

Java Persistence for
Relational Databases

RICHARD SPERKO

0716ch00cmp3.fm Page i Wednesday, May 28, 2003 12:55 PM

Java Persistence for Relational Databases
Copyright ©2003 by Richard Sperko

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-071-6

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Robert Castaneda

Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft, Julian
Skinner, Martin Streicher, Jim Sumser, Karen Watterson, Gavin Wright, John Zukowski

Assistant Publisher: Grace Wong

Project Manager: Tracy Brown Collins

Copy Editor: Ami Knox

Compositor: Argosy Publishing

Indexer: Kevin Broccoli

Proofreader: Lori Bring

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email

orders@springer-ny.com

, or visit

http://www.springer-ny.com

. Outside the United States, fax +49 6221 345229, email

orders@springer.de

, or visit

http://www.springer.de

.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email

info@apress.com

, or visit

http://www.apress.com

.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at

http://www.apress.com

 in the Downloads
section.

0716ch00cmp3.fm Page ii Wednesday, May 28, 2003 12:55 PM

191

CHAPTER 10

Persistence with Java
Data Objects (JDO)

BUT

THE

BASIN

OF

THE

 M

ISSISSIPPI

 is the BODY OF THE NATION. All the other parts
are but members, important in themselves, yet more important in their relations
to this. So, too, with how Java Data Objects (JDO) relates to our applications. The
goal in software development is to write a piece of software to solve some problem.
The tools are primarily important in relation to that solution. JDO is not meant to
be the focus, but a transparent, helping framework.

Java Data Objects is Sun’s answer to write once, store anywhere. The idea is to
remove the need for any type of data storage knowledge and allow Java developers
to store their data in any relational database, object database, or file-based
storage without having to know any of the underlying details. This is actually very
similar to the goals of the Object Data Management Group (ODMG) discussed in
Chapter 9.

There has been much cross-pollination of ideas between the ODMG and
the JDO design team. In fact, the ODMG’s Java binding was submitted as a basis for
JDO. They both provide transparent persistence, object querying, and extents.
Even with these similarities, there are still many differences.

You may wonder why there is a need for yet another standard with JDBC for
hand-built persistence and ODMG for transparent persistence. The primary
reason given by Sun is a need for simplification. There are many parts of the
ODMG specification that are not necessary for developers who want to focus
exclusively on writing software in the Java language.

A second reason for another specification is because the ODMG has had some
trouble getting consistent and complete implementations. Many products claim
ODMG compliance while only providing a part of the specification. Creating the
JDO specification allows Sun to define what should be available for a product to be
compliant.

Because of the similarity between ODMG and JDO, many of the Java products
that are ODMG compliant were first to become JDO compliant. This applies both
to commercial and open source products.

The goal of this chapter is not to be a definitive guide to JDO. This chapter
is intended to introduce JDO in a way that should help people to get up and

0716ch10cmp1.fm Page 191 Wednesday, May 7, 2003 10:29 AM

Chapter 10

192

running in a basic way very fast. For in-depth coverage, I suggest getting

Using and
Understanding Java Data Objects

 by David Ezzio (Apress. ISBN: 1-59059-043-0), or
even reading the specification from Sun, which can be found at

http://java.sun.com/products/jdo

.

What Is a JDO Implementation?

There are three conceptual parts to any JDO implementation, much like a JDBC
implementation. There is Sun’s JDO API, the classes that implement that API, and
the specification that spells out how the implementation should act. The API is
freely available from Sun, but has very little value without an implementation
behind it.

Like they do with all of their Java APIs, Sun makes available enough interfaces
and classes that developers can count on how they will use the implementation.
Developers can download the JDO API and write software that uses JDO without
any JDO implementation behind it; they will not be able to test it, but they can
write it. One way that Sun made this easier is by moving all implementation-
specific configuration information into a property file that is loaded at runtime.

So unlike in JDBC where you need to write the code that pulls the driver name
from a configuration file and to either have a call to

Class.forName

 or explicitly ref-
erence the driver class, in JDO you specify the driver class in the properties file,
which is easily loaded and passed into JDO. This wonderful feature also allows
code to easily move from one implementation to another, hopefully without any
recompiling.

While it is true that Sun does not freely distribute a commercially usable JDO
implementation, they do make available a Reference Implementation. The Ref-
erence Implementation is a way for Sun to prove that the specification is viable.
The Reference Implementation is file based: Instead of using a relational database,
it uses the file system for storage and the file system context for Java Naming and
Directory Interface (JNDI). The code in this chapter was written using Sun’s Ref-
erence Implementation.

While there are many interfaces and classes in the JDO API, the primary parts
consist of

PersistenceManager

,

Query

, and

Transaction

. Most JDO work will be done
with these interfaces. In the next section I will discuss how these classes relate.

Overview of the JDO Architecture

I said before that JDO consists primarily of a few important interfaces. Let’s talk
about what those are. Figure 10-1 shows the basic players in using JDO. The

JDOHelper

 class is used to gain a reference to an implementing instance of the

PersistenceManagerFactory

. The persistence manager factory is used to obtain an
instance of a

PersistenceManager

. It is from the persistence manager that you will

0716ch10cmp1.fm Page 192 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

193

perform most of your work. Specifically, you will use the persistence manager to
obtain references to

Transactions

, which you need for persisting and removing
objects, and

Queries

 that you use for finding objects.

Figure 10-1. The main interfaces and classes of JDO

Of the objects shown, only the

JDOHelper

 is an actual class. All others are inter-
faces. Each of those classes would be implemented by the underlying JDO
implementation. It is for this reason that JDO helper is your starting point in
working with JDO.

How JDO Works

In general, Sun has left the specifics of how a JDO implementation works to the
JDO providers. Sun does not care how or where the implementers store their data.
There are, however, commitments that any JDO implementation must fulfill.

Source and Byte-Code Enhancing

While a developer can create persistable classes for JDO by hand, I don’t rec-
ommend it. There are many dependencies that would be easy to miss or introduce
bugs into. While it may seem like a violation of Java to “enhance” either a source or
class file, it is actually the best solution that could be arrived at.

The reason that a class needs to be enhanced is because Java does not provide
enough hooks in the language to allow a persistence mechanism to know when
work has been done to the persistable class. In other words, there is no way for a

PersistenceManager Transaction

Query

PersistenceManagerFactoryJDOHelper

0716ch10cmp1.fm Page 193 Wednesday, May 7, 2003 10:29 AM

Chapter 10

194

JDO implementation to know that a value has been changed on an object retrieved
from the data store.

In a handwritten persistence layer, it can be permissible to write data to the
database that has not been modified or to load entire object graphs; these only
work because the developers have complete control over the application and
usage. Developers quickly notice a major performance problem introduced by
loading the entire object graph. When writing a framework, you cannot control
how developers will use it. For this reason you need to know exactly what is going
on in the code.

In turn, the fine-grained control achieved through enhancement gives JDO
the ability to provide complex functionality. It is possible in this way to provide
lazy loading of data. In other words, it is possible to have a reference to an object
that is not wholly loaded from the database.

So Sun decided on recommending class enhancement. There are two types of
enhancement discussed in the specification: one is source code enhancement, the
other is byte-code enhancement. In the first, the Java class’s source code is mod-
ified before it is compiled. In the second, the post-compiled class file is modified.

The second method has a few benefits, such as the version-controlled source
does not contain any non–developer-added code. Finally, a compiled then
enhanced class will still contain valid debug information (provided one isn’t trying
to debug code the implementation added to the class). This is because the debug
information is placed in the class file on the first compile and is not touched by the
enhancement.

One aspect that the specification dictates is a binary compatibility; a class that
is enhanced by the Reference Implementation must be usable by all compliant
JDO implementations. Classes enhanced by any JDO-compliant enhancer must
be usable by any other JDO-compliant implementation. This feature allows you to
move enhanced JAR files and compiled classes from one implementation to
another.

A class enhanced with one implementation’s enhancer should work with
another implementation. Since you can use any enhancer with any implemen-
tation, it is the implementation-specific features that separate the enhancers such
as caching or anything else they use to differentiate themselves.

Be careful when using any implementation-specific features; this is the candy
that gets organizations hooked on one specific vendor. Many times it seems
prudent to use the features, but when the vendor raises its prices, changes its
licensing fees, or goes out of business completely, it can be a very costly venture to
refactor all your code to another implementation that does not have the same
features.

0716ch10cmp1.fm Page 194 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

195

JDO Transactions and What Happens After the Rollback

Transactions in JDO are similar to all the other transactions we have discussed in
this book. They conform to the ACID properties. The JDO

Transaction

 interface has

begin

,

rollback

, and

commit

 methods. There isn’t much mystery in how these work.
Before modifying an object that is contained within persistent storage, the code
needs to begin a transaction. When the work is done committing, the transaction
will write the modified data to the data store.

Besides these expected functions, there are some additional helpful features
of JDO transactions. One feature is the ability to tell the implementation to restore
values to their original state after a commit or rollback. This gives developers the
freedom to modify and work with objects knowing that if there is a problem, not
only will the data store not be left in an instable state, but neither will the object
being worked on.

One aspect of transactions in JDO that may not be immediately apparent is
the fact that a persistence manager is tied to a single transaction at a time. This
gives you the ability to easily access the current transaction from the persistence
manager.

Querying with JDOQL

Stored objects are of little value without a way of querying, kind of like write-only
memory. JDO has a very nice query mechanism. Essentially, querying in JDO relies
on yet another query language, this one called JDOQL. Fortunately, it is a very
simple language that is object based, similar to OQL.

Unlike OQL and SQL, JDOQL is a combination of objects, method calls, and
filter strings. The entire query process is composed of creating a specific

Query

object, setting attributes of the query, and then executing the query and retrieving
the results.

Queries are created from the persistence manager by making calls to the

newQuery

 method. The idea of this method is to specify what class the query applies
to. Optionally, in creating the query you can specify a list of objects that can be part
of the results and/or indicate a filter that each part of the result must match.

Complex queries can contain parameters, variables, and filtering all specified
through methods. Parameters can be specified to the query through calls to

declareParameters

. Variables are specified through

declareVariables

. Result
ordering is specified through

setOrdering

.
The filtering language is very simple object and boolean based. This means

that filtering is based on matching object attributes, either an object’s attribute
matches the filter or it does not. So to filter on employee information you create

0716ch10cmp1.fm Page 195 Wednesday, May 7, 2003 10:29 AM

Chapter 10

196

the query with an

Employee

 class. Then filter based on employees’ attributes. The
code for this can be as simple as that in Listing 10-1.

Listing 10-1. Employee Query Example

Query query = persistenceManager.newQuery(Employee.class, "firstName==\"John\"");

This query will return all employees whose first name is “John”. The query
itself will not be run until the

execute

 method is called. At that time an unmodi-
fiable collection will be returned containing all employees with the first name of
John. By making the collection unmodifiable, Sun prevents confusion between the
collection and the data store. Otherwise developers might believe they are adding
objects to the data store if they could add the object to the collection.

Notice that the filter uses JavaBean property names very much like those used
in OQL. You don’t need to specify

getFirstName

, you simply use the attribute name
“firstName”. JDOQL also supports nested properties. You could use something like

address.zipCode.firstFive == "22333"

 to find all employees in the 22333 zip code.

Getting All Instances in Extents

An extent is the way to obtain a reference to all instances of classes within the data
store. The extent facility is different from a query in the fact that there is no ability
to filter within the extent. The actual interface returned from the extent is that of a

java.util.Iterator

, which makes it very easy to run through the contents.
Often it is desirable to retrieve all instances of a class and its subclasses. An

extent can optionally contain all instances of subclasses of the specified class.
Whether to include subclasses is specified by the second argument, which is a
boolean.

An extent can be extremely large. Once again, depending on the object graph,
it could be prohibitively large to load all instances of a class. For this reason, many
implementations support loading

hollow objects

. This refers to code that can have
a reference to an object, but none of its data has been retrieved from the database.
When data for the hollow object is accessed for the first time, it is loaded from the
database.

JDO Class Restrictions and Requirements

There are very few restrictions placed on classes that can be persisted by JDO.
Some of the restrictions are helped by JDO enhancers. Other restrictions you
simply need to be aware of such as inheritance and attribute types.

0716ch10cmp1.fm Page 196 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

197

For inheritance, persistence classes can inherit from nonpersistent classes.
Nonpersistent classes can inherit from persistent classes. Persistent classes can
inherit from persistent classes. However, persistent classes cannot inherit from
natively implemented classes, e.g.,

java.net.Socket

 and

java.lang.Thread

.
That was a mouthful. Let’s walk through that one more time. If you have a non-

persistent class named

Person

, you can create a persistent class named

Employee

that extends it. You can create a second persistent class named

Manager

 that
extends

Employee

. You cannot, however, create a subclass of

java.lang.Thread

 and
persist it.

Any fields in a nonpersistent superclass cannot be persisted, which means
that any attributes of nonpersistent class

Person

 cannot be saved when you save an

Employee

 object.
All classes in the hierarchy must use the same JDO identity type. So your

Employee

 and

Manager

 class must both use the same identity type. This is important
for supporting extents.

Arrays are a concern when it comes to JDO. Arrays cannot be subclassed, so no
specialized tracking class can be implemented. It is impossible to create a spe-
cialized array wrapper that would notice and track changes to an array. Therefore,
a developer must use

JDOHelper

’s

makeDirty

 method to indicate that an array’s
values have changed.

Different Types of JDO Identity

If two objects represent the same data in the JDO repository, they are said to share
the same JDO identity. This is different from Java identity exposed through the
“==” operator or the

equals

 method. While JDO uniqueness is not dependent on
these Java methods of comparison, if the same persistence manager is used, these
tests can be true.

It is very important to maintain object uniqueness with JDO—this is how you
can maintain data integrity. If two objects could have the same identity, they could
end up having different state or data. The question would then arise as to which
one would be considered the definitive source of data for the data store.

There are three types of identity in JDO: application, data store, and nondu-
rable.

Application identity

 is analogous to a primary key. It is maintained by the
application and often required by the data store. A

data store identity

 is main-
tained between JDO and the data store; the application does not know or care
about it.

Nondurable identity

 is intended for an implementation to track objects
within the JVM.

0716ch10cmp1.fm Page 197 Wednesday, May 7, 2003 10:29 AM

Chapter 10

198

JDO XML Metadata

One of the requirements of the JDO specification is that a persistable object must
have a metadata file associated with it. JDO’s metadata files are XML files with a
.jdo extension. The purpose of the file is to tell the enhancer and implementation
what objects to persist and how.

If only one class is defined in the metadata file, then the filename should be
the same as the class but with the .jdo extension. If multiple classes are defined
in the file, then the metadata file should have the name of the shared package. A
metadata file for

com.apress.javapersist.bo.Employee

 could be named
Employee.jdo, bo.jdo, javapersist.jdo, apress.jdo, or com.jdo. The enhancer will
look for the metadata file in that order.

The contents of the metadata files are very simple, containing only a few
tags. The structure of the file is as follows:

•

XML declaration:

 Defines the file as an XML file.

•

DTD:

 Indicates the Document Type Definition, which describes how the
document needs to be put together.

•

jdo tag:

 Starts the definition of the metadata. Can only contain one or more
package tags and any number of vendor extension tags.

•

package tag:

 Specifies a wrapper for the classes you will define. Can contain
one or more class tags and any number of vendor extension tags.

•

class tag:

 Defines a class that can be persisted. Can contain any number of
field and vendor extension tags.

•

field tag:

 Defines a field that can be persisted or ignored. Can contain one
collection, map, or array and any number of vendor extensions.

•

collection tag:

 Describes the collection. Can contain any number of vendor
extension tags.

•

map tag:

 Describes a map. Can contain any number of vendor
extension tags.

•

array tag:

 Describes an array. Can contain any number of vendor
extension tags.

•

extension tag:

 Used for nonstandard JDO functionality or to convey infor-
mation to the underlying implementation. Basically it contains the vendor
name and a key-value pair.

0716ch10cmp1.fm Page 198 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

199

Listing 10-2 contains a simple example of a metadata file. The file is for an

Employee class. Notice that only one attribute is listed; all other attributes are by
default persisted if they are not Java transient, static, or final.

Listing 10-2. Employee.jdo

<?xml version="1.0"?>

<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>

 <package name="com.apress.javapersist.chapter10.bo">

 <class name="Employee">

 <field name="age" persistence-modifier="none"></field>

 </class>

 </package>

</jdo>

How You Can Use JDO to Persist Your Objects

For this next section, I will break down a basic JDO application. I will show you
the various parts of the application, explaining them one by one. I have broken the
application down into separate commands. I tried to create one command for
each piece of JDO functionality I will explain.

What I will show you how to create in this section is a simple HR application,
building on the work done in earlier chapters. Essentially, you will see how to
create a command line tool that will store employees and addresses. It can list
stored objects and remove stored objects. It will allow you to associate addresses
with employees. Finally, I will show some examples of using the application.

Example Business Objects

The Employee class for this example is a simple Java business object as seen in
Listing 10-3. The class has a few attributes, but nothing JDO specific. You need to
add a no-argument constructor as I have done here to support the reference
implementation’s enhancer. Some commercial enhancers add this if it is not
present. Keep in mind though that in the final class there will be a public no-args
constructor whether you added it or the enhancer did.

0716ch10cmp1.fm Page 199 Wednesday, May 7, 2003 10:29 AM

Chapter 10

200

Listing 10-3. Employee.java

package com.apress.javapersist.chapter10.bo;

import java.util.*;

public class Employee {

 private long id;

 private String firstName;

 private String lastName;

 private String email;

 private Address address;

 public Employee() {

 }

 public Employee(long id) {

 this.id = id;

 }

 public long getId() {

 return id;

 }

 public String getFirstName() {

 return this.firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return this.lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public String getEmail() {

 return this.email;

 }

0716ch10cmp1.fm Page 200 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

201

 public void setEmail(String email) {

 this.email = email;

 }

 public Address getAddressea() {

 return address;

 }

 public void setAddress(Address address) {

 this.address = address;

 }

 public String toString() {

 return "id: " + id + "; "

 + "firstName: " + firstName + "; "

 + "lastName: " + lastName + "; "

 + "email: " + email + "; "

 + "address: [" + address + "]";

 }

}

You will also need to provide a metadata file for the employee object. The
file in Listing 10-4 is a very simple metadata file. There are no special fields and
no implementation specific enhancements. This file will be read by your
enhancer and needs to be deployed with your class. Notice that even the
application-specific Address attribute is not specified; because it is persistable,
it will be taken care of by the implementation.

Listing 10-4. Employee.jdo

<?xml version="1.0"?>

<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>

 <package name="com.apress.javapersist.chapter10.bo">

 <class name="Employee">

 </class>

 </package>

</jdo>

The Address class in Listing 10-5 for your employees is another simple
business object. The one interesting feature of this class is the ArrayList of resi-
dents. This class actually has a collection-based attribute that you can use for
querying.

0716ch10cmp1.fm Page 201 Wednesday, May 7, 2003 10:29 AM

Chapter 10

202

Listing 10-5. Address.java

package com.apress.javapersist.chapter10.bo;

import java.util.*;

public class Address {

 private long id;

 private String streetLine1;

 private String streetLine2;

 private String city;

 private String state;

 private ArrayList residents = new ArrayList();

 public Address() {}

 public Address(long id) {

 this.id = id;

 }

 public long getId() {

 return id;

 }

 public String getCity() {

 return city;

 }

 public void setCity(String city) {

 this.city = city;

 }

 public String getState() {

 return state;

 }

 public void setState(String state) {

 this.state = state;

 }

0716ch10cmp1.fm Page 202 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

203

 public String getStreetLine1() {

 return streetLine1;

 }

 public void setStreetLine1(String streetLine1) {

 this.streetLine1 = streetLine1;

 }

 public String getStreetLine2() {

 return streetLine2;

 }

 public void setStreetLine2(String streetLine2) {

 this.streetLine2 = streetLine2;

 }

 public Collection getResidents() {

 return residents;

 }

 public void addResident(Employee resident) {

 this.residents.add(resident);

 }

 public String toString() {

 return "id: " + id + "; "

 + "line 1: " + streetLine1 + "; "

 + "line 2: " + streetLine2 + "; "

 + "city: " + city + "; "

 + "state: " + state + "; "

 + "residents: " + residents.size();

 }

}

The metadata file for the Address class in Listing 10-6 is slightly more
interesting than the employee metadata file. This file contains a field that is
a collection. Notice that you need to specify the type of object that will be in the
collection.

0716ch10cmp1.fm Page 203 Wednesday, May 7, 2003 10:29 AM

Chapter 10

204

Listing 10-6. Address.jdo

<?xml version="1.0"?>

<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>

 <package name="com.apress.javapersist.chapter10.bo">

 <class name="Address">

 <field name="residents">

 <collection element-type="Employee"/>

 </field>

 </class>

 </package>

</jdo>

Performing the JDO Work

In this next section, you will see application code that will work on your business
objects. It is in these classes that you will add, list, remove, and modify objects.
Figure 10-2 shows how the various commands relate.

Figure 10-2. Human resources application main classes

All of your JDO commands will need certain functionality that can be
shared—for instance, obtaining a reference to a persistence manager, or finding
objects to work on. In Listing 10-7 you can see a JDOAction class that contains that
functionality. The getPersistenceManager method is used by all subclasses when a
persistence manager is needed.

Manage JDOAction

AddAction ListAction RemoveAction

AssociateActionCreateDatabase

0716ch10cmp1.fm Page 204 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

205

Listing 10-7. JDO Action Is the Superclass of All Your JDO Commands

package com.apress.javapersist.chapter10;

import java.io.IOException;

import java.io.InputStream;

import java.util.Collection;

import java.util.Iterator;

import java.util.Properties;

import javax.jdo.JDOHelper;

import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;

import javax.jdo.Query;

/**

 * @author rsperko

 *

 * This class is the super class of all our JDO commands. This class provides

 * utility methods for all our JDO work. Specifically this is where we would

 * obtain our connection to our persistence manager.

 */

public abstract class JDOAction {

 private static PersistenceManagerFactory factory = null;

 /**

 * Method getPersistenceManager returns a persistence manager object from

 * the class's static persistence manager factory object.

 */

 protected PersistenceManager getPersistenceManager() {

 if (factory == null) {

 Properties props = loadProperties();

 factory = JDOHelper.getPersistenceManagerFactory(props);

 }

 return factory.getPersistenceManager();

 }

 /**

 * Method loadProperties.

 * @return Properties

 */

 protected Properties loadProperties() {

 Properties props = new Properties();

0716ch10cmp1.fm Page 205 Wednesday, May 7, 2003 10:29 AM

Chapter 10

206

 try {

 InputStream in =

 ClassLoader.getSystemResourceAsStream ("jdo.properties");

 props.load (in);

 }

 catch(IOException ioe) {

 ioe.printStackTrace();

 }

 return props;

 }

 /**

 * Method findAll.

 * @param className

 * @param string

 * @return Collection

 */

 protected Iterator findAll(PersistenceManager pm, String className,

 String queryStr) {

 try {

 if("extent".equals(queryStr)) {

 return pm.getExtent(getClass(className), false).iterator();

 }

 else {

 Query query = pm.newQuery(getClass(className), queryStr);

 return ((Collection) query.execute()).iterator();

 }

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 return null;

 }

 /**

 * Method getClass.

 * @param className

 */

 private static Class getClass(String className)

 throws ClassNotFoundException {

 return Class.forName("com.apress.javapersist.chapter10.bo."

 + className);

 }

 /**

0716ch10cmp1.fm Page 206 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

207

 * Method all of our commands will override to do their work.

 */

 public abstract void execute(String typeName, String[] optional);

 /**

 * used by the help message to convey how this action will be used.

 */

 public abstract String exampleString();

}

Particularly note the getPersistenceManager method. This is the method that
all of your subclasses will use to work the JDO implementation. This method loads
the properties file that defines what JDO implementation to use and its configu-
ration data.

The other methods in this class are helper methods. To keep the examples
simpler, the findAll method that will be shared by the list, associate, and remove
commands is in this class. Also, there is a helper method for turning a class base
name into an actual class.

To get a better understanding of how the persistence manager is obtained,
Figure 10-3 shows a sequence diagram of the relevant objects. Notice that there are
two classes involved, the Properties object and the JDOHelper class. The persis-
tence manager factory is an interface obtained from the JDO helper.

Figure 10-3. Obtaining a persistence manager

Now that you have a superclass where you can obtain your persistence
manager, let’s look at the class that can add an object to the JDO repository.
Listing 10-8 shows the AddAction class, which does most of its work in the execute
method. It is here that a transaction is started, an object is persisted, and the trans-
action is committed.

new()

setProperty()

getPersistenceManagerFactory(properties)

getPersistenceManager()

PersistenceManagerFactory PersistenceManagerProperties JDOHelper

0716ch10cmp1.fm Page 207 Wednesday, May 7, 2003 10:29 AM

Chapter 10

208

Listing 10-8. AddAction.java

package com.apress.javapersist.chapter10;

import javax.jdo.PersistenceManager;

import com.apress.javapersist.chapter10.bo.Address;

import com.apress.javapersist.chapter10.bo.Employee;

public class AddAction extends JDOAction {

 /**

 * Add the object

 * @see com.apress.javapersist.chapter10.JDOAction#execute(String, String[])

 */

 public void execute(String typeName, String[] optional) {

 Object obj = buildObject(typeName, optional);

 PersistenceManager pm = getPersistenceManager();

 pm.currentTransaction().begin();

 // Mark the object as persistent

 pm.makePersistent(obj);

 pm.currentTransaction().commit();

 System.out.println("Object stored: " + obj);

 pm.close();

 }

 /**

 * Method buildObject.

 * @param className

 * @param optional

 * @return Object

 */

 private static Object buildObject(String className, String[] optional) {

 Object obj = null;

 if("Employee".equals(className)) {

 Employee emp = new Employee(Long.parseLong(optional[0]));

 emp.setFirstName(optional[1]);

 emp.setLastName(optional[2]);

 emp.setEmail(optional[3]);

 obj = emp;

 }

 else if("Address".equals(className)){

 Address add = new Address(Long.parseLong(optional[0]));

0716ch10cmp1.fm Page 208 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

209

 add.setStreetLine1(optional[1]);

 add.setStreetLine2(optional[2]);

 add.setCity(optional[3]);

 add.setState(optional[4]);

 obj = add;

 }

 return obj;

 }

 /**

 * @see com.apress.javapersist.chapter10.JDOAction#exampleString()

 */

 public String exampleString() {

 return " Manage add Employee id FName LName eMail\n"

 + " Manage add Address id line1 line2 city state";

 }

}

Figure 10-4 illustrates exactly how an object is persisted. Notice how simple it
is to add an object to a JDO data store. All it takes is a call to makePersistent
wrapped in a transaction. If the object is enhanced, it is added and ready to be
managed by JDO.

Figure 10-4. Persisting an object

There is an additional helper method in this class for building actual objects
that will be added. This method is fairly fragile in that it expects a specific number

BusinessObject

new()

currentTransaction()

begin()

makePersistent(BusinessObject)

commit()

close()

PersistenceManager Transaction

0716ch10cmp1.fm Page 209 Wednesday, May 7, 2003 10:29 AM

Chapter 10

210

of arguments in a specific order. It would be a fairly simple exercise to make that
code more robust.

Next you want to see the objects you have stored in your repository. The
ListAction class in Listing 10-9 is very light because most of your querying func-
tionality is in your superclass to help with other actions. If you look back at the
JDOAction class, you see that the findAll method simply calls getExtent or creates
a query and executes it. The ListAction then prints out the contents that are
returned.

Listing 10-9. ListAction.java

package com.apress.javapersist.chapter10;

import java.util.Iterator;

import javax.jdo.PersistenceManager;

public class ListAction extends JDOAction {

 private Object className;

 /**

 * List the objects that match the query

 * @see com.apress.javapersist.chapter10.JDOAction#execute(String, String[])

 */

 public void execute(String typeName, String[] optional) {

 PersistenceManager pm = getPersistenceManager();

 Iterator iter = findAll(pm, typeName, optional[0]);

 // Run through the objects listing each one

 while(iter.hasNext()) {

 System.out.println(iter.next());

 }

 }

 /**

 * Show how to use this action

 * @see com.apress.javapersist.chapter10.JDOAction#exampleString()

 */

 public String exampleString() {

 return " Manage list Employee \"firstName == \\\"LName\\\"\n"

 + " Manage list Employee extent";

 }

}

0716ch10cmp1.fm Page 210 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

211

In Figure 10-5, you can see the how the classes interact to perform the query
itself. A Query object is created from the persistence manager. The query is then
executed and the resulting objects are available to be worked on.

Figure 10-5. Querying for objects

Obviously a management tool should allow removal of employees from the
HR application. Listing 10-10 contains the RemoveAction class. This class queries
the repository using the findAll method in the JDOAction. It then iterates
through the results, removing each from the data store. Removing from the data
store is as simple as calling deletePersistent on an object within a transaction.

Listing 10-10. RemoveAction.java

package com.apress.javapersist.chapter10;

import java.util.Iterator;

import javax.jdo.PersistenceManager;

/**

 * @author rsperko

 *

 * Remove any objects that match the criteria

 */

public class RemoveAction extends JDOAction {

 /**

 * Remove all instances that match the query

 * @see com.apress.javapersist.chapter10.JDOAction#execute(String, String[])

 */

 public void execute(String typeName, String[] optional) {

 PersistenceManager pm = getPersistenceManager();

 Iterator results = findAll(pm, typeName, optional[0]);

BusinessObject

new()

newQuery(BusinessObject.class, ìfilterî)

execute():Collection

PersistenceManager Query BusinessObject

getValue...

0716ch10cmp1.fm Page 211 Wednesday, May 7, 2003 10:29 AM

Chapter 10

212

 pm.currentTransaction().begin();

 // Run through the list of objects deleting each one

 while(results.hasNext())

 pm.deletePersistent(results.next());

 pm.currentTransaction().commit();

 }

 /**

 * Show how to use this action

 * @see com.apress.javapersist.chapter10.JDOAction#exampleString()

 */

 public String exampleString() {

 return " Manage remove Employee \"lastName == \\\"LName\\\"";

 }

}

Finally, I want to illustrate modifying a persistent object. The AssociateAction
class, shown in Listing 10-11, will modify both an employee and an address by
associating one object with the other. For this to work, the class will query the data
store for the objects you want to associate. The execute method will then create a
transaction, associate the objects, and commit the transaction.

Listing 10-11. AssociateAction.java

package com.apress.javapersist.chapter10;

import javax.jdo.PersistenceManager;

import com.apress.javapersist.chapter10.bo.Address;

import com.apress.javapersist.chapter10.bo.Employee;

/**

 * @author rsperko

 *

 * This class is used to associate one object with another.

 */

public class AssociateAction extends JDOAction {

 /**

 * Associate one object with another

 * @see com.apress.javapersist.chapter10.JDOAction#execute(String, String[])

 */

 public void execute(String typeName, String[] optional) {

 if("Employee".equals(typeName)) {

0716ch10cmp1.fm Page 212 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

213

 PersistenceManager pm = getPersistenceManager();

 Employee employee = (Employee) findAll(pm, typeName,

 optional[0]).next();

 Address address = (Address) findAll(pm, optional[1],

 optional[2]).next();

 System.out.println("About to associate: " + employee + " with "

 + address);

 pm.currentTransaction().begin();

 // Actually associate the two classes

 employee.setAddress(address);

 address.addResident(employee);

 pm.currentTransaction().commit();

 }

 }

 /**

 * Show how to use this action

 * @see com.apress.javapersist.chapter10.JDOAction#exampleString()

 */

 public String exampleString() {

 return " Manage assoc Employee \"id==0\" Address \"id==1\"";

 }

}

The beauty of JDO here is that no work needs to be done other than com-
mitting the transaction. If there were an error, the transaction could roll back and
everything would return to its original state.

Using the Sun JDO Reference Implementation

There are a couple aspects of the example management application that are spe-
cific to Sun’s reference implementation. The first is an optional method that
creates the database. This same class could be extended to create databases or ini-
tialize databases for other implementations.

In this case, I will show you how to create the database file. You can see in
Listing 10-12 that this is done by simply adding another property before obtaining
the persistence manager factory. The next step is beginning and committing a
transaction. That is all there is to it.

0716ch10cmp1.fm Page 213 Wednesday, May 7, 2003 10:29 AM

Chapter 10

214

Listing 10-12. CreateDatabaseAction.java

package com.apress.javapersist.chapter10;

import java.util.Properties;

import javax.jdo.JDOHelper;

import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;

import javax.jdo.Transaction;

public class CreateDatabaseAction extends JDOAction {

 /**

 * Method createDatabase will instantiate a new database if needed.

 * @param typeName

 */

 public void execute(String typeName, String[] optional) {

 if("jdori".equals(typeName))

 createJDORIDatabase();

 else

 System.out.println("ERROR: I don't know how to create a "

 + typeName + " database");

 }

 /**

 * Method createDatabase.

 */

 private void createJDORIDatabase() {

 try {

 Properties props = loadProperties();

 props.put("com.sun.jdori.option.ConnectionCreate", "true");

 PersistenceManagerFactory pmf =

 JDOHelper.getPersistenceManagerFactory(props);

 PersistenceManager pm = pmf.getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 tx.begin();

 tx.commit();

 pm.close();

 } catch(Exception e) {

 System.err.println("Exception creating the database");

 System.err.println(e);

 System.exit(-1);

 }

 }

0716ch10cmp1.fm Page 214 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

215

 /**

 * Show how to use this action

 * @see com.apress.javapersist.chapter10.JDOAction#exampleString()

 */

 public String exampleString() {

 return " Manage create jdori";

 }

}

The last Sun Reference Implementation–specific part is the jdo.properties file
that tells the application that it will use that JDO implementation, and this is
shown in Listing 10-13. To change JDO implementations, you could simply replace
this file and away you go. As I mentioned before, replacing or modifying a property
file is a lot nicer than having to recompile the code when making these changes.

Listing 10-13. jdo.properties

javax.jdo.PersistenceManagerFactoryClass=com.sun.jdori.fostore.FOStorePMF

javax.jdo.option.ConnectionURL=fostore:jdoriDB

javax.jdo.option.ConnectionUserName=sa

javax.jdo.option.ConnectionPassword=

Last but not least is the class that will tie it all together. Listing 10-14 contains
the actual Manage class that handles the command line and calls the various
JDOAction subclasses. Looking at the constructor, you see your actions created and
added to a HashMap. The executeAction runs the actions with arguments.

The usage method first displays a list of all the actions in the HashMap. Next it
asks each method to show an example of how it can be used. All of the work gets
delegated to the actions themselves.

Listing 10-14. Manage.java

package com.apress.javapersist.chapter10;

import java.util.HashMap;

import java.util.Iterator;

/**

 * @author rsperko

 *

 * This class is used to interact with any Java Data Objects implementation.

 * In order to change the JDO implementation that is used, modify the

 * "jdo.properties" file.

0716ch10cmp1.fm Page 215 Wednesday, May 7, 2003 10:29 AM

Chapter 10

216

 *

 * Call this class with no arguments to find out how to use it.

 */

public class Manage {

 HashMap actions = new HashMap();

 public Manage() {

 actions.put("create", new CreateDatabaseAction());

 actions.put("list", new ListAction());

 actions.put("add", new AddAction());

 actions.put("remove", new RemoveAction());

 actions.put("assoc", new AssociateAction());

 }

 private void executeAction(String[] args) {

 if(args.length < 2) {

 usage();

 return;

 }

 String actionStr = args[0];

 String typeName = args[1];

 String[] optional = new String[args.length-2];

 System.arraycopy(args, 2, optional, 0, optional.length);

 JDOAction action = (JDOAction) actions.get(actionStr);

 if(action == null) {

 usage();

 return;

 }

 action.execute(typeName, optional);

 }

 public static void main(String[] args) {

 Manage manage = new Manage();

 manage.executeAction(args);

 }

 /**

 * Method usage.

 */

 private void usage() {

 System.out.println("usage:");

0716ch10cmp1.fm Page 216 Wednesday, May 7, 2003 10:29 AM

Persistence with Java Data Objects (JDO)

217

 System.out.println("java com.apress.javapersist.chapter10.Manage <act"

 + "ion> <object type> [arg1] [arg2] [argn]");

 System.out.println(" actions: " + actions.keySet());

 System.out.println();

 System.out.println("Examples:");

 for(Iterator iter = actions.values().iterator(); iter.hasNext();) {

 System.out.println(((JDOAction) iter.next()).exampleString());

 }

 }

}

Summary

Java Data Objects is a Java API from Sun that is intended to allow write once, store
anywhere. Sun went to great lengths to make the standard easy to use and as trans-
parent as possible to developers. Along with the specification, Sun also released a
reference implementation to illustrate how the specification should be
implemented.

JDO consists of an API and an implementation. The primary classes in the
implementation are JDOHelper, PersistenceManagerFactory, PersistenceManager,
Query, and Transaction. Most work will be done in JDO with these classes.

In order to make the framework a success, Sun has proposed adding class or
source enhancing to give the ability to closely manage persistent classes.
Enhancing consists of running a tool against a source file or a compiled class file.
The Java code is modified to allow fine-grained control over how the object is used
and what happens when values are modified.

Sun has also specified that a class that is enhanced with one enhancer should
work with other JDO implementations. This allows some implementations to
completely forgo creating their own enhancers and relying on the enhancer pro-
vided in the reference implementation.

Querying in JDO is done using JDOQL, which is a combination of classes and
strings. It is an object-oriented way to query for objects in a data store. The general
way it works is a class is provided to the query, then filters are applied that limit
what results come back from the query. JDOQL gives a very rich object-oriented
method of querying.

Transactions in JDO are similar to other transactions we have discussed in this
book. They do follow the ACID properties. Further transactions are managed
through the PersistenceManager class.

0716ch10cmp1.fm Page 217 Wednesday, May 7, 2003 10:29 AM

