
1. Symmetry

1.1 Model Surfaces

1.1.1 Surface Versus Bulk

Every real solid is bounded by surfaces. Nonetheless, the model of an infinite
solid which neglects the presence of surfaces works very well in the case
of many physical properties. The reason is, firstly, that one usually deals
with properties, such as transport, optical, magnetic, mechanical or thermal
properties, to which all the atoms of the solid contribute more or less to the
same extent, and, secondly, that there are many more atoms in the bulk of a
solid sample than at its surface, provided the solid is of macroscopic size. In
the case of a silicon cube of 1 cm3, for example, one has 5 × 1022 bulk atoms
and 4 × 1015 surface atoms.

The surface atoms are only visible in surface sensitive experimental tech-
niques or by studying properties or processes which are determined by surface
atoms only. Among them are phenomena like crystal growth, adsorption, ox-
idation, etching or catalysis. They cannot be described by the model of an
infinite solid. However, there are also effects which are determined by the
interplay of bulk and surface (or, more strictly speaking, the interface). For
instance, the channel of the carrier transport in field-effect transistors is de-
termined by the surface (interface) states as well as the bulk doping. In one
of the first theoretical approaches to the field effect, Bardeen [1.1] applied the
premise of charge neutrality at the surfaces/interfaces. This condition means
that in thermal equilibrium the surface band bending adjusts in such a way
that the net charge in surface states is balanced by a space charge below the
surface of the semiconductor forming the main part of the electrical device.

1.1.2 The Surface as a Physical Object

Under normal conditions, i.e., atmospheric pressure and room temperature,
the real surface of a solid is far removed from the ideal systems desirable in
physical investigations. A freshly prepared surface of a material is normally
very reactive toward atoms and molecules in the environment. All kinds of
particle adsorption – from strong chemisorption to weak physisorption – give
rise to an adlayer on the topmost atomic layers of the solid. One example
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is the immediate formation of an extremely thin oxide layer on a freshly
cleaved silicon crystal. Usually the chemical composition and the geometrical
structure of such a contamination adlayer are not well defined.

As an object of physical investigations a well-defined surface has to be
prepared on a particular solid, in a special preparation process, under well-
defined external conditions. Such a solid could be a crystalline material, a
single crystal or a crystalline film deposited by epitaxy in a well-controlled
way. A rather clean surface of such a crystalline system might also be prepared
as an electrode surface in an electrochemical cell, or a semiconductor surface
in a reactor where vapor phase epitaxy (VPE) is performed at standard
pressure conditions and at elevated temperature. However, the processes of
the underlying methods and the results are rather complex and difficult to
characterize. The simplest ways to prepare a solid surface should happen in
ultrahigh vacuum (UHV), i.e., at ambient pressure lower than 10−8 Pa (about
10−10 torr). There are essentially three ways to manufacture clean surfaces
under UHV conditions:

i. Cleavage of brittle materials in UHV. Of course, only surfaces which are
cleavage planes of the crystal can be made in this way.

ii. Treatment of imperfect and contaminated surfaces of arbitrary orien-
tation by ion bombardment and thermal annealing (IBA), generally in
several cycles. There are no limitations to certain materials and to certain
crystallographic orientations.

iii. Epitaxial growth of crystal layers (or overlayers) by means of evaporation
or molecular beam epitaxy (MBE).

Obviously, a smooth and clean surface cannot be realized in the ideal form,
but rather only to some approximation. Any real surface will exhibit irreg-
ular deviations from perfect smoothness and purity despite the care taken
in its preparation. An illustration of such a surface is given in Fig. 1.1. In
reality a surface consists of a number of irregular portions of parallel sur-
face lattice planes which are displaced vertically by one or more lattice plane
separations with respect to each other. Atomic steps occur at the bound-
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Fig. 1.1. Illustration of structural imperfections of crystal surfaces. Atoms and
their electron shells are indicated by little cubes.
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aries of these lattice-plane portions which in this context are called terraces.
The steps may exhibit kinks. In addition to terraces, steps and kinks, other
structural irregularities may occur which can be subsumed under the term
‘surface roughness’. Adatoms and vacancies belong to this category, as do
complexes of these simple defects. In the case of surfaces of compound crys-
tals quite often atoms of one of the contributing elements are depleted more
than those of the other which results in an enrichment of the latter and in
a non-stoichiometry at the surface. The most significant form of chemical
disturbance of surfaces, which applies both to compound and elemental crys-
tals, is the contamination by impurities or adatoms of another species. The
impurity atoms or adatoms may be situated at regular or nonregular sites of
the surface lattice plane, at locations above and slightly below it.

1.2 Two-Dimensional Crystals

A complete characterization of a solid surface requires knowledge of not only
atoms of ‘what species’ are present but ‘where’ they are. Just as in the bulk, it
is not that the atomic coordinates as such are of much direct interest. Rather,
besides the chemical nature of the atoms their geometrical arrangement gov-
erns the electronic, magnetic, optical, and other properties of surfaces.

1.2.1 Lattice Planes of Bulk Crystals

A geometrical construction which is of particular significance in describing
crystal surfaces is that of a lattice plane. Lattice planes are usually denoted
by Miller indices (hkl) where h, k, l are the integer reciprocal axis intervals
given by the intersections of the lattice planes with the three crystallographic
axes. They have a simple meaning in the case of rectangular crystal systems,
e.g., the cubic system. The symbol (100), for example, denotes lattice planes
perpendicular to the cubic x-axis, (111) means lattice planes perpendicular to
the body diagonal in the first octant of the cubic unit cell, and (110) denotes
the lattice planes perpendicular to the face diagonal in the first quadrant
of the xy-plane of the cubic unit cell. Usually, the collection of such planes
that are equivalent by symmetry is labeled {hkl}. Thus {100} stands for
the collection (100), (1̄00), (010), (01̄0), (001) and (001̄), if these planes are
equivalent. The bar notation 1̄ indicates the corresponding negative coeffi-
cient. In the case of trigonal and hexagonal lattices, four crystallographic axes
are considered, three instead of two perpendicular to the c-axis. The lattice
planes are then characterized by four indices (hkil) instead of three. The first
three, however, are not independent of each other. In fact h+ k+ i = 0. The
fourth axis (corresponding to the index l) is perpendicular to the hexagonal
basal plane. The (hkil) are sometimes termed Bravais indices.

A particular geometrical plane can also be characterized by its normal
direction
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n = ñ/|ñ|.
In the case of lattice planes it is convenient to relate it to a linear combination

ñ =
1
2π

[hb1 + kb2 + lb3] (1.1)

of the primitive vectors bj (j = 1, 2, 3) of the reciprocal lattice with the
integer coefficients h, k, and l. The vectors bj are directly related to the
primitive lattice vectors ai (i = 1, 2, 3) by the relation

ai · bj = 2πδij . (1.2)

Apart from the case of primitive Bravais lattices, they are different from the
crystallographic axes. Anyway, a lattice plane can be characterized by the
Miller indices (hkl) and, hence, a normal parallel to the vector Ghkl = hb1+
kb2+ lb3 of the reciprocal lattice. However, as a consequence of relation (1.2)
the Miller indices depend on the particular choice of the primitive vectors of
the Bravais lattice.

Miller indices are simplest to work with in simple cubic (sc) Bravais lat-
tices, since the reciprocal lattice is also simple cubic and the Miller indices
are the coordinates of a vector normal to the plane in the obvious Cartesian
coordinate system. As a general rule, face-centered cubic (fcc) and body-
centered cubic (bcc) Bravais lattices are described in terms of conventional
cubic cells, i.e., as sc lattices with bases. Since any lattice plane in a bcc or fcc
lattice is also a lattice plane in the underlying sc lattice, the same elementary
cubic indexing (hkl) can be used to specify lattice planes. This agreement
simplifies a variety of considerations for a lot of materials. Many important
metals consisting only of one element crystallize within the cubic crystal sys-
tem. Also many elemental and compound semiconductors or strongly ionic
compounds form diamond, zinc-blende, or rocksalt crystals which also belong
to the cubic crystal system.

The Miller indices of a plane have a geometrical interpretation in real
space. Therefore, a similar convention is used to specify directions in the
direct lattice, but to avoid confusion with the Miller indices (directions in
the reciprocal lattice) square brackets are used instead of parentheses. For
instance, the body diagonal of a sc cubic lattice lies in the [111] direction and,
in general, the lattice point ha1+ka2+la3 lies in the direction [hkl] from the
origin. In the cubic case [hkl] defines the normal direction of the plane (hkl).
The collection of such directions that are equivalent by symmetry is labeled
〈hkl〉. This holds in principle also for non-cubic Bravais lattices. However, in
general the direction [hkl] is not perpendicular to the plane (hkl).

The property of the vector Ghkl = hb1+kb2+ lb3 of the reciprocal lattice
can be proven characterizing the lattice planes by all possible Bravais lattice
points

Rl =
3∑
i=1

nliai (1.3)
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Fig. 1.2. (a) Cubic Bravais lattices sc, fcc, bcc; (b) low-index planes (100), (110),
(111) in a sc cell; and (c) low-index planes resulting from cubic lattices. Bravais
lattice points are indicated as dots (a,b) or spheres (c).
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Fig. 1.3. Characteristic planes in a hexagonal Bravais lattice. Certain directions
in this lattice are also indicated. The vectors x1, x2 (or x3), and c can be identified
with the primitive Bravais lattice vectors. The directions [21̄1̄0], [011̄0], and [0001]
represent the hexagonal Cartesian coordinate system.

with integers nli (i = 1, 2, 3). The index l characterizes the infinite family of
parallel planes in a certain distance from each other. The plane l = 0, which
contains the zero point, may afterwards be identified with the surface of semi-
infinite space. This is demonstrated in Fig. 1.2 for the low-index surfaces of sc,
fcc, and bcc Bravais lattices (or monatomic metals crystallizing within these
structures). In the case of a hexagonal Bravais lattice such lattice planes are
indicated in Fig. 1.3. In practice, it is only in the description of non-cubic
crystals that one must remember that the Miller indices are the coordinates
of the normal in a system given by the reciprocal lattice, rather than the
direct lattice. For that reason, sometimes for simplicity the Miller indices
(hkil) are also used to characterize the normal directions as done in Fig. 1.3.
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Fig. 1.4. The five two-dimensional Bravais lattices. Besides primitive unit cells
(dashed lines) also a non-primitive cell (dotted lines) is shown.

Such a l = 0 plane represents a two-dimensional Bravais lattice

R =
2∑
i=1

miāi (1.4)

with ā1 and ā2 as the primitive basis vectors of this lattice and integer num-
bers m1 and m2. The three vectors ā1, ā2, n form a right-hand coordinate
system. The possible five two-dimensional Bravais lattices of the four pla-
nar crystal systems are represented in Fig. 1.4. Apart from the rectangular
case, they are primitive (p). In the centered (c) rectangular case addition-
ally the non-primitive cell is also indicated. In practice one often uses the
non-primitive lattice for the convenience of description. Sometimes, also non-
primitive centered square meshes are used in order to keep a certain orienta-
tion of the unit cell.
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1.2.2 Oriented Slabs

According to (1.4) all lattice planes in an arbitrary halfspace (l = 0,−1,−2, ...)
or crystal (l = 0,±1,±2, ...) may be described by

Rl =
2∑
i=1

miāi + lā3, (1.5)

where ā3 is a vector complementing ā1 and ā2 to form a set of (in general)
non-primitive lattice vectors a1, a2, a3 of the three-dimensional (3D) bulk
lattice of the underlying crystal. The vector ā3 can be determined from the
Diophantine equation ñ · R1 = 1 with expressions (1.1) and (1.3), as long as
the vectors ā1, ā2 satisfy ñ · R0 = 0 [1.2]. The choice of ā3 is not unique, of
course, and any vector ā′

3 which differs from ā3 by a vector within the lattice
plane can also be used. We call ā3 the stacking vector because it determines
how the chosen lattice planes are stacked in the considered Bravais lattice.
For two Bravais lattices Table 1.1 shows a possible choice of the vectors ā1,
ā2, and ā3. The vectors ā1 and ā2 span the lattice planes shown in Figs. 1.2
and 1.3.

The selection of the three vectors ā1, ā2, and ā3 shows that the primitive
cell of a Bravais lattice may be chosen as a parallelepiped with one of its pairs
of parallel faces being parallel to a given lattice plane. This implies that such
a lattice may be characterized as consisting of parallel lattice planes which
are displaced with respect to each other as indicated in Fig. 1.5.

Table 1.1. Possible primitive lattice vectors of a plane and stacking vectors for cer-
tain plane orientations in the case of two Bravais lattices. Cubic (a0) and hexagonal
(a, c) lattice constants are used.

3D Bravais lattice Plane 2D Bravais lattice ā1 ā2 ā3

fcc (111) hexagonal a2 − a1 a3 − a2 a1

a1 = a0
2 (0, 1, 1)

a2 = a0
2 (1, 0, 1) (110) p-rectangular a1 − a2 a1 + a2 − a3 a1

a3 = a0
2 (1, 1, 0)

(100) p-square a3 − a2 a1 a2

hexagonal (0001) hexagonal a1 a2 a3

a1 = a(1, 0, 0)

a2 = a
2 (−1,

√
3, 0) (101̄0) p-rectangular a2 a3 a1

a3 = c(0, 0, 1)

(112̄0) p-rectangular a2 − a1 a3 a1
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Fig. 1.5. Construction of a 3D Bravais lattice from its lattice planes.

Usually a crystal possesses an atomic basis with S atoms at the positions
rs (s = 1, ..., S) in the unit cell. In correspondence with the lattice planes,
atomic planes may be constructed. The lattice plane R0 can be considered
to be occupied with atoms of species 1, e.g., at r1 = 0. The next atomic
plane, displaced by r2 with respect to the first one, is occupied by atoms
of species 2, etc., and the plane displaced by rS is occupied by atoms of
type S. It may happen that two or more atoms of the basis are located at
the same plane. In that case an atomic layer (which is later identified with
an ideal surface) consists of two or more basis atoms. As a consequence the
polarity of such a plane can be fixed according to the total charge. In crystals
with partially ionic bonds neutral, positively charged or negatively charged
atomic planes arise. This allows us to define the polarity of a surface or a
corresponding halfspace. For two-atomic crystals with cations and anions,
the equal or unequal numbers of these ions in a unit cell spanned by the
vectors ā1 and ā2 characterize the polarity. The lattice plane R0 + rS most
distant from R0 completes the construction of a crystal slab which, in the
vertical direction, encompasses exactly one primitive unit cell. This slab is
called a primitive crystal slab. A lattice plane occupied by atoms is referred
to as an atomic layer. The second primitive crystal slab again begins with
a lattice plane occupied by atoms of species 1 and is displaced with respect
to the zeroth plane of the first slab by the stacking vector ā3. A crystal can
therefore be thought of as consisting of successive crystal slabs situated one
above the other. A pile of several primitive slabs can give a new translational
symmetry in the direction of the normal n. One calls it an irreducible crystal
slab. For two-atomic cubic crystals with zinc-blende or diamond structure
and lattice constant a0 such a slab contains three for (111), two for (110),
and two for (100) primitive crystal slabs with six for (111), two for (110),
and four for (100) atomic layers. The corresponding stacking vectors are
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Fig. 1.6. (a) Top view of irreducible crystal slabs with certain orientations n for
zinc-blende crystals. The atoms in different layers are indicated by different sizes.
Dashed lines indicate a possible 2D unit cell. The size of the filled and open circles
indicates the layer beneath the surface. It is related to the layer index −l in the
legend. The filling of the circles describes the cation or anion character of the
corresponding atom. After [1.2].

a0(1, 1, 1), a0(1, 1, 0), and a0(1, 0, 0). For a two-atomic hexagonal crystal with
wurtzite structure such slabs contain four for (0001), three for (112̄0), and
four for (101̄0) atomic layers. Projections of such irreducible slabs of two-
atomic crystals are presented in Fig. 1.6. Crystal examples from two Bravais
systems are plotted: fcc with zinc blende (diamond) and rocksalt, hexagonal
with wurtzite structure. The corresponding space groups are F 4̄3m (Fd3m),
Fm3m, and P63mc using the international notation.

The location R(s, l,m1,m2) of an individual atom can be specified by the
number l of the primitive crystal slab, the number s of the atomic sublattice
and the integer coordinates m1, m2 of a point in the 2D Bravais lattice as
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Fig. 1.6. (b) Same as Fig. 1.6a but for rocksalt crystals.

R(s, l,m1,m2) =
2∑
i=1

miāi + lā3 + rs. (1.6)

The complete set of atomic sites in an infinite 3D crystal can be obtained
by assigning all possible integer values from −∞ to +∞ for l,m1,m2 and
all possible values s = 1, ..., S. The normal direction n, upon which the
construction of the lattice planes is based, is without influence on the sites.
Any choice of n yields the same crystal.

1.2.3 Ideal Surfaces. Planar Point Groups

The above representation (1.6) of an infinite crystal can immediately be em-
ployed in describing a crystal with an ideal surface and normal n, i.e., a
halfspace. Such a system may be generated from an infinite crystal by re-
moving all atomic layers above the surface and retaining those below. The
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Fig. 1.6. (c) Same as Fig. 1.6a but for wurtzite crystals.

remaining uppermost atomic layer represents the surface or, at least, the up-
permost atomic layer of the surface region of the resulting halfspace. How
many atomic layers are counted to belong to the surface region depends on
the method used to investigate the system, e.g., on the penetration depths
of the exciting and/or detected particles.

In a first approach one may assume that the atoms in the uppermost
atomic layers, in particular in the topmost layer, keep the atomic positions of
the infinite crystal. Such a configuration is usually termed an ideal surface.
The atoms of a crystal having an ideal surface are thus located at the positions
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R(s, l,m1,m2) given by (1.6). However, only sites below the surface plane are
occupied. These obey the relation

ñ · R(s, l,m1,m2) = l + ñ · rs ≤ 0 (1.7)

with ñ given in expression (1.1). The surface or first atomic layer is obtained
if the left-hand side of this relation is taken to be zero. A possible solution
of (1.7) is l = 0 and rs0 = 0, so long as the site of one atom s0 of the atomic
basis is identified with a Bravais lattice point. Thus, the first atomic layer
corresponds to the particular lattice plane perpendicular to the normal n
which goes through zero and whose lattice points are occupied by basis atoms
of species s0. There may be other vectors rs beside rs0 which, although not
being zero themselves, have a zero projection n · rs. Then the basis atoms
of this species s are also located in the first atomic layer. They are displaced
with respect to the atoms of species s0 by a vector rs parallel to the surface.
Such multiple-species occupancy of an atomic layer occurs, for instance, in
the case of (110) surfaces of zinc-blende-type crystals. In this case, two atoms
– a cation and an anion – occur in each primitive unit cell of such a 2D crystal.
The (110) surface forms a non-polar face because of charge neutrality, which
is one of the reasons why the (110) plane represents the cleavage face of
zinc-blende crystals.

The resulting halfspace with an ideal, bulk-terminated surface (or even a
real surface as discussed below) exhibits not only a 2D periodicity or, more
precisely, a 2D translational symmetry with the primitive basis vectors ā1 and
ā2 but also a point symmetry. As a consequence of the translational symmetry
according to the 2D Bravais lattice points R (1.4), physically equivalent space
points can be related by

x′ = {ε|R} x

= ε̂x + R = x + R, (1.8)

where ε̂ denotes the transformation matrix characterizing the element ε. Such
points are displaced against each other by a Bravais lattice vector R. No
rotation or reflection is involved. This is indicated by the unit element ε
and the unit matrix ε̂, respectively. All elements which belong to a certain
translational group are abbreviated by {ε|R}. However, in addition there can
be point group operations {α|0} which also relate physically equivalent space
points x′ and x. The point symmetry elements α are necessarily rotations
about axes which are parallel to the normal n, and reflections at lines within
the surface or cell planes perpendicular to n. Only n = 1, 2, 3, 4, or 6-fold
rotation axes perpendicular to the surface may occur. Correspondingly, the
symbol δmn signifies a rotation around the surface normal direction by the
angle (360 m/n)◦ with m = 0, 1, ..., n− 1. The mirror planes are also normal
to the surface. Inversion centers, mirror planes and rotation axes parallel to
the surface are not allowed, since they refer to points outside the surface. The
possible reflection lines mx, my, m1, m2, md, m′

1, m
′
2, and m′

d are specified
in Fig. 1.7.
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flection lines.

By combining the limited number of allowed symmetry operations, one
obtains 10 different plane point groups. In the international system (Schoen-
flies system) they are denoted by either n (Cn) or nm, nmm (Cnv). The
numeral n = 1, 2, 3, 4, 6 denotes rotations by 2π

n and the symbol m refers to
reflections in a mirror plane. The third symbol m indicates that a combina-
tion of the preceding two operations generates a new mirror plane. The 10
point groups are 1 (C1), 2 (C2), m (C1v), 2mm (C2v), 3 (C3), 3m (C3v), 4
(C4), 4mm (C4v), 6 (C6), 6mm (C6v). They are geometrically represented in
Fig. 1.8.

The plane Bravais lattices presented in Fig. 1.4 also possess point symme-
tries. However, the possible multiplicities of a rotation symmetry axis of plane
lattices are restricted to n = 2, 4 and 6. A lattice which only contains a 2-fold
symmetry axis is either an oblique lattice or a rectangular one (independent
of the p- or c-character). The point groups of these lattices are 2 (C2) and
2mm (C2v), respectively. Quadratic lattices with a 4-fold symmetry axis pos-
sess four reflection lines which are rotated through 45◦ with respect to each
other. The point group of such a lattice is therefore 4mm (C4v). Hexagonal
lattices with a 6-fold axis have six reflection lines which meet at an angle of
30◦. In this case the point group is 6mm (C6v). Summarizing, there are thus
four different plane crystal systems – the oblique with the holohedral point
group 2, the rectangular with the holohedral point group 2mm, the quadratic
with the holohedral point group 4mm, and the hexagonal with the holohedral
point group 6mm. These crystal systems contain five 2D Bravais lattices (cf.
Fig. 1.4).

The low-Miller-index surfaces of face-centered cubic and body-centered
cubic metal crystals exhibit such high point-group symmetries because of
their structural simplicity. As indicated in Fig. 1.2, these surfaces tend to
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Fig. 1.8. Schematic representation of the 10 plane point groups.

have the highest degree of symmetry and the smallest unit cells. Examples are
fcc(111), fcc(110), and fcc(100), which have threefold, twofold, and fourfold
rotational symmetry, respectively. Other examples are bcc(111), bcc(110),
and bcc(100), which have threefold, twofold, and fourfold rotational sym-
metry, respectively. Isolated (111) planes even possess a higher rotational
(sixfold) symmetry. Of course, all these surfaces also have mirror planes in
addition to the rotation axes.



16 1. Symmetry

1.2.4 Real Surfaces: Reconstruction and Relaxation

The 2D translational symmetries of ideal surfaces and halfspaces with bulk
atomic positions are characterized by the primitive Bravais vectors ā1 and ā2.
In addition to point and line defects (cf. Fig. 1.1), on a real surface of a crystal
there are other reasons that the assumption of an ideal surface is not valid
in general. Such a picture does not fully account for the bonding behavior of
the atoms in a crystal. Since the forces acting on atoms situated beneath an
atomic plane in an infinite crystal are partially due to the atoms located above
the plane, one can, in general, expect that the forces acting on atoms in a
crystal with a surface should differ from those acting in an infinite crystal. The
deviation from the infinite case, however, diminishes with increasing distance
of the atoms from the surface. One can thus assume that the forces acting
on, and hence the position of, atoms deep inside the crystal bulk are, to a
good approximation, the same as those in an infinite crystal. This is, however,
not true for atoms situated near the surface. The forces acting on them are
appreciably different, resulting in displacements δR(s, l,m1,m2) of atomic
positions R(s, l,m1,m2) (1.6) with respect to those of the infinite crystal.
Consequently, the equilibrium conditions for surface atoms are modified with
respect to the infinite crystal. One expects altered atomic positions

R′(s, l,m1,m2) = R(s, l,m1,m2) + δR(s, l,m1,m2), (1.9)

with

δR(s, l,m1,m2) → 0 for l → −∞, (1.10)

and a surface atomic structure that usually does not agree with that of the
bulk. Thus a surface is not merely a truncation of the bulk of a crystal.

The distortion of the ideal bulk-like atomic configuration due to the exis-
tence of a surface (more precisely, the non-existence of formerly neighboring
atoms in the vacuum) depends on the bonding behavior of the material con-
sidered. In tetrahedrally bonded semiconductors, such as diamond, Si, Ge,
GaAs, InP, GaN, etc., strong directional bonds are present. The breaking
of bonds due to the generation of the surface is expected to have dramatic
effects. Systems with dangling bonds should be in general unstable, since
rebonding usually lowers the total energy of the halfspace. Sometimes, this
process is accompanied by bringing surface atoms closer together. One of
these mechanisms resulting in pairs of surface atoms is schematically indi-
cated in Fig. 1.9a. However, such a rearrangement can also yield rough surface
layers, the stoichiometry of which is changed with respect to the ideal sur-
face (see Fig. 1.9b). In both cases, the 2D Bravais lattice of the surface is
changed. Such perturbations destroying the translational symmetry of the
fictitious ideal surface are known as surface reconstruction.

There are general arguments for such symmetry-breaking atomic rear-
rangements. One is based on the impossibility of degenerate ground states
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Fig. 1.9. Schematic illustrations of atomic rearrangements in the surface region.
(a) Pairing reconstruction; (b) missing row reconstruction; and (c) relaxation of the
uppermost atomic layer.

of the system. Such a degeneracy may occur, for instance, for (111) surfaces
of diamond-structure crystals. In their case, on average there is only one
electron for each dangling-bond orbital parallel to the [111] surface normal,
although each orbital can accomodate two electrons of opposite spins. The
system ground state can thus be realized in numerous ways by placing two
electrons in two orbitals, two in one or an equal distribution over the dangling
bonds. However, the arrangement of these orbitals may differ. According to
the well-known Jahn–Teller theorem spontaneous symmetry breaking will oc-
cur [1.3]. The degeneracy is lifted. In the discussed (111) case this implies
Jahn–Teller displacements of the surface atoms which destroy their equiva-
lence. One may at least expect a so-called 2×1 reconstruction, in a sense that
is explained below.

In simple metals, instead one has a gas of quite delocalized electrons and
chemical bonds which are far less directional than in semiconductors. Con-
sequently, there are no preferred directions in the displacements of atoms
with the exception of that parallel to the surface normal vector itself. One
thus expects a displacement mainly of the first-layer atoms in a vertical di-
rection with respect to the surface as indicated in Fig. 1.9c. The 2D Bravais
lattice and, hence, the 2D translational symmetry remains unchanged. Such
a translational-symmetry-conserving change of the atomic structure is called
surface relaxation. A special argument for simple metals is based on the local
charge neutrality. In the bulk the nearly free electrons are delocalized between
the cores making an electrically neutral object. On a surface (see Fig. 1.10a),
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Fig. 1.10. Schematic representation of a metal surface by cores (dots) and Wigner–
Seitz cells (hexagons) before (a) and after (b) the surface relaxation. Deformations
of hexagons indicate the redistribution of the electron density accompanying its
smearing out at the surface and the inward displacements of the cores.

this picture would lead to a rapidly varying electron density at the surface,
according to the arrangement of the bulk atomic sites. As indicated schemat-
ically in Fig. 1.10b the surface electronic charge tends to smooth out, which
is only possible by vertical displacements of the ion cores. Simultaneously,
the electrostatic repulsion of first- and second-layer ions is reduced, which
results in the inward direction of the relaxation (contraction). The effect is
observed for many low-index metal surfaces.

Reconstructions, for instance that of the type indicated in Fig. 1.9b, can
also occur at metal surfaces. However, the relaxation is not restricted to met-
als but can also occur for surfaces of nonmetals. The clean cleaved GaAs(110)
surface is one well-known example in this respect [1.4]. Due to the electro-
static neutrality of the surface unit cell with one cation and one anion (cf.
Fig. 1.6), two dangling bonds and two electrons are available. Consequently,
there is no need for Jahn–Teller displacements. Instead, opposite vertical
displacements, i.e., a surface buckling accompanied by an electron transfer
between the dangling bonds, stabilize the surface translational symmetry
known from the truncated bulk.

Besides the arguments of the saturation of dangling bonds or smoothness
of electron distributions, another argument is related to the reduction of
the electrostatic energy of systems with partially ionic bonds. Due to their
Coulomb character, the electrostatic interaction of ions is of long-range nature
and does not show a directional dependence. Since the only defined direction
in the system is still the surface normal, again a tendency to a special type of
relaxation occurs. One example for a class of corresponding crystals concerns
AIVBVI semiconductors with partially ionic bonds and rocksalt structure.
Two different types of surfaces are possible in these crystals, a polar type with
exclusively A or B atoms, and a non-polar type with both A and B atoms
in the surface (see Fig. 1.6). In the case of the non-polar (100) surfaces one
expects from considerations of the Madelung energy vertical displacements of
the surface atoms but none parallel to the surface plane. Both sublattices, A
and B, should relax inward but to different degrees, because of their different
ion sizes. This results in a so-called rumpling of the surface [1.5].
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1.2.5 Superlattices at Surfaces

In accordance with the above discussions, the atomic displacements δR(s, l,
m1,m2) in expression (1.9) may be divided into two classes with regard to
their effect on the translational symmetry of the surface. If the translational
symmetry is not affected, the displacements represent a relaxation of the sur-
face (see Fig. 1.11a). Then δR(s, l,m1,m2) = δrsl for all m1,m2. Only the
vectors rsl of the atomic basis in the halfspace belonging to the 2D Bravais
lattice are altered. In the case of surface reconstruction (see Fig. 1.11b) equiv-
alent atoms in different unit cells are not all displaced in the same manner,
i.e., δR(s, l,m1,m2) depends on m1 and m2. Both the atomic basis and the
Bravais lattice are changed.

In the case of a reconstructed surface a new 2D Bravais lattice with prim-
itive basis vectors ¯̄a1 and ¯̄a2 occurs. In this situation a periodicity is present
in the topmost atomic layers which is different from the corresponding 2D
translational symmetry with ā1 and ā2 in bulk-like layers deep below the sur-
face. In other words, a surface lattice, called a superlattice, is superimposed on
the substrate lattice which exhibits the basic periodicity. Consequently, two
translational groups Ts (characterizing the uppermost surface layers by ¯̄a1,
¯̄a2) and Tb (characterizing bulk-like layers by ā1, ā2) have to be discussed.
The translations which transform the crystal with surface (the halfspace) into
itself must belong to both groups of translations, Ts and Tb. The translational
group T of the whole crystal with surface is thus the intersection

T = Ts ∩ Tb. (1.11)

Alternatively, one can say that T is the largest common subgroup of both
groups Ts and Tb. There are two possiblities. Either T only consists of the
identity translation, which means that the lattices defined by Ts and Tb are
non-commensurate, or T contains more elements than just the identity, which
means that the surface (Ts) and bulk (Tb) are commensurate. In the first case,
the crystal with surface does not possess any lattice-translational symmetry.
Realizations of non-commensurate surfaces are more likely in the case of
adsorption. In the second case, the lattice associated with T is called a co-

� 
 � 


Fig. 1.11. Examples for surface relaxation (a) and surface reconstruction (b) in-
fluencing the first and second atomic layers. A 2×2 reconstruction is shown in (b).
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incidence lattice. If, in particular, Ts is a subgroup of Tb, then T is equal to
Ts, i.e., the coincidence lattice is identical with the lattice of the surface. If
Ts is not a subgroup of Tb, then T cannot be equal to Ts and is necessarily a
proper subgroup of Ts, i.e., it is smaller than Ts.

In general, the primitive vectors ¯̄a1, ¯̄a2 of the surface Bravais lattice and
those ā1, ā2 of the corresponding bulk-like layers are related by

¯̄ai =
2∑

j=1

mijāj , (1.12)

i.e., by a 2×2 matrix M̂ with

M̂ =
(
m11 m12
m21 m22

)
. (1.13)

This matrix can be used to denote the surface superlattice structure. It re-
sults in the so-called matrix notation. The matrix also allows a convenient
classification of the relation of two 2D lattices. There are three pertinent
cases:

i. When all matrix elements mij are integers, the lattices of the surface
region and the bulk substrate are simply related. The surface lattice is
called a simple superlattice.

ii. When all matrix elements mij are rational numbers, the two lattices are
rationally related. The surface is said to have a coincidence structure,
and the superstructure is referred to as commensurate.

iii. When at least one matrix element mij is an irrational number, the two
lattices are irrationally related, and the superstructure is termed inco-
herent or incommensurate.

In the first and second cases, the combined surface layer and bulk substrate is
characterized also by a Bravais lattice, and the surface layer is in complete or
partial coincidence with the substrate. The three cases (i), (ii), and (iii) can
more easily be characterized by the determinant of M̂ , det M̂ , where det M̂
is an integer, rational, or irrational number. Geometrically det M̂ relates the
areas of the primitive unit cells spanned by the vectors ¯̄a1, ¯̄a2 and ā1, ā2. In
any case the matrix M̂ can be used to characterize a reconstructed surface.
The corresponding notation is called matrix notation.

1.2.6 Wood Notation

As an alternative to the matrix notation, the more transparentWood notation
[1.6] is used in many cases as a labeling scheme for the reconstructed surface
and the occurring superstructure. The first step is the characterization of the
(hkl) crystallographic orientation of the substrate surface (more precisely, the
plane) with the chemical composition S by S(hkl). There is a simple notation
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for the reconstruction-induced superstructures in terms of the ratios of the
lengths of the primitive lattice vectors of the two 2D Bravais lattices under
consideration. Such a surface is characterized by

S(hkl)κ
( |¯̄a1|

|ā1| × |¯̄a2|
|ā2|

)
Rϕ◦. (1.14)

In the notation (1.14), κ is either ‘p’ (for primitive) or ‘c’ (for centered)
according to the way in which the unit cell of the surface Bravais lattice is
defined. When the letter ‘p’ is dropped, the primitive notation is understood
implicitly. The quantity (m×n) = (|¯̄a1|/|ā1|×|¯̄a2|/|ā2|) indicates the ratios of
the magnitudes of the (usually) primitive basis vectors of the surface lattice
and the bulk beneath. One speaks about an (m × n) reconstruction. The
symbol Rϕ◦ includes the possibility of a rotation (R) of the unit cell of the
overlayer by ϕ degrees with respect to the unit cell of the substrate, i.e.,
the angle between ¯̄a1 and ā1. If ϕ is zero, then Rϕ◦ is omitted from (1.14).
Consequently, typical denotations could be

S(hkl)m× n, S(hkl)c(m× n), and S(hkl)(m× n)Rϕ◦. (1.15)

Examples are plotted in Fig. 1.12. For a couple of examples of reconstructions
the relation between the Wood notation (1.14) and the matrix notation (1.13)
is given in Table 1.2 [1.7].

Several additional remarks are necessary. First, sometimes the Wood no-
tation is not unequivocal. The lattice vectors ¯̄a1 = mā1 and ¯̄a2 = nā2 are
not necessarily primitive as originally assumed in the notation (1.14), and in
addition to primitive (p) reconstructed surface lattices, also centered (c) ones

� 
 � 
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Fig. 1.12. Three different types of surface reconstructions. (a) 1×2, (b)
(
√
3×√

3)R30◦, and (c) general case. The Wood notation does not apply in this
case; however the matrix notation does withm11 = 5,m12 = −1,m21 = 2,m22 = 2.
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Table 1.2.Wood and matrix notation of reconstructed surfaces of cubic and hexag-
onal crystals [1.7].

Reconstruction

Ideal surface Wood notation Matrix notation

p(1× 1)=̂1× 1 (1 0
0 1

)

fcc(100), p(2× 1)=̂2× 1 (2 0
0 1

)

bcc(100), p(1× 2)=̂1× 2 (1 0
0 2

)

diamond(100), c(2× 2)=̂(√2× √
2)R45◦ (1 1̄

1 1

)

zinc blende(100) p(2× 2)=̂2× 2 (2 0
0 2

)

(2
√
2× √

2)R45◦ (2 2
1̄ 1

)

c(4× 2) (2 1̄
0 2

)

p(1× 1)=̂1× 1 (1 0
0 1

)

fcc(111), p(2× 1)=̂c(2× 2)=̂2× 1 (2 0
0 1

)

hcp(0001), p(2× 2)=̂2× 2 (2 0
0 2

)

diamond(111), (
√
3× √

3)R30◦ (1 1
1̄ 2

)

zinc blende(111), c(4× 2) (2 1̄
0 2

)

graphite(0001) (
√
7× √

7)R arctan(
√
3/5)

(2 1
1̄ 3

)

p(1× 1)=̂1× 1 (1 0
0 1

)

fcc(110), p(2× 1)=̂2× 1 (2 0
0 1

)

diamond(110), p(1× 2)=̂1× 2 (1 0
0 2

)

zinc blende(110) c(2× 2) (1 1̄
1 1

)

p(1× 1)=̂1× 1 (1 0
0 1

)

bcc(110) p(2× 1)=̂2× 1 (2 0
0 1

)

p(2× 2)=̂2× 2 (2 0
0 2

)

are possible. This can only take place, however, for rectangular surface lat-
tices. Thus, the modified notation applies only to this case, although it is also
sometimes used (formally incorrectly) for square lattices. In the rectangular
case the notation c(n×m) describes a type of reconstruction which is usually
not covered by one of the notations n′ × m′ or (n′′ × m′′)Rϕ◦. For square
reconstructed lattices the c(n ×m) notation is just a simpler description of
a reconstruction of type (n′ ×m′)R45◦. One example is shown in Fig. 1.13.

Second, another problem is related to the fact that one and the same re-
construction may be defined in different ways. The problem is a consequence
of the high point symmetry of the crystal with an ideal surface. If the latter
has a square lattice and one of the two point symmetry groups 4mm or 4,
the directions of the two primitive lattice vectors are symmetrically equiv-
alent. A surface reconstruction which increases the surface unit cell in the
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Fig. 1.13. A surface superstructure with the possible denotations c(2×2) and
(
√
2×√

2)R45◦.

direction of ā1 by a factor n and in the direction of ā2 by a factor m, is
equivalent to an m× n reconstruction. An example is given in Fig. 1.14. An
analogous statement holds for an ideal surface, having a hexagonal lattice
and one of the point groups 6mm, 6, 3m, or 3. In this case, three symmetri-
cally equivalent directions exist (see Fig. 1.14). If there is no physical reason
which makes one of the geometrically different but symmetrically equivalent
reconstructions more likely than another, they will take place simultaneously
in different regions of the surface. As a result domains can be formed of
otherwise identical, but differently oriented, reconstructed unit cells. Due to
the domain structure, the overall translational symmetry of the surface is
destroyed. Structural imperfections of a more local nature occur where the
boundaries of such domains meet. In the case of the Si(111) surface, the 2×1
unit meshes may occur in one, two or all three 〈211〉 directions, depending
on the cleavage conditions [1.8].

Fig. 1.14. Symmetrically equivalent 2×1 reconstructions of square and hexagonal
ideal lattices.
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Fig. 1.15. Two different 2×1 reconstructions of the (111) surface of diamond-
structure crystals. (a) ideal surface; (b) 2×1 reconstructed surface due to chain
formation; and (c) 2×1 reconstructed surface due to an inequivalent buckling of
surface atoms. Dots: nominal first-layer atoms; circles: nominal second-layer atoms.

Third, a certain reconstruction denoted by an expression of the type
(1.14) can be realized by different atomic configurations. This is demonstrated
in Fig. 1.15 for different arrangements of first- and second-layer atoms of a
diamond-like material (111) surface. The easiest way to reconstruct the ideal
surface (Fig. 1.15a) is by buckling the first-layer atoms (Fig. 1.15c). The dan-
gling bonds parallel to [111] become inequivalent. The accompanying different
filling with electrons supports the tendency to an inert surface. However, the
dangling bonds can also be rebonded if they occur at atoms which are first-
nearest neighbors (from the bulk point of view). The surface atoms may be
arranged in the form of chains lying next to each other (see a possible exam-
ple in Fig. 1.15b). All atoms of a chain are coupled together by π-bonds of
parallel dangling orbitals. The generation of dangling bonds at the formerly
second-layer atoms include remarkable changes of the bonding topology be-
neath. The atoms in bulk crystals of the diamond structure are bonded in
sixfold rings. In a π-bonded chain model [1.9], however, fivefold and sevenfold
rings are formed.

Fourth, the Wood notation can also be used for surface overlayer struc-
tures due to adsorbates. A periodic arrangement of adatoms or adsorbed
molecules also gives rise to a superstructure, which can be classified accord-
ing to expression (1.14). However, one usually adds a term −ηA to the Wood
notation. The chemical stoichiometry of the atomic or molecular overlayer
is given by A, and η is the number of adspecies in the overlayer unit cell.
For example, CO adsorbed molecularly on the Ni(100) surface at a fractional
surface coverage of one half forms an overlayer shown by the dots in Fig. 1.13.
According to expression (1.14), in this case the surface denotation becomes
Ni(100)c(2×2)-CO or Ni(100)(

√
2×√

2)R45◦-CO.
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1.2.7 Symmetry Classification

In the commensurate case all the reconstructed surfaces with the underlying
bulk halfspaces possess a translational symmetry characterized by the four
Bravais classes with group elements {ε|R}. The corresponding 2D Bravais
lattice transforms according to a certain planar point group (see Fig. 1.8),
the so-called holohedral point group, with elements {α|0}. The 2D crystal,
the atoms in the surface and the bulk below, transform according to a sub-
group, its point group. The combination of the translational and point group
symmetries gives the space group. There are 17 planar space groups. Lattices
with a corresponding symmetry are shown in Fig. 1.16.

It is evident that each of the 10 point groups of equivalent directions
combined with the corresponding associated lattice gives rise directly to a
so-called symmorphic space group with elements {α|R}. The space groups
p1, p211, p1m1, p2mm, p4, p4mm, p3, p3m1, p6, and p6mm originate in
this manner. Since the point groups of the rectangular crystal system are
each associated with two Bravais lattices, primitive or centered, we find two
further space groups, c1m1 and c2mm. In the case of the point group 3m
there exist two different possibilities of positioning two reflection lines relative
to the hexagonal lattice vectors, either through the vertices of the equilateral
hexagon of the Wigner–Seitz cell as assumed in the case of p3m1, or such
that they bisect its edges. In the latter case one has, as the thirteenth space
group, the group p31m. The point group remains unchanged if in its space
group a glide reflection line is substituted for an ordinary reflection line. One
must therefore examine the 13 space groups already established to determine
whether the substitution of a reflection line m by a glide reflection line g (i.e.,
a reflection in m in conjunction with a translation τ by half of the shortest
lattice vector parallel to m) leads to a new space group. One easily finds
that this is not the case for the hexagonal crystal system. In the quadratic
crystal system it is possible to substitute a system of glide reflection lines for
one but not both of the non-equivalent reflection line systems. This yields
the additional space group p4gm. The remaining space groups p1g1 (from
p1m1) and p2mg, p2gg (from p2mm) occur in 2D crystals with a primitive
rectangular Bravais lattice. They contain elements of the form {α|R+τ} with
τ as a fractional lattice translation. The centered rectangular and oblique
crystal systems do not give rise to additional space groups. Consequently,
four of the 17 2D space groups involve glide reflections, i.e., they are non-
symmorphic groups.

In Table 1.3 we summarize the symmetry classification of 2D crystals.
The international notation is used. Despite the fact that the atomic basis is
extended parallel to the negative surface normal direction, we use a plane
rectangular coordinate system with unit vectors ex, ey. The origin of the co-
ordinate system is positioned on the rotation axis, if one exists. The primitive
basis vectors of the 2D Bravais lattice are ā1, ā2. The second bar indicat-
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Fig. 1.16. The 17 planar space groups represented as parts of lattices satisfying
the symmetries of those space groups. The small dots are at the corners of the unit
cells, or at their midpoints, for reference. One large dot is positioned at an arbitrary
non-symmetrical location within the unit cell, and the other large dots are obtained
from this one by applying all the relevant symmetry operations. After [1.7].
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Table 1.3. Symmetry classification of two-dimensional crystals [1.2, 1.10].

Crystal Bravais Point Space Symmetry

system class group group elements

oblique p-oblique 1 p1 {ε|R}
2 2 p211 {ε|R}, {δ12 |R}
rect- p-rect- m p1m1 {ε|R}, {my|R}
angular angular

2mm

p1g1 {ε|R}, {my|τ +R}, τ = a1
2 ex

2mm p2mm {ε|R}, {δ12 |R}, {my|R}, {mx|R}
p2mg {ε|R}, {δ12 |R}, {mx|τ +R}, {my|τ +R},

τ = a1
2 ex

p2gg {ε|R}, {δ12 |R}, {mx|τ +R}, {my|τ +R},
τ = a1

2 ex + a2
2 ey

c-rect- m c1m1 {ε|R}, {my|R}
angular

2mm c2mm {ε|R}, {mx|R}, {my|R}, {δ12 |R}
square p-square 4 p4 {ε|R}, {δ14 |R}, {δ24 |R}, {δ34 |R}
4mm

4mm p4mm {ε|R}, {δ14 |R}, {δ24 |R}, {δ34 |R}, {mx|R},
{my|R}, {md|R}, {m′

d|R}
p4gm {ε|R}, {δ14 |R}, {δ24 |R}, {δ34 |R},

{mx|τ +R}, {my|τ +R}, {md|R+ τ},
{m′

d|R+ τ}, τ = a
2 (ex + ey)

hexa- p-hexa- 3 p3 {ε|R}, {δ13 |R}, {δ23 |R}
gonal gonal

6mm

3m p3m1 {ε|R}, {δ13 |R}, {δ23 |R}, {mx|R},
{m2|R}, {m′

2|R}
6 p31m {ε|R}, {δ13 |R}, {δ23 |R}, {my|R},

{m1|R}, {m′
1|R}

p6 {ε|R}, {δ16 |R}, {δ26 |R}, {δ36 |R},
{δ46 |R}, {δ56 |R}

6mm p6mm {ε|R}, {δ16 |R}, {δ26 |R}, {δ36 |R},
{δ46 |R}, {δ56 |R}, {mx|R}, {m2|R},
{m′

2|R}, {my|R}, {m1|R}, {m′
1|R}
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Table 1.4. Space groups of ideal low-index surfaces of diamond-, zinc-blende-, and
wurtzite-type crystals.

3D crystal Surface Space groups

structure

First layer First First Infinite

two layers three layers half space

diamond (111) p6mm p3m1 p3m1 p3m1

(110) p2mg p2mg p2mg p2mg

(100) p4mm p2mm p2mm p2mm

zinc blende (111) p6mm p3m1 p3m1 p3m1

(110) p1m1 p1m1 p1m1 p1m1

(100) p4mm p2mm p2mm p2mm

wurtzite (0001) p6mm p3m1 p3m1 p3m1

(101̄1) p2mm p2mm p1m1 p1m1

(112̄0) p2mm p2mm p1m1 p1m1

Space groups of reconstructed low-index surfaces of diamond-type crystals

Surface Model of reconstruction Space groups

First layer First Infinite

two layers half space

(111)2×1 buckling p2mm p1m1 p1m1

π-bonded chain p2mg p1m1 p1m1

π-bonded buckled chain p1m1 p1m1 p1m1

π-bonded molecule p2mm p1m1 p1m1

(100)2×1 symmetric dimer p2mm p2mm p2mm

asymmetric dimer p1m1 p1m1 p1m1

ing the reconstruction is dropped in the following. The corresponding plane
lattice constants are a1 and a2.

The general classification of 2D crystals in Table 1.3 can be used to charac-
terize the symmetry of surfaces of real crystals. Examples are given in Table
1.4. This table indicates the space groups of low-index surfaces of typical
semiconductors crystallizing in diamond, zinc-blende, or wurtzite structures.
Ideal and reconstructed surfaces are considered and the resulting groups are
discussed for different numbers of atomic layers below the uppermost one.
Table 1.4 clearly shows that the resulting space group depends on the crystal
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orientation, the number of atomic layers taken into account, and the model
of reconstruction. That means, the space group of a 2D system depends on
all of the above-mentioned details.

1.3 Reciprocal Space

1.3.1 Direct and Reciprocal Lattices

A two-dimensional solid surface is characterized by a 2D Bravais lattice (cf.
Table 1.3) with primitive basis vectors ā1 and a2. We use the vectors with
only one bar independent of whether or not a reconstruction is present. In
terms of a rectangular planar Cartesian coordinate system with unit vectors
ex and ey, the basis vectors read as

ā1 = A11ex +A12ey,
ā2 = A21ex +A22ey. (1.16)

The determinant det Â of the 2×2 matrix

Â =
(
A11 A12
A21 A22

)
(1.17)

gives the area A of the unit cell of the Bravais lattice. In fact A = n · (ā1×ā2)
= det Â with n as the surface normal.

A corresponding reciprocal lattice in Fourier space is associated with the
Bravais lattice in real space. The reciprocal lattice, as we shall see throughout
the book, is extremely useful and pertinent in all diffraction methods, in
particular in the case of low-energy electron diffraction (LEED). As in three-
dimensional space, the primitive basis vectors b̄1 and b2 of the 2D reciprocal
lattice are defined according to the orthogonality relation

āi · b̄j = 2πδij (i, j = 1, 2). (1.18)

With n as the unit vector normal to the surface, solutions of the relation
(1.18) are

b̄1 = 2π
ā2 × n

|ā1 × ā2| , b̄2 = 2π
n × ā1

|ā1 × ā2| . (1.19)

The lengths of these vectors are |b̄i| = 2π/ [ai sin (ā1, ā2)]. The primitive
basis vectors can be used to construct the reciprocal lattice to a given 2D
network. This is schematically shown in Fig. 1.17. A general translational
vector in reciprocal space is given by

ghk = hb̄1 + kb̄2, (1.20)

where h and k are integers. The set of all vectors ghk gives the reciprocal net.
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Fig. 1.17. Direct lattice (left) and corresponding reciprocal lattice (right). The five
2D Bravais lattices are presented.
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Fig. 1.18. Diffraction of an incident plane wave with wave vector ki. The surface
is represented by the corresponding 2D Bravais lattice. Parallel momentum conser-
vation with any reciprocal lattice vector ghk creates well-defined diffracted beams
(hk).

The reciprocal lattice vectors have a direct physical meaning. In a diffrac-
tion experiment, e.g., LEED, each diffracted beam corresponds to a reciprocal
lattice vector ghk and, in fact, each such beam can be labeled by the values
h and k as the beam (hk). This is indicated schematically in Fig. 1.18. The
angle of emergence of the diffracted beams is determined by the conservation
law of the linear momentum parallel to the surface. The momentum of inci-
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Fig. 1.19. Ewald construction for elastic scattering on a 2D Bravais lattice. A
scattering geometry is considered in which the momentum conservation is fulfilled
with reciprocal lattice vectors gh0 parallel to b̄1.
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Table 1.5. Direct and reciprocal lattices of two-dimensional crystals.

Bravais ā1 , ā2 Unit cell of b̄1 , b̄2 Brillouin

class direct lattice zone

oblique
(a1x, 0)

(a2x, a2y)

� !

�  

� �

� �
2π
a1x
(1,−a2x

a2y
)

2π
a2y
(0, 1)

� !

� �

�
�

�  

p-rectan-
gular

(a1, 0)

(0, a2)

� !

�  

� �

� �

2π
a1
(1, 0)

2π
a2
(0, 1)

�  � �

� !
� �

c-rectan-
gular

(a1
2 ,−a2

2 )

(a1
2 , a2

2 )

�  

� !

� �

�
�

2π
a1
(1,−a1

a2
)

2π
a1
(1, a1

a2
)

�  

� !

��

��

square
(a, 0)

(0, a)

�  

� !

� �

� � 2π
a
(1, 0)

2π
a
(0, 1)

�  � �

� !

� �

hexagonal
(a, 0)

a
2 (1,

√
3)

�  � �

� !
� �

2π
a
(1,− 1√

3
)

2π
a
(0, 2√

3
)

�  

� �

� !

� �
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dent particles is p = �ki, where ki is the wave vector. With ks as the wave
vector of the diffracted particles the momentum conservation reads as

ks|| = ki|| + ghk. (1.21)

After the diffractive scattering the parallel component of the momentum may
be equal to that of the incident particle (e.g. an electron) beam, i.e., ghk = 0.
There is no relation between the components of ks and ki perpendicular
to the surface, because there is no translational symmetry in this direction.
However, the particles studied in a diffraction experiment, e.g., the electrons
in the LEED case, are elastically scattered. One therefore has

|ks| = |ki|. (1.22)

A solution of the two equations (1.21) and (1.22) always exists for given
vectors ki and ghk. This is in contrast to the case of scattering of particles
from bulk crystals with 3D translational symmetry. Coherent scattering can
only occur if ki lies on a Bragg reflection plane. The solution of the above
equations can be readily carried out using the Ewald construction shown in
Fig. 1.19. The points, at which the vertical lines passing through the recipro-
cal lattice points ghk intersect the sphere |ks| = |ki|, determine the directions
in which diffraction maxima occur. There is exactly one maximum for each
reciprocal lattice vector. The reciprocal surface lattice can thus be read from
the diffraction maxima on the LEED registration screen. The relation be-
tween the direct lattice and the reciprocal lattice for the five 2D Bravais nets
is shown explicitly in Fig. 1.17. The direct relationships between the direct
and reciprocal lattices of 2D systems are given in Table 1.5 in terms of a two-
dimensional Cartesian coordinate system defined by the vectors ex and ey.
In more detail, the table relates the primitive basis vectors ā1, ā2 and b̄1, b̄2
to the Cartesian vectors using the lattice constants a1, a2 (or a1 = a2 = a) of
the 2D nets. Moreover, the relationship between the Wigner–Seitz cells of the
direct lattice (i.e., the unit cell) and the reciprocal lattice (i.e., the Brillouin
zone) is presented.

Typical LEED images are presented for rectangular (square) lattices in
Fig. 1.20 and for hexagonal lattices in Fig. 1.21. The bright spots correspond
to the reciprocal lattice of the ideal surface, while the less bright spots are
related to the finer reciprocal lattice of the reconstructed surface. One has
to mention that the construction in Fig. 1.19 is exact only in the limit of
scattering from a true 2D network of atoms. In a real electron diffraction
experiment, however, the primary electrons penetrate several atomic layers
into the solid. Therefore, the mean free path of electrons determines how
the third Laue condition becomes more and more important. This leads to a
modulation of the intensities of the Bragg reflections in comparison with the
case of pure 2D scattering.
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Fig. 1.20. LEED images of six differently prepared GaAs(100) surfaces. After
[1.15]. The surface reconstruction and the electron energy are indicated.

1.3.2 Brillouin Zones

In translationally invariant systems the wave vector k defines a set of ‘good’
quantum numbers for each type of elementary excitation. In the case of an
ordered surface of a crystal, such a wave vector, k̄, is restricted to two di-
mensions, i.e., is parallel to the surface. Within a reduced zone scheme it is
restricted to a 2D Brillouin zone (BZ). The entire 2D reciprocal space can
be covered by the vectors k̄+g, where g is a surface reciprocal lattice vector
(1.20). The surface BZ is defined as the smallest polygon in the 2D reciprocal
space situated symmetrically with respect to a given lattice point (used as
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Fig. 1.21. Sequence of LEED patterns (with almost the same electron energy ≈ 130
eV) for the Si-terminated surface of 6H-SiC(0001). The 1×1 bulk-terminated phase
is stabilized by OH adsorption, whereby the following reconstructed surfaces result
by 800 ◦C annealing of the latter in Si-flux (3×3 phase) followed by annealing at
about 1000 ◦C ((

√
3×√

3)R30◦ phase) and at 1100 ◦C ((6
√
3×6√3)R30◦ phase)

[courtesy of J. Bernhardt, U. Starke and K. Heinz (University of Erlangen)].

coordinate zero) and bounded by points k̄ satisfying the equation

k̄ · g =
1
2
|g|2. (1.23)

The set of points defined by (1.23) gives a straight line at a distance |g|/2
from the zero point which bisects the connection to the next lattice point g
at right angles.

Since there are five different plane Bravais lattices and, hence, five different
reciprocal surface lattices, there are also five different 2D or surface Brillouin
zones. They are shown in Fig. 1.22. Their shapes are the same as those of the
Wigner–Seitz cells of the corresponding direct lattices (cf. Table 1.5), since
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Fig. 1.22. Brillouin zones of the five plane lattices: (a) oblique, (b) p-rectangular,
(c) c-rectangular, (d) square, and (e) hexagonal. Symmetry lines and points are also
shown, and their notations are introduced. The 2D Cartesian coordinate system is
chosen so that the point symmetry operations in Table 1.3 can be directly applied.

the Bravais types of the direct and reciprocal surface lattices always coincide.
In Fig. 1.22 we have labeled some of the high-symmetry points of the Brillouin
zones using letters X̄ and Γ̄ . The bar indicates such points in 2D Brillouin
zones whereas points like X and Γ indicate positions in the corresponding 3D
Brillouin zone of infinite 3D crystals. We follow the convention of denoting
high symmetry points and lines inside the BZ by Greek letters, e.g., Γ̄ and
∆, Λ, Σ. Points and lines on the boundary of the BZ are denoted by Roman
letters, e.g., M̄ and Z. The center of the BZ is always denoted by Γ̄ . Apart
from the hexagonal Bravais system the high-symmetry lines parallel to the
axes of the 2D Cartesian coordinate system are indicated by the Greek letter
∆. In the hexagonal case, Σ or Λ is used to indicate a line from Γ̄ to a corner
point of the hexagon or a midpoint on an edge. The primes on the Greek or
Roman letters are used to allow an indication of different symmetries in cases
where the point group of the 2D crystal is only a subgroup of the holohedral
group of the Bravais lattice.



1.3 Reciprocal Space 37

Unfortunately, the notation in the literature is not consistent. In the origi-
nal papers several modifications are used. Which of the different points should
be indicated by a prime or not, is not exactly fixed. For instance, sometimes
in papers about the cleavage face of zinc-blende crystals or the (110)1×1
surface of group-IV crystals, Γ̄ X̄ is used to indicate the shorter axis in the
BZ, in contrast to Fig. 1.22 where this line is denoted by Γ̄ X̄ ′. There are
also examples where authors use the notation Ȳ instead of X̄ ′ [1.11]. In the
case of the 2×1 reconstructed (111) and (100) surfaces of group-IV materials,
there is a tradition of following the notation of the square lattice. Instead of
X̄ and M̄ , the notation J̄ and K̄ is used [1.12, 1.13]. In the latter case even
J̄ and J̄ ′ are interchanged. Sometimes one finds a paper in which the corner
of the BZ is denoted by S̄ and the midpoint of the edge of the rectangle by
Ȳ [1.14].

1.3.3 Projection of 3D Onto 2D Brillouin Zones

The fact that the 3D wave vector k from the BZ gives a set of ‘good’ quan-
tum numbers for elementary excitations in an infinite crystal has several
consequences for the representation of the energy spectrum of elementary ex-
citations in a crystal with surface. On the one hand, bulk excitations should
also occur in a semi-infinite halfspace with surface. On the other hand, such a
system is only characterized by a 2D translational symmetry. Consequently,
the elementary excitations of the finite system can only be characterized by
wave vectors k̄ from the Brillouin zone belonging to the corresponding 2D
Bravais lattice. In order to use the Bloch-like eigenvalues of a bulk elementary
excitation, the relationship between the eigenvalue of the bulk crystal and the
wave vector has to be altered. To represent all allowed eigenstates, usually
the component k|| of the 3D vector parallel to the surface can be fixed, while
the perpendicular component k⊥ has to be varied. Generally speaking, the
bulk eigenvalue must be assigned to a 2D wave vector k̄ in the surface BZ
instead of a 3D wave vector k in the bulk BZ. For obvious reasons, such a
relationship is called a projection of the Bloch-like eigenvalues of the bulk
crystal, the 3D dispersion relations, onto the surface BZ.

Within an explicit procedure certain bulk directions and points of high
symmetry in the 3D Brillouin zone are projected onto the 2D surface BZ. For
three 3D Bravais lattices and some low-index surfaces the relation is depicted
in Figs. 1.23 – 1.25. In order to illustrate the projection procedure, first the
Brillouin zones under consideration must be specified. The corresponding
bulk BZ is defined by the Bragg reflection planes

k · G =
1
2
|G|2, (1.24)

where G is a certain vector of the reciprocal lattice of the bulk crystal. The
surface BZ may be calculated according to (1.23). The primitive vectors b̄1,
b̄2 of the reciprocal surface lattice needed in deriving this equation follow
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Fig. 1.23. Relation between 2D Brillouin zones of low-index surfaces and the 3D
bulk BZ in the fcc case. After [1.16].

from (1.19) using the primitive vectors ā1, ā2 of the direct surface lattice
considered. Such vectors are given in Table 1.5 for all 2D systems. Second,
the bulk BZ is projected onto the plane of the surface BZ as indicated in
Figs. 1.23 – 1.25. We denote by k|| the component of a wave vector k of the
bulk BZ parallel to the surface. The boundary points of the projected bulk
BZ are located on straight lines determined by the two equations

k|| = k||1b̄1 + k||2b̄2,

k|| · G =
1
2
|G|2. (1.25)
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Fig. 1.24. Relation between 2D Brillouin zones of low-index surfaces and the 3D
bulk BZ in the bcc case. After [1.16].

In general, the projected bulk BZ does not coincide with one surface BZ.
It is usually larger (see e.g. in Fig. 1.26 the example of the (100) surface of
an fcc crystal), and one has to fold back the part of the projected bulk BZ
not contained in the surface BZ onto the latter one. Since these parts of the
projected bulk BZ agree with neighboring 2D Brillouin zones belonging to
reciprocal lattice vectors g(k||), the folding is identical with a displacement
by g(k||). Consequently, all wave vectors k̄ in the surface BZ are given by

k̄ = k|| + g(k||). (1.26)
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Fig. 1.25. Relation between the 2D
Brillouin zone of the (0001) surfaces
and the 3D BZ of a hcp structure.
After [1.16].

In this manner certain regions of the surface BZ are covered two or more
times by projected points of the bulk BZ.

We elucidate the above general considerations, using as an example the
(100) surface of an fcc crystal. The 14 vectors of the reciprocal lattice defining
the bulk BZ according to (1.24) are G = 2π

a (±ex ± ey ± ez) and G =
± 4πa ex,y,z. The primitive vectors of the reciprocal surface lattice are b̄1 =
2π
a (ey − ez) and b̄2 = 2π

a (ey + ez). The four vectors defining the surface BZ
are g = ±b̄1,±b̄2. According to (1.25)

k||1(ey − ez)G + k||2(ey + ez)G =
a

4π
|G|2. (1.27)

If G = 2π
a (ex + ey + ez), for example, is chosen, it follows that

k||2 =
3
4
, (1.28)

and

k||1 + k||2 = 1, (1.29)
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Fig. 1.26. (a) Brillouin zone of a (100) surface (shaded area) together with the
projected bulk BZ of an fcc crystal. Projected critical points of the 3D BZ are
indicated along a [011] direction. (b) Bulk BZ for comparison.

if G = 4π
a ey. For the other vectors of the 3D reciprocal lattice, either similar

relations result or the associated Bragg reflection planes are parallel to the
plane of the surface BZ (and thus do not intersect it). The evaluation of the
relations of type (1.28) and (1.29) results in Fig. 1.26a. One notes that the
trapezoidal areas of the projected fcc BZ lying outside the surface BZ can be
folded over the surface BZ by displacements along one of the lattice vectors
b̄1, −b̄1, b̄2, −b̄2. The little square in the center is part of the Bragg reflection
plane bounding the bulk BZ and associated with a reciprocal lattice vector
G = ± 2πa (1, 0, 0) perpendicular to the surface. The maximum (minimum) of
k⊥(= kx) is thus ± 2πa . Outside the little square, k⊥ = k⊥(k||) varies in a
smaller interval fixed by the 3D BZ. The interval depends on the wave vector
k||.

1.3.4 Symmetry of Points and Lines in Reciprocal Space

The spatial symmetry of a crystal with surface has implications for the possi-
ble degree of degeneracy of elementary excitations with energies �Ωµ(k̄). The
eigenvalues Ωµ(k̄) as a function of the 2D wave vector k̄ give the so-called
dispersion relation for the corresponding elementary excitation. The set of
indices µ labels the remaining quantum numbers. Examples are electron and
hole excitations with Ωµ(k̄) as the surface energy bands and µ as the band
index, surface phonons with dispersion relations Ωµ(k̄) of the vibrational
branches µ, surface plasmons, etc.

The spatial symmetry results in relations between the values Ωµ(k̄) for
different k̄ values. The key for such conclusions are, in analogy to the infi-
nite bulk case, the irreducible representations of the space group of the given
crystal with surface. This is based on the fact that the eigenfunctions be-
longing to a particular energy eigenvalue form a basis set of an irreducible
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Table 1.6. Point groups of the high-symmetry points and lines of the BZ [1.10].
The irreducible part of the BZ is indicated by the hatched region.

a) Oblique lattice

Symmetry point Space group

p1 p211

Γ̄ 1 2

J̄ 1 2

Irreducible
part of BZ

b) p-rectangular lattice

Symmetry point Space group

or line p1m1 p1g1 p2mm p2mg p2gg

Γ̄ m m 2mm 2mm 2mm

∆′∆′′ m m m m m

X̄X̄ ′ m m 2mm 2mm 2mm

Z′ – – m m m

M̄ m m 2mm 2mm 2mm

ZZ′ m m m m m

∆ – – m m m

Irreducible
part of BZ

representation of this group. Such a representation may be characterized by
the star {k̄} of the wave vector k̄ and the irreducible representations of the
small point group of k̄ [1.10].

A small point group is a subgroup of the point group of the crystal. The
point-group elements α̂ of such a subgroup transform k̄ neither into itself nor
into a vector equivalent to k̄ that differs from k̄ only by a reciprocal lattice
vector g. The set of all different and non-equivalent vectors α̂k̄ is called star
of k̄. At all points of the star {k̄} the energy eigenvalues Ωµ(k̄) have the
same value. The small point groups of high-symmetry points and lines in the
BZ are listed in Table 1.6 for the various space groups of Bravais lattices.
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Table 1.6. (continued)

c) c-rectangular lattice

Symmetry point Space group

or line c1m1 c2mm

Γ̄ m 2mm

∆′∆′′ m m

X̄ m 2mm

Z – m

Ȳ ′ – m

Ȳ – m

∆ – m

Irreducible
part of BZ

d) Square lattice

Symmetry point Space group

or line p4 p4mm p4mg

Γ̄ 4 4mm 4mm

∆ – m m

J̄ 2 2mm 2mm

Z – m m

K̄ 4 4mm 4mm

Σ – m m

Irreducible
part of BZ



44 1. Symmetry

Table 1.6. (continued)

e) Hexagonal lattice

Symmetry Space group

points or lines p3 p31m p3m1 p6 p6mm

Γ̄ 3 3m 3m 6 6mm

ΣΣ′ – m – – m

M̄M̄ ′ 3 3m 3 3 3m

ZZ′ – m – – m

K̄K̄′ – m m 2 2mm

ΛΛ′ – – m – m

Irreducible
part of BZ

The irreducible representations of these point groups are given in [1.10] for
the various space groups of a corresponding Bravais lattice. The dimension of
the irreducible representation determines the degeneracy of an eigenvalue at a
given k̄. For the systems under consideration only irreducible representations
with dimensions equal to 1 or 2 will appear.
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