10 The Feynman Path Integral

In this chapter, we derive a convenient representation for the integral kernel of the Schrödinger evolution operator, $e^{-i t H / \hbar}$. This representation, the "Feynman path integral", will provide us with a heuristic but effective tool for investigating the connection between quantum and classical mechanics. This investigation will be undertaken in the next section.

10.1 The Feynman Path Integral

Consider a particle in \mathbb{R}^{d} described by a self-adjoint Schrödinger operator

$$
H=-\frac{\hbar^{2}}{2 m} \Delta+V(x)
$$

Recall that the dynamics of such a particle is given by the Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=H \psi
$$

Recall also that the solution to this equation, with the initial condition

$$
\left.\psi\right|_{t=0}=\psi_{0}
$$

is given in terms of the evolution operator $U(t):=e^{-i H t / \hbar}$ as

$$
\psi=U(t) \psi_{0}
$$

Our goal in this section is to understand the evolution operator $U(t)=$ $e^{-i H t / \hbar}$ by finding a convenient representation of its integral kernel. We denote the integral kernel of $U(t)$ by $U_{t}(y, x)$ (also called the propagator from x to y).

A representation of the exponential of a sum of operators is provided by the Trotter product formula (Theorem 10.2) which is explained in Section 10.3 at the end of this chapter. The Trotter product formula says that

$$
e^{-i H t / \hbar}=e^{i\left(\frac{\hbar^{2} t}{2 m} \Delta-V t\right) / \hbar}=\mathrm{s}-\lim _{n \rightarrow \infty} K_{n}^{n}
$$

where $K_{n}:=e^{\frac{i \hbar t}{2 m n} \Delta} e^{-\frac{i V t}{\hbar n}}$. Let $K_{n}(x, y)$ be the integral kernel of the operator K_{n}. Then by Proposition 5.33,

$$
\begin{equation*}
U_{t}(y, x)=\lim _{n \rightarrow \infty} \int \cdots \int K_{n}\left(y, x_{n-1}\right) \cdots K_{n}\left(x_{2}, x_{1}\right) K_{n}\left(x_{1}, x\right) d x_{n-1} \cdots d x_{1} \tag{10.1}
\end{equation*}
$$

Now (see Section 5.7)

$$
K_{n}(y, x)=e^{\frac{i \hbar t \Delta}{2 m n}}(y, x) e^{-\frac{i V(y) t}{\hbar n}}
$$

since V, and hence $e^{-i V t / n \hbar}$, is a multiplication operator (check this).
Using the expression (2.15), and plugging into (10.1) gives us

$$
U_{t}(y, x)=\lim _{n \rightarrow \infty} \int \cdots \int e^{i S_{n} / \hbar}\left(\frac{2 \pi i \hbar t}{m n}\right)^{-n d / 2} d x_{1} \cdots d x_{n-1}
$$

where

$$
S_{n}:=\sum_{k=0}^{n-1}\left(m n\left|x_{k+1}-x_{k}\right|^{2} / 2 t-V\left(x_{k+1}\right) t / n\right)
$$

with $x_{0}=x, x_{n}=y$. Define the piecewise linear function ϕ_{n} such that $\phi_{n}(0)=x, \phi_{n}(t / n)=x_{1}, \cdots, \phi_{n}(t)=y \quad$ (see Fig. 10.1).

Fig. 10.1. Piecewise linear function.

Then

$$
S_{n}=\sum_{k=0}^{n-1}\left\{m \frac{\left|\phi_{n}((k+1) t / n)-\phi_{n}(k t / n)\right|^{2}}{2(t / n)^{2}}-V\left(\phi_{n}((k+1) t / n)\right)\right\} t / n
$$

Note that S_{n} is a Riemann sum for the classical action

$$
S(\phi, t)=\int_{0}^{t}\left\{\frac{m}{2}|\dot{\phi}(s)|^{2}-V(\phi(s))\right\} d s
$$

of the path ϕ_{n}. So we have shown

$$
\begin{equation*}
U_{t}(y, x)=\lim _{n \rightarrow \infty} \int_{P_{x, y, t}^{n}} e^{i S_{n} / \hbar} D \phi_{n} \tag{10.2}
\end{equation*}
$$

where $P_{x, y, t}^{n}$ is the $(n-1)$-dimensional space of paths ϕ_{n} with $\phi_{n}(0)=x$, $\phi_{n}(t)=y$, and which are linear on the intervals $(k t / n,(k+1) t / n)$ for $k=$ $0,1, \ldots, n-1$, and $D \phi_{n}=\left(\frac{2 \pi i \hbar t}{n m}\right)^{-n d / 2} d \phi_{n}(t / n) \cdots d \phi_{n}((n-1) t / n)$.

Heuristically, as $n \rightarrow \infty \phi_{n}$ approaches a general path, ϕ, from x to y (in time t), and $S_{n} \rightarrow S(\phi)$. Thus we write

$$
\begin{equation*}
U_{t}(y, x)=\int_{P_{x, y, t}} e^{i S(\phi, t) / \hbar} D \phi \tag{10.3}
\end{equation*}
$$

Here $P_{x, y, t}$ is a space of paths from x to y, defined as

$$
P_{x, y, t}:=\left\{\phi:\left.[0, t] \rightarrow \mathbb{R}^{d}\left|\int_{0}^{t}\right| \dot{\phi}\right|^{2}<\infty, \quad \phi(0)=x, \quad \phi(t)=y\right\}
$$

This is the Feynman path integral. It is not really an integral, but a formal expression whose meaning is given by (10.2). Useful results are obtained nonrigorously by treating it formally as an integral. Answers we get this way are intelligent guesses which must be justified by rigorous tools.

Note that $P_{x, y, t}^{n}$ is an $(n-1)$-dimensional sub-family of the infinitedimensional space $P_{x, y, t}$. It satisfies $P_{x, y, t}^{n} \subset P_{x, y, t}^{2 n}$ and $\lim _{n \rightarrow \infty} P_{x, y, t}^{n}=P_{x, y, t}$ in some sense. We call such subspaces finite dimensional approximations of $P_{x, y, t}$. In (non-rigorous) computations, it is often useful to use finitedimensional approximations to the path space other than the polygonal one above.

We can construct more general finite-dimensional approximations as follows. Fix a function $\phi_{x y} \in P_{x, y, t}$. Then

$$
P_{x, y, t}=\phi_{x y}+P_{0,0, t}
$$

Note $P_{0,0, t}$ is a Hilbert space. Choose an orthonormal basis $\left\{\xi_{j}\right\}$ in $P_{0,0, t}$ and define

$$
P_{0,0, t}^{n}:=\operatorname{span}\left\{\xi_{j}\right\}_{1}^{n}
$$

and

$$
P_{x, y, t}^{n}:=\phi_{x y}+P_{0,0, t}^{n} .
$$

Then $P_{x, y, t}^{n}$ is a finite dimensional approximation of $P_{x, y, t}$. Typical choices of $\phi_{x y}$ and $\left\{\xi_{j}\right\}$ are

1. $\phi_{x y}$ is piecewise linear and $\left\{\xi_{j}\right\}$ are "splines". This gives the polygonal approximation introduced above.
2. $\phi_{x y}$ is a classical path (a critical point of the action functional $S(\phi)$) and $\left\{\xi_{j}\right\}$ are eigenfunctions of the Hessian of S at $\phi_{x y}$ (these notions are described in the following two chapters). In this case, if $\eta \in P_{0,0, t}^{n}$, then we can represent it as

$$
\eta=\sum_{j=1}^{n} a_{j} \xi_{j}
$$

and we have

$$
D \eta=\left(\frac{2 \pi i t \hbar}{m}\right)^{-d / 2}\left(\frac{2 \pi n}{t} \sqrt{\frac{m}{\hbar}}\right)^{n} \prod_{j=1}^{n} d a_{j}
$$

It is reasonable to expect that if

$$
\lim _{n \rightarrow \infty} \int_{P_{x, y, t}^{n}} e^{i S(\phi, t) / \hbar} D \phi
$$

exists, then it is independent of the finite-dimensional approximation, $P_{x, y, t}^{n}$, that we choose.

Problem 10.1

1. Compute (using (10.3) and a finite-dimensional approximation of the path space) U_{t} for
a) $V(x)=0$ (free particle)
b) $V(x)=\frac{m \omega^{2}}{2} x^{2}$ (harmonic oscillator in dimension $d=1$).
2. Derive a path integral representation for the integral kernel of $e^{-\beta H / \hbar}$.
3. Use the previous result to find a path integral representation for $Z(\beta):=$ $\operatorname{tr} e^{-\beta H / \hbar}$ (hint: you should arrive at the expression (11.10)).

10.2 Generalizations of the Path Integral

Here we mention briefly two extensions of the Feynman path integral we have just introduced.

1. Phase-space path integral:

$$
U_{t}(y, x)=\int_{P_{x, y, t} \times \text { anything }} e^{i \int_{0}^{t}(\dot{\phi} \pi-H(\phi, \pi)) / \hbar} D \phi \not D \pi
$$

where $\not D \pi$ is the path measure, normalized as

$$
\int e^{-\frac{i}{2} \int_{0}^{t}\|\pi\|^{2}} \not D \pi=1
$$

(in QM, \not d $^{3} p=d^{3} p /(2 \pi)^{3 / 2}$). To derive this representation, we use the Trotter product formula, the expression $e^{-i \epsilon H} \approx 1-i \epsilon H$ for ϵ small,
and the symbolic (pseudodifferential) composition formula. Unlike the representation $\int e^{i S / \hbar} D \phi$, this formula holds also for more complicated H, which are not quadratic in p !
2. A particle in a vector potential $A(x)$. In this case, the Hamiltonian is

$$
H(x, p)=\frac{1}{2 m}(p-e A(x))^{2}+V(x)
$$

and the Lagrangian is

$$
L(x, \dot{x})=\frac{m}{2} \dot{x}^{2}-V(x)+e \dot{x} \cdot A(x) .
$$

The propagator still has the representation

$$
U_{t}(y, x)=\int_{P_{x, y, t}} e^{i S(\phi) / \hbar} D \phi,
$$

but with

$$
S(\phi)=\int_{0}^{t} L(\phi, \dot{\phi}) d s=\int_{0}^{t}\left(\frac{m}{2} \dot{\phi}^{2}-V(\phi)\right) d s+e \int_{0}^{t} A(\phi) \cdot \dot{\phi} d s .
$$

Since $A(x)$ does not commute with ∇ in general, care should be exercised in computing a finite-dimensional approximation: one should take

$$
\sum A\left(\frac{1}{2}\left(x_{i}+x_{i+1}\right)\right) \cdot\left(x_{i+1}-x_{i}\right)
$$

or

$$
\sum \frac{1}{2}\left(A\left(x_{i}\right)+A\left(x_{i+1}\right)\right) \cdot\left(x_{i+1}-x_{i}\right)
$$

and not

$$
\sum A\left(x_{i}\right) \cdot\left(x_{i+1}-x_{i}\right) \text { or } \sum A\left(x_{i+1}\right) \cdot\left(x_{i+1}-x_{i}\right) .
$$

10.3 Mathematical Supplement: the Trotter Product Formula

Let A, B, and $A+B$ be self-adjoint operators on a Hilbert space \mathcal{H}. If $[A, B] \neq 0$, then $e^{i(A+B)} \neq e^{i A} e^{i B}$ in general. But we do have the following.
Theorem 10.2 (Trotter product formula) Let either A and B be bounded, or A, B, and $A+B$ be self-adjoint and bounded from below. Then for $\operatorname{Re}(\lambda) \leq 0$,

$$
e^{\lambda(A+B)}=s-\lim _{n \rightarrow \infty}\left(e^{\lambda \frac{A}{n}} e^{\lambda \frac{B}{n}}\right)^{n}
$$

Remark 10.3 The convergence here is in the sense of the strong operator topology. For operators A_{n} and A on a Hilbert space \mathcal{H}, such that $D\left(A_{n}\right)=$ $D(A), A_{n} \rightarrow A$ in the strong operator topology (written s-lim $n \rightarrow \infty$ iff $\left\|A_{n} \psi-A \psi\right\| \rightarrow 0$ for all $\psi \in D(A)$. For bounded operators, we can take norm convergence. In the formula above, we used a uniform decomposition of the interval $[0,1]$. The formula still holds for a non-uniform decomposition.

Proof for A, B bounded: We can assume $\lambda=1$. Let $S_{n}=e^{(A+B) / n}$ and $T_{n}=e^{A / n} e^{B / n}$. Now by "telescoping",

$$
\begin{aligned}
S_{n}^{n}-T_{n}^{n} & =S_{n}^{n}-T_{n} S_{n}^{n-1}+T_{n} S_{n}^{n-1}+\cdots-T_{n}^{n} \\
& =\sum_{k=0}^{n-1} T_{n}^{k}\left(S_{n}-T_{n}\right) S_{n}^{n-k-1}
\end{aligned}
$$

so

$$
\begin{aligned}
\left\|S_{n}^{n}-T_{n}^{n}\right\| & \leq \sum_{k=0}^{n-1}\left\|T_{n}\right\|^{k}\left\|S_{n}-T_{n}\right\|\left\|S_{n}\right\|^{n-k-1} \\
& \leq \sum_{k=0}^{n-1}\left(\max \left(\left\|T_{n}\right\|,\left\|S_{n}\right\|\right)\right)^{n-1}\left\|S_{n}-T_{n}\right\| \\
& \leq n e^{\|A\|+\|B\|}\left\|S_{n}-T_{n}\right\| .
\end{aligned}
$$

Using a power series expansion, we see $\left\|S_{n}-T_{n}\right\|=O\left(1 / n^{2}\right)$ and so $\| S_{n}^{n}-$ $T_{n}^{n} \| \rightarrow 0$ as $n \rightarrow \infty$.

A proof for unbounded operators can be found in [RSI].

