 0x00000002,

 HCF_HOTKEYACTIVE = 0x00000004,

 HCF_CONFIRMHOTKEY = 0x00000008,

 HCF_HOTKEYSOUND = 0x00000010,

 HCF_INDICATOR = 0x00000020,

 HCF_HOTKEYAVAILABLE = 0x00000040

 }

0864_Mueller.book Page 215 Friday, February 28, 2003 6:02 PM

Chapter 6

216

[StructLayout(LayoutKind.Sequential, Pack=1, CharSet=CharSet.Auto)]

 public struct HIGHCONTRAST

 {

 public UInt32 cbSize;

 public Int32 dwFlags;

 [MarshalAs(UnmanagedType.LPWStr, SizeConst=80)]

 public String lpszDefaultScheme;

 }

public class Accessible

{

 public Accessible()

 {

 }

 [DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]

 public static extern bool SystemParametersInfo(AccessType uiAction,

 UInt32 uiParam,

 IntPtr pvParam,

 WinIniFlags fWinIni);

 public const Int32 SM_SHOWSOUNDS = 70;

 [DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]

 public static extern Int32 GetSystemMetrics(Int32 nIndex);

}

The actual place to start in this listing is the Accessible class. This class con-
tains two functions. The GetSystemMetrics() function only performs one task—it
obtains the current ShowSounds state. You call it using the SM_SHOWSOUNDS constant.
The GetSystemMetrics() function returns a value indicating whether ShowSounds is
on or off. You can replicate this functionality using the SystemInformation.ShowSounds
property, so generally you should avoid using this function. It’s provided in
the interest of completeness and for those times when you want to verify the
ShowSounds status.

The SystemParametersInfo() function isn’t replicated anywhere within the .NET
Framework, so you’ll find use for this function in your toolkit. Notice that you feed
the function four arguments. The first is one of the members of the AccessType enu-
meration that appears at the beginning of the listing. Notice that there’s a get and set
member for each of the accessibility functions. Consequently, if you want to obtain
the current HighContrast status, you use the SPI_GETHIGHCONTRAST value and if you
want to set the HighContrast feature, you use the SPI_SETHIGHCONTRAST value.

0864_Mueller.book Page 216 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

217

The second and third arguments are related. The uiParam argument contains
the size of the data structure passed as the pvParam argument. We’ll see how you
obtain this information in the “Developing the Windows Accessibility Status
Application” section of the chapter. For now, you need to know that the data structure
for each accessibility function is different. The HIGHCONTRAST data structure shown
in the listing is representative. Every one of the data structures will contain the
cbSize and the dwFlags members shown. The cbSize member contains the size of
the data structure. The dwFlags member contains a numeric value that you interpret
using the bit positions in the associated flag enumeration (HighContrastFlags in
this case). Most of the data structures also contain some type of specialized infor-
mation. For example, the HIGHCONTRAST data structure contains the name of the
default high contrast scheme. Notice the technique used to marshal the string
from the unmanaged environment. You must tell the Common Language Runtime
(CLR) what type of string to create and how large to make it; otherwise, the
function call will fail because the Win32 API will lack essential information.

The fourth argument is one of the members of the WinIniFlags enumeration.

This value determines how Windows updates the user’s profile. In general, you
don’t want to change the user’s profile without the user’s permission, so you’ll
usually set this entry to SPIF_NONE.

When the application makes a call to the SystemParametersInfo() function, the
system will return a Boolean value indicating if the call is successful. Notice the
SetLastError=true argument in the [DllImport] attribute. This argument tells the
CLR to save any error information it receives. If the application detects an error in
the function call, it should use the Marshal.GetLastWin32Error() method to retrieve
the error number. Never use the Win32 API GetLastError() function to retrieve this
information because this function could return unreliable or incorrect results
from within the .NET environment.

Developing the Windows Accessibility Status Application

At this point, we have a library that can get and set the various Windows Accessibility
feature values. In many cases, you’ll never touch the settings, but will need the current
setting values so that you can create a truly accessible application. The purpose of this
section is to provide a quick overview of how you’d use the AccessFuncs library in an
application. Of course, the first task you’ll perform is to add a reference to the library to
your application.

The sample application uses a standard menu to display the current Windows
Accessibility feature status and help the user switch the feature on or off. You could
easily add such a menu to your application or make it part of an options dialog.
The point is that adding this functionality to your application as needed makes the
Windows Accessibility feature easier to use.

0864_Mueller.book Page 217 Friday, February 28, 2003 6:02 PM

Chapter 6

218

Listing 6-3 provides an overview of the code for this example. You’ll find a
complete listing for this application in the \Chapter 06\AccessSettings folder of
the source code that you can obtain from the Downloads section of the Apress Web
site (http://www.apress.com).

Listing 6-3. An Overview of the AccesFuncs Library Test Application

public frmMain()

{

 Int32 DataSize; // Size of the data structure.

 // Required for Windows Form Designer support

 InitializeComponent();

 // Initialize the data structures.

 AT = new ACCESSTIMEOUT(); // Access Timeout

 FK = new FILTERKEYS(); // FilterKeys

 HC = new HIGHCONTRAST(); // High Contrast

 MK = new MOUSEKEYS(); // MouseKeys

 SR = false; // ScreenReader

 SC = new SERIALKEYS(); // SerialKeys

 SSound = false; // ShowSounds

 SSentry = new SOUNDSENTRY(); // SoundSentry

 SK = new STICKYKEYS(); // StickyKeys

 TK = new TOGGLEKEYS(); // ToggleKeys

 // Initialize the data structures and Choose menu options. The

 // process includes getting the current option status (which

 // fills out the data structure) and then comparing the flag

 // values to see if the option is on.

 // … Some example code left out here…

 // High Contrast

 DataSize = Marshal.SizeOf(HC);

 HC.cbSize = Convert.ToUInt32(DataSize);

 HC = (HIGHCONTRAST)GetAccessibleOption(

 HC,

 DataSize,

 AccessType.SPI_GETHIGHCONTRAST,

 WinIniFlags.SPIF_NONE);

 if ((HC.dwFlags & (Int32)HighContrastFlags.HCF_HIGHCONTRASTON) ==

 (Int32)HighContrastFlags.HCF_HIGHCONTRASTON)

 mnuChooseHighContrast.Checked = true;

0864_Mueller.book Page 218 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

219

 // Screen Reader

 DataSize = Marshal.SizeOf(SR);

 SR = (bool)GetAccessibleOption(

 SR,

 DataSize,

 AccessType.SPI_GETSCREENREADER,

 WinIniFlags.SPIF_NONE);

 if (SR)

 mnuChooseScreenReader.Checked = true;

 // SerialKeys

 DataSize = Marshal.SizeOf(SC);

 SC.cbSize = Convert.ToUInt32(DataSize);

 SC = (SERIALKEYS)GetAccessibleOption(

 SC,

 DataSize,

 AccessType.SPI_GETSERIALKEYS,

 WinIniFlags.SPIF_NONE);

 if ((SC.dwFlags & (Int32)SerialKeysFlags.SERKF_SERIALKEYSON) ==

 (Int32)SerialKeysFlags.SERKF_SERIALKEYSON)

 mnuChooseSerialKeys.Checked = true;

 else if (SC.lpszActivePort == null)

 // This is one of the few accessibility options not supported

 // under Windows 2000/XP. Microsoft changed this behavior to

 // ensure that SerialKeys devices would appear as standard

 // input devices to the application. The lpszActivePort member

 // will always contain a value for operating systems that

 // support the SerialKeys feature.

 mnuChooseSerialKeys.Enabled = false;

// … Some example code left out here…

}

private Object GetAccessibleOption(Object Struct,

 Int32 StructSize,

 AccessType AccessType,

 WinIniFlags IniFlag)

{

 Object ReturnValue; // The return data.

 // Allocate enough memory to create an unmanaged version

 // of the data structure.

 IntPtr DataPtr = Marshal.AllocHGlobal(StructSize);

0864_Mueller.book Page 219 Friday, February 28, 2003 6:02 PM

Chapter 6

220

 // Point to the managed data stucture using the unmanaged

 // memory pointer.

 Marshal.StructureToPtr(Struct, DataPtr, true);

 // Call the SystemParametersInfo() function using the

 // unmanaged data structure pointer.

 Accessible.SystemParametersInfo(AccessType,

 Convert.ToUInt32(StructSize),

 DataPtr,

 IniFlag);

 // Move the data retrieved from the unmanaged environment to

 // the managed data structure and return this data structure

 // as an object.

 ReturnValue = Marshal.PtrToStructure(DataPtr, Struct.GetType());

 // Deallocate the memory we previously allocated.

 Marshal.FreeHGlobal(DataPtr);

 // Return the data.

 return ReturnValue;

}

private bool SetAccessibleOption(Object Struct,

 Int32 StructSize,

 AccessType AccessType,

 WinIniFlags IniFlag)

{

 bool ReturnValue; // The return value of this method.

 // Allocate enough memory to create an unmanaged version

 // of the data structure.

 IntPtr DataPtr = Marshal.AllocHGlobal(StructSize);

 // Point to the managed data stucture using the unmanaged

 // memory pointer.

 Marshal.StructureToPtr(Struct, DataPtr, true);

 // Return true if the SystemParametersInfo() function call

 // successfully modifies the Windows Accessibility features

 // using the data in the data structure.

0864_Mueller.book Page 220 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

221

 ReturnValue = Accessible.SystemParametersInfo(

 AccessType,

 Convert.ToUInt32(StructSize),

 DataPtr,

 IniFlag);

 // Deallocate the memory we previously allocated.

 Marshal.FreeHGlobal(DataPtr);

 // Return the data.

 return ReturnValue;

}

private void mnuChooseHighContrast_Click(object sender, System.EventArgs e)

{

 Int32 DataSize; // Size of the data structure.

 // Set the flag value as needed to toggle the feature on or off.

 if ((HC.dwFlags & (Int32)HighContrastFlags.HCF_HIGHCONTRASTON) ==

 (Int32)HighContrastFlags.HCF_HIGHCONTRASTON)

 HC.dwFlags = HC.dwFlags ^

 (Int32)HighContrastFlags.HCF_HIGHCONTRASTON;

 else

 HC.dwFlags = HC.dwFlags |

 (Int32)HighContrastFlags.HCF_HIGHCONTRASTON;

 // Call on the library function to set the new FilterKeys status.

 DataSize = Marshal.SizeOf(HC);

 // If the function fails, display an error message.

 if (!SetAccessibleOption(HC,

 DataSize,

 AccessType.SPI_SETHIGHCONTRAST,

 WinIniFlags.SPIF_NONE))

 MessageBox.Show("Could not set the High Contrast option",

 "Accessibility Option Error",

 MessageBoxButtons.OK,

 MessageBoxIcon.Error);

 // If the function succeeds, display a success message and change

 // the menu setting.

 else

 mnuChooseHighContrast.Checked = !mnuChooseHighContrast.Checked;

}

0864_Mueller.book Page 221 Friday, February 28, 2003 6:02 PM

Chapter 6

222

The application begins by obtaining the current Windows Accessibility feature
status in the constructor. In a production application, you’d probably want to
check this status every time the user makes some type of request. In this case, that
would mean getting the status every time the user opens the Choose Feature menu.
The reason for this constant vigilance is that someone could modify the Windows
Accessibility feature settings from outside of your application. Although the listing
only shows a few of the feature requests, the complete application requests the
status of all Windows Accessibility features.

Obtaining the HighContrast feature status is representative of most of the
Windows Accessibility features. The application uses the Marshal.SizeOf() method
to obtain the size of the data structure. It uses this information to fill in the cbSize
data member and also as input to the GetAccessibleOption() method that we’ll
discuss later in this section. The GetAccessibleOption() method returns an Object
data type since the same method is used for all of the Windows Accessibility
feature calls. This means you have to convert the output to the correct data type.
The code checks the dwFlags data member for the HCF_HIGHCONTRASTON setting. If

this flag bit is set, then the code checks the HighContrast menu entry.
The Screen Reader is one of two Windows Accessibility features that doesn’t

require a data structure (ShowSounds is the other). The technique used in this case
differs from a Windows Accessibility feature that requires a data structure, but the
principle is the same. Notice that we still have to obtain the size of the variable and
pass it along with the other information to the GetAccessibleOption() method. The
output is a bool, so the code can look at this value directly.

The SerialKeys Windows Accessibility feature represents a special case. Older
versions of Windows provide access to this feature, so you can read the various
settings and provide accommodation for the devices attached using SerialKeys in
your code. Newer versions of Windows don’t provide this access using the theory
that a SerialKeys device shouldn’t look any different than any other device attached
to the system. In sum, the device shouldn’t require any special handling. In some
ways, this viewpoint is justified, but it would still be nice to be able to turn the
device on or off as needed.

The GetAccessibleOption() method comes next. The first task this method
performs is to allocate memory using the Marshal.AllocHGlobal() method. At this
point, you might wonder why we have to perform this task. Remember that your
.NET application uses managed memory that the Garbage Collector controls. This
call is to the unmanaged environment, where we need to use unmanaged memory.
The Marshal.AllocHGlobal() method allocates unmanaged memory for this purpose.

The code calls the Accessible.SystemParametersInfo() method next. I described
this method in the “A Quick Description of the AccessFuncs Library” section of the
chapter. On return from this call, DataPtr (the unmanaged memory) contains the
data we need. The code uses the Marshal.PtrToStructure() method to move the
data from unmanaged memory into managed memory.

0864_Mueller.book Page 222 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

223

The next step is to free the unmanaged memory because we don’t need it
anymore. The code uses the Marshal.FreeHGlobal() method to perform this task.
The GetAccessibleOption() method ends by returning the object containing the
data to the caller. As mentioned earlier, the caller still needs to convert this generic
object into a specific data structure to read the values.

You’ll immediately notice that the SetAccessibleOption() method is similar,
but not precisely the same as the GetAccessibleOption() method. The code still
allocates and deallocates memory manually. In addition, it still relies on the
Accessible.SystemParametersInfo() method to set the Windows Accessibility infor-
mation. Because we’re not getting new information, in this case, the code can
simply return a bool value indicating success or failure.

The mnuChooseHighContrast_Click() method is representative of the event han-
dlers for the menu. When a user clicks one of the menu entries, the code has to
modify the flag values of the appropriate data structure to turn the feature on or
off. The code shows one technique for performing this task. Once the data structure
is modified, the code determines the size of the data structure and calls on the

SetAccessibleOption() method to set the new value. The final step is to check or
clear the menu option so that the user can see the current Windows Accessibility
option status.

As you go through the code on the disk, you’ll notice that some of the event
handlers simply display a message, rather than change an option. For example,
you can’t turn on the screen reader from the application. To perform this task, you
must start the associated application. In sum, you can’t modify some Windows
Accessibility features with this application because it doesn’t make sense to do so.
However, you can always retrieve the status information, which is a lot more than
the .NET Framework allows you to do. Look through the various data structures to
determine what types of information are available.

Using the Sound Features Example

Many .NET developers have already run across one problem with sound in this
environment—there isn’t any support built in for it unless you’re using Visual Basic
and you’re happy with a plain beep. Most developers want something better than
a plain beep, which means resorting to PInvoke in .NET. Using the Win32 API
PlaySound() function enables the developer to play both standard system sounds
as well as other media types such as WAV files.

Given the purpose of this book, you might wonder why I’m worried about
sound. It turns out that there’s also little support for the ShowSounds Windows
Accessibility feature in most Windows applications today. In fact, finding an appli-
cation that supports this feature is difficult at best.

0864_Mueller.book Page 223 Friday, February 28, 2003 6:02 PM

Chapter 6

224

This example starts with the premise that combining these two needs into one
component would prove very convenient. The PlaySound control plays a sound
and works with ShowSounds at the same time. All you need to do to use it is define
a few properties. The sections that follow tell how this control works and demon-
strates its use within a simple application.

Creating the PlaySound Control

The PlaySound control performs two tasks. First, it plays a sound. Second, it dis-
plays a tooltip if the user turns the ShowSounds feature on. The two tasks are
independent of each other. The control can play a sound independently of the
ShowSounds feature setting, so it’s possible for the control to perform both or
either task.

TIP This control opens some interesting usage possibilities. For
example, a developer could set an application up so that it simply dis-
played sound descriptions for users in office environments. The sound
description would still notify the user of an event without disturbing
the user’s neighbors.

Now that you have some idea of what this control will do, let’s look at the code.
Listing 6-4 contains a partial listing of the code for this example. You’ll find a com-
plete a complete listing in the \Chapter 06\PlaySound folder of the source code
that you can obtain from the Downloads section of the Apress Web site (http://
www.apress.com).

Listing 6-4. Providing Sound and ShowSounds Functionality with the
PlaySound Control

public class PlaySound : Component

{

 public PlaySound()

 {

 // Initialize the property values.

 _MakeSound = true;

 _SoundFileName = "";

 _ShowSoundsDescription = "The System Plays a Sound";

 _AutomaticDelay = 300;

 _AutoPopDelay = 7000;

 NoShow = new Timer();

 }

0864_Mueller.book Page 224 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

225

 /// <summary>

 /// This event fires when the system displays a

 /// ShowSounds message.

 /// </summary>

 public event EventHandler SoundDisplayed;

 /// <summary>

 /// This event fires when the system generates a

 /// sound.

 /// </summary>

 public event EventHandler SoundGenerated;

 /// <summary>

 /// Determines if the system will make a sound.

 /// </summary>

 public bool MakeSound

 {

 get {return _MakeSound;}

 set {_MakeSound = value;}

 }

 // This property requires a special editor to ensure it works

 // as intended.

 /// <summary>

 /// Contains the name of the file to play.

 /// </summary>

 [EditorAttribute(typeof(FileNameEditor), typeof(UITypeEditor))]

 public string SoundFileName

 {

 get

 {

 return _SoundFileName;

 }

 set

 {

 _SoundFileName = value;

 }

 }

0864_Mueller.book Page 225 Friday, February 28, 2003 6:02 PM

Chapter 6

226

 /// <summary>

 /// Describes the sound to the person using ShowSounds.

 /// </summary>

 public string ShowSoundsDescription

 {

 get {return _ShowSoundsDescription;}

 set

 {

 if (value != null)

 _ShowSoundsDescription = value;

 }

 }

 /// <summary>

 /// Determines the hover delay for the tooltip

 /// displaying the sound description. (1 ms minimum)

 /// </summary>

 public int AutomaticDelay

 {

 get {return _AutomaticDelay;}

 set

 {

 if (value >= 1)

 _AutomaticDelay = value;

 }

 }

 /// <summary>

 /// Determines the amount of time the tooltip

 /// will appear on screen. (3000 ms minimum)

 /// </summary>

 public int AutoPopDelay

 {

 get {return _AutoPopDelay;}

 set

 {

 if (value >= 3000)

 _AutoPopDelay = value;

 }

 }

0864_Mueller.book Page 226 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

227

 /// <summary>

 /// Outputs a sound and/or a sound description based

 /// upon the current ShowSound Windows Accessiblity setting.

 /// </summary>

 /// <param name="Parent">The control hosting the sound.</param>

 public void GenerateSound(Control Parent)

 {

 System.EventArgs EA; // Used When Raising an Event.

 // Initialize the EventArgs.

 EA = new EventArgs();

 // Initialize the ToolTip.

 TT = new ToolTip();

 TT.AutomaticDelay = _AutomaticDelay;

 TT.AutoPopDelay = _AutoPopDelay;

 // Intitialze the Timer.

 NoShow.Interval = _AutoPopDelay;

 NoShow.Tick += new EventHandler(this.NoShow_Tick);

 // If the ShowSounds option is selected, display text.

 if (IsShowSoundsSelected())

 {

 // Display the information on screen.

 TT.SetToolTip(Parent, _ShowSoundsDescription);

 TT.Active = true;

 NoShow.Start();

 // Fire the event.

 if (SoundDisplayed != null)

 SoundDisplayed(this, EA);

 }

 if (_MakeSound)

 {

 // Play a sound only when the user requests it.

 WinPlaySound(@_SoundFileName,

 0,

 SND_FILENAME | SND_ASYNC);

0864_Mueller.book Page 227 Friday, February 28, 2003 6:02 PM

Chapter 6

228

 // Fire the event.

 if (SoundGenerated != null)

 SoundGenerated(this, EA);

 }

 }

 /// <summary>

 /// Obtains the current status of the ShowSounds

 /// Windows Accessibility setting.

 /// </summary>

 /// <returns>True or False depending on setting value</returns>

 public bool IsShowSoundsSelected()

 {

 return SystemInformation.ShowSounds;

 }

 // Define some constants for using the PlaySound() function.

 private const int SND_SYNC = 0x0000;

 private const int SND_ASYNC = 0x0001;

 private const int SND_FILENAME = 0x00020000;

 // Import the Windows PlaySound() function.

 [DllImport("winmm.dll",

 EntryPoint="PlaySound", CharSet=CharSet.Auto, SetLastError=true)]

 private static extern bool WinPlaySound(string pszSound,

 int hmod,

 int fdwSound);

 private void NoShow_Tick(Object sender, System.EventArgs e)

 {

 // Stop displaying the sound description.

 TT.Active = false;

 // Stop the timer.

 NoShow.Stop();

 }

}

As you can see, it’s a lot of code (and I cut it down for the purposes of display in
the book). The first thing you should notice is that I’ve based this control on the
Component class. The reason for this choice is that the control doesn’t include a
window of any sort—it’s more akin to a timer than to a command button.

0864_Mueller.book Page 228 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

229

The constructor begins by initializing all of the property values for the controls.
Notice that we use private variables for the properties. These values are exposed by
the properties that appear later in the listing.

The control supports two events. The control fires these events whenever it
displays a sound description or generates a sound. Generally, you won’t need to
handle the events, but sometimes an application needs to know when these events
actually occur.

All of the properties come next in the listing. Most of the properties are of the
generic get/set variety. Notice that the SoundFileName property includes support for
an editor. This editor displays a File Open dialog box that helps the control user
locate the sound file on disk. This control only supports external sound files, but
you could easily extend it to support embedded resources and system sounds.

I wanted to ensure that the control will always have some type of value to
display as a sound description, so the ShowSoundsDescription property looks for a
null value. If the value isn’t null, it will set the sound description to that value. A
production version of this control would probably include additional checks to

ensure that the developer provided something that at least looks like a sound
description. Of course, there are limits to what the control can check, so someone
who really doesn’t want to display a usable sound description is certainly free to
come up with something less than usable.

The AutomaticDelay and AutoPopDelay properties set timer values for the control,
so it’s important to ensure that the developer provide realistic values. Both prop-
erties look for numeric input that’s greater than a baseline value. If the input
doesn’t meet this requirement, the control uses the current value instead.

The main method for this control is GenerateSound(). This method displays
sound descriptions on screen and generates the audible sound as needed. The
code begins by creating and initializing the variables used within the control. For
example, this is where the ToolTip, TT, is initialized.

The first check the code makes is to verify the state of ShowSounds using the
IsShowSoundsSelected() method. The IsShowSoundsSelected() method simply
returns the state of the SystemInformation.ShowSounds property. The reason the
control uses this technique is to expose this functionality to the developer as well.
This makes the SystemInformation.ShowSounds property easier for the developer
using the control to access. Otherwise, the GenerateSound() method could have
accessed the SystemInformation.ShowSounds property directly.

If ShowSounds is active, the code associates TT with the parent control passed
into the GenerateSound() method by the caller. It displays TT so the user can see the
description associated with the sound. Unfortunately, TT doesn’t go away if you
leave it in this state. You have to deactivate it. In this case, we’ll use a timer, NoShow,
to perform that task. So, the next step the code performs is to start NoShow, which
has already been set up with the _AutoPopDelay value. The final step is to fire the
SoundDisplayed event so that the application knows the event occurred.

0864_Mueller.book Page 229 Friday, February 28, 2003 6:02 PM

Chapter 6

230

The next task that GenerateSound() performs is to check the _MakeSound value. If
the developer chooses to make a sound, the code calls WinPlaySound(), which calls
a Win32 API function to generate the audible sound. The final step is to fire the
SoundGenerated event.

As you can see from the listing, the WinPlaySound() function is simply a decla-
ration of an imported Win32 API function, PlaySound(). In this case, the declaration
requires an EntryPoint argument to ensure that the [DllImport] attribute can
locate the proper call. The PlaySound() function accepts three inputs, only two of
which we need to provide in this case. The first input is a string that describes the
name and location of the sound. In this case, the sound is always a filename. However,
you can also specify an internal application resource, the name of a system sound in
the registry, or the name of a sound in the WIN.INI file. We don’t use the hmod
argument in this case, but you must use it when you want to use an application
resource as input. Finally, the fdwSound argument contains flags that determine
how Windows plays the sound. For example, you can select between asynchronous
(where control is returned immediately) and synchronous sound playing.

The NoShow_Tick() event handler is the last essential piece of the control. A
single tick is the duration that the developer wants to display the ToolTip, TT. When
this single tick occurs, it’s time to hide TT until the application wants to play a
sound again. This event handler sets TT.Active to false so the ToolTip won’t display
when the user hovers the mouse of the control associated with the sound. The
code then stops the timer so that the control is no longer active and the application
can garbage collect it if desired.

Creating the ShowSounds Test Application

The ShowSounds test application is a simple test of the PlaySound control. It
includes a few check boxes that enable the developer to test the events and to turn
the sound-playing feature on or off. (If you want to turn ShowSounds on of off, use
the Accessibility Options applet in the Control Panel.) Listing 6-5 shows the Test
button and PlaySound control event handlers. You’ll find the complete listing for
this example in the \Chapter 06\ShowSounds folder of the source code that you can
obtain from the Downloads section of the Apress Web site (http://www.apress.com).

Listing 6-5. The ShowSounds Test Application

private void btnTest_Click(object sender, System.EventArgs e)

{

 // Check to see if the user wants to play a sound.

 if (cbSound.Checked)

 MySound.MakeSound = true;

 else

 MySound.MakeSound = false;

0864_Mueller.book Page 230 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

231

 // Check to see if the user wants the SoundDisplayed event.

 if (cbSoundDisplay.Checked)

 MySound.SoundDisplayed +=

 new EventHandler(playSound1_SoundDisplayed);

 else

 MySound.SoundDisplayed -=

 new EventHandler(playSound1_SoundDisplayed);

 // Check to see if the user wants the SoundGenerated event.

 if (cbSoundGenerate.Checked)

 MySound.SoundGenerated +=

 new EventHandler(playSound1_SoundGenerated);

 else

 MySound.SoundGenerated -=

 new EventHandler(playSound1_SoundGenerated);

 // Perform the sound related task.

 MySound.GenerateSound(btnTest);

}

private void playSound1_SoundDisplayed(object sender, System.EventArgs e)

{

 // Display a message box.

 MessageBox.Show("Sound Displayed");

}

private void playSound1_SoundGenerated(object sender, System.EventArgs e)

{

 // Display a message box.

 MessageBox.Show("Sound Generated");

}

The btnTest_Click() method begins by checking the state of cbSound. If the
user checks this control, then the application will play the sound associated with
the MySound control. Likewise, the code checks the state of the cbSoundDisplay and
cbSoundGenerate controls to determine if they’re checked. If so, the code assigns an
event handler to the affected events. In this case, the event handlers display a
message box. Finally, the method calls MySound.GenerateSound() with the test button
as input. Figure 6-17 shows typical output for this application.

0864_Mueller.book Page 231 Friday, February 28, 2003 6:02 PM

Chapter 6

232

Figure 6-17. The test application helps you see the functionality of the
PlaySound control.

Using the Display Features Example

We’ve already discussed several display-related issues, such as the use of high con-
trast in the book. However, we haven’t discussed one important element—the
cursor used to display information on screen. Checking the size of the cursor can
help you format the display for easier viewing by those who want to use a large
cursor size. Not only that, but checking the cursor size can often provide cues
about a user’s overall viewing needs. Some users don’t use the HighContrast setting,
even when they use a large text display to see information on screen. Listing 6-6
shows the simple technique used to determine the current cursor size. You’ll find a
complete listing for this example in the \Chapter 06\CursorData folder of the
source code that you can obtain from the Downloads section of the Apress Web
site (http://www.apress.com).

Listing 6-6. A Technique for Obtaining the Cursor Size

private void btnGetCursor_Click(object sender, System.EventArgs e)

{

 StringBuilder CursorData; // Cursor information.

 // Initialize the StringBuilder

 CursorData = new StringBuilder();

0864_Mueller.book Page 232 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

233

 // Get the cursor information.

 CursorData.Append("The current cursor size is:\r\n\r\nHeight: ");

 CursorData.Append(SystemInformation.CursorSize.Height.ToString());

 CursorData.Append("\r\nWidth: ");

 CursorData.Append(SystemInformation.CursorSize.Width.ToString());

 // Display the information.

 MessageBox.Show(CursorData.ToString(),

 "Cursor Data",

 MessageBoxButtons.OK,

 MessageBoxIcon.Information);

}

The centerpiece of this code is the SystemInformation.CursorSize property. This
property provides the information needed to find the actual height and width of the
cursor. In general, you’ll find that most standard displays use a 32-pixel×32-pixel
cursor size. However, some displays use larger or smaller sizes depending on the
needs of the user and the current system configuration. The application generates
a message box containing the cursor size information.

NOTE You’ll notice that most of the examples that rely on the
SystemInformation class in this chapter don’t modify the associated
property. In general, the SystemInformation class only allows the devel-
oper to view the system setting—not change it. If you want to change
a system setting, you’ll need to use a Win32 API function such as we
used in the “A Quick Description of the AccessFuncs Library” section
of the chapter.

Using the Mouse Features Example

One area in which the .NET Framework provides complete information to the
developer is the mouse. You still can’t modify any of the information without
resorting to a Win32 API call, but at least you can determine the mouse status and
many of the common features it provides. For example, you can determine how
many buttons a mouse has and whether it supports a mouse wheel. Listing 6-7
shows the code for this example. You’ll find a complete listing for this example in
the \Chapter 06\MouseCheck folder of the source code that you can obtain from
the Downloads section of the Apress Web site (http://www.apress.com).

0864_Mueller.book Page 233 Friday, February 28, 2003 6:02 PM

Chapter 6

234

Listing 6-7. Techniques for Determining the Mouse Status and Configuration

private void btnTest_Click(object sender, System.EventArgs e)

{

 StringBuilder MouseData; // The mouse setup information.

 // Initialize the StringBuilder.

 MouseData = new StringBuilder();

 // Check for the presence of a mouse.

 if (SystemInformation.MousePresent)

 {

 // Begin building the MouseData string.

 MouseData.Append("System includes a mouse with the " +

 "following characteristics:\r\n");

 // Get the clicking information.

 MouseData.Append("\r\nDouble Click Area (pixels): ");

 MouseData.Append(

 SystemInformation.DoubleClickSize.ToString());

 MouseData.Append("\r\nDouble Click Time (ms): ");

 MouseData.Append(

 SystemInformation.DoubleClickTime.ToString());

 // Get the mouse specific information.

 MouseData.Append("\r\n\r\nNumber of Mouse Buttons: ");

 MouseData.Append(

 SystemInformation.MouseButtons.ToString());

 MouseData.Append("\r\nAre the buttons swapped? ");

 MouseData.Append(

 SystemInformation.MouseButtonsSwapped.ToString());

 MouseData.Append("\r\n\r\nIs a mouse wheel available? ");

 MouseData.Append(

 SystemInformation.MouseWheelPresent.ToString());

 // Display this information only for systems with

 // mouse wheel support.

 if (SystemInformation.MouseWheelPresent)

 {

 MouseData.Append("\r\nMouse wheel scroll lines: ");

 MouseData.Append(

 SystemInformation.MouseWheelScrollLines.ToString());

 MouseData.Append("\r\nNative mouse wheel support? ");

 MouseData.Append(

 SystemInformation.NativeMouseWheelSupport.ToString());

 }

0864_Mueller.book Page 234 Friday, February 28, 2003 6:02 PM

Using Microsoft Active Accessibility

235

 // Display the results.

 MessageBox.Show(MouseData.ToString(),

 "Mouse Access Information",

 MessageBoxButtons.OK,

 MessageBoxIcon.Information);

 }

 // If no mouse is present, display a message and exit.

 else

 MessageBox.Show("There is no mouse connected to this system.",

 "No Mouse Access",

 MessageBoxButtons.OK,

 MessageBoxIcon.Exclamation);

}

As you can see from the code, all of the mouse statistics appear in the
SystemInformation class. Various properties in this class tell you different things
about the mouse, such as support for a mouse wheel and the current size of the
double click area. Information such as the size of the double click area can cue you
about the abilities of the user in some situations. A large DoubleClickSize value
could indicate that the user has mobility problems—a large DoubleClickTime value
tends to enforce this idea. Figure 6-18 shows the output of this example.

Figure 6-18. Use this test application to learn more about the functionality of the
mouse attached to a machine.

Notice that the information in Figure 6-18 is complete, but also generic. For
example, the target mouse provides support for four buttons. Although you know
the tasks the first two buttons perform, you don’t know what the other two do?

0864_Mueller.book Page 235 Friday, February 28, 2003 6:02 PM

Chapter 6

236

Are these buttons available for special use in your application? You won’t know
unless you ask the user. In short, these properties provide access to some level of auto-
mation, but perhaps not the complete automation that many developers would like.

Summary

This chapter has helped you discover the Windows Accessibility features. The
main idea behind this chapter is to show that you can provide good accessibility
support in an application with only a little extra coding in many cases. The amazing
thing is that Microsoft built this support into Windows—the user doesn’t have to
spend one penny extra to get it. All that they need is for your application to rec-
ognize the added support and provide the additional code needed to activate it.
Interestingly, the .NET Framework makes this process easier because Microsoft
has added some functionality that you would have had to code by hand in the past.

Even so, things aren’t perfect with the Windows Accessibility support. So, one

of the first things you need to do is determine how far the Accessibility features go
in meeting your potential user’s needs. In some cases, the Accessibility features
provide everything you need; but, in other cases, users will need to buy some
special hardware to make the access perfect. The point is that you need to plan for
this support during the design phase, ensure it actually works during the testing
phase, and then make users aware of the accessibility features and requirements
for your application. Otherwise, users might have unrealistic expectations that
your application won’t satisfy.

It’s also time to work with the accessibility features by yourself. Make sure you
try your application out using the accessibility features. Sometimes, the best way
to learn how the accessibility features work is to do something like try them while
blindfolded. Ask yourself how easy your application is to use when you can’t see
the screen. In this case, not seeing is believing (and learning). You’ll also want to
try the JAWS demonstration software mentioned in the “Using the Narrator” section
of the chapter. This product demonstrates the superior performance and usability
of some of the products on the market when compared to the Windows offerings.

Chapter 7 looks at usage cues. Many of the accessibility features Windows pro-
vides make application access easier, but they don’t necessarily make the application
easier to use. Earlier in the book, we had discussed the need for an accessibility
friendly application to provide both access and usability. While this chapter con-
centrated on access, Chapter 7 will help you learn about usability in the world of
Windows programming.

0864_Mueller.book Page 236 Friday, February 28, 2003 6:02 PM

