
Real World ASP.NET
Best Practices

FARHAN MUHAMMAD AND MATT MILNER

1003fmCMP1.qxd 4/24/03 2:59 PM Page i

Real World ASP.NET Best Practices

Copyright © 2003 by Farhan Muhammad and Matt Milner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-100-3

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Scott Stabbert

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen
Watterson, John Zukowski

Assistant Publisher: Grace Wong

Project Manager: Tracy Brown Collins

Development Editor: Ami Knox

Copy Editor: Kristen Imler

Compositor and Proofreader: Kinetic Publishing Services, LLC

Indexer: Lynn Armstrong

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

1003fmCMP1.qxd 4/24/03 2:59 PM Page ii

11

CHAPTER 2

Cache, Session,

and View State

THIS CHAPTER EXPLAINS the intricacies of the three features available in ASP.NET
for maintaining state. Each of these features provides a unique solution that
comes with its own sets of benefits and problems. Cache, for example, is a very
useful mechanism for storing commonly used information in memory. However,
cache is not built to support server farms and therefore is best used for nonsession-
related information.

Session and view state, on the other hand, are built for session management
and can be used across server farms. This chapter focuses on explaining the
details of each feature and showing its behavior in a variety of scenarios. You
need to understand the capabilities and limitations of each of these features and
devise your own magical potion that contains their best combination.

Be Mindful of the Cache!

Caching is a mechanism for keeping content in memory for later use. It helps
Web applications operate with higher performance by reducing the amount of
work needed to obtain information from its data source, such as a database, Web
service, mathematical computation, and many others. ASP.NET provides us with
a variety of ways for caching information.

The output cache mechanism keeps rendered pages in memory and serves
future requests with the in-memory image of the page. You can customize it and
use it to cache different versions of the same page based on the query string val-
ues, browser cookies, or form variables.

The data cache mechanism provides us with the ability to store any object in
memory and retrieve it at a later time. By using this mechanism, we can access
the data source once and keep the result in the memory to serve future requests
for the same information.

Cache Pros and Cons

Before you go too wild and start putting everything including the kitchen sink in
cache, you need to consider the following benefits and risks.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 11

Chapter 2

12

The benefits include

• A reduced number of round trips to the data source, such as the database
server, keeping the server resources more available for other operations.

• An increase in the number of users supported, due to a faster response
time to each user’s request.

The risks include

• Easily filling a computer’s memory, which is relatively small, if you put
a large amount of data in cache. As the memory gets full, the performance
starts to decline, eventually leading to an unacceptable response time
from the server.

• Problems in a server farm environment, when we cache information in
the server’s memory, where various Web pages for the same user session
may be served by different Web servers.

• No guarantee of faster performance. It all depends on how effectively you
manage objects in memory. We’ll go into more detail on this topic later in
this section.

In general, caching is useful when you have a large amount of relatively sta-
tic information. A prime candidate for caching is product catalog information.
There is little value in using SQL to search the database to retrieve the same list
of products for each user who visits your Web site. It is a waste of database and
network resources (assuming that the database is installed on a separate server
than the Web site). You can easily store information like this in data cache.
However, before you go wild and put your entire product catalog in one large
XML DOM object (or DataSet object), consider this fact: Even though it is easier
to get access to an object stored in memory, it is not necessarily faster to search
that object.

A prime example of this fact is the DataSet object. The ADO.NET enthusiasts
love to glorify this object by focusing on its ability to provide in-memory cache
of the database. They often neglect to tell their innocent listeners about the slow
performance of its search mechanism. We were surprised when we performance-
tested the DataSet search capability and found it to be a much slower alternative
to searching a SQL Server 2000 database by using embedded SQL. Let’s put the
in-memory data caching mechanism to the test. The examples in the following
sections demonstrate various strengths and weaknesses related to this mecha-
nism. The purpose of these exercises is merely to show you the realities of
technologies involved, not to suggest any one method over another.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 12

Cache, Session, and View State

13

NOTE As suggested at the beginning of this chapter, you should use
your best judgment when selecting a data-caching mechanism for
your next ASP.NET-based project.

Performance Testing with Data Caching

Let’s have some fun with caching a DataSet object. In this section, we will create
a simple ASP.NET application that searches a data store that contains file and
directory names. We will call it CacheBuster. This application will be capable of
keeping the in-memory copy of the database and using it to search for required
information. For comparison’s sake, we will also create a mechanism for search-
ing a SQL Server 2000 database by using embedded SQL to retrieve the same
information.

The schema of the table contained in the SQL Server 2000 database is shown
in Table 2-1. It contains roughly 50,000 records. It may seem like a lot of data, but
it is not uncommon for a Web application to process this amount of information.
A successful eCommerce site can easily have more than 50,000 customer
records, order records, SKU records, etc.

Table 2-1. CacheBuster Database Table Schema

TABLE NAME COLUMN NAME DATA TYPE

Files Id Numeric

Files FileName Varchar(255)

Files DirectoryName Varchar(255)

The first thing we’ll do is store the data in cache.

Storing Data in Cache

Use the Page_Load event to check whether the DataSet object is available in
cache or not. If it is not, use embedded SQL and the ADO.NET framework to cre-
ate a new DataSet object and store it in cache. Listing 2-1 shows C# code for
storing data in cache.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 13

Chapter 2

14

Listing 2-1. C# Code for Storing Data in Cache

private void Page_Load(object sender, System.EventArgs e)

{

// If the DataSet object is not in cache, get it

// from the database.

if (Cache["Result"] == null)

{

SqlCommand MyCommand = new SqlCommand();

MyCommand.Connection = new SqlConnection("your connection string");

MyCommand.CommandText = " select * from files ";

SqlDataAdapter MyAdapter = new SqlDataAdapter();

MyAdapter.SelectCommand = MyCommand;

DataSet MyDataSet = new DataSet();

// Retreiving result set from the database and populating

// DataSet with it.

MyCommand.Connection.Open();

MyAdapter.Fill(MyDataSet);

MyConnection.Close();

MyAdapter.SelectCommand.Dispose();

MyAdapter.Dispose();

// Placing the DataSet object in cache.

Cache["Result"] = MyDataSet;

}

}

Let’s look at the user interface for the CacheBuster application, shown in
Figure 2-1. You will see that it contains a text box that receives the name of the
directory you want to search. By using this name, it can find all the files in
that directory by using the in-memory cached DataSet object. Alternatively, it
can also search for all files in the given directory by running a SQL statement
on a SQL Server database.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 14

Cache, Session, and View State

15

Figure 2-1. User interface for the CacheBuster application

Searching DataSet

Let’s look at the code that uses the DataSet’s built-in search mechanism. In
Listing 2-2, we use the DataView object to filter rows contained in a DataTable
object. The RowFilter property of the DataView object receives an expression
similar to the WHERE clause of a SQL statement. By using this filter, the
DataView object uses the Select method of the DataTable object to perform
the search.

BEST PRACTICE Why not use the Select method of the DataTable
object directly? The problem with the Select method is that it
returns an array of DataRow objects. It is not easy to bind this array
to a server control because the System.Array class doesn’t implement
the IListSource and IList interfaces. It is better to use the DataView
object to bind a set of DataRow objects to a server control.

On the other hand, if you need to filter a data table for reasons other than
binding to a control, you are better off using DataTable’s Select method directly.
This way, you don’t incur the overhead associated with the DataView object.
Listing 2-2 shows how to search a cached DataSet object.

Listing 2-2. Searching a Cached DataSet Object

private void DirectoryFromCacheButton_Click(object sender, System.EventArgs e)

{

if (Cache["Result"] == null)

return;

1003C02CMP1.qxd 4/23/03 3:27 PM Page 15

Chapter 2

16

DateTime StartTime, EndTime;

TimeSpan Duration;

// Retrieving DataSet object from cache.

DataSet MyDataSet = Cache["Result"] as DataSet;

// Starting to measure time.

StartTime = DateTime.Now;

// Creating DataView object, which will be filtered and bound

// to the data grid control.

DataView MyDataView = new DataView(MyDataSet.Tables[0]);

MyDataView.RowFilter = " DirectoryName = '" + DirectoryTextBox.Text + "' ";

ResultGrid.DataSource = MyDataView;

ResultGrid.DataBind();

// Stopping time measurement.

EndTime = DateTime.Now;

Duration = EndTime - StartTime;

CacheLabel.Text = "Searched cached DataSet object";

// Displaying elapsed time on the screen.

DurationLabel.Text = Duration.Milliseconds.ToString() + " milliseconds ";

}

When we ran CacheBuster and measured the time it took for the DataSet to
filter the desired rows, we got the result shown in Figure 2-2. The test was con-
ducted on an 850 MHz PC with 256 MB of RAM.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 16

Cache, Session, and View State

17

Figure 2-2. The execution time for filtering the DataSet for the desired rows

Searching by Using a SQL Server Database

Now that we know that it takes 380 milliseconds to filter a data table of 50,000
records, let’s perform the same operation by using a SQL Server 2000 database.
Listing 2-1 showed how we used the ADO.NET framework to perform a Select
query on a SQL Server database; Listing 2-3 shows the code to extract data from
the database and to bind it to the data grid control.

Listing 2-3. C# Code for Searching the SQL Server Database

private void DirectoryFromDBButton_Click(object sender, System.EventArgs e)

{

DateTime StartTime, EndTime;

TimeSpan Duration;

DataSet MyDataSet = new DataSet();

SqlDataAdapter MyAdapter = new SqlDataAdapter();

SqlCommand MyCommand = new SqlCommand();

MyCommand.Connection = new SqlConnection("your connection string");

// Specifying SQL SELECT statement using WHERE clause to

// filter the result by matching directory name.

MyCommand.CommandText = " select * from files where DirectoryName = '" +

DirectoryTextBox.Text + "' ";

1003C02CMP1.qxd 4/23/03 3:27 PM Page 17

Chapter 2

18

// Starting to measure time.

StartTime = DateTime.Now;

MyAdapter.SelectCommand = MyCommand;

MyCommand.Connection.Open();

// Filling data set with results return from SQL query.

MyAdapter.Fill(MyDataSet);

ResultGrid.DataSource = MyDataSet.Tables[0].DefaultView;

ResultGrid.DataBind();

// Ending time measurement.

EndTime = DateTime.Now;

MyCommand.Connection.Close();

MyCommand.Dispose();

Duration = EndTime - StartTime;

CacheLabel.Text = "Searched SQL Server 2000 Database";

// Displaying elapsed time on the screen.

DurationLabel.Text = Duration.Milliseconds.ToString() + " milliseconds ";

}

Let’s run CacheBuster again and see the performance measurement. Figure 2-3
shows the execution time that results from performing the SQL Select query
against a SQL Server 2000 database.

You can clearly see that searching the database only took 90 milliseconds,
which is roughly four times faster than using a cached DataSet object. One
would wonder why to bother with memory cache when it doesn’t provide the
performance increase for which one hoped. Before you throw away your data
caching code and revert to writing SQL for all your data needs, let us explain
why caching can still be a better option. We will also show you how to optimize
memory cache for better performance.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 18

Cache, Session, and View State

19

When Good Cache Goes Bad

The performance problems we just saw didn’t occur because we chose to put
a relatively large amount of data in memory. The problems also didn’t occur
because the server ran out of available memory and had to resort to using vir-
tual memory. This performance problem arises because the DataView object
doesn’t seem to be optimized for performance. This problem becomes evident
when you use this object on a data table that contains more than 20,000 records.
Depending on the speed of your hardware, you might even see this problem
with data table that contains fewer records.

Still, you can use a few tricks to get better performance while searching
cached data. One such trick is to restructure the data to make it more frag-
mented.

Restructuring the Data Set

In our next example, we will modify the data set to include another data table
with the name “Directories.” This data table will contain only directory names.
We will also create a relationship between two tables to link matching directory
names. Figure 2-4 shows the data model that shows both the Directories and the
Files tables.

Figure 2-3. The execution time for performing SQL Select statement

1003C02CMP1.qxd 4/23/03 3:27 PM Page 19

Chapter 2

20

Including the Directories data table allows for a quick search for the direc-
tory name. Because this data table contains only unique directory names, it has
much fewer records than the Files table. When a matching directory is found, we
can use the relationship to retrieve all files contained in the directory from the
Files data table.

Listing 2-4. Making the Code Modifications to Show an Increase in Performance

private void Page_Load(object sender, System.EventArgs e)

{

if (Cache["Result"] == null)

{

SqlCommand MyCommand = new SqlCommand();

MyCommand.Connection = new SqlConnection("your connection string");

MyCommand.CommandText = " select * from files ";

SqlDataAdapter MyAdapter = new SqlDataAdapter();

MyAdapter.SelectCommand = MyCommand;

DataSet MyFastDataSet = new DataSet();

MyCommand.Connection.Open();

// Adding Files table to the data set.

MyAdapter.Fill(MyFastDataSet, "Files");

// Selecting unique directory name from the database.

MyCommand.CommandText = " select Distinct DirectoryName from Files ";

// Adding Directories table to the data set.

MyAdapter.Fill(MyFastDataSet, "Directories");

DataColumn ParentColumn =

MyFastDataSet.Tables["Directories"].Columns["DirectoryName"];

DataColumn ChildColumn =

MyFastDataSet.Tables["Files"].Columns["DirectoryName"];

Figure 2-4. Modified data set structure

1003C02CMP1.qxd 4/23/03 3:27 PM Page 20

Cache, Session, and View State

21

// Creating a relationship between Directories and Files

// data tables.

MyFastDataSet.Relations.Add("Directory_File_Relation",

ParentColumn, ChildColumn);

MyConnection.Close();

MyAdapter.SelectCommand.Dispose();

MyAdapter.Dispose();

// Adding data set to cache

Cache["FastResult"] = MyFastDataSet;

}

}

// This method runs when user clicks Directory from Cache button.

private void DirectoryFromCacheButton_Click(object sender, System.EventArgs e)

{

if (Cache["FastResult"] == null)

return;

DateTime StartTime, EndTime;

TimeSpan Duration;

DataSet MyFastDataSet = Cache["FastResult"] as DataSet;

string DirectoryFilter = " DirectoryName = '" + DirectoryTextBox.Text + "' ";

// Starting measuring time.

StartTime = DateTime.Now;

DataView DirectoryView = new

DataView(MyFastDataSet.Tables["Directories"]);

// Filtering Directories table for the raw matching input

// directory name.

DirectoryView.RowFilter = DirectoryFilter;

if (DirectoryView.Count == 0)

return;

// Using the relationship to find all files matching

// directory name.

DataView FilesView =

DirectoryView[0].CreateChildView("Directory_File_Relation");

1003C02CMP1.qxd 4/23/03 3:27 PM Page 21

Chapter 2

22

Figure 2-5. The execution time for searching the data set by using the restructured
data set

ResultGrid.DataSource = FilesView;

ResultGrid.DataBind();

// Stopping time measurement.

EndTime = DateTime.Now;

Duration = EndTime - StartTime;

CacheLabel.Text = "Searched cached Fast DataSet object";

DurationLabel.Text = Duration.Milliseconds.ToString() + " milliseconds ";

}

Just by creating the Directories data table, we are able to reduce the time it
took to search for files by roughly 30 percent, as shown by the snapshot view in
Figure 2-5.

It’s Still Too Slow!

You might not be a happy camper because all our work didn’t provide a dramatic
increase in performance. You might be curious why you should bother caching
your data when you can retrieve it from the SQL Server within 90 milliseconds,
as compared with 380 milliseconds from a regular data set cache or 230 milli-
seconds from the so-called fast data set cache.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 22

Cache, Session, and View State

23

There are, however, the following advantages of using the in-memory
data cache:

• Keeping data in memory keeps your database available for more business-
critical transactions. For example, an eCommerce site processes large
amounts of data to display information to the users. Information such as
product catalog, pricing, promotion, etc. doesn’t change very often.
Keeping the database available for critical business transactions, such as
order processing, order fulfillment, and merchandising, contributes signif-
icantly to running business processes smoothly.

• Keeping data in memory also reduces network traffic on your network.
Most Web sites use a separate server for keeping their database. If you
make a trip to the database for all your data needs, you will generate
a large amount of network traffic.

BEST PRACTICE Keeping less-dynamic and often-used data in
cache keeps the database and network available for other impor-
tant processes. Architecturally, you will have to accept a slight
degradation in performance for higher availability of these critical
components.

Refreshing Cached Data

The ASP.NET framework doesn’t provide an elaborate mechanism for refreshing
cached data if it is changed in the database. You can probably rig something to
make it work. You can perhaps create an assembly and register it as a COM com-
ponent by using the Regasm.exe tool. Once the assembly is registered as a COM
component, you can fire a trigger on the database update to call a stored proce-
dure that can invoke your assembly as a COM object. In your assembly, you can
clear out the cache. The ASP.NET framework, however, does provide an elegant
mechanism for receiving notification if the data is stored in a file instead of in
the database. We would recommend that you consider keeping your cache can-
didate data in an XML file. While you develop designs for your system, you
should determine which kinds of information make good candidates for
caching. There are no hard and fast rules on finding such information. Each
application is unique with its own set of data requirements. The general rule of
thumb is to recognize the information that changes less frequently and needs to
be presented consistently for every user.

You can export data from the database into an XML file fairly easily. All you
have to do is to create a DataSet object by running one or many SQL statements.
The data adapter object provides the flexibility of executing multiple SELECT

1003C02CMP1.qxd 4/23/03 3:27 PM Page 23

Chapter 2

24

commands and populating more than one data table from their result sets. Once
you have filled all needed data tables, make sure to create appropriate relation-
ships. These relationships will help you greatly when you attempt to filter the
information contained in the data set. After creating the DataSet object, you can
simply call its WriteXML method to save its content to an XML file.

Extracting Data from a Database and Saving It into
an XML File

Listing 2-5 shows how to extract data from a database and save it to an XML file.
It starts by creating a DataSet object by using multiple SQL statements and per-
sistence of its content in an XML file.

Listing 2-5. Data Persistence in an XML File

string XmlFileName;

SqlCommand MyCommand = new SqlCommand();

MyCommand.Connection = new SqlConnection("your connection string");

MyCommand.CommandText = " select * from files ";

SqlDataAdapter MyAdapter = new SqlDataAdapter();

MyAdapter.SelectCommand = MyCommand;

DataSet MyFastDataSet = new DataSet();

MyCommand.Connection.Open();

// Filling one table in the data set.

MyAdapter.Fill(MyFastDataSet, "Files");

MyCommand.CommandText = " select Distinct DirectoryName from Files ";

// Filling another table in the data set.

MyAdapter.Fill(MyFastDataSet, "Directories");

DataColumn ParentColumn =

MyFastDataSet.Tables["Directories"].Columns["DirectoryName"];

DataColumn ChildColumn = MyFastDataSet.Tables["Files"].Columns["DirectoryName"];

// Creating relationship between both tables.

MyFastDataSet.Relations.Add("Directory_File_Relation", ParentColumn,

ChildColumn);

1003C02CMP1.qxd 4/23/03 3:27 PM Page 24

Cache, Session, and View State

25

MyConnection.Close();

MyAdapter.SelectCommand.Dispose();

MyAdapter.Dispose();

// Using MapPath method to get physical file path for virtual

// file location.

XmlFileName = Request.MapPath("CacheFile/MyFastDataSet.xml");

// Saving data set content to an XML file. The WriteSchema

// enumeration is used to cause the data set to write schema,

// as well as, content.

MyFastDataSet.WriteXml(XmlFileName, XmlWriteMode.WriteSchema);

// Disposing DataSet because we don't need it anymore.

MyFastDataSet.Dispose();

BEST PRACTICE We recommend using the DataSet object to cre-
ate the XML file if you are planning to use the data set to cache
information.

Yes, you can create the XML file by using a variety of mecha-
nisms, including the SQL Server 2000 built-in XML generation
features. However, in our experience, we have found it easier to
convert an XML file to a data set if the file was originated from
a DataSet object.

Also, make sure to write the schema to the file as well. Without
writing the schema, you will lose important column-level informa-
tion, such as data type. Without saving the schema, you will also
lose relationships between tables, which is sure to cost you several
hours of debugging to discover the real cause of the problem.

Losing a column’s data type isn’t much fun either. It will start to affect you
when you try to sort the column by using the DataView object. Because the col-
umn won’t know its data type, it will default to string, resulting in alphanumeric
sorting for numeric information. Believe us, no customer likes to see alphanu-
meric sorting for phone numbers or dates. We have been burned on this one.
Once you have saved data in an XML file by using the DataSet object, it is very
easy to convert it back into a data set. In fact, it is as simple as calling the
ReadXML method on the DataSet object and providing it with the name and the
location of the XML file. The trick, however, is to update the cache correctly.
Some of you may be thinking, what’s so hard about updating cache? You simply
get the data set from cache and call its ReadXML method.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 25

Chapter 2

26

CAUTION Never ever, we repeat, never ever directly update the
cached DataSet object from the XML file.

When you are ready to refresh cache, make sure to create a
new DataSet object and populate it by calling its ReadXML
method. Once the new DataSet object is populated, throw away
the current DataSet object that is residing in cache and insert the
newly created DataSet object in its place.

The reason you shouldn’t use the currently cached DataSet
object to refresh data is that the ReadXML method can take up to
several minutes if the XML file is large. Of course, you don’t want
to affect users who are innocently surfing your Web site by silently
pulling the rug from under their feet (or updating their data as
they are using it).

Populating a new DataSet object from an XML file doesn’t
affect Web site users. You should still be careful while overwriting
cache with the new object. Even though it only takes a fraction of
a second to place a new DataSet object in cache, it is best to synchro-
nize access to the Cache object while performing this operation.

Refreshing a Cached DataSet Object

Make sure to read the code in Listing 2-6 to see an example of how to refresh
cache appropriately. It uses the lock keyword to synchronize all threads that are
trying to access the cache to make sure that only one thread gets to update it
at a time. Because the ASP.NET runtime engine processes each Web request as
a separate thread, this logic causes all Web requests that are trying to access
cache to synchronize while it is being updated.

Listing 2-6. An Example of Refreshing Cache Appropriately

// Using MapPath method to convert virtual file path to physical path.

string XmlFileName = Request.MapPath("CacheFile/MyFastDataSet.xml");

// Creating new DataSet object.

DataSet MyFastDataSet = new DataSet();

// Populating newly created DataSet object from XML file.

// Make sure to use ReadSchema enumeration; otherwise,

// the DataSet object will not have data types and relations.

MyFastDataSet.ReadXml(XmlFileName, XmlReadMode.ReadSchema);

1003C02CMP1.qxd 4/23/03 3:27 PM Page 26

Cache, Session, and View State

27

// Synchronize access to the Cache object by using the lock keyword.

// The lock keyword makes sure that no other thread can access the

// Cache object while it's being updated with new DataSet object.

lock(Cache)

{

Cache["Result"] = MyFastDataSet;

}

Expiring Cache

The caching mechanism provides us with the flexibility of expiring cached data
by using a variety of methods. You can make a cached object dependent on
a specific file. If the file changes, the caching mechanism will be notified and will
expunge the cached object from the memory. Similarly, you can make a cached
object dependent on a directory. If any change is made to that directory or any of
its subdirectories, the object will be expunged from cache. You can make various
cached objects dependent on each other, in which case, when a cached object is
expired, all its dependent cached objects expire as well. The caching mechanism
also provides us with the ability to make cached objects expire after a certain
time interval. We are free to specify either a fixed time or a sliding duration.

The CacheItemRemovedCallback Delegate

Another nice feature provided by the caching mechanism is its ability to
notify us when our objects are removed from cache. This notification is done
by using the CacheItemRemovedCallback delegate, which is defined in the
System.Web.Caching namespace. By using this delegate, we can receive
the expired cached object, its key name, and a reason for the expiration.

BEST PRACTICE If you use an XML file to load a data set in mem-
ory and keep it cached, we recommend that you set the dependency
of your cached data set with that file.

By using this mechanism, your code can receive notification
when the file is changed. Once you receive such notification, you
can read this recently updated file, create a new DataSet object, and
replace the cached object with it.

This approach allows you to refresh the data simply by updat-
ing the underlying XML file and to let the ASP.NET runtime and its
caching mechanism do the rest.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 27

Chapter 2

28

Listing 2-7 shows how you can set up dependency with a file, receive
expiration notification, and set various expiration options.

Listing 2-7. Setting Up Dependency with a File

// Make sure to include System.Web.Caching namespace.

private void AddToCache()

{

// Using MapPath method to convert virtual file path to physical path.

string XmlFileName = Request.MapPath("CacheFile/MyFastDataSet.xml");

// Creating new DataSet object.

DataSet MyFastDataSet = new DataSet();

// Populating newly created DataSet object

// from XML file. Make sure to use ReadSchema

// enumeration; otherwise, the DataSet object will not

// have data types and relations.

MyFastDataSet.ReadXml(XmlFileName, XmlReadMode.ReadSchema);

CacheDependency MyDependency;

CacheItemRemovedCallback onRemove;

// Setting the dependency object to the XML file.

MyDependency = new CacheDependency(XmlFileName);

// Creating the delegate object and assigning it the

// name of the method that should be called when cached

// data set is expired.

onRemove = new CacheItemRemovedCallback(RemoveResultCallback);

// Inserting the newly created DataSet object in cache

// and assigning it the dependency, the delegate, and expiration

// values. In this example, the cached data set will expire

// 24 hours after it is placed in cache.

Cache.Insert("Result", MyFastDataSet, MyDependency,

DateTime.Now.AddHours(24),

TimeSpan.Zero, CacheItemPriority.Normal, onRemove);

}

// This method will be called when the cached data set is expunged.

// It receives the expired object, its key, and the reason for

// expiration as specified in CacheItemRemovedCallback delegate.

private void RemoveResultCallback(string key, object removedObject,

CacheItemRemovedReason removeReason)

1003C02CMP1.qxd 4/23/03 3:27 PM Page 28

Cache, Session, and View State

29

{

// We simply call the AddToCache() method to reread the

// XML file and refresh cached data set.

AddToCache();

}

The Cache object provides a method called Add. We tend to stay away from
using this method. We have yet to understand the reason for this method. Its
existence seems redundant and, quite frankly, annoying. The Add method works
in the same manner as the Insert method, but it returns the object you just
inserted in cache, which is the part that we have yet to comprehend. Why would
you want to receive the object you just provided to this method as a parameter?
You already have it, don’t you? Even if you receive the returned object, you lose
all your type information because the returned object is of the generic type
“object.” The Add method also throws exceptions if you try to add an item with
the key name that already exists. As a best practice, we recommend that you
always check to see if another object uses the same key name before you use
that key for your object. We recommend that you perform your own checks prior
to using the Insert method instead of using the Add method, and handle excep-
tions as they happen.

Understanding the CacheDependency Class

The CacheDependency class is very versatile. With this class, you can set the
expiration of your cached object by using a variety of mechanisms, from sensing
file changes to the expiration of another cached object. This class doesn’t expose
many properties; rather, it relies on you to provide appropriate information in its
constructor. By using one of its eight overloaded constructors, you can configure
this object to create a dependency between your cached object and any number
of files, directories, and other cached objects. You can even specify the date and
time when you would like the dependency to take effect.

NOTE When you use the delegate to receive cache expiration notifi-
cation, the object representing the page stays in memory until the
cache is purged. Normally, the ASP.NET Page objects are created for
each request and destroyed after the request is processed. However,
when the Cache object holds a reference to a method on the Page
object, the Page object needs to stay instantiated. Otherwise, the
Cache object may end up with a null reference in its delegate. The
Page object, however, is not reused to process any more Web
requests; it stays in memory, waiting to receive the callback from
the Cache object.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 29

Chapter 2

30

Losing Cached Information When Restarting
the Application

It is important for you to know that the Cache object keeps its content in the
memory of the Web application. If the Web application restarts for any reason, it
loses its cached objects. A Web application can restart in many ways, some that
you might already know and some that may surprise you. One way a Web appli-
cation restarts is when the Web server is restarted, which can happen either
accidentally or deliberately. However, the Web application also restarts if any
change is made in either the Web.config or the Machine.config file. The ASP.NET
runtime senses changes to its configuration files and starts a new application
domain that loads the changed configuration file in memory. The new applica-
tion domain creates its own Cache object, causing us to lose objects stored in the
previous application domain’s cache.

This behavior is the classic example of the compromises that are made in
the ASP.NET framework for providing other, more needed, benefits. The ASP.NET
framework designers wanted a mechanism for configuring Web applications that
does not depend on Windows registry. The alternative was to use XML-based
configuration files. However, reading configuration from file I/O can be fairly
intense and may become the performance bottleneck in high-use scenarios. The
ASP.NET runtime designers chose to read the configuration files once, when the
Web application starts, and keep its information cached in memory. They also
used the file dependency feature to sense changes made to the configuration
files. Once a file change is detected, the ASP.NET runtime does not update the
configuration information cached in the memory and instead creates a new
application domain. The benefit of creating a new application domain is that all
existing Web requests can continue to use the existing configuration and new
Web requests are diverted to the new application domain. The disadvantage of
creating a new application domain is that it doesn’t bring the cached objects
from the previous application domain and results in empty cache.

The Scalability Issue with Cached Objects

As we mentioned earlier, the cached objects are stored in the Web application
memory, which can cause problems in the Web farm environment. It is not
uncommon for high-traffic Web sites to use multiple Web servers. Often a load
balancer is used to divert the incoming Web request to the least busy Web server.
Because cached objects are stored in the Web application’s memory, they are not
accessible from another server in the farm, which results in unpredictable
behavior, as there is no good way of knowing which server in the farm will be
used to process the request. Usually when someone talks about scalability prob-
lems with a given technology, the conversation follows with bad publicity, expert
opinions on what should have been, and the tendency of developers to stay

1003C02CMP1.qxd 4/23/03 3:27 PM Page 30

Cache, Session, and View State

31

away from using the technology. On the contrary, we are here to tell you that the
scalability problem with the Cache object is a wonderful thing. But before we tell
you why, let us also say that if you are experiencing a scalability problem with
the Cache object, you built your application wrong.

BEST PRACTICE The Cache object is not meant for keeping user-
specific information.

If you are keeping information pertaining to a specific user in
the Cache object, you built your Web application wrong. The pur-
pose of the Cache object is to store information available to all
users of your Web application. If you need to keep user-specific
information in memory, you should use the Session object instead.

If the information in the Cache object is not usercentric, then
you don’t have to worry about maintaining any specific user’s ses-
sion across the server farm.

You should always provide a mechanism for retrieving information from the
physical store, such as the database, if the cache is found empty. Standardizing
on this logic helps you to scale your application in a server farm environment. If
a specific server in the farm doesn’t have your cached information, your applica-
tion will retrieve it from the physical store and add it to the cache. Eventually, all
servers in the farm will have retrieved the cached information.

Some of you may wonder why the ASP.NET framework doesn’t provide the
ability to scale the Cache object by using either a state server or relational data-
base, similar to the way the Session object can be scaled. The answer is quite
simple: There are significant performance implications in keeping information
in a state server or a database session. The performance degradation can be jus-
tified in the case of the Session object because of its ability to maintain
usercentric information across multiple servers in the farm. On the other hand,
the performance penalty can’t be justified for information that does not pertain
to a specific user of the Web application. If you are skeptical about the perfor-
mance issues with the state server and database sessions, make sure to read the
section “Understanding the Session Object” later in this chapter.

Turbo-Charging with Output Caching

Output caching can boost the performance of your Web application by multiple
orders of magnitude. We highly recommend every one of you to pay close atten-
tion to the scenarios in which output caching can be a viable option.

The rule of thumb is to select pages that are used very often and don’t
change much. A really cool feature of the ASP.NET output caching mechanism is
its ability to generate different cached versions of the same page based on a vari-
ety of input parameters, such as query string values, form post values, etc. This

1003C02CMP1.qxd 4/23/03 3:27 PM Page 31

Chapter 2

32

feature provides us with the ability to generate different cached outputs for dif-
ferent users of our site. You can keep the user ID either embedded in the query
string or as a hidden field on the page. You can then use the VaryByParam
attribute to cache different page outputs for each user. It is as simple as adding
the following line of code at the beginning of the .aspx file.

<%@ OutputCache Duration="60" VaryByParam="UserId" %>

If you are not so inclined to keep the user ID in a query string or a hidden
field, you can always keep it in a cookie and use the VaryByCustom attribute to
accomplish the same purpose.

<%@ OutputCache Duration="60" VaryByCustom="UserId" %>

The UserId parameter doesn’t exist, but the VaryByCustom attribute allows
you create it by writing a few lines of code in the GetVaryByCustomString
method in the Global.asax file. In this method, you can write the following line of
code to cache different outputs for each user of your site.

public override string GetVaryByCustomString(HttpContext Context, string Args)

{

return "UserId=" + Request.Cookies["UserIdCookie"].Value;

}

A good candidate for output caching is the home page of your Web applica-
tion. In most applications, the home page is the most visited page. If the home
page for your application is dynamically generated, we highly recommend that
you consider enabling output caching on this page. If your home page doesn’t
show different content to different users, all you have to do is to write the follow-
ing line of code at the beginning of the page:

<%@ OutputCache Duration="3600" VaryByParam="None" %>

The previously mentioned code will cause your home page to be cached for
one hour (3,600 seconds). By setting the VaryByParam attribute to None, you can
specify that this page should appear the same for all users of your site. If you
need to show different versions of the home page to different users, you can use
any of the techniques mentioned previously.

Another good candidate for output caching are pages that show product cat-
alogs, search results, navigation links, etc. In fact, with a little creativity, you can
even cache pictures and PDF files. Keep reading and you will find out how.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 32

Cache, Session, and View State

33

If you don’t believe that output caching can turbo-boost your Web applica-
tion, let me prove it to you with code examples and concrete performance test
results. In Listing 2-8, we will create a simple page that retrieves some data from
a SQL Server database and shows it on the screen. We will then use Application
Center to performance-test this page with and without output caching. All you
nonbelievers tag along with us and see for yourselves.

Listing 2-8. Retrieving Some Data from the SQL Server Database

private void Page_Load(object sender, System.EventArgs e

{

SqlCommand MyCommand = new SqlCommand();

MyCommand.Connection = new SqlConnection("Your Connection String");

// Selecting 100 records from the database.

MyCommand.CommandText = " select top 100 * from files ";

SqlDataAdapter MyAdapter = new SqlDataAdapter();

MyAdapter.SelectCommand = MyCommand;

// Filling a data set with result from SQL query.

DataSet MyDataSet = new DataSet();

MyCommand.Connection.Open();

MyAdapter.Fill(MyDataSet, "Files");

MyCommand.Connection.Close();

MyAdapter.SelectCommand.Dispose();

MyAdapter.Dispose();

// Showing the content from data set in the data grid control.

ResultGrid.DataSource = MyDataSet.Tables[0].DefaultView;

ResultGrid.DataBind();

}

When you compile and run this code, you will see the page shown in
Figure 2-6.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 33

Chapter 2

34

Figure 2-6. The page that demonstrates output caching

Let’s create three versions of this page. The first version will not use any out-
put caching, the second version will use client output caching, and the third
version will use the server output caching.

The client output caching option caches the page at the browser, whereas
the server output caching option caches it at the Web server. You will find the
performance difference between these two options in Listing 2-9 and Figure 2-7.

Listing 2-9. The HTML Contained in the .aspx File for All Three Output
Caching Options

<!-- HTML for no output caching -->

<%@ Page language="c#" Codebehind="OutputCaching-None.aspx.cs"

AutoEventWireup="false" Inherits="ASPNET.OutputCaching___None" %>

<HTML>

<HEAD><title>OutputCaching - None</title></HEAD>

<body MS_POSITIONING="GridLayout">

<form id="OutputCaching_None" method="post" runat="server">

<asp:datagrid id=ResultGrid style="Z-INDEX: 103; LEFT: 8px;

POSITION: absolute; TOP: 8px" runat="server">

<HeaderStyle Font-Bold="True" ForeColor="White" BackColor="Blue">

</HeaderStyle></asp:datagrid>

</form></body>

</HTML>

<!-- HTML for client output caching -->

<%@ OutputCache Duration="10" VaryByParam="None" Location="Client" %>

<%@ Page language="c#" Codebehind="OutputCaching-Client.aspx.cs"

AutoEventWireup="false" Inherits="ASPNET.OutputCaching" %>

1003C02CMP1.qxd 4/23/03 3:27 PM Page 34

Cache, Session, and View State

35

Figure 2-7. Performance test result from Application Center test scripts

<HTML>

<HEAD><title>OutputCaching</title></HEAD>

<body MS_POSITIONING="GridLayout">

<form id="OutputCaching" method="post" runat="server">

<asp:datagrid id=ResultGrid style="Z-INDEX: 103; LEFT: 16px;

POSITION: absolute; TOP: 30px" runat="server">

<HeaderStyle Font-Bold="True" ForeColor="White" BackColor="Blue">

</HeaderStyle></asp:datagrid></form></body>

</HTML>

<!-- HTML for server output caching -->

<%@ OutputCache Duration="10" VaryByParam="None" Location="Server" %>

<%@ Page language="c#" Codebehind="OutputCaching-Server.aspx.cs"

AutoEventWireup="false" Inherits="ASPNET.OutputCaching___Server" %>

<HTML>

<HEAD>

<title>OutputCaching - Server</title>

</HEAD>

<body MS_POSITIONING="GridLayout">

<form id="OutputCaching_Server" method="post" runat="server">

<asp:datagrid id=ResultGrid style="Z-INDEX: 103; LEFT: 8px;

POSITION: absolute; TOP: 8px" runat="server">

<HeaderStyle Font-Bold="True" ForeColor="White" BackColor="Blue">

</HeaderStyle></asp:datagrid></form></body>

</HTML>

We created Application Center test scripts that run each of these pages for
10 seconds simulating 10 simultaneous users. Application Center is a perfor-
mance testing tool that ships with the enterprise architect version of Visual
Studio .NET. It helps us to create test scripts to test Web sites for performance.
The graph in Figure 2-7 shows the result.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 35

Chapter 2

36

Figure 2-7 clearly shows that the page that used output caching ran signifi-
cantly faster than the page that didn’t use it. Wondering why the page with the
Server Output Caching option gradually slowed down as time went by? The slow-
down happened because the Web server wasn’t able to handle this many
simultaneous users. This decline in performance is related to the capability of
the hardware.

This is precisely the reason why the page with the Client Output Caching
option demonstrated such good performance. It didn’t need to make a trip back
to the server. Instead, it used its local cached output.

BEST PRACTICE Output caching is the turbo-charger for your Web
application. Use it anywhere you possibly can.

Deciding Whether to Maintain View State

In the good old days of ASP programming, most of us occasionally created a hid-
den field on the Web page for the sole purpose of retaining information during
roundtrips to the server. The ASP.NET design team at Microsoft realized the
importance of this mechanism and provided us with an easy to use and safe
mechanism to accomplish the same purpose.

View state is simply an encoded piece of information that is written in a hid-
den field in the Web page. You can add any information you want to the view
state by using the following syntax:

ViewState["MyName"] = "Farhan Muhammad";

Just like Cache and Session, ViewState is also a name/value collection. You
can put any information in it and associate it with a key name. When the page
is rendered, the information contained in the ViewState name/value collection is
written in a hidden field named __VIEWSTATE. The structure and the content of
this field are shown in the following code. Notice that the content of this field is
encoded and therefore relatively safe from prying eyes.

<input type="hidden" name="__VIEWSTATE"

value="dDwtMTI3OTMzNDM4NDt0PHA8bDxNeU5hbWU7PjtsPEZhcmhhbiBNdWhhbW1hZ

Ds+Pjs7Pjs+hVkdc10kDgvCSLOkCPMvlbKn5Yk=" />

The server controls also use view state to maintain their state. As you know,
a key benefit of using ASP.NET server controls is their ability to retain their con-
tent during post-back events. This ability enables the programmers to focus their
time and energy on providing business values and not in writing plumbing code.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 36

Cache, Session, and View State

37

As simple as it seems, the view state can quickly become evil and can tax
your network to its limits.

The data bound server controls, such as drop-down lists, check box lists,
data grid, repeater, etc., by default will persist their data to the view state hidden
field. All that information ends up traveling from the browser to the server dur-
ing each post-back event.

We would recommend using either Session or Cache object to store data-
base-generated information and rebinding your controls on each post-back. The
performance difference between maintaining view state and rebinding controls
from cache is negligible. However, reduced view state size results in a lower
amount of information travel from browser to the server, resulting in better
throughput.

On the other hand, storing information in cache taxes memory use.
However, we would prefer to be taxed on memory rather than network
resources. Internet-enabled applications rely on third-party networks to facili-
tate communication between the browser PC and the server PC. The geographic
distance between these computers could be significant, resulting in many hops
before the information gets to its destination.

BEST PRACTICE As a rule of thumb, we would recommend reduc-
ing view state size by setting the EnableViewState property of the
server controls to false. You can store the information in either ses-
sion or cache and rebind your server controls on each post-back.

This approach results in higher memory use on the server but
reduces the amount of information that travels across the Internet
to reach its destination. In a high-traffic environment, you are
sure to get better throughput by using this approach.

There is one caveat, though. If you choose to disable view state and use the
server’s memory to remember the information, then you won’t be able to dis-
cover whether the user changed the information before the post-back event
occurred. The ASP.NET runtime uses view state to discover if the user changed
the value of the control and fired the OnChange event if necessary. In the
absence of view state, ASP.NET runtime tries to compare the value of a control
received during post-back with the value of the control declaratively assigned in
the HTML, which could cause the OnChange event always to fire if the control’s
value is different than its default value. This method is more applicable to input
type controls, such as text box. Needless to say, such behaviors can be very diffi-
cult to discover and debug. In light of such issues, we recommend the following
caution associated with disabling view state.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 37

Chapter 2

38

CAUTION If you need to capture a server-side OnChange event
from a particular control, make sure to leave view state enabled.
Otherwise, you may consider disabling it to reduce the page size.

View State: Behind the Scenes

It is important for you to understand the mechanism that makes view state pos-
sible. Every time a page is requested from the Web server, the ASP.NET runtime
creates a new object of the Page class. This object receives all input values from
the request, reads the hidden __VIEWSTATE field, decrypts its content, and uses
it to populate the values of appropriate server controls. This process is called
server controls rehydration.

After the request is finished processing on the server, the Page object is
destroyed. Before the Page object is destroyed, however, the server controls are
given an opportunity to store their information in the hidden __VIEWSTATE
field. This process is called server controls dehydration.

The amount of effort involved with dehydrating and rehydrating server con-
trols can be significant, especially if the information is of a large size. In most
cases, the amount of work involved is not much smaller than binding the con-
trols to a data source.

To prove our point, we will create a Web page that runs several SQL state-
ments on the Northwind database and uses their results to populate a number of
drop-down lists and a data grid control. The results from the SQL statements are
later cached by using a DataSet object.

We will then create an Application Center test script that conducts perfor-
mance tests on this Web page by using two scenarios. In one scenario, we will
enable view state for all controls and not rebind the controls with the cached
data set. In the second scenario, we will disable view state for all drop-down lists
and the data grid control and use the cached DataSet object to rebind to these
controls. You will see that the Web page worked with almost identical perfor-
mance in both scenarios.

Listing 2-10 shows the code for a Web page that contains several drop-down lists
and a data grid control. These controls are populated from the Northwind database.

Listing 2-10. Web Page Containing Various Data-Bound Controls

private void Page_Load(object sender, System.EventArgs e)

{

// To bind controls to data source on every request,

// simply comment the following conditional statement.

if (!IsPostBack)

{

DataSet MyDataSet;

1003C02CMP1.qxd 4/23/03 3:27 PM Page 38

Cache, Session, and View State

39

// If cache is empty, run SQL and generate DataSet from

// the database.

if (Cache["Orders"] == null)

{

MyDataSet = new DataSet();

SqlDataAdapter MyAdapter = new SqlDataAdapter();

SqlCommand MyCommand = new SqlCommand();

MyCommand.Connection = new SqlConnection("Connection String");

MyAdapter.SelectCommand = MyCommand;

MyCommand.Connection.Open();

// Creating six data tables. They will be used to

// bind to drop-down lists.

MyCommand.CommandText = " SELECT * FROM Categories ";

MyAdapter.Fill(MyDataSet, "Categories");

MyCommand.CommandText = " SELECT * FROM Customers ";

MyAdapter.Fill(MyDataSet, "Customers");

MyCommand.CommandText = " SELECT * FROM Employees ";

MyAdapter.Fill(MyDataSet, "Employees");

MyCommand.CommandText = " SELECT * FROM Orders ";

MyAdapter.Fill(MyDataSet, "Orders");

MyCommand.CommandText = " SELECT * FROM Products ";

MyAdapter.Fill(MyDataSet, "Products");

MyCommand.CommandText = " SELECT * FROM Region ";

MyAdapter.Fill(MyDataSet, "Region");

// Filling the data grid with order summary. This

// SQL statement returns 72 records.

MyCommand.CommandText = " select Orders.OrderID," +

" Customers.CompanyName, Employees.LastName," +

" Employees.FirstName, Orders.OrderDate," +

" Orders.RequiredDate, Orders.ShippedDate" +

" from Orders, Customers, Employees" +

" where Orders.CustomerID = Customers.CustomerID" +

" and Orders.EmployeeID = Employees.EmployeeID" +

" and Employees.LastName = 'King' ";

1003C02CMP1.qxd 4/23/03 3:27 PM Page 39

Chapter 2

40

MyAdapter.Fill(MyDataSet, "OrderList");

MyCommand.Connection.Close();

MyCommand.Connection.Dispose();

MyCommand.Dispose();

// Adding newly created data set to cache.

Cache["Orders"] = MyDataSet;

}

else

{

// Because cache is not empty, retrieving the data set

// from it.

MyDataSet = Cache["Orders"] as DataSet;

}

// Binding the data set to all six drop-down lists and

// the data grid control.

CategoriesDropDown.DataSource =

MyDataSet.Tables["Categories"].DefaultView;

CustomersDropDown.DataSource =

MyDataSet.Tables["Customers"].DefaultView;

EmployeesDropDown.DataSource =

MyDataSet.Tables["Employees"].DefaultView;

OrdersDropDown.DataSource =

MyDataSet.Tables["Orders"].DefaultView;

ProductsDropDown.DataSource =

MyDataSet.Tables["Products"].DefaultView;

RegionDropDown.DataSource =

MyDataSet.Tables["Region"].DefaultView;

ResultGrid.DataSource =

MyDataSet.Tables["OrderList"].DefaultView;

CategoriesDropDown.DataBind();

CustomersDropDown.DataBind();

EmployeesDropDown.DataBind();

OrdersDropDown.DataBind();

ProductsDropDown.DataBind();

RegionDropDown.DataBind();

ResultGrid.DataBind();

}

}

1003C02CMP1.qxd 4/23/03 3:27 PM Page 40

Cache, Session, and View State

41

Figure 2-8. A partial snapshot of the Web page contains information from the
Northwind database

When you compile and run the code shown in Listing 2-10, you will see the
Web page shown in Figure 2-8.

Clicking the Post Back button resubmits the page. We deliberately didn’t
write any code in the event handler for the button because we didn’t want to
incur any overhead during post-back, other than the maintenance of view state
for the server controls.

Now that you have seen the code and the user interface for this Web page,
let us show you the results from the performance tests we conducted, as shown
in Figure 2-9. As promised, we conducted the performance test with and without
enabling view state for all drop-down lists and the data grid control.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 41

Chapter 2

42

Figure 2-9. The result of Application Center performance test with and without
using view state

There you have it! There is not much difference in performance whether you
use view state to maintain information during post-back or rebind your server
controls to a data source on each post-back. The only assumption made is that
you must cache the data source to get comparable performance.

Understanding the Session Object

As you know, the Session object enables you to maintain user-specific infor-
mation in memory cache. The ASP.NET runtime automatically creates this
object when a new user visits your Web site, and it remains in memory for
a specific period after the user stops using the Web site. You can alter the
duration for which the Session object remains in memory by changing
the session timeout setting in the Web.config file. The timeout is set to 20
minutes by default.

In this section, we will show you the impact on performance for different
session configurations. The ASP.NET framework enables us to store session state
either in Web server memory, in a Windows service, or in a SQL Server database.
Each of you has to decide the configuration that best suits your environment. We
will attempt to provide enough information to make this selection easy for you.
You should remember that session configuration is simply the matter of setting

1003C02CMP1.qxd 4/23/03 3:27 PM Page 42

Cache, Session, and View State

43

a few switches in the Web.config file and therefore you can change them any time
you feel a need to reconfigure your mechanism for maintaining session state.

In-Process Session

The default session state setting is InProc. When configured with this setting, the
ASP.NET runtime keeps all session information in the Web application’s memory.
Because the session is stored in the application’s memory, it is much faster to get
the stored information. On the other hand, if your Web application restarts for
any reason, you will lose every object stored in every user’s session. You need to
choose whether this is an acceptable compromise in your situation. Keeping ses-
sion “in-process” also prohibits you from scaling your Web applications by using
a server farm, which consists of multiple Web servers working in tandem. The
incoming requests for Web pages are automatically routed to the least busy
server in the farm. In this scenario, the in-process session is not a viable option
as Web servers in the farm are unable to read each other’s in-process memory.

State Server

The ASP.NET framework enables us to store session information by using
a Windows service. Because the Windows service runs as an independent
process, information stored in the service is not affected when the Web applica-
tion is restarted. Also, other Web servers in the server farm can communicate
with the Windows service to get access to the session information stored in it.

The bottom line is that the state server enables us to scale our Web applica-
tion by using a server farm. It is also more robust than an in-process session
because it does not depend on the Web application’s memory. You can restart
your Web application or Web server as many times as you please without losing
session information. Rebooting the server, on the other hand, will cause you to
lose the session information. If you are paranoid about losing session informa-
tion during an unplanned server reboot, you need to use the database-enabled
session instead.

SQL Server Session

We also have the ability to store session information in a SQL Server 7.0 or later
database. This option also allows us to scale our Web site in the server farm
environment because all servers in the farm can access the same SQL Server
database. Common sense tells us that this option would demand the heaviest
performance penalty, but you are about to discover that it isn’t necessary so. The
database-based session management may lose the performance battle if your

1003C02CMP1.qxd 4/23/03 3:27 PM Page 43

Chapter 2

44

Web site handles hundreds of concurrent users. Otherwise, its performance is
quite comparable to the state server.

However, you do get other benefits by not using your SQL Server database
for session management. At the least, it keeps the database available for more
business-critical processing. The choice between state server and the SQL Server
state management needs to be made individually for each project. Depending
on the application’s needs, either choice could be the right choice for you.

BEST PRACTICE The state server option can out-perform in the
heaviest traffic area, but it allows you to keep your database
resource available for critical business transactions, such as order
processing, credit checking, reporting, etc. The SQL Server state
management option allows you to maintain session information
robustly, allowing for session recovery after a server reboot. On the
other hand, it demands heavy use of your most valuable resource,
the database server.

Performance Testing the Session Object

It is more fun to see the Session object in action than just to talk about it. We
conducted a series of performance tests on various session configurations and
saw the results in this chapter. We conducted all tests by using the Application
Center test and simulated 10 simultaneous Web users.

The tests are divided into two categories. The small session tests use the
Session object to store a small piece of information, no more than a few charac-
ters. The large session tests store a data set that contains 100 rows retrieved from
the Orders table of the Northwind database.

Each of these categories contains tests performed by using a combination of
in-process, state server, and SQL Server settings. In the case of state server and
SQL Server settings, tests were conducted by keeping the session on the same
server as the Web site and on a remote server. Figure 2-10 shows performance
from using the in-process session while session contains a small amount of
information.

You can clearly see that the Web site was able to serve about 235 requests per
second. The occasional drop in performance can be attributed to external influ-
ences generated by other applications running on the same server. On the
average, the Web site was about able to serve more than 200 requests consistently.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 44

Cache, Session, and View State

45

Figure 2-10. Performance using the in-process session containing a small amount
of information

Figure 2-11 shows performance from using the state server session contain-
ing a small amount of information. The test was conducted in two scenarios. In
one scenario, the Web server was used as state server, and in the second sce-
nario, the state server was used on a remote computer.

Figure 2-11. Performance using the state server

1003C02CMP1.qxd 4/23/03 3:27 PM Page 45

Chapter 2

46

Figure 2-12. Performance using the SQL Server

As you probably expected, the Web site performed better when the same
computer that hosted the Web site was used for state server. The performance
drops quite significantly when you host the state server on a remote computer.
In either case, the performance is quite a bit slower than keeping in-process
session.

Now that we have seen the performance from using in-process and state
server options, let us show you the performance results from using SQL Server
for state management. There are those who like to tell everyone that using a rela-
tional database engine for anything results in slower performance than storing
the same content in memory. This theory used to be true years ago when the
relational database engines were in their infancy. However, the newer versions of
such systems are quite fast and can handle a much greater load than before. But
why should you take our word? See for yourself!

Figure 2-12 shows performance from using a SQL Server session that
contains a small amount of information. The test was conducted in two
scenarios. In one scenario, the Web server was used for SQL Server state
management, and in the second scenario, the SQL Server was used on
a remote computer.

Surprising, isn’t it? Storing session information in a SQL Server database on
the same computer provided comparable performance to the state server
option. On the other hand, using the SQL Server database on a remote computer
provided slightly better performance than using state server on a remote com-
puter. The only strange thing about using SQL Server is that it seems to be quite

1003C02CMP1.qxd 4/23/03 3:27 PM Page 46

Cache, Session, and View State

47

erratic. The performance seems to change quite drastically from one request to
another. We can’t explain this phenomenon. Perhaps someone more knowledge-
able about SQL Server can shed some light.

Table 2-2 summarizes the test results. Remember, these tests are conducted
with a small amount of information in session. The performance slows down sig-
nificantly as you start to put larger amounts of content in session.

Table 2-2. Performance Results from Using Various Session Configurations

SESSION TYPE AVERAGE PERFORMANCE EXPLANATION

In-Process 235 requests/second Provides the fastest performance

because it doesn’t have the overhead of

out-process marshalling.

State Server, 170 requests/second Provides 30 percent slower

Same Computer performance than the in-process

session. However, the content stored

in session is not lost when the Web

application restarts.

State Server, 55 requests/second There is about 68 percent decrease in

Different Computer performance if you choose to use

a remote server as state server. If you are

building a Web application for a server

farm, you have no choice but to use

a remote server for session management.

Otherwise, you won’t be able to share

the same session information across all

servers in the farm.

Performance Testing Session with a Large Amount of Content

All our tests so far have used a small amount of content in the Session object.
The session performance starts to decline significantly as we put larger amounts
of content in it. The change in performance seems to affect only the state server
and the SQL Server session management options. We found that the in-process
session didn’t show any effect on performance, whether we kept small or large
quantities of information in it.

The next set of test results show the drastic decline in performance when we
put a DataSet object that contains 100 rows from the Orders table of the
Northwind database.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 47

Chapter 2

48

Figure 2-13. Performance using SQL Server and state server

Figure 2-13 shows performance from using the SQL Server and state
server options. Both options were used while keeping session on the same
computer as the Web site. The Session object contained a large quantity of
information.

Were we right, or were we right? Actually, we are quite surprised to see
such a drastic decline in performance. The slow down is attributed to the fact
that the large quantity of information needs to be sent across the process
boundary. Regardless of the reason, it is quite amazing to see that the perfor-
mance declined from 160 requests per second to a meager nine requests per
second simply because we chose to store 100 records from the database.
Keep this statistic in mind next time you choose to put a large quantity of
data in session and still want to use the state server or SQL Server session
option.

We repeated the same performance tests, keeping the state server and SQL
server on a remote computer. As expected, the performance declined even fur-
ther, averaging about six requests per second.

Someone Call the Session Doctor!

You will be quite surprised to learn that the decline in session performance
with a large quantity of information is the result of a very common mistake. It’s
a mistake most of us make and never even realize its consequences. Even

1003C02CMP1.qxd 4/23/03 3:27 PM Page 48

Cache, Session, and View State

49

though the solution is very simple, we are willing to bet a dime that more than
90 percent of the readers of this book either don’t know this solution or don’t use
it on a regular basis.

The solution is to use the ReadOnly session wherever possible. Most Web
applications store information in session so that they can be accessed at a later
time on a different Web page. We don’t always need to modify this information.
Often, we simply need to access it. Take our advice and use the following key-
word in the @Page directive of every page that only needs read-only access to
the session.

EnableSessionState=ReadOnly

This is it! This is all you need to do to increase the performance by at least 10
times. Figure 2-14 shows performance with the state server ReadOnly session
containing a large quantity of information. The state server uses the same com-
puter as the Web server.

The performance increases sharply during read-only access to session
because the ASP.NET runtime doesn’t attempt to persist the session information
back to its original location when the page finishes rendering, resulting in fewer
marshalling calls across process boundaries.

Figure 2-14. Performance using the ReadOnly session

1003C02CMP1.qxd 4/23/03 3:27 PM Page 49

Chapter 2

50

Summary

In this chapter, you learned the facts behind keeping information in server
memory. It can be a rewarding experience, providing enormous performance
and scalability gains. On the other hand, if used improperly, it can cost your
application its performance and precious memory resources. Our intention was
to show you the realities behind various cache, session, and view state options,
hoping that you will use these features to their full capabilities.

1003C02CMP1.qxd 4/23/03 3:27 PM Page 50

