
1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Introduction
to
Programming
in C#

Chapter

3

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 29

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

Though this be madness, yet there is method in’t

Hamlet Act 2, Scene 2, Shakespeare

‘Plenty of practice’, he went on repeating, all the time that
Alice was getting him on his feet again, ‘plenty of practice.’

The White Knight, Through the Looking Glass and What
Alice Found There, Lewis Carroll

Aims
The aims of the chapter are:

� to look at a simple example, initially running from a DOS
box or console session and then using Developer Studio;

� to look at simple text I/O;
� to look at simple numeric I/O.

3.1 Introduction
This chapter looks at some simple examples in C#. They have
been chosen because you should already be familiar with the
concepts involved from your experience with other
programming languages.

If you already have a programming background in C, C++ or
Java the syntax of the language will appear very familiar.

If you have a background in the Algol family of languages
(Algol 60, Algol 68, Pascal, Modula 2 and Oberon) or the
Fortran family (Fortran 66, Fortran 77, Fortran 90 and
Fortran 95), the syntax will look a little strange. Don’t worry
as the underlying knowledge you have from one of these
languages can be mapped fairly quickly onto C#.

Most people will be familiar with the following model of
programming:

Essential C# fast30

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 30

Programming in C# 31

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

� write the program using an editor;
� compile the source using a compiler;
� link the output from the compiler to produce an executable;
� run the executable.

As most of us know, this is an iterative process. We rarely get
it right first time. We first look at a C# example written using
this approach.

3.2 Hello World Using the Console
The following is the classic hello world program in C#.

using System;
class HelloWorld
{

static int Main()
{

Console.WriteLine("Hello World");
return 0;

}
}

This can be compiled and run at the MS-DOS command
prompt. Click on Start->Programs->Microsoft Visual
Studio .Net->Visual Studio .Net Tools->Visual Studio .Net
command prompt

Type in the program using Notepad and save it with the
name helloworld.cs. Then type:

csc helloworld.cs

This will compile the program, if there are no errors, and
generate a file called helloworld.exe. To run the program,
type:

helloworld

C# is case-sensitive so ensure that you spell things correctly.
We will look at each line of the program in turn.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 31

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

3.2.1 using System;
This is a directive that makes available the classes that make
up the .NET Framework class library. One of the classes in
this namespace is the Console class. This class provides
communication within a DOS box or command line session.

3.2.2 class HelloWorld
C# is an object-oriented language. We create a class called
HelloWorld that contains one method, Main.

3.2.3 { and }
Braces are used to organize programs in C#. The outer set of
braces surround the class HelloWorld. The inner set
surround the Main method. We use indentation to highlight
the structure of our C# programs.

3.2.4 static int Main()
This is the starting point for our program. It is a method
within the HelloWorld class with the following character-
istics: it is static (it is not associated with an instance of an
object) and it returns an integer value.

3.2.5 Console.WriteLine("Hello World");
Console.WriteLine is a class within System that displays text
to the screen or console.

Essential C# fast32

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 32

3.2.6 return 0;
It is a tradition within the C family of languages to return a
value of zero when things work.

3.2.7 ;
The semicolon is a statement terminator.

3.3 Hello World Using Developer
Studio

This example takes you through programming in C# using
Developer Studio. The same example is used, as the emphasis
is on getting familiar with Developer Studio.

There are screenshots taking you through all of the steps.
These are from a Windows XP Professional system. There
will be slight variations with other versions of Windows.

3.3.1 Starting Developer Studio
From Windows, click on Start->Microsoft Visual Studio
.Net->Microsoft Visual Studio .Net

Programming in C# 33

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 33

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

This should bring up a screen similar to the one below.

Essential C# fast34

Figure 3.1 Starting Developer Studio.

Figure 3.2 The Developer Studio opening screen.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 34

3.3.2 Creating a New Project
Click on File->New->Project.

This should bring up a screen similar to the one below.

Programming in C# 35

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.3 Creating a new project.

Figure 3.4 Developer Studio new project screen.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 35

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

The key features are the type of project, the template, the
project name and the project location.

3.3.3 Creating an Empty Project
Select the Empty Project template.

This should bring up a screen similar to the following.

Essential C# fast36

Figure 3.5 Creating an empty project.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 36

3.3.4 Adding an Existing Item
Click on Project->Add Existing Item:

Programming in C# 37

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.6 Project start page.

Figure 3.7 Selecting the add existing item option.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 37

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

This should bring up a screen similar to the following.

Copy your existing “Hello world” C# program into the
project directory. You should end up with a screen similar to
the one below:

Essential C# fast38

Figure 3.8 Selecting a file.

Figure 3.9 Including the “Hello world” program.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 38

3.3.5 Building the Project
Now click on Build->Build project.

Programming in C# 39

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.10 Building the project.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 39

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

You should end up with a screen similar to the following,
with an output window at the bottom.

This output window contains the compilation and build
messages. In this case it tells us that the build was successful.

3.3.6 Running the Project
Now click on Debug->Start:

Essential C# fast40

Figure 3.11 A successful build.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 40

This should bring up the following DOS window (console
session):

Pressing the return key should bring us back to Developer
Studio.

Programming in C# 41

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.12 Running the project.

Figure 3.13 The DOS window.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 41

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

Essential C# fast42

3.3.7 Editing the Project
If the following screen does not appear automatically, click
on the C# source file in the Solution Explorer window. The
key feature is the C# source highlighting.

3.4 Console Application
In the next example, we let the Developer Studio environ-
ment create a skeleton C# program (a console application).
Create a new project, but this time select the Console
Application template. This is the skeleton C# source file
created:

namespace ch02200
{

using System;
/// <summary>
/// Summary description for Class1.

Figure 3.14 Editing the project.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 42

Programming in C# 43

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

/// </summary>
public class Class1
{

public Class1()
{

//
// TODO: Add Constructor Logic here
//

}
public static int Main(string[] args)
{

//
// TODO: Add code to start application here
//
return 0;

}
}

}

Where it says

// TODO: Add code to start application here

we need to add the following line:

System.Console.WriteLine("Hello World");

We can then build and run the program. A screen opens, the
text appears and then it closes. Now open a DOS prompt and
go to the project directory. In my case this is:

c:\document\csharp\helloworld

Type:

dir /s /p

and look in the bin/debug directory. You can now run the
program from the DOS prompt by typing:

helloworld

We will now look at two more examples from the DOS
prompt, rather than within the Developer Studio environ-
ment.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 43

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

Essential C# fast44

3.5 Simple Text I/O
This example reads and writes a line of text.

using System;
class c0302
{

static int Main()
{
string line;
Console.WriteLine(" Type in a line ");
line=Console.ReadLine();
Console.WriteLine(line);
return 0;

}
}

Compile and run the program. It will read in a complete line
of text and then echo it back to the screen. line is a variable
of type string, which is one of the built-in C# data types.

line=Console.ReadLine();

In an object-oriented programming language, we use a
method (ReadLine) to access the data we want and assign it
to a variable (line). We will look at strings in more depth in
a later chapter.

3.6 Simple Numeric I/O
This example reads in three numbers and prints out their
sum.

using System;
class c0303
{

static int Main()
{
float [] x = new float [3];

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 44

Programming in C# 45

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

float sum=(float)0;
string line;
Console.Write(" Type in three numbers");
Console.WriteLine(", one per line");
for (int i=0;i<x.Length;i++)
{

line=System.Console.ReadLine();
x[i]=(float)double.Parse(line);
sum+=x[i];

}
Console.WriteLine(" sum is {0:F} ",sum);
return 0;

}
}

Let us look at each line in turn.

float [] x = new float [3];

This declares the variable x to be an array of type float (a
single-precision data type in C#). As we are working with an
object-oriented language we need to create the array object
explicitly using new. The array can hold three floats.

float sum=(float)0;

This declares sum to be a variable of type float and gives it
an initial value of zero. By default, numbers in C# are of type
double. We need to explicitly cast from one data type to
another as C# is a strongly-typed language.

string line;

This declares line to be a string variable, which we will use
to interact with the DOS window.

Console.Write(" Type in three numbers");
Console.WriteLine(", one per line");

This prints a simple text message to indicate what the user
should type.

for (int i=0;i<x.Length;i++)

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 45

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

Essential C# fast46

This is a simple for-loop in C#. The integer variable i only
exists within the scope of the for-loop. Arrays in C# start at
0, i.e. for an array of size three the index goes from 0 to 2. As
arrays are objects in C# they have a size associated with them
and we access their size using the Length property. This
prevents one of the most common programming errors in C
and C++ of going outside the array.

{

We use the braces to enable the for loop to execute multiple
statements.

line=System.Console.ReadLine();

This reads one number at a time, as text, into the line vari-
able.

x[i]=(float)double.Parse(line);

This statement parses line, extracts the number and
converts from double precision to single precision.

sum+=x[i];

This increments sum by the value of x[i] (it is equivalent to
sum=sum + x[i]). We will look at expressions in C# in much
more detail in a later chapter.

}

This brace ends the loop.

Console.WriteLine(" sum is {0:F} ",sum);

This writes out the value of sum and formats it as a floating
point number. We will look at formatting in more depth in a
later chapter.

return 0;

This ends the program.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 46

3.7 Online Documentation
Whilst you can access the online help and documentation
from within the Developer Studio environment I’ve found it
more useful to do this using the separate access mechanism
provided by Microsoft. The following screenshot shows how
to do this:

Programming in C# 47

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.15 Accessing the online documentation.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 47

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

The following screen shot shows the opening screen.

The key points are the mode in which the screen comes up
(Contents or Index mode) and the details of how the infor-
mation is filtered.

The following screenshot shows what is available under the
Help menu. The key features are the first two options,
Contents mode and Index mode.

Essential C# fast48

Figure 3.16 The online documentation opening screen.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 48

3.7.1 Contents Mode
In this case, we are in Contents mode, filtered by Visual C#
and Related.

Click on Visual C# and related material to see the other
filtering options:

Programming in C# 49

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.17 The Help menu.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 49

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

Leave Visual C# and related material as the filter. The next
thing to do is expand the details. Click on the + sign to the
left of the first entry,Visual Studio .Net. This should bring up
a screen similar to the following.

Essential C# fast50

Figure 3.18 The filtering options.

Figure 3.19 The detailed contents list.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 50

Next click on Visual Basic and Visual C#.

This should bring up a screen similar to the following.

Programming in C# 51

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

Figure 3.20 Visual Basic and Visual C# contents.

Figure 3.21 The Visual Basic and Visual C# help introduction.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 51

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40

Experiment with expanding and contracting the details to
see what is available. Microsoft provides a lot of material and
it will pay dividends to get familiar with what is in the online
help. It would not have been possible to write the examples
in this book without reference to this material.

3.7.2 Compiler Error Messages
If you get a compiler error message you can get quite a lot
of additional information about what might be the problem.
Put the help system into Index mode and type in the com-
piler error message number.

The following screen shot illustrates the additional infor-
mation provided, over the rather terse one line compiler
error message. There is also a sample program that will
generate this error message.

Essential C# fast52

Figure 3.22 Compiler error CS0022.

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 52

3.8 Key Concepts of C#
C# has a similar syntax to the C, C++ and Java family of
languages.

C# is object-oriented.

C# programs are organized using classes.

C# program execution starts with the Main method.

C# is a strongly-typed language and casting is required to
convert between types.

3.9 Summary
The examples in this chapter were chosen to highlight some
of the key concepts of C#. Compile and run them to gain
familiarity with C# and the development environment.

Programming in C# 53

1111
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
4011111

3613/01-03 PT REVISE/gk 14/2/03 10:11 am Page 53

