10 The Feynman Path Integral

In this chapter, we derive a convenient representation for the integral ker-
nel of the Schrédinger evolution operator, e~ *H/" This representation, the
“Feynman path integral”, will provide us with a heuristic but effective tool
for investigating the connection between quantum and classical mechanics.
This investigation will be undertaken in the next section.

10.1 The Feynman Path Integral

Consider a particle in R¢ described by a self-adjoint Schrédinger operator

h2

Recall that the dynamics of such a particle is given by the Schrédinger equa-

tion o
ZhE = Hq.

Recall also that the solution to this equation, with the initial condition

¢|t=0 = ¢07

is given in terms of the evolution operator U (t) := e *Ht/ ag

Y =U(t)vo.

Our goal in this section is to understand the evolution operator U(t) =
e~ *Ht/M by finding a convenient representation of its integral kernel. We de-
note the integral kernel of U(t) by Ui(y,z) (also called the propagator from
x to y).

A representation of the exponential of a sum of operators is provided by
the Trotter product formula (Theorem 10.2) which is explained in Section 10.3
at the end of this chapter. The Trotter product formula says that
B2t A yg

= ¢'(zm P = s limy, oo K

eszt/h n
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where K,, := eZmnde . Let K,,(z,y) be the integral kernel of the operator
K,,. Then by Proposmon 5.33,

Ut(yvx): lim /"'/Kn(%l‘n—l)"'Kn($27$1)Kn($1;$)d$n—1"'dﬂ?l-

n—oo
(10.1)
Now (see Section 5.7)
Kn (yv LE) =e2mn (yv x)e A
since V, and hence e~*V*/""_is a multiplication operator (check this).
Using the expression (2.15), and plugging into (10.1) gives us
omiht\ "%/
Uiy, z) = hm/ / iSn /ﬁ< m ) dry---dr,_1
n—oo

where

n—1

Sp =Y (mn|rgi —xx|?/2t — V(ga1)t/n)

k=0

with ©g = =z, x, = y. Define the piecewise linear function ¢, such that

dn(0) =z, pp(t/n) = a1, -+, dn(t) =y (see Fig. 10.1).

¢,

t)n 2‘t/n' T (n‘—l)t/n‘ t S

Fig. 10.1. Piecewise linear function.

Then

iy 2((k+ 1)t/n n(kt/n)|?
Z{M’ + 1)t/n) — ¢n(kt/n)|

2(1jn)? ~V(n((k + 1)t/n))} t/n.

k=0

Note that S,, is a Riemann sum for the classical action

st6) = [ {106~ Viots i
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of the path ¢,. So we have shown

Ui(y,z) = lim e /"D, (10.2)
TPy
where P, , is the (n — 1)-dimensional space of paths ¢, with ¢,(0) = =,
¢n(t) = y, and which are linear on the intervals (kt/n, (k + 1)t/n) for k =
0,1,...,n—1, and D¢, = (2ZLL)=nd/2dg, (t/n) - dpn((n — 1)t/n).
Heuristically, as n — oo ¢, approaches a general path, ¢, from z to y (in
time t), and S,, — S(¢). Thus we write

Uiy, z) = / eSO/ D, (10.3)
Py oyt

Here P, is a space of paths from z to y, defined as

Py = {6:[0,1] — BY| / 0P < o0, $(0) =z, B(t) =1y}

This is the Feynman path integral. It is not really an integral, but a formal
expression whose meaning is given by (10.2). Useful results are obtained non-
rigorously by treating it formally as an integral. Answers we get this way are
intelligent guesses which must be justified by rigorous tools.

Note that P;', , is an (n — 1)-dimensional sub-family of the infinite-
dimensional space Py y ¢. It satisfies P’ , C Pﬁ&t and limy, oo Pylyy ¢ = Pyt
in some sense. We call such subspaces finite dimensional approximations
of Pyy:. In (non-rigorous) computations, it is often useful to use finite-
dimensional approximations to the path space other than the polygonal one
above.

We can construct more general finite-dimensional approximations as fol-
lows. Fix a function ¢, € P, ¢ Then

Pﬂ%yi = (b:cy + PO,O,t-

Note Py, is a Hilbert space. Choose an orthonormal basis {£;} in Py 0 and
define

Pilo = span {&;}1
and

n e n
Px,y,t T ¢wy + PO,O,t'

Then P, , is a finite dimensional approximation of P, , ;. Typical choices of

¢zy and {&;} are

1. ¢y is piecewise linear and {¢;} are “splines”. This gives the polygonal
approximation introduced above.
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2. ¢gy is a classical path (a critical point of the action functional S(¢))
and {{;} are eigenfunctions of the Hessian of S at ¢, (these notions are
described in the following two chapters). In this case, if n € P, then

we can represent it as
n
n= E a’jfjv
J=1

and we have

omith\ "% (2rn [m\" 1
o= (Z0)  (F5) o

Jj=1

It is reasonable to expect that if

lim 6i5(¢7t)/ﬁD¢
n—oo [pn
x,y,t

exists, then it is independent of the finite-dimensional approximation, P, ,,
that we choose.

Problem 10.1

1. Compute (using (10.3) and a finite-dimensional approximation of the
path space) U for
a) V(z) =0 (free particle)
b) V(z) = mTwsz (harmonic oscillator in dimension d = 1).
2. Derive a path integral representation for the integral kernel of e=#H/%,
3. Use the previous result to find a path integral representation for Z(() :=
tr e~ #H/" (hint: you should arrive at the expression (11.10)).

10.2 Generalizations of the Path Integral

Here we mention briefly two extensions of the Feynman path integral we have
just introduced.

1. Phase-space path integral:

Uiy, z) = et Jo (ér—H(6.m)/h Dy P

/R'c,y,t x anything

where Dr is the path measure, normalized as
/ﬁ- I e — 1

(in QM, f3p = d®p/(27)3/2). To derive this representation, we use the
Trotter product formula, the expression e~ ~ 1 — jeH for e small,
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and the symbolic (pseudodifferential) composition formula. Unlike the
representation | e"/"D¢, this formula holds also for more complicated
H, which are not quadratic in p!

2. A particle in a vector potential A(x). In this case, the Hamiltonian is

H(r,p) = 5 (p — cA@)) + V()

and the Lagrangian is
. m .o .
L(z, ) = 5 &= V(z) + ex - Ax).

The propagator still has the representation

Udya) = [ e59mpg,
P,

w,y,t

but with

m

S0) = [ Liodts = [ (G = Viends+e [ Aw)-bus

Since A(z) does not commute with V in general, care should be exercised
in computing a finite-dimensional approximation: one should take

Z A(%(:L’z + $i+1)) : ($i+1 - xi)

Z %(A(J?i) + A(it1)) - (Tig1 — @)

and not

Z A(z;) - (xig1 — ;) or ZA(xiH) (Tip1 — x4).

10.3 Mathematical Supplement: the Trotter Product
Formula

Let A, B, and A + B be self-adjoint operators on a Hilbert space H. If
[A, B] # 0, then e (4+5) o£ ¢i4¢iB in general. But we do have the following.

Theorem 10.2 (Trotter product formula) Let either A and B be bounded,
or A, B, and A + B be self-adjoint and bounded from below. Then for
Re(N\) <0,

. A B
AMATE) — 5 lim (M)
n—oo
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Remark 10.3 The convergence here is in the sense of the strong operator
topology. For operators A, and A on a Hilbert space H, such that D(A,,) =
D(A), A, — A in the strong operator topology (written s-lim, . A, = A)
iff ||Anyp — Ay|| — 0 for all p € D(A). For bounded operators, we can take
norm convergence. In the formula above, we used a uniform decomposition of
the interval [0, 1]. The formula still holds for a non-uniform decomposition.

Proof for A,B bounded: We can assume A\ = 1. Let S, = eAT5)/" and
T, = eA/"eB/" Now by “telescoping”,

Sn—Tr =8 —T,St + 7,8 4 T
n—1
= Z T,]f(Sn - Tn)Sg_k_l
k=0
so
n—1
155 = T < D N Tall ¥ IS0 = Tulll Sall "+
k=0
n—1
< D (max([[Tull, 18a )"~ 1Sn = Tl
k=0
< nellAI+IBI|g, — T,
Using a power series expansion, we see ||S,, — Ty,|| = O(1/n?) and so ||S? —

T — 0asn — oco. O
A proof for unbounded operators can be found in [RSI].



