
PREFACE

Linear Programming 2 continues where Linear Programming 1 left off. We assume
that the reader has an introductory knowledge of linear programming, for example
has read Linear Programming 1: Introduction (or its equivalent) and has knowledge
of linear algebra (reviewed in the appendices in Linear Programming 1). In this
volume, we prove all theorems stated and those that were sketched but not proved
in Linear Programming 1, and we describe various extensions.

Linear Programming 2 is intended to be an advanced graduate text as well as
a reference. Portions of Linear Programming 1 and Linear Programming 2 have
been used in a graduate-level course that we have taught together. The rest of the
discussion here summarizes the contents of this volume.

OUTLINE OF CHAPTERS

Chapter 1 (Geometry): In this chapter we study the geometry and properties
of linear inequality systems and how they are related to the Simplex Method,
which can be described as a movement along the edges of a convex polyhedral
set to obtain a global minimum of the objective function, generate a class
of feasible solutions for which the objective z → −∞, or determine that
the convex polyhedral set is infeasible. The important separating hyperplane
concepts are also discussed and proved.

Chapter 2 (Duality and Theorems of the Alternatives): We provide proofs
for the Weak and Strong Duality Theorems. This is followed by additional the-
orems on duality; that is, the Unboundedness Theorem and the Primal/Dual
Optimality Criteria. The chapter also discusses complementary slackness and
various Theorems of the Alternatives: Gordan’s Theorem, Farkas’s Lemma,
Stiemke’s Theorem, Motzkin’s Transposition Theorem, Ville’s Theorem, and
Tucker’s Strict Complementary Slackness Theorem.

Chapter 3 (Early Interior-Point Methods): In this chapter we trace the early
development of interior-point methods. The earliest known method is that
attributable to von Neumann [1948], followed by Frisch [1957] (only referenced
here), and Dikin [1967]. A theoretical breakthrough was due to Khachian
[1979] who devloped a polynomial-time ellipsoid algorithm (only referenced
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here). This was followed by Karmarkar’s [1984] polynomial-time interior-point
algorithm.

Chapter 4 (Interior-Point Methods): Since the development of Karmarkar’s
[1984] algorithm several new important practical interior-point algorithms
emerged. Among these are the primal logarithmic barrier method, primal-
affine algorithm, dual logarithmic barrier method, dual-affine algorithm, and
the primal-dual algorithm. All these algorithms are described. The optimal
solution obtained by an interior-point method is not necessarily at a vertex;
we describe a technique to make it into a vertex.

Chapter 5 (Degeneracy): When degeneracy occurs, it is possible for the Sim-
plex Algorithm to have an infinite sequence of iterations with no decrease
in the value of z. The chapter illustrates this with examples due to Hoff-
man, Beale, and Kuhn. Then various methods for resolving degeneracy are
presented: Dantzig’s Inductive Methods, Wolfe’s Rule, Bland’s Rule, and Kr-
ishna’s Extra Column Rule. This is followed by a technique that attempts
to avoid degenerate pivot by making use of an extra objective function and
resultant reduced cost calculation.

Chapter 6 (Variants of the Simplex Method): Over the years several vari-
ants of the Simplex Algorithm have been proposed as a way to reduce the
number of iterations. We start by describing an efficient way of determin-
ing an incoming column that yields the maximum improvement per iteration.
Next we describe the Dual-Simplex Method, Parametric Linear Programming,
Self-Dual Parametric Algorithm, Primal-Dual Algorithm, and a Phase I Least-
Squares Algorithm.

Chapter 7 (Transportation Problem and Variations): The Classical Trans-
portation Problem is stated, and various theorems are proved about it. An
example is provided for cycling under degeneracy when the most negative
reduced cost is used to select an incoming column. This is followed by a
discussion of the Transshipment Problem and transportation problems with
bounded partial sums.

Chapter 8 (Network Flow Theory): Theorems are proved about the Maximal-
Flow problem and the Shortest-Route problem.

Chapter 9 (Generalized Upper Bounds): In this chapter we discuss a varia-
tion of the Simplex Algorithm to efficiently solve linear programs that have
upper bounds on subsets of variables such that each variable appears in at
most one subset. Such constraints are called generalized upper bounds.

Chapter 10 (Decomposition): Decomposition is a term to describe breaking a
problem into smaller parts and then using a variant of the Simplex Algo-
rithm to solve the enire problem efficiently. The chapter starts by describing
Wolfe’s Generalized Linear Program (or a linear program with variable coef-
ficients). The Dantzig-Wolfe Decomposition Principle is described for solving
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this class of problems. This is followed by a description of Benders Decomposi-
tion which is the Dantzig-Wolfe Decomposition applied to the dual. Benders
Decomposition is used to solve Stochastic Programs. Next we describe the
application of Dantzig-Wolfe Decomposition to solving of Block-Angular sys-
tems. Then staircase structured problems are described; we show how to
solve such problems using Dantzig-Wolfe Decomposition and Benders Decom-
position. Finally, the possible use of decomposition to solve central planning
problems is described.

Chapter 11 (Stochastic Programming Introduction): Here we introduce the
concept of planning under uncertainty. Simple problems with uncertain de-
mand and uncertain costs respectively are illustrated. This is followed by a
discussion of the convexity property of multi-stage problems.

Chapter 12 (Two-Stage Stohastic Programs): An important class of optimi-
zation problems arise in dynamic systems that describe activities initiated at
time t that have coefficients at time t and time t + 1. Such problems, called
dynamic linear programs, typically have a nonzero submatrix with a staircase
structure. The simplest dynamic linear program has only two stages; this is
discussed in this chapter.

Appendix A (Probability Theory Overview): In this appendix we introduce
some basic concepts and notation of probability theory for use in solving
stochastic linear programs.

LINEAR PROGRAMMING 1.

In a graduate course that we have taught together at Stanford, portions of Linear
Programming 1: Introduction and Linear Programming 2: Theory & Extensions
have been used.
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