
3. Prediction, Forecasting, and Chance Discovery

Yutaka Matsuo

Cyber Assist Research Center, National Institute of Advanced Industrial Science and
Technology, Aomi 2-41-6, Tokyo 135-0064, Japan
email: y.matsuo@aist.go.jp

Summary.

This chapter addresses the relation and difference between prediction, forecast-
ing, and chance discovery. Prediction and forecasting have a long history. So far,
many studies have been devoted to prediction and forecasting. However, in com-
plex real-world systems, contrary to scientific laws, it is sometimes very difficult to
predict the future. In such situations, model creation, model selection, and param-
eter fitting are all important in the complex changing real world. Chance discovery
targets three aspects that prediction and forecasting methods have not shed light
on, i.e. emphasis on model and variable creation and discovery, emphasis on rare
events, and emphasis on human and computer interaction.

3.1 Introduction

This chapter addresses the relation and difference between prediction, forecasting,
and chance discovery. Prediction and forecasting have a long history. From remote
history, such as in ancient Greece, man demonstrated the desire to predict the future
and understand the past; these desires motivated the search for laws that explain
behavior of observed phenomena.

Scientific discoveries are sometimes verified through prediction: prediction of
the planet Neptune’s existence by Leverrier, prediction of deviation of light by Ein-
stein, prediction of the helical structure of DNA by Watson and Crick, etc. [3.23].
Prediction has a very strong force of argument. So far, many studies have been de-
voted to prediction and forecasting. However, in complex real-world systems, con-
trary to scientific laws, it is sometimes very difficult to predict the future. The diffi-
culty of prediction depends on the degree of freedom and complexity of the system;
if too many parameters should be fixed, it is impossible to make a precise predic-
tion. If the evolution law amplifies initial uncertainty too rapidly, one can not make
long-term predictions.

In such situations, choice of a prediction model strongly affects the prediction
performance. A model which works well in one case might not work well in other
cases. Therefore, model creation, model selection, and parameter fitting are all im-
portant in the complex changing real world.

In contrast to the long history of prediction and forecasting, chance discovery
is a brand-new research field; formally it began in 2000 (although many essential
pieces of research had already begun in the late 1990s). Chance discovery targets
aspects that prediction and forecasting methods have not shed light on: rather, those
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aspects that prediction and forecasting had considered as given. In this section, dif-
ferences are classified into three categories: emphasis on model and variable cre-
ation and discovery, emphasis on rare events , and emphasis on human and com-
puter interaction. Conventional prediction and forecasting methods presume that a
user (of the method) knows already which variables to predict, and which variables
should be cast into the methods. For example, an investor wants to know the trend
of a certain stock price based on the history of the price or data of other stock prices
and economic indices; a marketer wants to predict sales of a product based on the
sales history; a traveler wants to know tomorrow’s weather based on the history
of weather changes and current weather. However, sometimes one does not know
which variable to predict: one can imagine a woman who is not aware of the risk
of great earthquakes living in a quake-prone area, or a man who is not aware of
the potential chance of developing a new hit product. These people do not know
which variable to predict. In the real world, often in very important situations, we
are not aware of which variables to predict, and which variables to cast into predic-
tion methods.

Furthermore, ordinal prediction and forecasting methods postulate the existence
of a coherent model behind data. If we assume coherence, many prediction and
forecasting methods work very well. Certainly, scientific laws are very coherent.
However, in the real world, sometimes it is not reasonable to assume coherence.
Social and economic relationships are constantly changing. New products appear
day by day. The Internet emerged globally, completely changing our way of life
and business activities. Greenhouse gases have become a problem on a world-wide
scale, resulting in the regulation of greenhouse-effect gas emissions, and leading to
a new market for ecological hybrid cars. In such a real world, the assumption of a
coherent model sometimes does not hold. Rather, we should develop methodology
in the structurally changing world in which we live.

The following section makes a brief survey of prediction and forecasting meth-
ods. Knowing that prediction and forecasting constitutes a long-studied area, we
cover only limited aspects of that field. Further information can be found, for ex-
ample, in [3.28, 3.15, 3.7, 3.5]. Recent advances in data-mining methods open a
new direction to prediction and forecasting. After overviews presented here, we will
discuss the difference and relevance between prediction/forecasting and chance dis-
covery in Sect.3.3. Section 3.4 is devoted to one model which we think captures the
changing world: the small world. Some surveys and discussions are made there with
regard to the small world .

3.2 Existing Method of Prediction and Forecasting

3.2.1 Time-Series Prediction

Weigend and Gershenfeld indicate that time-series analysis has three goals: fore-
casting, modeling, and characterization [3.28]. Forecasting is also called predicting;
it aims at accurately predicting the short-term evolution of a system. (Prediction is
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also referred to as estimating unobservables, for example of an RNA structure or of a
VLSI circuit.) The goal of modeling is to find a description that accurately captures
features of the system’s long-term behavior. The third goal, system characterization,
attempts with little or no a priori knowledge to determine fundamental properties,
such as the number of degrees of freedom of a system or the amount of randomness.

Before the 1920s, forecasting was done by simply extrapolating the series
through a global fit in the time domain. The beginning of ‘modern’ time-series pre-
diction might be set at 1927 when Yule invented the autoregressive technique in
order to predict the annual number of sunspots. His model predicted the next value
as a weighted sum of previous observations of the series [3.31].

According to [3.28], two crucial developments occurred around 1980 due to
general availability of powerful computers. The first development was state-space
reconstruction by time-delay embedding. The second development was emergence
of the field of machine learning; it was able to adaptively explore a large space of
potential models. With the shift in artificial intelligence from rule-based methods
toward data-driven methods, the field was ready to apply itself to time-series.

3.2.2 ARMA Model

Linear time-series models are one of the most simple predictive models; they can
be understood in great detail and are straightforward to implement. ARMA models
have dominated all areas of time-series analysis and discrete-time signal processing
for more than half a century [3.28]. Two crucial assumptions will be made: the
system is assumed to be both linear and stationary.

Assume that we are given an external input series {et} and seek to modify it to
produce another series {xt}. In the MA (moving average) model, the present value
of x is influenced by the present and N past values of the input series e:

xt =
N∑
n=0

bnet−n = b0et + b1et−1 + . . .+ bNet−N .

In the AR (autoregressive) model, some feedback is considered:

xt =
M∑

m=1

amxt−m + et.

Depending on the application, et can represent either a controlled input to the system
or noise.

The ARMA model is a combination of the AR and MA models; the ARMA(M,N)
model is stated as

xt =
M∑

m=1

amxt−m +
N∑
n=0

bnet−n.

We can estimate coefficients of the AR(M) model from the observed correla-
tional structure of a signal. Estimation of the coefficients can be viewed as a regres-
sion problem: expressing the next value as a function of M previous values. This
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can be done by minimizing squared errors: the parameters are determined such that
the squared difference between the model output and the observed value, summed
over all time steps in the fitting region, is as small as possible. Standard techniques
exist, often expressed as efficient recursive procedures, for finding MA and ARMA
coeficients from observed data.

Historically, an important step beyond linear models for prediction was taken 20
years ago; it used two linear functions instead of one globally linear function. This
threshold autoregressive model (TAR) is globally non-linear. Such non-linear mod-
els significantly expand the scope of possible functional relationships for modeling
time series, but this benefit comes at the expense of simplicity. One solution to this
is in a connectionist framework.

3.2.3 Pattern Recognition

One new developing method of forecasting is through pattern imitation and recog-
nition [3.22]. Consider the time series as a vector

y = {y1, y2, . . . , yn},

where n is the total number of points in the series. The current state is represented
as yn. One possible simple method of prediction is based on identifying the closest
neighbor of yn in the past data, say yj , and predicting yn+1 on the basis of yj+1.
This simple approach may be extended by taking an average prediction based on
a set of nearest neighbors. The definition of the current state of a time series may
be extended to include more than one value. Optimal state size must be determined
experimentally on the basis of achieving minimal errors on standard measures.

Consider again the time series y = {y1, y2, . . . , yn}. A segment in the series
may be defined as a difference vector σ = (σ1, σ2, . . . , σn−1) , where σi = yi−1 −
yi (∀i, 1 < i < n − 1). A pattern contains one or more segments and may be
visualized as a string of segments

σ = (σi, σi+1, . . . , σh)

for given values of i and h, where 1 < i < h < n− 1. If we choose to represent the
pattern more simply, we encode the time series y as a vector of change in direction:
a value yi is encoded as 0 if yi−1 < yi, as a 1 if yi−1 > yi, and as a 2 if yi−1 = yi.
A pattern in the time series may now be represented as

ρ = (bi, bi−1, . . . , bh).

In this approach, time-series forecasting refers to the process of matching a cur-
rent state of the time series with its past state. Success in correctly predicting the
series depends directly on the pattern-matching algorithm. Also, the size k has an
important impact on error minimization and correct prediction. The match itself is
sometimes not exact and can be done by a fuzzy matching algorithm.

Similarly, aside from fuzzy methods, a large number of studies have been done
for forecasting using neural networks, genetic algorithms, and Markov models.



34 Yutaka Matsuo

3.2.4 Information Between the Past and the Future

In [3.4], Bialek et al. say that the only components of incoming data that present
the possibility of being useful are those that are predictive. It makes sense to iso-
late the predictive information from non-predictive information. Learning a model
to describe a data set can be seen as an encoding of that data; the quality of this
encoding can be measured using information-theory concepts.

From the information-theory perspective, past data T provides information
about future data T ′. We can write the average of this predictive information as

Ipred(T, T ′) ≤
〈
log2

P (xfuture|xpast)
P (xfuture)

〉
(3.1)

= S(T ) + S(T ′)− S(T + T ′), (3.2)

where 〈· · ·〉 denotes an average over the distribution; S(T ) = −〈logP (xpast)〉 is
the entropy of observations on a window of duration T . From the formula above,
we can view Ipred(T, T ′) as either the information that a data segment of duration
T provides about the future of length T ′, or the information that a data segment of
duration T ′ provides about the immediate past of duration T .

If we have been observing a time series for a long duration T , then the total
amount of data we have collected is measured by the entropy S(T ). Under some
assumptions, we can write S(T ) = S0T + S1(T ); of the total information we have
taken in by observing xpast, only a vanishing fraction is relevant to the prediction:

lim
t→∞

Predictive information
Total information

=
Ipred(T )
S(T )

→ 0.

In this sense, most of what we observe is irrelevant to the problem of predicting the
future.

3.2.5 Data-Mining Methods

Time-series data has been recently studied in the context of data mining. Many
methods attempt to find frequent patterns in time-series data (e.g. [3.10]). APRIORI

is one of the most well-known methods to find association rules

X → Y.

Agrawal and Srikant introduced the sequential pattern-mining problem in [3.24].
Many methods which are based on the APRIORI property [3.1] have been proposed
for mining sequential patterns (e.g. [3.2, 3.24, 3.9]).

Han et al. studied periodicity search, that is, search for cyclicity in time-related
databases [3.12]. They found segment-wise periodicity in the sense that only some
of the segments in a time sequence have cyclic behavior. For example, Laura may
read a newspaper at 7:00 to 7:30 every weekday morning, but may do all sorts of
things afterwards.

In contrast to mining frequent patterns or periodical patterns, several studies
focus on rare events. Weiss proposed a method to predict extremely rare events such
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as hardware-component failures in the AT&T network [3.29, 3.30]. Their system,
called Timewaver, is a genetic-based machine learning system for predicting events.
Following their description of the event-prediction problem, a prediction occurring
at time t, Pt, is said to be correct if a target event occurs within its prediction period.
The system searches the solution space using a genetic algorithm. Prediction rules
are encoded into each individual. The rule is for example: if two (or more) A events
and three (or more) B events occur within an hour, then predict the target event.
They use precision and recall to evaluate a solution. Recall is the percentage of target
events correctly predicted and precision is the percentage of times that a target event
is predicted and actually occurs. The evaluation function is based on both precision
and recall. The F-measure, which is used in information retrieval, is used as the
evaluation function:

f =
(β2 + 1)precision× recall

β2precision + recall
.

Instead of usual direct association, Tan et al. introduced the concept of indirect
association between items [3.26]. They believed that some of the infrequent item
sets may provide useful insight about the data. Consider a pair of items, (a, b), that
seldom co-occur together in the same transaction. If both items are highly dependent
on the presence of another item set, Y , then the pair (a, b) is said to be indirectly
associated via Y . In market basket data, this method can be used to perform com-
petitive analysis of products. For text documents, indirect association between a pair
of words often corresponds to synonyms, antonyms, or words that are present in the
different contexts of another word. This method is also used for mining Web-usage
data [3.25].

Domeniconi et al. attempted prediction of significant events from sequences of
data with categorical features [3.6]. Co-occurrence analyses of events are done by
means of singular value decomposition of examples constructed from data. Start-
ing with an initial rich set of features, they clustered features based on correlation.
The resulting classifier was expressed in terms of a reduced number of examples;
thereby, predictions can be performed efficiently.

In [3.23], catastrophic events are discussed such as the rupture of composite
materials, great earthquakes, turbulence, abrupt changes of weather regimes, finan-
cial crashes, and human parturition. A central property of such complex systems is
the possible occurrence of coherent large-scale collective behaviors with a very rich
structure, resulting from repeated non-linear interactions among their constituents.
These systems in natural and social sciences exhibit rare and sudden transitions,
which occur over time intervals that are short compared to the characteristic time
scales of their posterior evolution. Such extreme events express, more than anything
else, underlying forces. In case of the rupture of materials, the fracture process de-
pends strongly on the degree of material heterogeneity: if the disorder is too small,
then the precursory signals are essentially absent and prediction is impossible. If
heterogeneity is large, rupture is more continuous.

Finally, Last et al. [3.14] introduced new aspects and difficulties of time-series
databases (TSDB). The process of knowledge discovery in TSDB includes cleaning
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and filtering of time-series data, identifying the most important predicting attributes,
and extracting a set of association rules that can be used to predict future time-series
behavior. They used a fuzzy approach to express extracted rules in natural language.

3.3 Difference between Prediction/Forecasting and Chance
Discovery

As seen above, myriad frameworks have been developed for predicting the future,
including statistical, pattern-recognition, and data-mining algorithms. The major
concern of chance discovery is also in the future, e.g. predicting earthquake occur-
rence, developing new merchandise, and planning new strategies. However, chance
discovery targets those aspects that prediction and forecasting methods have not
shed light on. Rather, on what in prediction/forecasting had been considered as
given. We will discuss three aspects of chance discovery: model and variable cre-
ation and discovery, rare events, and human–computer interaction.

3.3.1 Emphasis on Model/Variable Creation and Discovery

Conventional prediction/forecasting methods postulate the existence of a coherent
model behind the data. If we assume the coherence, many prediction/forecasting
methods work very well. Certainly, scientific laws are very coherent. However, in the
real world, is it reasonable to assume coherence? In the real world, the assumption
of a coherent model often does not hold. Rather, we should develop methodology
for a structurally changing world that resembles the one in which we live.

In real life, such as in the business world, human networks, social development,
and so on, it happens very often that the structure of the system changes at some
points. In [3.11] the way in which a little thing can cause a big structural change is
discussed. Not only does a system evolve gradually as time passes, but the system
may also completely change its structure at some points. This is due to large-scale
collective behaviors with a very rich structure and repeated non-linear interactions
among its constituents. In such a situation, conventional prediction and forecasting
methods are not as effective as in a stable situation. In fact, when we face dramatic
structural change, we may not be able to predict the future. It is very important to
grab what happens, and find which variables to focus on.

Therefore, chance discovery is not concerned so much with predicting the pre-
cise values of some variables in the future. Although such prediction is very impor-
tant in a stable situation, it is not effective in dynamic situations. Knowing what is
happening, determining which variables to monitor, and creating a new model are
of great importance.

Model selection is a key issue in prediction/forecasting. There are some heuris-
tics to find the proper model, such as Akaike information criteria (AIC) or minimal
description length criteria. In the context of data mining, feature selection is also an
important process, which selects informative attributes. However, what we mention
here includes a big change of the model based on complex dynamics.
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3.3.2 Emphasis on Rare Events

Rare events sometimes have a very large impact on social, economic, and business
worlds. It is relatively easy to obtain knowledge about a frequent pattern, and thus
it can be understood well. In this sense, a frequent pattern does not have large infor-
mation if we assume that the a priori probability is modeled by common awareness
of the event: if all competitors of a company know about an event, the information
can not be a powerful strategic card.

On the other hand, rare events are not easy to recognize and use for decision
making. Events with low frequency are sometimes neglected; thus they have much
information. If most competitors of a company do not know about an event, it can
present opportunities for the company.

Ordinary statistical methods are very useful if a model is assumed and the num-
ber of samples is large. However, these methods are not proper for rare events. (Note
that there are some techniques to analyze rare events statistically [3.8].) If the num-
ber of samples is small, it is generally not statistically supported. Chance discovery
focuses on the tail of the distribution. Even if a large number of samples are col-
lected, the tail exists and sometimes the tail is a good source of information.

The above discussion is based on information in Shannon’s sense [3.21]. That
is, we discard the meaning of the event and only focus on the probability of an
event. However, in the real world, we must also consider the impact of the event.
Prediction of a big earthquake with low probability is important, but prediction of
an event with low probability and a low impact has no merit. Therefore, whether an
event has an impact or not is an essential aspect.

When we deal with rare events, it is not practical to consider the meaning and
impact of every rare event beforehand because such rare events can emerge in a
variety of ways. It is essential to use computer calculation to reduce the number of
rare events which might be important.

3.3.3 Emphasis on Human and Computer Interaction

The third point of difference is that chance discovery is thus exploiting the future
with the aid of humans.

Some rare events are simply noise, while others indicate great impact. It is com-
pletely impossible to fully automate the judgement of rare events. To understand
the rare event, it is necessary to have a large amount of background knowledge. To
implement a computer with a large amount of background knowledge is virtually
impossible, as much artificial intelligence research has shown. Therefore, human
and computer interaction is essential, which is discussed below.

In prediction and forecasting methods, it is assumed that a user (of the method)
knows already which variables are to be predicted, and which variables are to be
used (including the case where a part of a large number of variables are used). For
example, an investor wants to know the trend of a certain stock price; a marketer
wants to know how the sales will be; a traveler wants to know tomorrow’s weather.
However, how about those who are not aware of the risk of great earthquakes living
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in a quake-prone area? How about those who are not aware of the potential chance
of developing a new hit product? In the real world (and often in very important sit-
uations), we are not aware of which variables to predict and which variables should
be used.

Therefore, it is important to suggest new variables to humans. Textual informa-
tion is a good source of information to provide humans with new aspects of targeting
data because natural language has an extremely large number of dimensions. It is
very often the case that humans can discover a new variable to predict through the
stimuli of language. In addition, visualization and communication are both very im-
portant aspects for aiding humans’ creativity, which is described in detail in Chap.
6.

3.3.4 Relevance of Prediction/Forecasting and Chance Discovery

Although prediction and forecasting and chance discovery have different aspects
based on different presuppositions, they are not exclusive. Rather, they are comple-
mentary. To predict the future, it is very important to understand the events; some-
times we must invent the model and variables. Chance discovery focuses on the pro-
cess of understanding data and model-creation. Model selection, parameter fitting,
and hypothesis verification follow this understanding and model-creation stage.

Actually, commonly used methods are the combination of KeyGraph and a sta-
tistical hypothesis test: KeyGraph is first used to understand the data and to create a
hypothesis. Then, statistical prediction methods are used to evaluate the hypothesis.

3.4 Importance of Structural Information for Rare Events

Though it is very difficult to predict the future with structural change, some recent
research shows promising results. One method for addressing structural changes
is to concentrate on the network structure of data, and discover which node might
cause a great structural change. KeyGraph is an algorithm to visualize the data and
provide an insight to the future, especially on the rare events if they co-occur with
multiple frequent clusters. The details of KeyGraph are given in Chap. 18.

The same idea can be grasped in other structural analysis: small worlds. Strength
of weak ties is known in social psychological science. Centrality in a network is
another example of measuring what is important and what is not.

3.4.1 Small Worlds

Graphs that occur in many biological, social, and man-made systems are often nei-
ther completely regular nor completely random, but have instead a ‘small world’
topology in which nodes are highly clustered yet the path length between them is
small [3.27]. For instance, if one is introduced to someone at a party in a small
world, one can usually find a short chain of mutual acquaintances that connect. In
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the 1960s, Stanley Milgram’s pioneering work on the small-world problem showed
that two randomly chosen individuals in the USA are linked by a chain of six or
fewer first-name acquaintances (in the scope of their experiments), known as ‘six
degrees of separation’[3.19]. Watts have shown that a social graph (a collaboration
graph of actors in feature films), a biological graph (a neural network of the ne-
matode worm C. Elegans), and a man-made graph (the electrical power grid of the
western USA) all have a small-world topology [3.27]. The World Wide Web also
forms a small-world network [3.3].

To formalize the notion of a small world, Watts define the clustering coefficient
and the characteristic path length [3.27]:

– The characteristic path length, L, is the path length averaged over all pairs of
nodes. The path length d(i, j) is the number of edges in the shortest path between
nodes i and j.

– The clustering coefficient, C, is a measure of the cliqueness of the local neigh-
borhoods. For a node with k neighbors, then at most kC2 = k(k − 1)/2 edges
can exist between them. The clustering of a node is the fraction of these allowable
edges that occurs. The clustering coefficient, C, is the average clustering over all
nodes in the graph.

Watts define a small-world graph as one in which L ≥ Lrand (or L ∼ Lrand) and
C � Crand, where Lrand and Crand are the characteristic path length and clustering
coefficient of a random graph with the same number of nodes and edges.

They propose several models of graphs, one of which is called β-graphs. Starting
from a regular graph, they introduce disorder into the graph by randomly rewiring
each edge with probability p as shown in Fig.3.1. If p = 0, then the graph is com-
pletely regular and ordered. If p = 1 then the graph is completely random and
disordered. Intermediate values of p give graphs that are neither completely regular
nor completely disordered. They are small worlds.

For example, Fig.3.2 is a graph constructed from a document as follows1: first
the document is preprocessed by stemming and removing stop words as in [3.20],
and extracting an n-gram. Then, each sentence of the document is considered to be
in a basket, each of which consists of words (or phrases). After the preprocess, nodes
are settled by selecting a word which appears over a user-given threshold number
of times (e.g. three times). For every pair of nodes, the co-occurrence for every
sentence is counted; an edge is added if the Jaccard coefficient exceeds a threshold,
Jthre. The Jaccard coefficient is simply the number of sentences that contain both
terms divided by the number of sentences that contain either term. This idea is also
used in constructing a referral network from WWW pages [3.13]. Figure 3.2 shows
a graphical visualization of the world of a document. Nodes are clustered, yet the
whole graph is connected loosely. The co-occurrence graph of a technical paper
comprises a small world.

Recently, many studies have revealed small-world characteristics. Mathias and
Gopal investigated small-world networks from the point of view of their origin

1 Note that KeyGraph was also invented as a document-processing algorithm.
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[3.16]. They showed that small-world topology arises as a consequence of a tradeoff
between maximal connectivity and minimal wiring.

3.4.2 Structural Importance

In [3.18], node contribution is considered in the context of a small-world: if a node
is to be deleted, at what point will the small-world topology break? The contribution
of node v, CBv, is measured by

CBv = LGv − Lv, (3.3)
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v
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(1) L’v

(2) L’Gv

Fig. 3.3. Lv and LGv

where Lv is the characteristic path length averaged over all pairs of nodes except
node v and LGv is the characteristic path length of the graph without node v 3.3.

The larger CBv is, the greater its contribution to a small world. We can detect
which nodes are structurally important from the viewpoint of a small world, that
is, those that contribute to the efficiency of network flow and efficiency of network
cost.

This method is based on the same idea as KeyGraph: if a node (an event) shares
an important position in a graph, it might have an impact even if the frequency of the
event is low. Importance is defined, in the KeyGraph case, by co-occurrence of two
or more big clusters, and in the small-world case by the contribution for the graph to
be highly connected. The method in [3.17] employs another importance criterion: if
the flow on the graph is through a certain node, the node is important.

There can be many other ways to define importance on the network. However,
this direction seems promising because the structure (or context) is considered to
evaluate the importance of events. Certainly, such methods will not detect important
rare events by themselves, but by being used in combination with human under-
standing, they have great potential for data analysis and prediction (or even inven-
tion) of the future.

3.5 Conclusion

This chapter gives an overview of prediction methods including the ARMA model,
pattern recognition, and data mining; differences and relevance between prediction
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and forecasting and chance discovery are discussed. Although the presuppositions
of prediction and forecasting and chance discovery differ, both will be useful in
different stages of data analysis and decision making.
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