
1. Introduction

1.1 What Are We Talking About?

What kinds of systems are we interested in? Well, first and foremost, we have
in mind computerized and computer embedded systems, mainly those that
are reactive in nature. For these reactive systems, as they are called, the
complexity we have to deal with does not stem from complex computations
or complex data, but from intricate to-and-from interaction — between the
system and its environment and between parts of the system itself.

Interestingly, reactivity is not an exclusive characteristic of man-made
computerized systems. It occurs also in biological systems, which, despite
being a lot smaller than us humans and our homemade artifacts, can also be
a lot more complicated, and it also occurs in economic and social systems,
which are a lot larger than a single human. Being able to fully understand and
analyze these kinds of systems, and possibly to predict their future behavior,
involves the same kind of thinking required for computerized reactive systems.

When people think about reactive systems, their thoughts fall very natu-
rally into the realm of scenarios of behavior. You do not find too many peo-
ple saying things like “Well, the controller of my ATM can be in waiting-for-
user-input mode or in connecting-to-bank-computer mode or in delivering-
money mode; in the first case, here are the possible inputs and the ATM’s
reactions, . . .; in the second case, here is what happens, . . ., etc.”. Rather,
you find them saying things like “If I insert my card, and then press this
button and type in my PIN, then the following shows up on the display, and
by pressing this other button my account balance will show”. In other words,
it has always been a lot more natural to describe and discuss the reactive
behavior of a system by the scenarios it enables rather than by the state-
based reactivity of each of its components. This is particularly true of some
of the early and late stages of the system development process — e.g., during
requirements capture and analysis, and during testing and maintenance —
and is in fact what underlies the early stage use case approach. On the other
hand, it seems that in order to implement the system, as opposed to stat-
ing its required behavior or preparing test suites, state-based modeling is



4 1. Introduction

needed, whereby we must specify for each component the complete array of
possibilities for incoming events and changes and the component’s reactions
to them.

This is, in fact, an interesting and subtle duality. On the one hand, we
have scenario-based behavioral descriptions, which cut across the boundaries
of the components (or objects) of the system, in order to provide coherent and
comprehensive descriptions of scenarios of behavior. A sort of inter-object,
‘one story for all relevant objects’ approach. On the other hand, we have state-
based behavioral descriptions, which remain within the component, or object,
and are based on providing a complete description of the reactivity of each
one. A sort of intra-object, ‘all pieces of stories for one object’ approach.
The former is more intuitive and natural for humans to grasp and is therefore
fitting in the requirements and testing stages. The second approach, however,
has always been the one needed for implementation; after all, implementing
a system requires that each of the components or objects is supplied with its
complete reactivity, so that it can actually run, or execute. You can’t capture
the entire desired behavior of a complex system by a bunch of scenarios. And
even if you could, it wouldn’t be at all clear how you could execute such a
seemingly unrelated collection of behaviors in an orderly fashion. Figure 1.1
visualizes these two approaches.

This duality can also be explained in day-to-day terms. It is like the
difference between describing the game of soccer by specifying the complete
reactivity of each player, of the ball, of the goal’s wooden posts, etc., vs.
specifying the possible scenarios of play that the game supports. As another
example, suppose we wanted to describe the ‘behavior’ of some company
office. It would be a lot more natural to describe the inter-object scenarios,
such as how an employee mails off 50 copies of a document (this could involve
the employee, the secretary, the copy machine, the mail room, etc.), how the
boss arranges a conference call with the project managers, or how information
on vacation days and sick leave is organized and forwarded to the payroll
office. Contrast this with the intra-object style, whereby we would have to
provide complete information on the modes of operation and reactivity of the
boss, the secretary, the employees, the copy machine, the mail room, etc.

We are not claiming that scenario-based behavior is technically superior
in some global sense, only that it is a lot more natural. In fact, now is a good
time to mention that mere isolated scenarios of behavior that the system
can possibly give rise to are far from adequate. In order to get significant
mileage out of scenario-based behavior, we need to be able to attach various
modalities to the scenarios we are specifying. We would like to distinguish
between scenarios that may occur and those that must, between those that
occur spontaneously and those that need some trigger to cause them to occur.



1.1 What Are We Talking About? 5

Fig. 1.1. Inter-object vs. intra-object behavior

We would like to be able to specify multiple scenarios that combine with each
other, or even with themselves, in subtle sequential and/or concurrent ways.
We want generic scenarios that can be instantiated by different objects of
the same class, we want to be able to use variables to store and retrieve
values, and we want means for specifying time. Significantly, we would also
like to be able to specify anti-scenarios, i.e., ones that are forbidden, in the
sense that if they occur there is something very wrong: either something in
the specification is not as we wanted, or else the implementation does not
correctly satisfy the specification.

Obviously, it would also be very nice if we could actually ‘see’ scenario-
based behavior in operation, before (or instead of?) spending lots of time,
energy and money on intra-object state-based modeling that leads to the
implementation. In other words, we could do with an approach to inter-object
behavior that is expressive, natural and executable.

This is what the book is about.



6 1. Introduction

1.2 What Are We Trying to Do?

We propose a powerful setup, within which one can conveniently capture
scenario-based behavior, and then execute it and simulate the system under
development exactly as if it were specified in the conventional state-based
fashion. Our work involves a language, two techniques with detailed under-
lying algorithms, and a tool. The entire approach is made possible by the
language of live sequence charts, or LSCs, which is extended here in a
number of ways, resulting in a highly expressive medium for scenario-based
behavior. The first of our two techniques involves a user-friendly and natu-
ral way to play in scenario-based behavior directly from the system’s GUI
(or some abstract version thereof, such as an object-model diagram), during
which LSCs are generated automatically. The second technique, which we
consider to be the technical highlight of our work, makes it possible to play
out the behavior, that is, to execute the system as constrained by the grand
sum of the scenario-based information. These ideas are supported in full by
our tool — the Play-Engine.

There are essentially two ways to view this book. The first — the more
conservative one — is to view it as offering improvements to the various stages
of accepted life-cycles for system development: a more convenient way to cap-
ture behavioral requirements, the ability to express more powerful scenario-
based behavior, a fully worked-out formalization of use cases, a means for
executing use cases and their instantiations, tools for the dynamic testing of
requirements prior to building the actual system model or implementation, a
highly expressive medium for preparing test suites, and a means for testing
systems by dynamic and run-time comparison of two dual-view executables.

The second way to view our work is less conservative. It calls for consid-
ering the possibility of an alternative way of programming the behavior of a
reactive system, which is totally scenario-based and inter-object in nature.
Basic to this is the idea that LSCs can actually constitute the implementa-
tion of a system, with the play-out algorithms and the Play-Engine being a
sort of ‘universal reactive mechanism’ that executes the LSCs as if they con-
stituted a conventional implementation. If one adopts this view, behavioral
specification of a reactive system would not have to involve any intra-object
modeling (e.g., in languages like statecharts) or code.

This of course is a more outlandish idea, and still requires that a num-
ber of things be assessed and worked out in more detail for it to actually
be feasible in large-scale systems. Mainly, it requires that a large amount of
experience and modeling wisdom be accumulated around this new way of
specifying executable behavior. Still, we see no reason why this ambitious
possibility should not be considered as it is now. Scenario-based behavior is



1.3 What’s in the Book? 7

what people use when they think about their systems, and our work shows
that it is possible to capture a rich spectrum of such behavior conveniently,
and to execute it directly, resulting in a runnable artifact that is as powerful
as an intra-object model. From the point of view of the user, executing such
behavior looks no different from executing any system model. Moreover, it
is hard to underestimate the advantages of having the behavior structured
according to the way the engineers invent and design it and the users compre-
hend it (for example, in the testing, maintenance and modifications stages, in
sharing the specification process with less technically oriented people, etc.).

In any case, the book concentrates on describing and illustrating the ideas
and technicalities themselves, and not on trying to convince the reader of this
or that usage thereof. How, in what role, and to what extent these ideas will
indeed become useful are things that remain to be seen.

1.3 What’s in the Book?

Besides this brief introductory chapter, Part I of the book, the Prelude, con-
tains a chapter providing the background and context for the rest of the
book, followed by a high-level overview of the entire approach, from which
the reader can get a pretty good idea of what we are doing.

Part II, Foundations, describes the underlying basics of the object model,
the LSCs language and the Play-Engine tool.

Parts III, IV and V treat in more detail the constructs of the enriched
language of LSCs, and the way they are played in and played out. Almost
every chapter in these three parts contains a section named “And a Bit
More Formally . . .”, which provides the syntax and operational semantics
for the constructs described in the chapter. As we progress from chapter to
chapter, we use a blue/black type convention to highlight the additions to,
and modifications of, this formal description. (Appendix A contains the fully
accumulated syntax and semantics.)

Part VI describes extensions and enhancements, with chapters on the
innards of the Play-Engine tool, particularly the play-out algorithms, on the
GUI editor we have built to support the construction of application GUIs, on
the smart play-out module, which uses formal verification techniques to drive
parts of the execution, and on future research and development directions.

Part VII contains several technical appendices, one of which is the full
formal definition of the enriched LSCs language.




