
Web Service Patterns:
Java Edition

PAUL B. MONDAY

0848fmCMP1.qxd 3/4/03 9:15 AM Page i

Web Service Patterns: Java Edition
Copyright (©)2003 by Paul B. Monday

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-084-8

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Kunal Mittal

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen
Watterson, John Zukowski

Assistant Publisher: Grace Wong

Project Managers: Sofia Marchant and Beth Christmas

Copy Editor: Kim Wimpsett

Compositor and Proofreader: Kinetic Publishing Services

Indexer: Valerie Robbins

Artist: Kinetic Publishing Services

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

0848fmCMP1.qxd 3/4/03 1:36 PM Page ii

57

CHAPTER 4

Exploring the
Architecture Adapter

Pattern

THE PREVIOUS CHAPTER EXPLAINED the Web Service architecture in terms of the
Service-Oriented Architecture pattern. Web Services implement the service-
oriented architecture using Simple Object Access Protocol (SOAP) as a
communication mechanism between services and Universal Description, Data,
and Discovery (UDDI) as a directory implementation. Web Services Description
Language (WSDL) describes the interface to a Web Service. Web Services do not
support inheritance or polymorphism, and they do not delve into the service
implementation techniques. On the other hand, Web Services build on such
a small set of primitive types and concepts that you can use virtually any semi-
modern programming language to build service implementations.

In the beginning days of Web Services, Java programmers coded socket lis-
teners that received SOAP messages, parsed them, and called the proper code in
the Java language. There are significant challenges to writing the code that con-
verts between the Web Service implementation of a service-oriented architecture
and the Java platform. Thankfully, tools, such as some of the tools included with
Apache Axis, automate the creation of this code that converts data from the Web
Service architecture to the Java architecture. At design time, it is easy to wrap up
the responsibilities of this conversion from Web Services to Java in a simple
design pattern: the Architecture Adapter pattern.

In this chapter, you will look at the architecture adapter as a generic pattern.
You then dissect the architecture adapter in terms of service deployment in
Apache Axis and service consumption from Java.

Facilitating Communication Between Architectures

Before digging too deeply into the architecture adapter, it is worth taking a few
moments to discuss exactly what is the true nature of architecture. Once you
have an understanding of some of the highlights of architecture, you can explore
the issues surrounding Web Services and the Java platform.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 57

Chapter 4

58

What Is Architecture?

There are many definitions of architecture, and there are many interpretations of
those definitions. The architecture of a system, in general, discusses its structure
through a set of the following:

• Architecture components that describe the core blocks of a system

• Connectors that describe the mechanisms and expectations on communi-
cation paths between components

• Task flows that illustrate how an application uses the components and
connectors to fulfill a requirement

The architecture of a system becomes very complex very quickly, especially
for an enterprise-class application. Architecture documents usually consist of
100 or more pages.

For this discussion, you need to focus on the content of the architecture
with respect to the components and connectors. Typically, at the root of archi-
tecture are an architectural style and a variety of architecture patterns. Style is
somewhat difficult to describe. When you think of an architectural style, you
can compare it to physical building architecture. In the physical world, an
architectural style dictates the dominant feel of a building. Typically, neighbor-
hoods all contain the same architectural style. Unique architectural styles,
such as Western Indian architecture, have elements that make it unique. For
the Western Indian architectural style, one thinks of Islamic-style domes,
ornate columns, and marble building blocks. The Taj Mahal in India is a per-
fect example.

Compare the Western Indian style with Frank Lloyd Wright’s prairie archi-
tectural style, recognized as one of the first original American architectural
styles. The Prairie style contains dominant horizontal lines; includes large,
sweeping roofs; and weaves common Japanese architectural styles. The style
attempts to connect the structure itself with the dominant Midwest prairie
landscape.

Now, imagine placing the Taj Mahal next to a home built in the prairie
style. The two architectures are fundamentally different, and only a master
landscaper could make the transition from one structure to the other struc-
ture appear seamless and be functional. The transition contains elements of
both architectural styles, yet blends its own techniques to help the transition
between the two dominant styles. This transition landscaping is an architec-
ture adapter.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 58

Exploring the Architecture Adapter Pattern

59

Common elements of software architecture styles include the following:

The dominant communication style: Two common communication
styles are message-based communication and call-return communica-
tion. The former is similar to today’s message services, such as the Java
Message Service (JMS), that provide loose coupling and that lend them-
selves well to asynchronous communications. Java’s method call
mechanism is an example of the call-return communication mecha-
nism. In call-return communication, the thread of control originates
with and returns to the method caller.

The dominant structuring technique for the functional implemen-
tation: Component and object-oriented styles are common in
architecture. A component architectural style indicates a tendency
toward the loose coupling of components and a high degree of cohesion
within the components. This style is valuable when you want to create
boundaries between components and allow programmers to easily
restructure applications, acquire new units of functionality, and replace
pieces of functionality. Object-oriented styles do not stress loose cou-
pling as much. Often, if you want to take an object and use it in another
application, you bring many other classes and dependencies with you.
In a component style, the act of reusing functionality in an entirely dif-
ferent program is trivial.

No inherent problems exist with either type of architecture. The strengths
and weaknesses balance out and often reflect preferences and experiences of the
senior architecture staff. Once an architect promotes a particular architectural
style, it permeates the entire application implementation.

Using Web Services and Java

Web Services and the Java platform have dramatically different architectural
styles. The Web Service architecture, based on the service-oriented architecture,
has its roots in the component-based architectural style, and it facilitates all of
the dominant communication architectural styles: message-based and call-
return. The Java platform is a classic embodiment of the object-oriented
architecture style with a call-return communication style.

Java interacts with Web Services in two scenarios:

• Java serves as the platform for writing a service implementation that turns
into a Web Service at deployment time.

• A Java program needs to use one or more Web Services.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 59

Chapter 4

60

ArchitectureAComponent

ArchitectureBComponent

ArchitectureAdapter

Architecture A Communication Style

Architecture B Communication Style

Figure 4-1. Structure of an architecture adapter solution

The first scenario deals with how to represent programmatic function writ-
ten with object-oriented techniques into an architecture that minimizes
dependencies and does not stress or allow rich class hierarchies. The second sce-
nario deals with representing loosely coupled and relatively flat structures in
a rich, object-oriented environment. The communication mechanisms also dif-
fer between the two architectures. Either of the two scenarios requires a
conversion from Java’s call-return communication style to the Web Service domi-
nant message-based communication style.

The challenges in combining the two architectural styles is not as difficult as
putting a Prairie style home next to the Taj Mahal, but it is a significant challenge
rife with minute details that take several iterations to get correct. As you archi-
tect and design your system, it is important that you isolate the component
responsible for making the conversion between the architectures. The root moti-
vation of the architecture adapter is to isolate this conversion process out of the
primary business components and logic.

Understanding the Structure of an Architecture Adapter

A convenient representation for an architecture adapter is a single component
with a set of requirements on it and the boundary interfaces that the requester
expects to see. This leaves the details of the mediation between the two architec-
tures to a lower level of design and implementation (see Figure 4-1).

0848C04CMP1.qxd 3/4/03 9:41 AM Page 60

Exploring the Architecture Adapter Pattern

61

The low-level design and implementation of an architecture adapter is a bit
more involved. Designs will be radically different based on the architectures
involved, how reusable and generic the architecture adapter will be, and the
facilities readily available for doing the necessary conversions between the archi-
tectural styles. The closer the match between the source and target architectures,
the thinner and easier it is to write the architecture adapter. Conversely, the fur-
ther apart that the source and target architectures are, the more complex and
difficult it is to write the adapters.

Understanding Components of an Architecture Adapter

Three components make up the structure of a complete solution. A single com-
ponent, the ArchitectureAdapter, holds the responsibilities of mediating between
the two architectures involved. The three components are as follows:

ArchitectureAComponent: The A component implements functionality
in a particular architectural style. For example, it may implement its
functionality using the Java platform and, therefore, use an object-
oriented, call-return architectural style.

ArchitectureBComponent: The B component implements comple-
mentary functionality in a different architectural style than the
A component. Most likely, the complementary functionality did not
occur in a preplanned fashion. Instead, the A and B component are
often purchased functionality in different software upgrade cycles. For
example, a company purchased the A component as it installed an
Enterprise Resource Planning (ERP) system and purchased the B com-
ponent when it decided it needed a Customer Relationship
Management (CRM) solution to facilitate its growing customer base.

ArchitectureAdapter: The architecture adapter mediates between the two
architecture styles inherent in the ArchitectureAComponent and the
ArchitectureBComponent. To mediate properly, the adapter must offer
a natural interface to both components, regardless of the complexities
of mediating the service interaction. The implementation must convert
one component’s architecture entirely to the other component’s archi-
tecture and maintain the behavior and expectations of both clients. To
do this, data styles must be mapped properly, differences in the behav-
ior of communications must be mapped properly, and even such
complexities as converting a rich object hierarchy to a flat component
interface must be achieved gracefully.

Frequently, the architecture adapter splits into two halves, one that commu-
nicates directly with the A component and one that communicates directly with

0848C04CMP1.qxd 3/4/03 9:41 AM Page 61

Chapter 4

62

ArchitectureAComponent

ClientAdapterA

Architecture A Communication Style

ArchitectureBComponent

ClientAdapterB

Architecture B Communication Style

Private Communication Style

Figure 4-2. Lower-level design of an architecture adapter

the B component. The two halves then implement their own architectural style
to communicate with each other, as shown in Figure 4-2.

In Figure 4-2, ClientAdapterA and ClientAdapterB make up the entire func-
tionality of the ArchitectureAdapter. By splitting the ArchitectureAdapter into
halves, it becomes easier to add a third component type into the mix. Without
the intermediate architecture style, you must build two new architecture
adapters—one to communicate with each of the existing components. With this
modified design, you can build a single adapter to communicate into the inter-
mediate architectural style. Welcome to one of the primary motivations for the
Web Service architecture: a mechanism to provide mediation between different
architectural styles. Web Services implement the Architecture Adapter pattern in
such a way that it is simple to mine differing architectures for functionality.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 62

Exploring the Architecture Adapter Pattern

63

Understanding Collaborations Between Architecture
Adapter Components

The interesting part of the collaborations between components is in the call style
and the data structures passed between components. Instead of using the first
structuring from Figure 4-1, I use the second structuring from Figure 4-2 to show
a sequence that more closely resembles a Web Service scenario. Figure 4-3 shows
the sequence of operations for component A to make a call against component B.

The call between component instance A and clientAdapterA takes place in
the operational call style inherent in the A architecture and with data structures
native to the A architecture. The first client adapter converts the call to a neutral
third architectural style and makes a call in this third style with the appropriate
data structures to the second client adapter. This second client adapter converts
the operation to B’s architectural style and makes the call to the B component
with data structures and a call style native to the B architecture.

Preparing to Implement Architecture Adapters

The Architecture Adapter pattern isolates complexity to the adapter and away
from client and target service code. When implementing the Architecture
Adapter pattern, you should follow a few general rules. Specific scenarios, such
as Web Services to Java, drive more implementation details based on the archi-
tectural styles involved:

1.1.1: operationBCallStyle(BDataStructures):void

1.1 operationPrivateCallStyle(PrivateDataStructure):void

1: operationACallStyle(ADataStructure):void

A
Architecture
AComponent

B
Architecture
BComponent

clientAdapterA
ClientAdapterA

clientAdapterB
ClientAdapterB

Figure 4-3. Sequence of operation calls between architectures

0848C04CMP1.qxd 3/4/03 9:41 AM Page 63

Chapter 4

64

Establish a common pattern for traversals between architectures and
build reusable adapters whenever possible: If you traverse between
architectures once in a program, you will probably do it repeatedly. There
are likely common serialization and de-serialization techniques for mov-
ing data into and out of the architectures. Encapsulate these techniques.
Reusable adapters will also include a generic dispatcher or mapping
table to select the proper target service and invocation method.

Architectures that use different programming paradigms are more dif-
ficult to adapt than similar programming paradigms: Architecture
adapters between object-oriented languages will usually be much easier
to write than an architecture adapter between an object-oriented lan-
guage and a procedural language. Although the architectural details may
appear simple, leave enough time to address design and implementa-
tion complexities for the adapters.

Plan for performance concerns: Serialization and de-serialization of
data takes time. Be aware that the adapter route can never perform as
well as code that is entirely native to an implementation. For example,
calling a C function from Java to calculate the first five prime numbers
would be wasteful because of the adapter overhead. Calling a C function
to locate the 10,679th prime number would likely pay off in terms of per-
formance.

Architecture adapters should decrease the complexity within a com-
ponent for accessing functionality in a different architecture: Using
an architecture adapter in a component should allow client program-
mers to program in a single language with method calls that appear as
if the programmer is simply calling another class or procedure.
Isolating this complexity should make the primary code line easier to
read and maintain.

Use prebuilt architecture adapters and platforms, such as Web
Services, whenever possible: If you plan, there are few reasons to build
your own architecture adapters. The Java Native Interface (JNI) and Web
Services are two excellent technologies for allowing Java to utilize other
architectures. These layers can be difficult to get right, so try to reuse
whenever possible.

Understanding Architecture Adapters in Web Services

To understand how architecture adapters facilitate better and easier program-
mer practices, you will look at a slightly more complex Web Service scenario
than the previous chapter. You will also fully leverage the facilities in Apache Axis

0848C04CMP1.qxd 3/4/03 9:41 AM Page 64

Exploring the Architecture Adapter Pattern

65

so that you do not have to manually build the architecture adapters. In fact, from
here on out, Apache Axis tools allow you to be entirely SOAP ignorant. Instead,
you access Web Services from Java method calls using architecture adapters
generated from the WSDL interface of a service, as illustrated in Figure 4-4,
a sequence diagram based on Figure 4-3.

In Figure 4-4, I took liberties to place the expected Java method call, to the
conversion to SOAP, and, finally, to a third, unknown architecture—the mysteri-
ous architecture B.

To illustrate the facilities of Apache Axis for building architecture adapters,
you use a set of classes that make up the beginnings of a customer database.
Figure 4-5 shows the diagram for the primary classes involved in making up
a collection of customers. As you can see, a single class, CustomerCollectionImpl,
contains the customer object query methods. Customer data comes from
a CustomerImpl class containing basic information, such as their address, and
more advanced information, such their primary credit card and Internet address
information, which is separated into the CustomerInformationImpl.

1.1.1: operationBCallStyle(BDataStructures):void

1.1: soapOperation(XMLData):void

1: javaMethod(Object):void

A
JavaClass

B
Architecture
BComponent

javaAdapter
JavaToWebServices

bAdapter
BToWebServices

Figure 4-4. Java to Web Service sequence diagram

0848C04CMP1.qxd 3/4/03 9:41 AM Page 65

Chapter 4

66

CustomerInformationImpl

+getInternetAddress:InternetAddressImpl
+setInternetAddress:void 0..1 1

shippingAddress:AddressImpl
creditAccount:CreditAccountImpl

entities.CustomerImpl

address:AddressImpl
customerInformation:CustomerInformationImpl
firstName:String
lastName:String
customerId:String

CustomerCollectionImpl

+removeCustomer:void
+addCustomer:CustomerKey
+getCustomer:CustomerImpl
+getCustomersLastFirst:CustomerImpl[]
+getCustomersLast:CustomerImpl[]
+getCustomers:CustomerImpl[]
+setCustomers:void

Figure 4-5. Customer collection class diagram

Several important design principles within these classes make the transition
to Web Services easier:

• The customer data classes adhere to the JavaBeans contracts.

• There is no operation overloading.

• Methods return arrays where multiple values are possible.

The reasons to apply these principles are to create predictability and avoid
exploitation of the object-oriented paradigm. In turn, these things are important
to help ease the transition from the rich object-oriented paradigm of Java to the
flatter component model of Web Services. Although it is possible to build an
architecture adapter that makes the transition between architectures possible,
the more you exploit one architecture, the more difficult the adapter will be to
write. As tools become more advanced, the level of support for conversion
between architectures will grow and the complexity of the classes can increase.

As far as the code goes, the most interesting part of the code is the imple-
mentation of the CustomerCollectionImpl class. In Figure 4-5, you will notice that

0848C04CMP1.qxd 3/4/03 4:41 PM Page 66

Exploring the Architecture Adapter Pattern

67

there is no explicit containment of CustomerImpl classes from the
CustomerCollectionImpl class. This technique is a reflection of using Java Data
Objects (JDO) for the persistence mechanism underneath your classes. The
CustomerCollectionImpl class uses a series of queries against a CustomerImpl
extent rather than explicitly loading the collection and sorting through the
objects each time a client requests a single customer.

In terms of architecture adapter responsibilities, Apache Axis uses an
inbound/outbound division of labor. One adapter set takes care of Web Services
to Java conversions (or to another language), and another adapter takes care of
the Java to Web Service conversion. The former takes SOAP messages and con-
verts them to Java method invocations on proper object instances. The latter
takes Java method invocations, converts them to SOAP messages, and routes
them appropriately.

Creating a Web Services to Java Service
Implementation

Apache Axis is, essentially, an implementation of the Architecture Adapter pat-
tern taken to an extreme. Using tools, you can generate an architecture adapter
that allows you to call methods in Java and convert them to a Web Service call
using SOAP; this is the A architecture adapter from the pattern structure. This
SOAP message is received by an Apache Axis implementation running within
a Web application server that parses the SOAP message and makes the appro-
priate method call to the target service. The receiving end is the B architecture
adapter from the pattern structure.

These processes form the core of the architecture adapter between SOAP
and the target service, or Web Services and the target service, depending on your
perspective. Rather than creating a custom adapter for each target service,
Apache Axis uses a single generic adapter that leverages plug-in message pro-
cessing chains and message dispatchers. The entire design is online at the
Apache Axis homepage. You are going to view the design from the perspective of
a user of Apache Axis.

You deployed a small Web Service in the previous chapter, but it did not
have the complexities of the customer collection that you will deploy in this
chapter. Recall that the Web Service Deployment Descriptor (WSDD) tells Axis
the details about a particular service so that Axis can route messages to the ser-
vice implementation. This process sets up a generic architecture adapter with
specific information about your service. The generic architecture adapter in Axis
requires you to give the following:

0848C04CMP1.qxd 3/4/03 9:41 AM Page 67

Chapter 4

68

• The service name (call the service CustomerCollection)

• The provider (use the Axis built-in Java RPC provider)

• The class name of the target service implementation
(com.serviceroundry.books.webservices.entities.CustomerCollectionImpl)

• The methods to turn into service targets (expose all methods on the
CustomerCollectionImpl class by using *)

• Complex data types necessary for a user to access the exposed service

The only significant difference from the previous chapter is the addition of
tags to identify the complex data types. Listing 4-1 illustrates a beanMapping tag to
identify the AddressImpl JavaBean as a complex data type. Recall from Figure 4-5
that the CustomerImpl class contains a reference to a customer’s address. Axis
requires the bean mapping tag to have additional data for the Web Service archi-
tecture that does not exist in the architecture supported by Java. You must add
information about the namespace that the address resides in—which is a similar
concept to packages—but not enough to allow the engine to use the package
name as is. You also must tell the deployment tool the language that the complex
data type uses—in this case, Java. Finally, you could give the Axis engine infor-
mation about special serializers (Java classes adhering to an Axis class interface)
that you write to help move a bean or class from one architecture to the other. In
this case, you use the basic JavaBean patterns, and there is not special handling
for your classes, so a serializer is unnecessary. In fact, you will not use serializers
throughout this entire book.

Listing 4-1. WSDD File for CustomerCollectionImpl

<service name="CustomerCollection" provider="java:RPC">

// . . .

<beanMapping qname="myNS:Address"

xmlns:myNS="urn:CustomerCollection"

languageSpecificType=

"java:com.servicefoundry.books.webservices.entities.AddressImpl"/>

// . . .

</service>

Using the Apache Axis administration tool (as shown in the previous chap-
ter), submit the file to Apache Axis for proper configuring of the Axis server-side
engine, otherwise known as an architecture adapter.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 68

Exploring the Architecture Adapter Pattern

69

Consuming Web Services with Apache Axis

Without architecture adapters, consuming Web Services would be a difficult and
tedious job. Most likely, you would end up writing the architecture adapters
yourself as you learned the patterns that your language uses to build SOAP mes-
sages and submit them to the Web Service. Fortunately, you do not have to build
your own. WSDL’s Extensible Markup Language (XML)-based representation and
strict definition allows tool vendors to write language-specific tools that build the
architecture adapter. The tools convert WSDL into interface and code to turn
the language-specific request into a SOAP request to a specific Web Service.

Apache Axis comes with WSDL2Java, a tool that converts a WSDL to a Java
interface and architecture adapter implementation; a programmer’s job in
consuming Web Services just got a lot easier. Instead of constructing SOAP mes-
sages, covered in the previous chapter, a consumer manipulates Java classes and
objects directly, which then interact with the Web Service environment.
Listing 4-2 shows how to create a customer object from a Java program that
accesses the Web Service deployed in the previous section. Access occurs
through an architecture adapter built using WSDL2Java.

Listing 4-2. Customer Creation Through the Client-Side Architecture Adapter

CustomerCollectionImplService service = new

CustomerCollectionImplServiceLocator();

CustomerCollectionImpl port = service.getCustomerCollection();

Address ai = new Address();

ai.setAddressLine1("Web Service Line 1");

ai.setAddressLine2("Web Service Line 2");

ai.setCity("Highlands Ranch");

ai.setState("CO");

ai.setZipCode("80129");

Customer ci = new Customer();

ci.setAddress(ai);

ci.setFirstName("Paul (Web)");

ci.setLastName("Monday");

port.addCustomer(ci);

Out of the code, the only slightly abnormal calls are the first two lines of
code. These lines retrieve the customer collection service offered previously in
this chapter. Listing 4-2 is far easier than constructing a SOAP document and
submitting it to the customer collection Web Service, and it is much more nat-
ural for a Java programmer to manage. In this case, I put the cart before the

0848C04CMP1.qxd 3/4/03 9:41 AM Page 69

Chapter 4

70

WSDL
Definitions Services

PortTypes

Operations Ports

CustomerCollectionImp CustomerCollectionImplService

CustomerCollection
(Your

CustomerCollection
HTTP Address)

getCustomer
getCustomerLast
addCustomer

...

CustomerKey
Customer
Address

CustomerInformation
InternetAddress
CreditAccount

getCustomerResponse
getCustomerRequest

getCustomerLastRequest
getCustomerLastResponse

addCustomerRequest
addCustomerResponse

... CustomerCollectionSoapBinding

BindingsMessages

Figure 4-6. WSDL high-level depiction of a customer collection

horse; I decided to illustrate how you use the architecture adapter before show-
ing you how to build the architecture adapter.

Constructing the architecture adapter for a particular Web Service with
Apache Axis is as simple as obtaining a WSDL representation of the Web Service
and running a tool against the WSDL. It is important to realize that although your
service implementation is in Java, the WSDL does not expose any syntax or fea-
tures that are unique to Java; instead, the WSDL is a pure Web Service construct.

The complete WSDL for the CustomerCollectionImpl is too large to show in
this chapter, but Figure 4-6 is a graphical depiction of the WSDL file contents at
a high level of abstraction. In it, you should see that the customer collection
interface, detailed in Figure 4-6, forms the Web Service itself with the customer
data described as a series of data type definitions.

The data type definitions from the WSDL turn into JavaBeans for use in con-
junction with the Web Service. Your client may construct the JavaBeans to pass
as parameters to the customer collection Web Service, or the JavaBeans are data
returned from method calls on the Web Service.

The WSDL file necessary to generate the architecture adapter gets generated
when you access the Web Service with the ?wsdl parameter on the end of the Web
Service’s URL (http://localhost:8080/axis/services/CustomerCollection?wsdl). To
have Axis generate the Java-side architecture adapter, run the Apache Axis
WSDL2Java tool against the CustomerCollection.wsdl file. The output from the
tool is a set of classes that you import into your application if you want to access
the Web Service.

WSDL2Java creates several classes that act as the adapter between Java and
the Web Service, as well as any classes that are required to interact with the Web
Service, such as parameters and return types. The classes include the following:

0848C04CMP1.qxd 3/4/03 9:41 AM Page 70

Exploring the Architecture Adapter Pattern

71

• CustomerCollectionImpl: An interface representing the port types on the
CustomerCollection Web Service.

• CustomerCollectionImplService: The service interface for a class factory
responsible for creating the architecture adapter for the customer collection.

• CustomerCollectionImplServiceLocator: The implementation of the ser-
vice locator that builds an implementation of the customer collection
using the location of the service identified in the WSDL as a default or the
location identified as a parameter to the creation method.

• CustomerCollectionSoapBindingStub: The
CustomerCollectionSoapBindingStub is an architecture adapter that the ser-
vice locator returns to the requesting client. This adapter generates SOAP
messages based on the methods and data that are set using the methods
in the interface CustomerCollectionImpl.

• Address, Customer, CustomerInformation, CustomerKey,
InternetAddress: These classes are JavaBeans that represent customer
data types in the WSDL file. The CustomerCollectionImpl class serializes
these to SOAP contents when the architecture adapter moves information
from the client to Web Services.

Early in the chapter, you saw code that creates a new customer. Operations
on individual JavaBeans, such as Address and Customer, have no effect on the
actual values that the Web Service represents; only operations on the retrieved
CustomerCollectionImpl object instance affect server-side data.

Leveraging Architecture Adapters in the Case Study

The P.T. Monday Coffee Company application uses architecture adapters only
when interfacing with Web Services. Further, Axis generates the architecture
adapters, and they have no impact on developers in terms of coding responsi-
bilities. On the other hand, the build environment is definitely more complex
with the extra generation steps. Direct usage of architecture adapters occurs in
three places:

• When service behaviors require interactions with external Web Services

• When you expose service behaviors as Web Services

• When service behaviors must interact with the service directory to publish
or locate a service

In the case of interacting with the service directory, you use an off-the-shelf
package, UDDI4J, to interact with the service directory. The client-side class

0848C04CMP1.qxd 3/4/03 9:41 AM Page 71

Chapter 4

72

library handles service interactions. It is likely that developers built much of the
client-side access library with a tool similar to the Apache Axis WSDL2Java tool.

Generation of the architecture adapters that connect SOAP messages to the
service behaviors occurs upon deployment of a service through the administra-
tion facilities of Apache Axis, as discussed in this chapter and the previous
chapter. Generation of the architecture adapters from WSDL files, for your ser-
vice behaviors to access outside Web Services, occurs using the WSDL4Java tool
at build time for your application.

Identifying Important Classes and Files in the
Case Study

Table 4-1 shows the primary code discussed in this chapter that you should
browse in the downloaded source code.

Table 4-1. Sample Location

FILE LOCATION DESCRIPTION

CustomerCollectionImpl. src\com\servicefoundry\ The primary Java class that becomes

java books\webservices\ a Web Service by using the Apache

entities Axis deployment mechanisms. This

class uses JDO as a persistence

mechanism.

CustomerImpl.java src\com\servicefoundry\ A class whose object instances

books\webservices\ represent customers in your

entities application. In this chapter, the

customer implementation is not

a Web Service; however, the customer

collection implementation does

serialize instances of customers to

your client application.

CustomerInformationImpl. src\com\servicefoundry\ Additional information about

java books\webservices\ customers, such as credit card

entities numbers. Like the customer, this

class is not a Web Service, though the

customer collection ends up

returning instances of the customer

information indirectly through the

customer instances.

TestCustomerCollection src\com\servicefoundry\ A client-side test program that uses

WebService books\webservices\tests the client-side architecture adapter to

access the customer collection Web

Service.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 72

Exploring the Architecture Adapter Pattern

73

Using Ant Targets to Run the Case Study

Table 4-2 describes the targets to run for the ant environment to see the pro-
grams and chapter samples in operation. Before running any samples, be sure
you read and perform all of the install steps in Appendix A.

Table 4-2. Ant Targets

TARGET DESCRIPTION

testcustomercollectionwebservice This runs the TestCustomerCollection

WebService program. You must have deployed

the Web Services according to the instructions

in Appendix A.

Summary

The architecture adapter is a powerful pattern that allows you to treat two archi-
tectures and the communication between them as a single component. You are
able to place specific responsibilities and expectations on a construct, the archi-
tecture adapter, that allows designers to concentrate on how to best facilitate the
mediation between two different architecture styles.

Web Services with Java use architecture adapters in two locations: from the
client Java program to SOAP and from SOAP to the Java service implementation. Of
course, you need to keep in mind that once the Java service implementation is a Web
Service, there is no requirement that you use the service from Java. Architecture
adapters for C#, COBOL, or any other language are possible with the communication
facilitated through the third architectural style embodied in Web Services.

You saw the design of the architecture adapters built into Apache Axis for
offering Web Services, as well as the architecture adapters that Apache Axis’
WSDL2Java tool builds for Java clients of Web Services. The client-side and server-
side adapters are similar in design and serve reverse needs, one adapting Java to
Web Services, the other adapting Web Services to Java. You deployed and used services
through the architecture adapters to show the simplicity that isolation of architecture
conversions to a single pattern brings to the programming environments.

At this point, you should have an adequate understanding of the mecha-
nisms you will use to expose application functionality to the outside world. You
have not spent considerable time on the service directory that your partners use
to locate your services. In the next chapter, you will learn about service direc-
tories and the patterns inherent in them. Chapter 5, “Exploring the Service
Directory Pattern,” wraps up the discussion of Web Service foundation patterns,
so you can move on to designing specific entities and constructs for use with
Web Services.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 73

Chapter 4

74

Related Patterns

The Architecture Adapter pattern relates to all of the example code in this
chapter. This is simply because the client code is all written in pure Java using
the client-side architecture adapters generated by Apache Axis. Pattern-wise, the
Architecture Adapter pattern is most closely related to the following pattern:

• Service-Oriented Architecture: The service-oriented architecture uses
architecture adapters to help with implementation transparency, one of
the primary characteristics of the architecture.

Additional Reading

• Apache Axis Architecture Guide: http://xml.apache.org/axis/

• Gamma, Erich et. al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

0848C04CMP1.qxd 3/4/03 9:41 AM Page 74

